JP2000114113A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JP2000114113A
JP2000114113A JP10276938A JP27693898A JP2000114113A JP 2000114113 A JP2000114113 A JP 2000114113A JP 10276938 A JP10276938 A JP 10276938A JP 27693898 A JP27693898 A JP 27693898A JP 2000114113 A JP2000114113 A JP 2000114113A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
electrolytic capacitor
capacitor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276938A
Other languages
Japanese (ja)
Inventor
Toshiyuki Murakami
敏行 村上
Kazuhiro Hatanaka
一裕 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP10276938A priority Critical patent/JP2000114113A/en
Publication of JP2000114113A publication Critical patent/JP2000114113A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor whose maximum working temperature is at least 105 deg.C, and its manufacturing method. SOLUTION: An anode foil and a cathode foil on the surfaces of which oxide coating film layers are formed are wound via a separator, and a capacitor element is formed. The capacitor element is impregnated with an EDT(ethylene dioxithiophene) monomer and further with butanol solution of ferric paratoluene sulfonic acid as oxidizing agent solution and heated. A solid electrolyte layer composed of PEDT(polyethylene dioxithiophene) is formed. After the capacitor element is dried, silicon resin is stuck on the surface of the capacitor element and thermoset. The outer periphery of the capacitor element is covered with sheath resin. Electrode lead-out means are inserted in penetrating holes formed in a sealing rubber, the capacitor element is installed in a cylindrical close-end sheathing case, an aperture part of the sheathing case is sealed with sealing rubber, and a solid state electrolytic capacitor is constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
及びその製造方法に係り、特に、高温寿命特性の向上を
図るべく改良を施した固体電解コンデンサ及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method of manufacturing the same, and more particularly, to a solid electrolytic capacitor improved to improve high-temperature life characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art In an electrolytic capacitor using a metal having a valve action such as tantalum or aluminum, a valve action metal as an anode-side counter electrode is formed into a shape of a sintered body or an etching foil to expand a dielectric material. By using such a structure, it is possible to obtain a large capacity with a small size. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics that it is small, large-capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high performance, and low cost of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for small size and large capacity applications, generally, an anode foil and a cathode foil made of valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolyte, and the capacitor element is housed in a metal case such as aluminum or a synthetic resin case, and has a sealed structure. Note that as the anode material, aluminum, tantalum, niobium, titanium, or the like is used, and as the cathode material, the same kind of metal as the anode material is used.

【0004】また、固体電解コンデンサに用いられる固
体電解質としては、二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いるが、近年、反応速度が緩やかで、かつ陽極電極の酸
化皮膜層との密着性に優れたポリエチレンジオキシチオ
フェン(以下、PEDTと記す)に着目した技術(特開
平2−15611号公報)が存在している。
As a solid electrolyte used for a solid electrolytic capacitor, manganese dioxide, 7, 7, 8, 8-
A tetracyanoquinodimethane (TCNQ) complex is known, but recently, polyethylenedioxythiophene (hereinafter, referred to as PEDT), which has a slow reaction rate and excellent adhesion to an oxide film layer of an anode electrode, has been developed. There is a technique (Japanese Patent Laid-Open No. 2-15611) that has been focused on.

【0005】このような固体電解質層を有する固体電解
コンデンサは、化成→素子形成→固体電解質層形成→樹
脂封止→エージングという製造工程によって作製され
る。以下には、このような固体電解コンデンサの一例と
して、巻回型のコンデンサ素子にポリエチレンジオキシ
チオフェンからなる固体電解質層を形成するタイプの固
体電解コンデンサの製造工程について簡単に説明する。
A solid electrolytic capacitor having such a solid electrolyte layer is manufactured by a manufacturing process of chemical formation, element formation, solid electrolyte layer formation, resin sealing, and aging. Hereinafter, as an example of such a solid electrolytic capacitor, a process of manufacturing a solid electrolytic capacitor of a type in which a solid electrolyte layer made of polyethylene dioxythiophene is formed on a wound capacitor element will be briefly described.

【0006】まず、アルミニウム等の弁作用金属からな
る陽極箔の表面に、塩化物水溶液中での電気化学的なエ
ッチング処理により粗面化して多数のエッチングピット
を形成した後、ホウ酸アンモニウム等の水溶液中で電圧
を印加して誘電体となる酸化皮膜層を形成する(化
成)。この陽極箔と同様に、陰極箔もアルミニウム等の
弁作用金属からなるが、その表面にはエッチング処理を
施すのみである。また、陽極箔及び陰極箔には、それぞ
れの電極を外部に接続するための電極引き出し手段を、
ステッチ、超音波溶接等の公知の手段により接続する。
First, the surface of an anode foil made of a valve metal such as aluminum is roughened by electrochemical etching in an aqueous chloride solution to form a large number of etching pits. A voltage is applied in an aqueous solution to form an oxide film layer serving as a dielectric (chemical formation). Like the anode foil, the cathode foil is made of valve metal such as aluminum, but its surface is only subjected to etching. In addition, the anode foil and the cathode foil, the electrode lead means for connecting each electrode to the outside,
The connection is made by known means such as stitching and ultrasonic welding.

【0007】次に、以上のようにして表面に酸化皮膜層
が形成された陽極箔と陰極箔とを、セパレータを介して
巻回してコンデンサ素子を形成する(素子形成)。そし
て、このコンデンサ素子にエチレンジオキシチオフェン
(以下、EDTと記す)と酸化剤を含浸し加熱して、両
電極間にポリエチレンジオキシチオフェン(PEDT)
からなる固体電解質層を形成する(固体電解質層形
成)。
Next, the anode foil and the cathode foil each having the oxide film layer formed on the surface as described above are wound through a separator to form a capacitor element (element formation). Then, the capacitor element is impregnated with ethylenedioxythiophene (hereinafter, referred to as EDT) and an oxidizing agent and heated, so that polyethylenedioxythiophene (PEDT) is provided between both electrodes.
Is formed (solid electrolyte layer formation).

【0008】この後、コンデンサ素子の表面に、酸無水
物系の硬化剤を用いたエポキシ樹脂系の熱硬化性樹脂を
付着して熱硬化させることによって、コンデンサ素子の
外周に外装樹脂を被覆する。そして、前記電極引き出し
手段を封口ゴムに設けられた貫通孔に挿入し、コンデン
サ素子を有底筒状の外装ケースに装着し、前記封口ゴム
で外装ケースの開口部を封口して、固体電解コンデンサ
を作成する。
[0008] Thereafter, an epoxy resin-based thermosetting resin using an acid anhydride-based curing agent is adhered to the surface of the capacitor element and thermally cured, thereby covering the outer periphery of the capacitor element with an exterior resin. . Then, the electrode lead-out means is inserted into a through-hole provided in the sealing rubber, the capacitor element is mounted on a bottomed cylindrical outer case, and the opening of the outer case is sealed with the sealing rubber to obtain a solid electrolytic capacitor. Create

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
たような固体電解質としてPEDTを用い、封止材とし
て酸無水物系の硬化剤を用いたエポキシ樹脂を用いた固
体電解コンデンサについて高温寿命試験を行ったとこ
ろ、105℃を超える高温寿命試験においては特性が劣
化するため、最高使用温度は105℃が限界であった。
However, a high-temperature life test was conducted on a solid electrolytic capacitor using PEDT as a solid electrolyte as described above and an epoxy resin using an acid anhydride-based curing agent as a sealing material. However, the characteristics deteriorated in a high-temperature life test exceeding 105 ° C., so the maximum operating temperature was limited to 105 ° C.

【0010】このように、固体電解質としてPEDTを
用い、封止材として酸無水物系の硬化剤を用いたエポキ
シ樹脂を用いた固体電解コンデンサにおいて、105℃
を超える高温寿命試験において特性が劣化するのは、以
下の理由によると考えられる。すなわち、コンデンサ素
子の外周を被覆する外装樹脂として従来から用いられて
いる酸無水物系硬化剤を用いたエポキシ樹脂は、硬化過
程で吸湿する性質があるが、この樹脂を含浸、硬化させ
る前の工程で、コンデンサ素子にはある程度の水分が吸
着されているため、たとえ、硬化過程でコンデンサ素子
中の水分がこの樹脂に吸収されたとしても、コンデンサ
素子中にはまだ水分が残存している。そのため、105
℃以下の温度においては、この残存した水分によって酸
化皮膜の性能が良好に保たれ、耐電圧特性、漏れ電流特
性等の初期特性は良好に保たれていると考えられる。し
かしながら、105℃以上の高温においては、コンデン
サ素子中に残存した水分が酸化皮膜の水和劣化や、PE
DTの電導度低下に働くため、特性が劣化すると考えら
れる。
As described above, in a solid electrolytic capacitor using PEDT as a solid electrolyte and an epoxy resin using an acid anhydride-based curing agent as a sealing material, 105 ° C.
It is considered that the characteristics are degraded in the high-temperature life test exceeding the above for the following reasons. That is, the epoxy resin using an acid anhydride-based curing agent, which has been conventionally used as an exterior resin for covering the outer periphery of the capacitor element, has a property of absorbing moisture in the curing process, but is impregnated with this resin, before being cured. In the process, since a certain amount of moisture is adsorbed on the capacitor element, even if moisture in the capacitor element is absorbed by this resin during the curing process, moisture still remains in the capacitor element. Therefore, 105
At a temperature of not more than ° C., it is considered that the performance of the oxide film is favorably maintained by the residual moisture, and the initial characteristics such as the withstand voltage characteristic and the leakage current characteristic are favorably maintained. However, at a high temperature of 105 ° C. or more, moisture remaining in the capacitor element causes hydration deterioration of the oxide film and PE
It is considered that the characteristics are degraded because it acts to lower the conductivity of DT.

【0011】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、PEDTを電解質とし、最高使用温度が105℃以
上の固体電解コンデンサ及びその製造方法を提供するこ
とにある。
The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a solid electrolytic capacitor using PEDT as an electrolyte and having a maximum operating temperature of 105 ° C. or more, and a solid electrolytic capacitor using the same. It is to provide a manufacturing method.

【0012】[0012]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく、最高使用温度の上昇を可能とすることがで
きる固体電解コンデンサ及びその製造方法について鋭意
検討を重ねた結果、本発明を完成するに至ったものであ
る。すなわち、本発明者は、130℃の寿命試験におい
ては、コンデンサ素子に残存する水分がある程度除去さ
れれば、特性の劣化が抑制できるのではないかと考え、
樹脂を含浸、硬化する前の工程でコンデンサ素子を乾燥
し、樹脂に吸着される水分をある程度除去した上で、エ
ポキシ樹脂以外の封止材の検討を行った。その結果、シ
リコン系封止材に効果があることが判明したものであ
る。なお、このシリコン系封止材としては、シリコン樹
脂、シリコンオイルを用いることが望ましく、シリコン
系封止材の熱硬化温度は、15〜150℃が望ましい。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have made intensive studies on a solid electrolytic capacitor capable of increasing the maximum operating temperature and a method for manufacturing the same, and as a result, the present invention has been made. Is completed. That is, the present inventor thought that in the life test at 130 ° C., if moisture remaining in the capacitor element was removed to some extent, deterioration of the characteristics could be suppressed,
After the capacitor element was dried in a step before the resin was impregnated and cured to remove water adsorbed to the resin to some extent, a sealing material other than the epoxy resin was examined. As a result, it was found that the silicon-based sealing material was effective. In addition, as this silicon-based sealing material, it is desirable to use a silicon resin or silicone oil, and the thermosetting temperature of the silicon-based sealing material is preferably 15 to 150 ° C.

【0013】また、コンデンサ素子を乾燥する方法とし
ては、恒温槽内にコンデンサ素子を放置する方法、コン
デンサ素子に熱風を当てる方法、減圧槽内にコンデンサ
素子を放置する方法等、コンデンサ素子内の水分を除去
できるものであれば種々の方法を適用することができ
る。なお、乾燥温度は15〜120℃、乾燥時間は5〜
30分が望ましい。
The method of drying the capacitor element includes a method of leaving the capacitor element in a constant temperature bath, a method of blowing hot air on the capacitor element, and a method of leaving the capacitor element in a decompression tank. Various methods can be applied as long as the method can remove. The drying temperature is 15 to 120 ° C, and the drying time is 5 to
30 minutes is desirable.

【0014】また、シリコン系封止材によって良好な効
果が得られたのは、以下の理由によるものと考えられ
る。すなわち、電解質層としてPEDT層を形成したコ
ンデンサ素子を乾燥しても、コンデンサ素子中の水分が
完全に除去されるわけではなく、結晶水レベルの水分が
残存する。しかし、シリコン系封止材は樹脂硬化中に吸
湿しないので、この残存した結晶水レベルの水分によっ
て酸化皮膜の性能が良好に保たれ、耐電圧特性、漏れ電
流特性等の初期特性が良好に保たれると考えられる。一
方、130℃の高温寿命試験においては、この程度の水
分が残存していても、この水分が酸化皮膜の水和劣化
や、PEDTの電導度低下に働いて特性が劣化するとい
うことはないので、特性は良好に保たれると考えられ
る。
It is considered that the good effect was obtained by the silicon sealing material for the following reasons. That is, even when the capacitor element having the PEDT layer formed thereon as an electrolyte layer is dried, the water in the capacitor element is not completely removed, and water at the level of crystallization water remains. However, since the silicon-based encapsulant does not absorb moisture during curing of the resin, the remaining moisture of the crystallization water level maintains the performance of the oxide film, and the initial properties such as withstand voltage characteristics and leakage current characteristics are also maintained well. It is thought to be dripping. On the other hand, in the high-temperature life test at 130 ° C., even if such moisture remains, the moisture does not deteriorate the hydration of the oxide film or the conductivity of PEDT, so that the characteristics are not deteriorated. It is considered that the characteristics are kept good.

【0015】[0015]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0016】本発明に係る固体電解コンデンサは、以下
の実施例のように作成した。また、従来例として、樹脂
封止前にコンデンサ素子を乾燥させずに、酸無水物系硬
化剤を用いたエポキシ樹脂で封止した固体電解コンデン
サを用いた。さらに、比較例1として、樹脂封止前にコ
ンデンサ素子を乾燥させた後、酸無水物系硬化剤を用い
たエポキシ樹脂で封止した固体電解コンデンサを用い、
比較例2として、樹脂封止前にコンデンサ素子を乾燥さ
せずに、シリコン樹脂で封止した固体電解コンデンサを
用いた。
A solid electrolytic capacitor according to the present invention was prepared as in the following examples. Further, as a conventional example, a solid electrolytic capacitor sealed with an epoxy resin using an acid anhydride-based curing agent without drying the capacitor element before resin sealing was used. Further, as Comparative Example 1, a solid electrolytic capacitor sealed with an epoxy resin using an acid anhydride-based curing agent after drying the capacitor element before resin sealing was used,
As Comparative Example 2, a solid electrolytic capacitor sealed with a silicon resin without drying the capacitor element before resin sealing was used.

【0017】(実施例)表面に酸化皮膜層が形成された
陽極箔と陰極箔とを、セパレータを介して巻回してコン
デンサ素子を形成する。そして、このコンデンサ素子に
EDTモノマーを含浸し、さらに酸化剤溶液として45
%のパラトルエンスルホン酸第二鉄のブタノール溶液を
含浸して、100℃、1時間加熱して、PEDTからな
る固体電解質層を生成した。そして、このコンデンサ素
子を100℃の恒温槽内に20分放置して乾燥した後、
コンデンサ素子の表面に、シリコン樹脂を付着して熱硬
化(100℃、1時間)させることによって、コンデン
サ素子の外周に外装樹脂を被覆した。そして、電極引き
出し手段を封口ゴムに設けられた貫通孔に挿入し、コン
デンサ素子を有底筒状のアルミケースに装着し、前記封
口ゴムで外装ケースの開口部を封口し、固体電解コンデ
ンサを作成した。
(Example) A capacitor element is formed by winding an anode foil and a cathode foil each having an oxide film layer formed on a surface thereof through a separator. Then, this capacitor element is impregnated with an EDT monomer, and is further added as an oxidizing agent solution.
% Of ferric paratoluenesulfonate in butanol and heated at 100 ° C. for 1 hour to form a solid electrolyte layer made of PEDT. Then, after leaving this capacitor element left in a constant temperature bath at 100 ° C. for 20 minutes,
The outer periphery of the capacitor element was covered with an exterior resin by attaching a silicone resin to the surface of the capacitor element and performing thermosetting (100 ° C., 1 hour). Then, the electrode lead-out means is inserted into a through-hole provided in the sealing rubber, the capacitor element is mounted on a bottomed cylindrical aluminum case, and the opening of the outer case is sealed with the sealing rubber to produce a solid electrolytic capacitor. did.

【0018】(従来例)コンデンサ素子の外装樹脂とし
て、酸無水物系硬化剤を50%添加したエポキシ樹脂を
用い、上述した従来技術に従って固体電解コンデンサを
形成した。すなわち、樹脂封止前にコンデンサ素子を乾
燥させることなく、酸無水物系硬化剤を用いたエポキシ
樹脂で封止して固体電解コンデンサを形成した。
(Conventional Example) A solid electrolytic capacitor was formed according to the above-mentioned conventional technique using an epoxy resin to which 50% of an acid anhydride curing agent was added as an exterior resin of the capacitor element. That is, the solid electrolytic capacitor was formed by sealing the capacitor element with an epoxy resin using an acid anhydride-based curing agent without drying the capacitor element before sealing the resin.

【0019】(比較例1)コンデンサ素子の外装樹脂と
して、従来例と同じ酸無水物系硬化剤を用いたエポキシ
樹脂を用い、上述した実施例と同様の方法で固体電解コ
ンデンサを形成した。すなわち、樹脂封止前にコンデン
サ素子を乾燥させた後、酸無水物系硬化剤を用いたエポ
キシ樹脂で樹脂封止を行った。
(Comparative Example 1) A solid electrolytic capacitor was formed in the same manner as in the above-described embodiment using an epoxy resin using the same acid anhydride-based curing agent as the conventional example as the exterior resin of the capacitor element. That is, after the capacitor element was dried before resin sealing, resin sealing was performed with an epoxy resin using an acid anhydride-based curing agent.

【0020】(比較例2)コンデンサ素子の外装樹脂と
して、実施例と同じシリコン樹脂を用い、上述した従来
技術に従って固体電解コンデンサを形成した。すなわ
ち、樹脂封止前にコンデンサ素子を乾燥させることな
く、シリコン樹脂によって樹脂封止を行った。
(Comparative Example 2) A solid electrolytic capacitor was formed in accordance with the above-mentioned conventional technique, using the same silicone resin as that of the embodiment as the exterior resin of the capacitor element. That is, resin sealing was performed with silicon resin without drying the capacitor element before resin sealing.

【0021】[比較結果]上記の方法により得られた実
施例、従来例、比較例1及び比較例2の固体電解コンデ
ンサについて、130℃で1000時間の放置試験を行
ったところ、次の表1に示すような結果が得られた。
[Comparative Results] The solid electrolytic capacitors of the example, the conventional example, the comparative example 1 and the comparative example 2 obtained by the above method were subjected to a standing test at 130 ° C. for 1000 hours. The result as shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、130℃で10
00時間放置した場合、従来例においては、Capが初
期値と比較して4%減少し、tanδは初期値の約1.
25倍に上昇した。また、等価直列抵抗(ESR)は初
期値の約1.6倍に上昇した。これに対して、実施例に
おいては、その初期特性は、Cap、tanδ共、従来
例とほぼ等しく、ESRは従来例の約84.3%であっ
た。また、130℃で1000時間放置した場合には、
Capが初期値と比較して3.6%減少したものの、t
anδは初期値とほぼ等しい値を示し、ESRは初期値
の約1.2倍に上昇したにすぎなかった。
As apparent from Table 1, at 130 ° C., 10
When left for 00 hours, in the conventional example, Cap is reduced by 4% as compared with the initial value, and tan δ is about 1.0% of the initial value.
It increased 25 times. In addition, the equivalent series resistance (ESR) increased to about 1.6 times the initial value. On the other hand, in the example, the initial characteristics of both Cap and tan δ were almost the same as the conventional example, and the ESR was about 84.3% of the conventional example. When left at 130 ° C. for 1000 hours,
Although Cap decreased by 3.6% from the initial value, t
an δ showed a value almost equal to the initial value, and the ESR increased only to about 1.2 times the initial value.

【0024】このように、封止材としてシリコン樹脂を
用いた実施例においては、PEDT層を形成したコンデ
ンサ素子を樹脂封止前に乾燥しても、従来例と同様の初
期特性を得ることができ、さらに、130℃の高温で使
用しても、その特性が劣化することはないことが判明し
た。その理由は、封止材としてシリコン樹脂を用いた実
施例においては、PEDT層を形成したコンデンサ素子
を樹脂封止前に乾燥しても、残存した微量の水分がシリ
コン樹脂によって吸収されないため、初期特性を維持す
るのに必要な水分は残存していると考えられる。また、
実施例においては、高温寿命試験においても良好な結果
が得られたが、その理由は、コンデンサ素子に付着した
水分を樹脂封止前に乾燥によって除去しているので、初
期特性を維持するのに必要な水分は残存するものの、過
度な水分は除去されているため、130℃の高温におい
て悪影響を及ぼすことはないためであると考えられる。
As described above, in the embodiment using the silicone resin as the sealing material, even if the capacitor element on which the PEDT layer is formed is dried before sealing with the resin, the same initial characteristics as those of the conventional example can be obtained. It has been found that even when used at a high temperature of 130 ° C., its characteristics do not deteriorate. The reason is that, in the embodiment using the silicone resin as the sealing material, even if the capacitor element on which the PEDT layer is formed is dried before the resin sealing, the remaining trace amount of moisture is not absorbed by the silicone resin. It is believed that the water required to maintain the properties remains. Also,
In the examples, good results were also obtained in the high-temperature life test, because the moisture adhering to the capacitor element was removed by drying before resin sealing, so that the initial characteristics could be maintained. This is considered to be because, although necessary moisture remains, excessive moisture has been removed, so that there is no adverse effect at a high temperature of 130 ° C.

【0025】また、樹脂封止前にコンデンサ素子を乾燥
し、酸無水物系硬化剤を用いたエポキシ樹脂で封止した
比較例1においては、初期のCap、tanδ、ESR
は共に、従来例及び実施例とほぼ等しい値を示した。ま
た、表1には示していないが、比較例1においては、初
期の漏れ電流(LC)が“300”と非常に大きくな
り、規格を大きくはずれた値を示した。そのため、比較
例1については、高温寿命試験は実施しなかった。
In Comparative Example 1 in which the capacitor element was dried before sealing with a resin and sealed with an epoxy resin using an acid anhydride-based curing agent, the initial Cap, tan δ, ESR
Both showed almost the same value as the conventional example and the example. Although not shown in Table 1, in Comparative Example 1, the initial leakage current (LC) was very large at "300", which was a value far from the standard. Therefore, the high temperature life test was not performed for Comparative Example 1.

【0026】このように比較例1において初期特性が規
格をはずれたものとなったのは、以下の理由によると考
えられる。すなわち、PEDT層を形成したコンデンサ
素子を樹脂封止前に乾燥した結果、コンデンサ素子には
微量の水分しか残存していない。この状態で、酸無水物
系硬化剤を用いたエポキシ樹脂で樹脂封止を行うと、そ
の硬化過程でコンデンサ素子に残存していた微量の水分
がさらに吸収されてしまうため、初期特性が大幅に低下
したと考えられる。
It is considered that the initial characteristics were out of the standard in Comparative Example 1 for the following reasons. That is, as a result of drying the capacitor element on which the PEDT layer is formed before resin sealing, only a small amount of water remains in the capacitor element. In this state, if resin sealing is performed with an epoxy resin using an acid anhydride-based curing agent, a small amount of water remaining in the capacitor element during the curing process will be further absorbed, and the initial characteristics will be significantly increased. It is thought that it decreased.

【0027】さらに、コンデンサ素子を乾燥させること
なく、シリコン樹脂によって樹脂封止を行った比較例2
においては、その初期特性は、Cap、tanδ、ES
R共、従来例及び実施例とほぼ等しくなった。また、1
30℃で1000時間放置した場合には、Capが初期
値と比較して約3.8%減少したものの、tanδは初
期値とほぼ等しい値を示した。しかしながら、ESRは
初期値の2倍に上昇した。その結果、130℃で100
0時間放置した場合には、ESRは実施例に比べて約
1.7倍となり、また、従来例と比べても約1.1倍の
値を示し、従来例より特性が低下した。このことから、
封止材としてシリコン樹脂を用いた場合であっても、樹
脂封止前にコンデンサ素子を乾燥させないと、優れた高
温特性が得られないことが判明した。
Comparative Example 2 wherein the resin was sealed with a silicone resin without drying the capacitor element.
In, the initial characteristics are Cap, tan δ, ES
In both cases, R became almost equal to the conventional example and the embodiment. Also, 1
When left at 30 ° C. for 1000 hours, Cap decreased by about 3.8% compared to the initial value, but tan δ showed a value almost equal to the initial value. However, the ESR rose to twice the initial value. As a result, 100
When left for 0 hours, the ESR was about 1.7 times as large as that of the example, and about 1.1 times as large as that of the conventional example. From this,
It has been found that even when a silicone resin is used as a sealing material, excellent high-temperature characteristics cannot be obtained unless the capacitor element is dried before resin sealing.

【0028】比較例2において、このような結果が得ら
れたのは、以下の理由によると考えられる。すなわち、
樹脂封止前にコンデンサ素子を乾燥させない場合には、
樹脂封止前の工程でコンデンサ素子が吸湿し、素子内に
ある程度の水分を含むことになる。この水分が、高温寿
命試験中に、酸化皮膜の水和劣化等に働くため、ESR
が劣化するものと考えられる。
The reason why such a result was obtained in Comparative Example 2 is considered to be as follows. That is,
If the capacitor element is not dried before resin sealing,
The capacitor element absorbs moisture in a process before resin sealing, and the element contains a certain amount of moisture. Since this moisture acts on the hydration deterioration of the oxide film during the high-temperature life test, the ESR
Is considered to deteriorate.

【0029】以上のことから、本発明品である実施例に
よれば、従来例に比べて高温寿命特性が大幅に向上し、
130℃仕様の固体電解コンデンサを実現することがで
きる。
From the above, according to the embodiment of the present invention, the high-temperature life characteristic is greatly improved as compared with the conventional example,
A solid electrolytic capacitor having a specification of 130 ° C. can be realized.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
PEDT層を形成したコンデンサ素子を樹脂封止前に乾
燥した後、コンデンサ素子の表面に、シリコン封止材か
らなる層を形成することによって、最高使用温度が10
5℃以上の固体電解コンデンサ及びその製造方法を提供
することができる。
As described above, according to the present invention,
After the capacitor element on which the PEDT layer is formed is dried before sealing with a resin, a layer made of a silicon sealing material is formed on the surface of the capacitor element, so that the maximum operating temperature is 10%.
A solid electrolytic capacitor having a temperature of 5 ° C. or higher and a method for manufacturing the same can be provided.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電極引き出し手段が接続された両極電極
箔をセパレータを介して巻回すると共に、両極電極箔間
にポリエチレンジオキシチオフェンからなる固体電解質
層を形成したコンデンサ素子を備えた固体電解コンデン
サにおいて、 前記コンデンサ素子を乾燥した後、コンデンサ素子の表
面に、シリコン系封止材からなる層を形成したことを特
徴とする固体電解コンデンサ。
1. A solid electrolytic capacitor comprising a capacitor element in which a bipolar electrode foil connected to an electrode lead-out means is wound via a separator and a solid electrolyte layer made of polyethylene dioxythiophene is formed between the bipolar electrode foils. 3. The solid electrolytic capacitor according to claim 1, wherein after drying the capacitor element, a layer made of a silicon-based sealing material is formed on the surface of the capacitor element.
【請求項2】 前記シリコン系封止材が、シリコン樹脂
あるいはシリコンオイルであることを特徴とする請求項
1に記載の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the silicon-based sealing material is a silicone resin or silicone oil.
【請求項3】 前記コンデンサ素子の乾燥温度が、15
〜120℃であることを特徴とする請求項1または請求
項2に記載の固体電解コンデンサ。
3. A drying temperature of the capacitor element is 15
3. The solid electrolytic capacitor according to claim 1, wherein the temperature is −120 ° C. 4.
【請求項4】 前記コンデンサ素子の乾燥時間が、5〜
30分であることを特徴とする請求項1乃至請求項3の
いずれか一に記載の固体電解コンデンサ。
4. The drying time of the capacitor element is 5 to 5.
The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the duration is 30 minutes.
【請求項5】 電極引き出し手段が接続された両極電極
箔をセパレータを介して巻回してコンデンサ素子を形成
し、このコンデンサ素子にエチレンジオキシチオフェン
を含浸し、さらに酸化剤溶液を含浸し加熱して固体電解
質層を形成し、このコンデンサ素子を乾燥した後、コン
デンサ素子の表面にシリコン系封止材からなる層を形成
し、前記電極引き出し手段を封口ゴムに設けられた貫通
孔内に挿入し、このコンデンサ素子を有底筒状の外装ケ
ースに装着して、前記封口ゴムで前記外装ケースの開口
部を封口することを特徴とする固体電解コンデンサの製
造方法。
5. A capacitor element is formed by winding a bipolar electrode foil to which an electrode lead means is connected via a separator, impregnating the capacitor element with ethylenedioxythiophene, further impregnating with an oxidizing agent solution and heating. After drying the capacitor element, a layer made of a silicon-based sealing material is formed on the surface of the capacitor element, and the electrode lead-out means is inserted into a through hole provided in a sealing rubber. A method for manufacturing a solid electrolytic capacitor, comprising mounting the capacitor element in a cylindrical outer case having a bottom and sealing the opening of the outer case with the sealing rubber.
【請求項6】 前記シリコン系封止材が、シリコン樹脂
あるいはシリコンオイルであることを特徴とする請求項
5に記載の固体電解コンデンサの製造方法。
6. The method according to claim 5, wherein the silicon-based sealing material is a silicone resin or a silicone oil.
【請求項7】 前記コンデンサ素子の乾燥温度が、15
〜120℃であることを特徴とする請求項5または請求
項6に記載の固体電解コンデンサの製造方法。
7. The drying temperature of the capacitor element is 15
The method for producing a solid electrolytic capacitor according to claim 5, wherein the temperature is from −120 ° C. 7.
【請求項8】 前記コンデンサ素子の乾燥時間が、5〜
30分であることを特徴とする請求項5乃至請求項7の
いずれか一に記載の固体電解コンデンサの製造方法。
8. The drying time of the capacitor element is 5 to 5.
The method for manufacturing a solid electrolytic capacitor according to any one of claims 5 to 7, wherein the time is 30 minutes.
JP10276938A 1998-09-30 1998-09-30 Solid electrolytic capacitor and its manufacture Pending JP2000114113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276938A JP2000114113A (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276938A JP2000114113A (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JP2000114113A true JP2000114113A (en) 2000-04-21

Family

ID=17576507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276938A Pending JP2000114113A (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JP2000114113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030004A1 (en) * 2002-09-30 2004-04-08 Nippon Chemi-Con Corporation Solid electrolytic capacitor
US7358646B2 (en) 2001-12-10 2008-04-15 Denso Corporation Piezoelectric actuator
US20220037092A1 (en) * 2020-07-30 2022-02-03 Medtronic, Inc. Electrical component and method of forming same
US11631549B2 (en) 2020-07-30 2023-04-18 Medtronic, Inc. Electrical component and method of forming same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358646B2 (en) 2001-12-10 2008-04-15 Denso Corporation Piezoelectric actuator
WO2004030004A1 (en) * 2002-09-30 2004-04-08 Nippon Chemi-Con Corporation Solid electrolytic capacitor
EP1551043A1 (en) * 2002-09-30 2005-07-06 Nippon Chemi-Con Corporation Solid electrolytic capacitor
EP1551043A4 (en) * 2002-09-30 2007-03-07 Nippon Chemicon Solid electrolytic capacitor
US7312977B2 (en) 2002-09-30 2007-12-25 Nippon Chemi-Con Corporation Solid electrolytic capacitor
KR101018184B1 (en) * 2002-09-30 2011-02-28 닛뽄 케미콘 가부시끼가이샤 Solid Electrolytic Capacitor
US20220037092A1 (en) * 2020-07-30 2022-02-03 Medtronic, Inc. Electrical component and method of forming same
US11631549B2 (en) 2020-07-30 2023-04-18 Medtronic, Inc. Electrical component and method of forming same
US11756741B2 (en) * 2020-07-30 2023-09-12 Medtronic, Inc. Electrical component and method of forming same

Similar Documents

Publication Publication Date Title
JP3119604B2 (en) Method for manufacturing solid electrolytic capacitor
JP4823121B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008172277A (en) Solid-state electrolytic capacitor
JP2000195758A (en) Solid electrolytic capacitor and its manufacture
JP4258861B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000114113A (en) Solid electrolytic capacitor and its manufacture
JP2000138133A (en) Solid electrolytic capacitor and its manufacture
JP2001102259A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4568947B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000114112A (en) Solid electrolytic capacitor and its manufacture
JP4683176B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001284189A (en) Solid electrolytic capacitor and its manufacturing method
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP2001284181A (en) Solid electrolytic capacitor
JP2001257131A (en) Manufacturing method of solid electrolytic capacitor
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2001284190A (en) Solid electrolytic capacitor
JPH11274007A (en) Solid electrolytic capacitor and manufacture thereof
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JPH1187192A (en) Solid electrolytic capacitor and its manufacture
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081016

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130