JP2000108919A - Motor-driven power steering device - Google Patents

Motor-driven power steering device

Info

Publication number
JP2000108919A
JP2000108919A JP28698698A JP28698698A JP2000108919A JP 2000108919 A JP2000108919 A JP 2000108919A JP 28698698 A JP28698698 A JP 28698698A JP 28698698 A JP28698698 A JP 28698698A JP 2000108919 A JP2000108919 A JP 2000108919A
Authority
JP
Japan
Prior art keywords
signal
steering
friction
correction
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28698698A
Other languages
Japanese (ja)
Other versions
JP3630278B2 (en
Inventor
Shigeru Yamawaki
茂 山脇
Yasuo Shimizu
康夫 清水
Shigenori Takimoto
繁規 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP28698698A priority Critical patent/JP3630278B2/en
Publication of JP2000108919A publication Critical patent/JP2000108919A/en
Application granted granted Critical
Publication of JP3630278B2 publication Critical patent/JP3630278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain optimum steering feeling corresponding to vehicle behavior such as understeering or oversteering even in the case of low passage by multiplying a correcting quantity from a vehicle behavior judging means by a friction correcting coefficient to output a torque correction signal, and correcting a target torque signal by the correction signal. SOLUTION: When a steering wheel 2 is operated, a motor 8 is driven corresponding to a steering torque signal, motor torque is boosted to act on a steering shaft 3, and steering force of a driver is reduced. At this time, a control means 13 judges whether the vehicle behavior is in understeering, oversteering, or countersteering, by comparing the direction of angle difference of slip angles of front and rear wheels, the direction of a yaw angular speed signal Y, and the direction of a steering torque signal, with each other. The understeering correction quantity, the oversteering correction quantity, and the countersteering correction quantity are corrected by using a friction correcting coefficient in response to road surface friction decided based on the yaw angular speed signal, a cut angle signal, and a vehicle speed signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電動機の動力をス
テアリング系に直接作用させ、ドライバの操舵力の軽減
を図る電動パワーステアリング装置に係り、特に操舵反
力の変化をドライバに伝えて適切な操舵を行わせる電動
パワーステアリング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric power steering apparatus in which the power of an electric motor is directly applied to a steering system to reduce the steering force of a driver. The present invention relates to an electric power steering device for performing the following.

【0002】[0002]

【従来の技術】本願出願人は特願平10−249730
号で、車両速度、ヨー角速度、操舵角に基づいて車両の
前輪の滑り角(βf)と車両の後輪の滑り角(βr)との
差(以降、角差βfr=βf−βrと称する)を演算し、こ
の角差βfrに基づいて車両挙動(オーバステア状態、ア
ンダステア状態等)の補正量を決定し、操舵トルクに基
づいた目標トルク信号を角差βfrに対応した補正量で補
正して電動機を駆動することにより、電動機が発生する
補助トルクを補正してステアリング系に作用させ、路面
からハンドルを介して伝えられる操舵反力を車両挙動に
応じてドライバに感知させ、ドライバが車両挙動に応じ
た適切なハンドル操作が可能となるような電動パワース
テアリング装置を提案した。
2. Description of the Related Art The present applicant has filed a Japanese Patent Application No. 10-249730.
, The difference between the slip angle (βf) of the front wheels of the vehicle and the slip angle (βr) of the rear wheels of the vehicle based on the vehicle speed, the yaw angular speed, and the steering angle (hereinafter referred to as the angular difference βfr = βf-βr) Is calculated based on the angle difference βfr, the correction amount of the vehicle behavior (oversteer state, understeer state, etc.) is determined, and the target torque signal based on the steering torque is corrected by the correction amount corresponding to the angle difference βfr. By driving the vehicle, the auxiliary torque generated by the electric motor is corrected and applied to the steering system, and the steering reaction force transmitted from the road surface via the steering wheel is sensed by the driver according to the vehicle behavior. We also proposed an electric power steering device that enables proper steering operation.

【0003】また、特開平5−131942号公報に開
示されているように、操舵トルクセンサが検出した操舵
トルクに対応したモータ駆動電流値でモータを駆動し、
モータが発生する補助トルクをステアリング系に作用さ
せてドライバの操舵力をアシストする電動パワーステア
リング装置において、車速、操舵量、車体のヨーレイト
に基づいて所定のファジールールに従ってファジー推論
を行い、ファジー推論した走行路面の路面状態の推定値
を直接モータ駆動電流値に乗算し、路面状態に応じてモ
ータ駆動電流値を補正するものも知られている。
As disclosed in Japanese Patent Application Laid-Open No. Hei 5-131942, a motor is driven with a motor drive current value corresponding to a steering torque detected by a steering torque sensor.
In an electric power steering device that assists a driver's steering force by applying an auxiliary torque generated by a motor to a steering system, fuzzy inference is performed based on a vehicle speed, a steering amount, and yaw rate of a vehicle body according to a predetermined fuzzy rule, and fuzzy inference is performed. There is also known an apparatus that directly multiplies a motor drive current value by an estimated value of a road surface state of a traveling road surface and corrects the motor drive current value according to the road surface state.

【0004】[0004]

【発明が解決しようとする課題】角差βfrに対応した補
正量で目標トルク信号を補正する電動パワーステアリン
グ装置は、アンダステア状態やオーバステア状態の車両
挙動を判定し、車両挙動に対応した補正量で目標トルク
信号を補正することはできるが、路面摩擦係数(μ)の
変化に応じた補正ができないため、路面摩擦係数(μ)
の変化が大きい場合、特に路面摩擦係数(μ)が低下す
る低μ路では車両挙動に対して目標トルク信号を充分に
補正することができなく、操舵フィーリングが低下する
課題がある。
An electric power steering apparatus that corrects a target torque signal with a correction amount corresponding to the angle difference βfr determines a vehicle behavior in an understeer state or an oversteer state, and uses the correction amount corresponding to the vehicle behavior. Although the target torque signal can be corrected, it cannot be corrected according to the change in the road surface friction coefficient (μ).
Is large, especially on a low μ road where the road surface friction coefficient (μ) decreases, there is a problem that the target torque signal cannot be sufficiently corrected for the vehicle behavior and the steering feeling decreases.

【0005】また、特開平5−131942号公報に開
示された電動パワーステアリング装置は、ファジー推論
に基づいて路面状態の推定値をモータ駆動電流値に乗算
し、路面状態に応じてモータ駆動電流値を補正すること
により、路面摩擦係数(μ)の変化に対応した補助トル
クを発生するが、車両のアンダステア状態やオーバステ
ア状態を判定しないため、このような車両挙動に対応し
た操舵反力をドライバに正確に伝えることができず、ド
ライバは車両挙動に応じた適切な操舵ができないために
操舵フィーリングの低下を招く課題がある。
The electric power steering apparatus disclosed in Japanese Patent Application Laid-Open No. 5-131942 multiplies a motor driving current value by an estimated value of a road surface state based on fuzzy inference, and calculates a motor driving current value according to the road surface state. Generates an auxiliary torque corresponding to the change in the road surface friction coefficient (μ), but does not determine the understeer state or the oversteer state of the vehicle, so the steering reaction force corresponding to such vehicle behavior is given to the driver. There is a problem that it is not possible to accurately communicate, and the driver cannot perform appropriate steering according to the behavior of the vehicle, so that the steering feeling is reduced.

【0006】この発明はこのような課題を解決するため
なされたもので、その目的は路面が低μ路であっても、
アンダステアやオーバステア等の車両挙動に対応して最
適な操舵フィーリングが得られる電動パワーステアリン
グ装置を提供することにある。
[0006] The present invention has been made to solve such a problem, and its object is to solve the problem even when the road surface is a low μ road.
It is an object of the present invention to provide an electric power steering device that can obtain an optimum steering feeling corresponding to a vehicle behavior such as understeer or oversteer.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
この発明に係る電動パワーステアリング装置は、制御手
段に、路面摩擦に応じた摩擦補正係数を発生する摩擦補
正係数発生手段と、車両挙動判定手段からの補正量に摩
擦補正係数を乗算してトルク補正信号を出力する乗算手
段とを備え、目標トルク信号をトルク補正信号で補正す
ることを特徴とする。
In order to solve the above-mentioned problems, an electric power steering apparatus according to the present invention comprises: a control means for generating a friction correction coefficient according to road surface friction; Multiplying means for multiplying the correction amount from the means by a friction correction coefficient to output a torque correction signal, wherein the target torque signal is corrected by the torque correction signal.

【0008】この発明に係る電動パワーステアリング装
置は、制御手段に、路面摩擦に応じた摩擦補正係数を発
生する摩擦補正係数発生手段と、車両挙動判定手段から
の補正量に摩擦補正係数を乗算してトルク補正信号を出
力する乗算手段とを備え、目標トルク信号をトルク補正
信号で補正するので、アンダステアやオーバステア等の
車両状態および路面摩擦係数に対応した操舵反力をハン
ドルを介してドライバに伝達するとともに、ドライバに
操舵に適した操舵特性を提供することができる。
In the electric power steering apparatus according to the present invention, the control means multiplies a friction correction coefficient by a friction correction coefficient generating means for generating a friction correction coefficient corresponding to road surface friction and a correction amount from the vehicle behavior determining means. Multiplying means for outputting a torque correction signal through the steering wheel and correcting the target torque signal with the torque correction signal, so that a steering reaction force corresponding to a vehicle state such as understeer or oversteer and a road surface friction coefficient is transmitted to the driver via the steering wheel. In addition, it is possible to provide the driver with steering characteristics suitable for steering.

【0009】また、この発明に係る摩擦補正係数発生手
段は、ヨー角速度センサが検出するヨー角速度信号と切
れ角センサが検出する切れ角信号とに基づいて摩擦応動
係数を発生する摩擦応動係数発生手段と、車速信号に基
づいて車速応動係数を発生する車速応動係数発生手段
と、摩擦応動係数と車速応動係数を乗算して摩擦補正係
数を出力する乗算手段とを備えたことを特徴とする。
Further, the friction correction coefficient generating means according to the present invention comprises a friction response coefficient generating means for generating a friction response coefficient based on a yaw angular velocity signal detected by the yaw angular velocity sensor and a steering angle signal detected by the steering angle sensor. And a vehicle speed response coefficient generating means for generating a vehicle speed response coefficient based on the vehicle speed signal, and a multiplying means for multiplying the friction response coefficient by the vehicle speed response coefficient to output a friction correction coefficient.

【0010】この発明に係る摩擦補正係数発生手段は、
ヨー角速度センサが検出するヨー角速度信号と切れ角セ
ンサが検出する切れ角信号とに基づいて摩擦応動係数を
発生する摩擦応動係数発生手段と、車速信号に基づいて
車速応動係数を発生する車速応動係数発生手段と、摩擦
応動係数と車速応動係数を乗算して摩擦補正係数を出力
する乗算手段とを備えたので、路面摩擦係数(μ)の影
響を摩擦応動係数と車速応動係数の積である摩擦補正係
数で補償することができる。
[0010] The friction correction coefficient generating means according to the present invention comprises:
Friction response coefficient generating means for generating a friction response coefficient based on the yaw angular velocity signal detected by the yaw angular velocity sensor and the steering angle signal detected by the steering angle sensor; and a vehicle speed response coefficient for generating a vehicle speed response coefficient based on the vehicle speed signal Since there is provided a generating means, and a multiplying means for multiplying the friction response coefficient and the vehicle speed response coefficient to output a friction correction coefficient, the influence of the road surface friction coefficient (μ) is determined by the product of the friction response coefficient and the vehicle speed response coefficient. It can be compensated by a correction coefficient.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。なお、本発明は、オーバス
テアやアンダステアの車両状態に対する補正量を路面摩
擦係数(μ)に応じた摩擦補正係数で補正し、摩擦補正
係数で補正した補正量で目標トルク信号を補正すること
により、車両状態および路面摩擦係数(μ)の変化を操
舵反力としてドライバに正確に伝えるとともに、適切な
操舵特性を与え、ドライバに最適な操舵フィーリングを
提供するものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The present invention corrects the correction amount for the vehicle state of oversteer or understeer with a friction correction coefficient corresponding to the road surface friction coefficient (μ), and corrects the target torque signal with the correction amount corrected with the friction correction coefficient. The purpose of the present invention is to accurately transmit a change in a vehicle state and a road surface friction coefficient (μ) to a driver as a steering reaction force, to give an appropriate steering characteristic, and to provide an optimal steering feeling to the driver.

【0012】図1はこの発明に係る電動パワーステアリ
ング装置の全体構成図である。図1において、電動パワ
ーステアリング装置1は、ステアリングホイール2、ス
テアリング軸3、ハイポイドギア4、ピニオン5aおよ
びラック軸5bなどからなるラック&ピニオン機構5、
タイロッド6、操向車輪の前輪7、補助トルクをステア
リング系に作用する電動機8、制御手段13、電動機駆
動手段14、電動機電流検出手段15を備える。
FIG. 1 is an overall configuration diagram of an electric power steering apparatus according to the present invention. In FIG. 1, an electric power steering apparatus 1 includes a rack and pinion mechanism 5 including a steering wheel 2, a steering shaft 3, a hypoid gear 4, a pinion 5a, a rack shaft 5b, and the like.
The vehicle includes a tie rod 6, a front wheel 7 of a steered wheel, a motor 8 for applying an assist torque to a steering system, a control unit 13, a motor drive unit 14, and a motor current detection unit 15.

【0013】また、電動パワーステアリング装置1は、
車両に作用するヨー角速度を検出し、ヨー角速度に対応
した電気信号に変換されたヨー角速度信号Yを検出する
ヨー角速度センサ9、前輪の切れ角を検出し、前輪の切
れ角に対応した電気信号に変換された切れ角信号δを出
力する切れ角センサ10、車速を検出し、車速に対応し
た電気信号に変換された車速信号Vを出力する車速セン
サ11、ステアリングホイール2に作用する操舵トルク
を検出し、操舵トルクに対応した電気信号に変換された
操舵トルク信号Tを出力する操舵トルクセンサ12を備
える。なお、切れ角信号δは操舵角からステアリングギ
ヤボックス内(図示せず)のギア比を用いて算出しても
よい。
Further, the electric power steering device 1 comprises:
A yaw angular velocity sensor 9 for detecting a yaw angular velocity acting on the vehicle and detecting a yaw angular velocity signal Y converted into an electric signal corresponding to the yaw angular velocity, an electric signal corresponding to the angle of the front wheel being detected, A steering angle sensor 10 that outputs a steering angle signal δ converted to a vehicle speed, a vehicle speed sensor 11 that detects a vehicle speed, and outputs a vehicle speed signal V converted to an electric signal corresponding to the vehicle speed, and a steering torque that acts on the steering wheel 2. A steering torque sensor 12 that detects and outputs a steering torque signal T converted to an electric signal corresponding to the steering torque is provided. The turning angle signal δ may be calculated from the steering angle using a gear ratio in a steering gear box (not shown).

【0014】ヨー角速度信号Y、切れ角信号δ、操舵ト
ルク信号Tは、それぞれ大きさと方向を有し、車速信号
Vは大きさのみを有し、制御手段13に供給される。な
お、ヨー角速度信号Y、切れ角信号δ、操舵トルク信号
Tの方向は、車両上方から見て時計回り方向を正(プラ
ス)とし、反時計回り方向を負(マイナス)とする。
The yaw angular velocity signal Y, the turning angle signal δ, and the steering torque signal T have respective magnitudes and directions, and the vehicle speed signal V has only magnitude, and is supplied to the control means 13. The directions of the yaw angular velocity signal Y, the turning angle signal δ, and the steering torque signal T are positive (plus) in the clockwise direction and negative (minus) in the counterclockwise direction when viewed from above the vehicle.

【0015】ステアリングホイール2を操舵すると、ス
テアリング軸3に加えられる手動操舵トルクは、ラック
&ピニオン機構5を介してピニオン5aの回転力がラッ
ク軸5bの軸方向の直線運動に変換され、タイロッド6
を介して前輪7の操向を変化させる。
When the steering wheel 2 is steered, a manual steering torque applied to the steering shaft 3 is converted into a linear motion in the axial direction of the rack shaft 5b by the rotation of the pinion 5a via the rack and pinion mechanism 5, and the tie rod 6 is rotated.
The steering of the front wheel 7 is changed via the.

【0016】手動の操舵トルクをアシストするため、操
舵トルク信号Tに対応して電動機8が駆動されると、電
動機トルクがハイポイドギア4を介して倍力された補助
トルク(アシストトルク)に変換されてステアリング軸
3に作用し、ドライバの操舵力を軽減する。
When the electric motor 8 is driven in response to the steering torque signal T to assist the manual steering torque, the electric motor torque is converted into an assist torque (assist torque) boosted via the hypoid gear 4. Acts on the steering shaft 3 to reduce the driver's steering force.

【0017】制御手段13は、マイクロプロセッサを基
本に各種演算手段、処理手段、判定手段、係数発生手
段、信号発生手段、メモリ等で構成し、操舵トルク信号
Tに対応した目標トルク信号(IMS)を発生し、この目
標トルク信号(IMS)と電動機電流検出手段15が検出
した電動機電流IMに対応した電動機トルク信号IMFと
の差(負帰還)に応じた電動機制御信号VO(例えば、
オン信号、オフ信号およびPWM信号の混成信号)を発
生し、この差が速やかに0となるように電動機駆動手段
14の駆動を制御する。
The control means 13 comprises various arithmetic means, processing means, determination means, coefficient generation means, signal generation means, memory, etc., based on a microprocessor, and a target torque signal (IMS) corresponding to the steering torque signal T. And a motor control signal VO (for example, according to a difference (negative feedback)) between the target torque signal (IMS) and the motor torque signal IMF corresponding to the motor current IM detected by the motor current detection means 15.
An ON signal, an OFF signal, and a PWM signal) are generated, and the driving of the motor driving means 14 is controlled so that the difference quickly becomes zero.

【0018】また、制御手段13は、滑り角差推定手
段、補正手段を備え、ヨー角速度信号Y、切れ角信号
δ、車速信号Vおよび車両の寸法パラメータ(ホイール
ベース)に基づいて前輪の滑り角と後輪の滑り角の差
(角差信号)を演算で推定し、この差(角差信号)の大
きさに基づいてアンダステア補正量、オーバステア補正
量およびカウンタステア補正量を決定し、この補正量で
目標トルク信号(IMS)を補正する。
The control means 13 includes a slip angle difference estimating means and a correcting means, and based on the yaw angular velocity signal Y, the turning angle signal δ, the vehicle speed signal V and the vehicle dimensional parameter (wheel base), the slip angle of the front wheels. A difference (angle difference signal) between the slip angle of the rear wheel and the rear wheel is estimated by calculation, and an understeer correction amount, an oversteer correction amount, and a countersteer correction amount are determined based on the magnitude of the difference (angle difference signal). Correct the target torque signal (IMS) by the amount.

【0019】さらに、制御手段13は、前輪の滑り角と
後輪の滑り角の角差(角差信号)の方向(P)、ヨー角
速度信号Yの方向(N)および操舵トルク信号Tの方向
(S)を比較することにより、車両の状態(車両挙動)
がアンダステア領域、オーバステア領域またはカウンタ
ステア領域のいずれであるかを判定する。
Further, the control means 13 controls the direction (P) of the angle difference (angle difference signal) between the slip angle of the front wheel and the slip angle of the rear wheel, the direction (N) of the yaw angular velocity signal Y, and the direction of the steering torque signal T. By comparing (S), the state of the vehicle (vehicle behavior)
Is an understeer area, an oversteer area, or a countersteer area.

【0020】また、制御手段13は、ヨー角速度信号
Y、切れ角信号δおよび車速信号Vに基づいて摩擦補正
係数(Kμ)を発生する摩擦補正係数発生手段を備え、
アンダステア補正量、オーバステア補正量およびカウン
タステア補正量を路面摩擦に応じた摩擦補正係数(K
μ)で補正する。
The control means 13 includes a friction correction coefficient generating means for generating a friction correction coefficient (Kμ) based on the yaw angular velocity signal Y, the turning angle signal δ, and the vehicle speed signal V,
The understeer correction amount, the oversteer correction amount, and the countersteer correction amount are defined by a friction correction coefficient (K
μ).

【0021】電動機駆動手段14は、例えば4個のパワ
ーFET(電界効果トランジスタ)、絶縁ゲート・バイ
ポーラトランジスタ(IGBT)等のスイッチング素子
からなるブリッジ回路で構成し、電動機制御信号VOに
基づいてPWM(パルス幅変調)の電動機電圧VMを出
力し、電動機8を正回転または逆回転にPWM駆動す
る。
The motor driving means 14 is composed of a bridge circuit composed of switching elements such as four power FETs (field effect transistors) and insulated gate bipolar transistors (IGBTs), and PWM (PWM) based on the motor control signal VO. A motor voltage VM of (pulse width modulation) is output, and the motor 8 is PWM-driven in forward rotation or reverse rotation.

【0022】電動機電流検出手段15は、電動機8と直
列に接続された抵抗器またはホール素子等で電動機電流
IMを電圧に変換して検出し、電動機電流IMに対応した
電動機トルク信号IMFを制御手段13にフィードバック
(負帰還)する。
The motor current detecting means 15 converts the motor current IM into a voltage by means of a resistor or a Hall element connected in series with the motor 8 and detects the voltage. The motor current detecting means 15 outputs a motor torque signal IMF corresponding to the motor current IM. 13 (negative feedback).

【0023】図2は本発明に係る電動パワーステアリン
グ装置の一実施の形態基本要部ブロック構成図である。
図2において、電動パワーステアリング装置1の制御手
段13は、目標トルク信号設定手段21、差演算手段2
2、駆動制御手段23、車両挙動判定手段24、補正手
段25、摩擦補正係数発生手段16、乗算手段17を備
える。
FIG. 2 is a block diagram of a basic essential part of one embodiment of the electric power steering apparatus according to the present invention.
In FIG. 2, the control means 13 of the electric power steering apparatus 1 includes a target torque signal setting means 21, a difference calculation means 2
2, a drive control unit 23, a vehicle behavior determination unit 24, a correction unit 25, a friction correction coefficient generation unit 16, and a multiplication unit 17.

【0024】目標トルク信号設定手段21は、ROM等
のメモリに予め図5に示す操舵トルク信号T−目標トル
ク信号IMS特性データ、および図6に示す車速信号V−
車速係数KT特性データを記憶しておき、操舵トルクセ
ンサ12が検出した操舵トルク信号Tおよび車速センサ
11が検出した車速信号Vに基づいて操舵トルク信号T
に対応した目標トルク信号(IMS)に車速信号Vに対応
した車速係数KTを乗算(KT*IMS)して目標トルク信
号IMOとして補正手段25に供給する。目標トルク信号
IMOは、トルク信号Tが同一でも車速信号Vが増加する
につれて減少するようにし、高車速領域での操舵の安定
性を確保するように設定する。
The target torque signal setting means 21 stores a steering torque signal T-target torque signal IMS characteristic data shown in FIG. 5 and a vehicle speed signal V-
The vehicle speed coefficient KT characteristic data is stored, and the steering torque signal T based on the steering torque signal T detected by the steering torque sensor 12 and the vehicle speed signal V detected by the vehicle speed sensor 11 is stored.
Is multiplied by a vehicle speed coefficient KT corresponding to the vehicle speed signal V (KT * IMS) and supplied to the correcting means 25 as a target torque signal IMO. The target torque signal IMO is set so as to decrease as the vehicle speed signal V increases even if the torque signal T is the same, and to ensure the stability of steering in a high vehicle speed region.

【0025】差演算手段22は、減算機能を備え、補正
手段25から供給される目標トルク信号IMHと、電動機
電流検出手段15から供給される電動機トルク信号IMF
との差ΔI(=IMH−IMF)を演算し、差信号ΔI(=
IMH−IMF)を駆動制御手段23に供給する。
The difference calculation means 22 has a subtraction function, and a target torque signal IMH supplied from the correction means 25 and a motor torque signal IMF supplied from the motor current detection means 15.
ΔI (= IMH−IMF) to calculate the difference signal ΔI (=
IMH-IMF) to the drive control means 23.

【0026】駆動制御手段23は、PIDコントロー
ラ、電動機制御信号発生手段等を備え、差演算手段22
から供給される差信号ΔIに比例(P)、積分(I)お
よび微分(D)制御を施した後、これら比例・積分・微
分(PID)制御を施した信号を混合した混合信号に基
づいてハンドルの右操舵または左操舵に対応したPWM
の電動機制御信号VOを発生し、電動機制御信号VOを電
動機駆動手段14に供給する。
The drive control means 23 includes a PID controller, a motor control signal generation means, etc.
(P), integral (I), and derivative (D) control on the difference signal ΔI supplied from the controller, and based on a mixed signal obtained by mixing the signals subjected to the proportional, integral, and derivative (PID) control. PWM corresponding to steering right or left steering
And the motor control signal VO is supplied to the motor drive means 14.

【0027】車両挙動判定手段24は、滑り角差推定手
段、方向判定手段、選択手段、アンダステア補正量出力
手段、オーバステア補正量出力手段、カウンタステア補
正量出力手段等を備え、車速センサ11から供給される
車速信号V、ヨー角速度センサ9から供給されるヨー角
速度信号Yおよび切れ角センサ10から供給される切れ
角信号δに基づいて車両の前輪滑り角(βf)と車両の
後輪滑り角(βr)との差(角差βfr=βf−βr)を演
算し、この角差(βfr)基づいてアンダステア補正量
(DA)、オーバステア補正量(DO)およびカウンタス
テア補正量(DC)を発生し、補正信号IDを乗算手段1
7に供給する。
The vehicle behavior determining means 24 includes slip angle difference estimating means, direction determining means, selecting means, understeer correction amount output means, oversteer correction amount output means, countersteer correction amount output means, and the like. The vehicle front wheel slip angle (βf) and the vehicle rear wheel slip angle (βf) are determined based on the vehicle speed signal V, the yaw angular speed signal Y supplied from the yaw angular speed sensor 9, and the steering angle signal δ supplied from the steering angle sensor 10. βr) (angle difference βfr = βf−βr), and based on this angle difference (βfr), an understeer correction amount (DA), an oversteer correction amount (DO), and a countersteer correction amount (DC) are generated. Multiplying means 1 by the correction signal ID
7

【0028】図3はこの発明に係る車両挙動判定手段の
要部ブロック構成図である。図3において、車両挙動判
定手段24は、滑り角差推定手段30、第1方向判定手
段31、選択手段32、第2方向判定手段33、選択手
段34、第3方向判定手段35、選択手段36、オーバ
ステア補正量出力手段37、アンダステア補正量出力手
段38、カウンタステア補正量出力手段39、角差変化
量演算手段40、角差変化係数発生手段41、加算手段
42,43、乗算手段44,45、加算手段46を備え
る。
FIG. 3 is a block diagram of a main part of the vehicle behavior determining means according to the present invention. In FIG. 3, the vehicle behavior determining means 24 includes a slip angle difference estimating means 30, a first direction determining means 31, a selecting means 32, a second direction determining means 33, a selecting means 34, a third direction determining means 35, and a selecting means 36. Oversteer correction amount output means 37, understeer correction amount output means 38, counter steer correction amount output means 39, angle difference change amount calculation means 40, angle difference change coefficient generation means 41, addition means 42, 43, and multiplication means 44, 45. , Adding means 46.

【0029】滑り角差推定手段30は、メモリ、演算手
段等を備え、車速信号V、ヨー角速度信号Y、前輪の切
れ角に対応する切れ角信号δおよびメモリに予め設定し
た車両の寸法パラメータ(例えば、ホイールベースL)
に基づいて数1から前輪滑り角(βf)と後輪滑り角
(βr)との角差βfr(=βf−βr)を演算し、角差信
号βfrを第1方向判定手段31、第2方向判定手段3
3、選択手段32、角差変化量演算手段40に供給す
る。
The slip angle difference estimating means 30 includes a memory, a calculating means, and the like, and includes a vehicle speed signal V, a yaw angular speed signal Y, a turning angle signal δ corresponding to a turning angle of a front wheel, and a vehicle dimensional parameter preset in the memory. For example, wheelbase L)
From the equation (1), the angle difference βfr (= βf−βr) between the front wheel slip angle (βf) and the rear wheel slip angle (βr) is calculated, and the angle difference signal βfr is calculated by the first direction determining means 31 and the second direction. Judgment means 3
3, supply to the selection means 32 and the angle difference change amount calculation means 40.

【0030】[0030]

【数1】βfr=Y*L/V−δ## EQU1 ## βfr = Y * L / V-δ

【0031】なお、前輪滑り角(βf)および後輪滑り
角(βr)は、タイヤの向きを基準としてタイヤの進行
方向への角度を表わすので、時計回り方向へハンドルを
切った場合、前輪タイヤの向きに対してタイヤの進行方
向は反時計回り方向となり、時計回り方向を正(プラ
ス)とすると前輪滑り角(βf)の方向は負(マイナ
ス)となる。同様に、後輪滑り角(βr)も負(マイナ
ス)となり、角差信号βfrの方向(符号)は後輪滑り角
(βr)の絶対値|βr|が前輪滑り角(βf)の絶対値
|βf|以上(|βr|≧|βf|)となるまでは、負
(マイナス)で表わす。
The front wheel slip angle (βf) and the rear wheel slip angle (βr) represent angles in the traveling direction of the tire with reference to the direction of the tire. The direction of travel of the tire is counterclockwise with respect to the direction of. If the clockwise direction is positive (plus), the direction of the front wheel slip angle (βf) is negative (minus). Similarly, the rear wheel slip angle (βr) is also negative (minus), and the direction (sign) of the angle difference signal βfr is the absolute value of the rear wheel slip angle (βr) | βr | is the absolute value of the front wheel slip angle (βf) Until | βf | or more (| βr | ≧ | βf |), it is expressed as negative (minus).

【0032】第1方向判定手段31は、符号比較機能を
備え、滑り角差推定手段30から供給される角差信号β
frの方向符号Pと、ヨー角速度センサ9から供給される
ヨー角速度信号Yの方向符号Nに基づいて、方向符号P
と方向符号Nが一致(符号が同一)する場合には、例え
ばHレベルの判定信号HO1を選択手段32に供給し、方
向符号Pと方向符号Nが異なる(符号が異なる)場合に
は、例えばLレベルの判定信号HO1を選択手段32に供
給する。
The first direction judging means 31 has a sign comparing function, and outputs the angle difference signal β supplied from the slip angle difference estimating means 30.
Based on the direction code P of fr and the direction code N of the yaw angular velocity signal Y supplied from the yaw angular velocity sensor 9, the direction code P
When the direction code N and the direction code N match (the code is the same), for example, an H-level determination signal HO1 is supplied to the selection means 32. When the direction code P and the direction code N are different (the codes are different), The L-level determination signal HO1 is supplied to the selection means 32.

【0033】選択手段32は、ソフト制御のスイッチ機
能を備え、第1方向判定手段31から供給される判定信
号HO1に基づいてスイッチを切り替え、滑り角差推定手
段30から供給される角差信号βfrを選択手段34、ま
たはオーバステア補正量出力手段37に供給する。な
お、選択手段32は、判定信号HO1がHレベル(符号が
同一)の場合には、オーバステア補正量出力手段37を
選択(実線表示)し、判定信号HO1がLレベル(符号が
不一致)の場合には、選択手段34を選択(破線表示)
する。
The selection means 32 has a switch function of software control, switches the switch based on the judgment signal H01 supplied from the first direction judgment means 31, and outputs the angle difference signal βfr supplied from the slip angle difference estimation means 30. Is supplied to the selection means 34 or the oversteer correction amount output means 37. The selection means 32 selects the oversteer correction amount output means 37 (indicated by a solid line) when the judgment signal HO1 is at the H level (the sign is the same), and when the judgment signal HO1 is at the L level (the sign does not match). Select the selection means 34 (displayed with a broken line)
I do.

【0034】角差信号βfrの方向符号Pとヨー角速度信
号Yの方向符号Nとが同じ(一致)場合、例えばヨー角
速度Yが時計回り方向であって、後輪の反時計回り方向
滑り角(βr)が前輪の反時計回り方向滑り角(βf)よ
りも大きいような場合には、ヨー角速度信号Yの方向符
号Nがプラス(+)で角差信号βfrの方向符号Pがプラ
ス(+)となり、車両挙動のオーバステア領域と判定し
て選択手段32はオーバステア補正量出力手段37を選
択(実線表示)する。
When the direction code P of the angular difference signal βfr and the direction code N of the yaw angular velocity signal Y are the same (coincident), for example, the yaw angular velocity Y is clockwise and the counterclockwise sliding angle of the rear wheel ( When βr) is larger than the counterclockwise slip angle (βf) of the front wheel, the direction sign N of the yaw rate signal Y is plus (+) and the direction sign P of the angular difference signal βfr is plus (+). The selection means 32 selects the oversteer correction amount output means 37 (indicated by a solid line).

【0035】一方、角差信号βfrの方向符号Pとヨー角
速度信号Yの方向符号Nとが異なる(不一致)場合、例
えばヨー角速度Yが時計回り方向であって、前輪の反時
計回り方向滑り角(βf)が後輪の反時計回り方向滑り
角(βr)よりも大きいような場合には、ヨー角速度信
号Yの方向符号Nがプラス(+)で角差信号βfrの方向
符号Pがマイナス(−)となり、選択手段32は選択手
段34を選択(破線表示)する。
On the other hand, when the direction code P of the angular difference signal βfr and the direction code N of the yaw angular velocity signal Y are different (non-coincidence), for example, the yaw angular velocity Y is clockwise and the counterclockwise sliding angle of the front wheel is counterclockwise. When (βf) is larger than the counterclockwise slip angle (βr) of the rear wheel, the direction sign N of the yaw angular velocity signal Y is plus (+) and the direction sign P of the angular difference signal βfr is minus ( -), And the selecting means 32 selects (displays a broken line) the selecting means 34.

【0036】第2方向判定手段33は、符号比較機能を
備え、滑り角差推定手段30から供給される角差信号β
frの方向符号Pと、操舵トルク信号Tの方向符号Sに基
づいて、方向符号Pと方向符号Sが一致(符号が同一)
する場合には、例えばHレベルの判定信号HO2を選択手
段34に供給し、方向符号Pと方向符号Sが異なる(符
号が異なる)場合には、例えばLレベルの判定信号HO2
を選択手段34に供給する。
The second direction judging means 33 has a sign comparing function, and outputs the angle difference signal β supplied from the slip angle difference estimating means 30.
Based on the direction code P of fr and the direction code S of the steering torque signal T, the direction code P and the direction code S match (the codes are the same).
In this case, for example, the determination signal HO2 at the H level is supplied to the selection means 34. When the direction code P and the direction code S are different (the codes are different), for example, the determination signal HO2 at the L level is provided.
Is supplied to the selection means 34.

【0037】選択手段34は、ソフト制御のスイッチ機
能を備え、第2方向判定手段33から供給される判定信
号HO2に基づいてスイッチを切り替え、選択手段32か
ら供給される角差信号βfrをアンダステア補正量出力手
段38またはカウンタステア補正量出力手段39に供給
する。なお、選択手段34は、判定信号HO2がHレベル
(符号が同一)の場合には、カウンタステア補正量出力
手段39を選択(実線表示)し、判定信号HO2がLレベ
ル(符号が不一致)の場合には、アンダステア補正量出
力手段38を選択(破線表示)する。
The selection means 34 has a switch function of software control, switches the switch based on the determination signal H02 supplied from the second direction determination means 33, and corrects the understeer correction of the angular difference signal βfr supplied from the selection means 32. It is supplied to the amount output means 38 or the counter steer correction amount output means 39. When the judgment signal HO2 is at the H level (the sign is the same), the selection means 34 selects the counter steer correction amount output means 39 (shown by a solid line), and when the judgment signal HO2 is at the L level (the sign does not match). In this case, the understeer correction amount output means 38 is selected (indicated by a broken line).

【0038】角差信号βfrの方向符号Pと操舵トルク信
号Tの方向符号Sとが同じ(一致)場合、例えば操舵ト
ルク信号Tが時計回り方向であって、後輪の反時計回り
方向滑り角(βr)が前輪の反時計回り方向滑り角(β
f)よりも大きいような場合には、操舵トルク信号Tの
方向符号Sがプラス(+)で角差信号βfrの方向符号P
がプラス(+)となり、車両挙動のカウンタステア過大
領域と判定して選択手段34はカウンタステア補正量出
力手段39を選択(実線表示)する。
When the direction code P of the angle difference signal βfr and the direction code S of the steering torque signal T are the same (coincidence), for example, the steering torque signal T is clockwise, and the counterclockwise slip angle of the rear wheels. (Βr) is the counterclockwise sliding angle (β
f), the direction sign S of the steering torque signal T is plus (+) and the direction sign P of the angular difference signal βfr
Becomes plus (+), and it is determined that the vehicle is in the excessively steered region of the behavior of the vehicle.

【0039】一方、角差信号βfrの方向符号Pと操舵ト
ルク信号Tの方向符号Sとが異なる(不一致)場合、例
えば操舵トルク信号Tが時計回り方向であって、前輪の
反時計回り方向滑り角(βf)が後輪の反時計回り方向
滑り角(βr)よりも大きいような場合には、操舵トル
ク信号Tの方向符号Sがプラス(+)で角差信号βfrの
方向符号Pがマイナス(−)となり、車両挙動のアンダ
ステア領域と判定して選択手段34はアンダステア補正
量出力手段38を選択(破線表示)する。
On the other hand, when the direction code P of the angle difference signal βfr and the direction code S of the steering torque signal T are different (unmatched), for example, the steering torque signal T is clockwise and the front wheels slide counterclockwise. When the angle (βf) is larger than the counterclockwise slip angle (βr) of the rear wheel, the direction sign S of the steering torque signal T is plus (+) and the direction sign P of the angle difference signal βfr is minus. (-), It is determined that the vehicle behavior is understeer, and the selection means 34 selects the understeer correction amount output means 38 (shown by a broken line).

【0040】このように、車両挙動判定手段24は、第
1方向判定手段31で角差信号βfrの方向符号Pとヨー
角速度信号Yの方向符号Nとが一致と判定した場合(選
択手段32の実線表示側)には、オーバステア状態であ
ると判定し、角差信号βfrを選択手段32を介してオー
バステア補正量出力手段37に供給する。
As described above, the vehicle behavior determining means 24 determines that the first direction determining means 31 determines that the direction code P of the angular difference signal βfr and the direction code N of the yaw angular velocity signal Y match (selection of the selecting means 32). On the solid line display side), it is determined that the vehicle is in the oversteer state, and the angle difference signal βfr is supplied to the oversteer correction amount output unit 37 via the selection unit 32.

【0041】車両の強いオーバステア領域とは、そのま
までは車両がスピンする虞のある状態であり、ドライバ
に操舵反力を強く感じさせてカウンタステアを行い易く
している。
The strong oversteer region of the vehicle is a state in which the vehicle may spin as it is, and makes the driver strongly feel the steering reaction force to facilitate countersteering.

【0042】また、車両挙動判定手段24は、第1方向
判定手段31で角差信号βfrの方向符号Pとヨー角速度
信号Yの方向符号Nとが不一致と判定(選択手段32の
破線表示側)し、かつ第2方向判定手段33で角差信号
βfrの方向符号Pと操舵トルク信号Tの方向符号Sとが
不一致(選択手段34の破線表示側)と判定した場合に
は、車両挙動がアンダステア状態であると判定して角差
信号βfrを選択手段32および選択手段34を介してア
ンダステア補正量出力手段38に供給する。
Further, the vehicle behavior determining means 24 determines that the direction code P of the angular difference signal βfr and the direction code N of the yaw angular velocity signal Y do not match in the first direction determining means 31 (the broken line display side of the selecting means 32). If the direction sign P of the angle difference signal βfr and the direction sign S of the steering torque signal T do not match (the side indicated by a broken line of the selection unit 34) by the second direction judgment unit 33, the vehicle behavior becomes understeer. In this state, the angular difference signal βfr is supplied to the understeer correction amount output means 38 via the selection means 32 and the selection means 34.

【0043】車両挙動の強いアンダステア領域とは、現
在の操舵状態からこれ以上ハンドルを切り込んでも車両
が曲らない状態であり、ドライバに操舵反力を強く感じ
させてハンドルを戻した方が良いことを知らせる操舵領
域である。
The understeer region in which the vehicle behavior is strong is a state in which the vehicle does not turn even if the steering wheel is further turned from the current steering state, and it is better that the driver returns the steering wheel by strongly feeling the steering reaction force. Is a steering area that informs the user of

【0044】なお、弱いアンダステア領域では操舵反力
の補正は不要であるので、図8に示すように角差信号β
frの絶対値|βfr|に対するアンダステア補正量DAの
不感帯領域を大きく設定している。
Since it is not necessary to correct the steering reaction force in the weak understeer region, as shown in FIG.
The dead zone of the understeer correction amount DA with respect to the absolute value | βfr | of fr is set large.

【0045】さらに、車両挙動判定手段24は、第1方
向判定手段31で角差信号βfrの方向符号Pとヨー角速
度信号Yの方向符号Nとが不一致と判定(選択手段32
の破線表示側)し、かつ第2方向判定手段33で角差信
号βfrの方向符号Pと操舵トルク信号Tの方向符号Sと
が一致(選択手段34の実線表示側)と判定した場合に
は、車両挙動がカウンタステア過大状態であると判定し
て角差信号βfrを選択手段32および選択手段34を介
してカウンタステア補正量出力手段39に供給する。
Further, the vehicle behavior judging means 24 judges by the first direction judging means 31 that the direction code P of the angular difference signal βfr and the direction code N of the yaw angular velocity signal Y do not match (selecting means 32
When the second direction determination means 33 determines that the direction code P of the angle difference signal βfr and the direction code S of the steering torque signal T match (the solid line display side of the selection means 34). Then, it is determined that the vehicle behavior is in the counter-steer excessive state, and the angle difference signal βfr is supplied to the counter-steer correction amount output means 39 via the selection means 32 and the selection means 34.

【0046】角差変化量演算手段40は、微分演算機能
を備え、滑り角差推定手段30から供給される角差信号
βfrに微分演算を施し、角差変化量信号DV(=dβfr
/dt)を角差変化係数発生手段41および第3方向判
定手段35に供給する。
The angular difference change amount calculating means 40 has a differential calculating function, performs a differential operation on the angular difference signal βfr supplied from the slip angle difference estimating means 30, and obtains the angular difference change amount signal DV (= dβfr
/ Dt) is supplied to the angle difference change coefficient generating means 41 and the third direction determining means 35.

【0047】角差変化係数発生手段41は、ROM等の
メモリを備え、予め図10に示す角差変化量DVと角差
変化係数KVの特性データを記憶しておき、角差変化量
信号DVが供給されると、対応した角差変化係数KVを読
み出して乗算手段44および乗算手段45に供給する。
The angle difference change coefficient generating means 41 has a memory such as a ROM, and stores in advance the characteristic data of the angle difference change amount DV and the angle difference change coefficient KV shown in FIG. Is supplied, the corresponding angular difference change coefficient KV is read and supplied to the multiplying means 44 and the multiplying means 45.

【0048】第3方向判定手段35は、符号比較機能を
備え、角差変化量演算手段40から供給される角差変化
量信号DV(=dβfr/dt)の方向符号Fと操舵トル
ク信号Tの方向符号Sとに基づいて、方向符号Fと方向
符号Sが一致(符号が同一)する場合には、例えばHレ
ベルの判定信号HO3を選択手段36に供給し、方向符号
Fと方向符号Sが異なる(符号が異なる)場合には、L
レベルの判定信号HO3を選択手段36に供給する。な
お、角差変化量信号DVの方向符号Fは、角差信号βfr
が正(+)で、かつ絶対値|βfr|が増加する時は正
(+)とし、絶対値|βfr|が減少する時は負(−)と
する。また、角差変化量信号DVの方向符号Fは、角差
信号βfrが負(−)で、かつ絶対値|βfr|が増加する
する時は正(+)とし、絶対値|βfr|が減少する時は
負(−)とする。
The third direction judging means 35 has a sign comparison function, and calculates the direction sign F of the angle difference change amount signal DV (= dβfr / dt) supplied from the angle difference change amount calculating means 40 and the steering torque signal T. When the direction code F and the direction code S match (the codes are the same) based on the direction code S, for example, an H-level determination signal HO3 is supplied to the selection unit 36, and the direction code F and the direction code S If different (sign is different), L
The level determination signal HO3 is supplied to the selection means 36. Note that the direction code F of the angle difference change amount signal DV is the angle difference signal βfr
Is positive (+) and the absolute value | βfr | increases, the value is positive (+). When the absolute value | βfr | decreases, the value is negative (-). The direction code F of the angle difference change amount signal DV is positive (+) when the angle difference signal βfr is negative (−) and the absolute value | βfr | increases, and the absolute value | βfr | decreases. When doing so, it is negative (-).

【0049】選択手段36は、ソフト制御のスイッチ機
能を備え、第3方向判定手段35から供給される判定信
号HO3に基づいてスイッチを切り替え、カウンタステア
補正量出力手段39から加算手段43を介して供給され
るカウンタステア補正量DCもしくはオーバステア補正
量出力手段37から加算手段43を介して供給されるオ
ーバステア補正量DOを加算手段42または乗算手段4
5に供給する。なお、選択手段36は、判定信号HO3が
Hレベル(符号が同一)の場合には加算手段42を選択
(破線表示側)し、判定信号HO3がLレベル(符号が不
一致)の場合には乗算手段45を選択(実線表示)す
る。
The selecting means 36 has a switch function of software control, and switches the switch based on the judgment signal H03 supplied from the third direction judging means 35. The selecting means 36 outputs the counter steer correction amount output means 39 through the adding means 43. The supplied countersteer correction amount DC or the oversteer correction amount DO supplied from the oversteer correction amount output means 37 via the addition means 43 is added to the addition means 42 or the multiplication means 4.
5 The selecting means 36 selects the adding means 42 (on the broken line side) when the judgment signal HO3 is at the H level (the sign is the same), and multiplies when the judgment signal HO3 is at the L level (the sign does not match). The means 45 is selected (displayed with a solid line).

【0050】角差変化量信号DV(=dβfr/dt)の
方向符号Fと操舵トルク信号Tの方向符号Sとが不一致
(符号が異なる)の場合、例えばカウンタ当てを行って
操舵トルク信号Tの方向符号Sが反時計回り方向で、後
輪の反時計回り方向滑り角(βr)が前輪の反時計回り
方向滑り角(βf)よりも大きくその差が拡大するよう
な場合には、方向符号Sがマイナス(−)で方向符号F
がプラス(+)となり、選択手段36は乗算手段45を
選択(実線表示側)し、カウンタステア補正量DCを乗
算手段45に供給する。
When the direction code F of the angle difference change amount signal DV (= dβfr / dt) and the direction code S of the steering torque signal T do not match (the signs are different), for example, a counter contact is performed to obtain the steering torque signal T. If the direction code S is in the counterclockwise direction and the counterclockwise slip angle (βr) of the rear wheel is larger than the counterclockwise slip angle (βf) of the front wheel, and the difference increases, the direction code S is minus (-) and direction code F
Becomes plus (+), the selection means 36 selects the multiplication means 45 (on the solid line side), and supplies the counter steer correction amount DC to the multiplication means 45.

【0051】一方、角差変化量信号DV(=dβfr/d
t)の方向符号Fと操舵トルク信号Tの方向符号Sとが
一致(符号が同一)する場合、例えばカウンタステア当
てを行い、操舵トルク信号Tの方向符号Sが反時計回り
方向で、後輪の反時計回り方向滑り角(βr)が前輪の
反時計回り方向滑り角(βf)よりも大きく、その差が
縮小するような場合には、方向符号Sがマイナス(−)
で方向符号Fがマイナス(−)となり、選択手段36は
加算手段42を選択(破線表示側)し、カウンタステア
補正量DCを加算手段42に供給する。
On the other hand, the angle difference change amount signal DV (= dβfr / d
When the direction code F of t) and the direction code S of the steering torque signal T match (the same sign), for example, counter steering is performed, and the direction code S of the steering torque signal T is counterclockwise, and Is larger than the counterclockwise slip angle (βf) of the front wheels and the difference decreases, the direction sign S is minus (−).
, The direction code F becomes minus (-), and the selection means 36 selects the addition means 42 (shown by a broken line) and supplies the countersteer correction amount DC to the addition means 42.

【0052】オーバステア補正量出力手段37は、RO
M等のメモリを備え、予め図8に示す角差信号の絶対値
|βfr|とオーバステア補正量DOとの特性データを記
憶しておき、選択手段32から角差信号βfrが供給され
ると、対応するオーバステア補正量DOを読み出し、オ
ーバステア補正量信号DOを加算手段43を介して切替
手段36に供給する。
The oversteer correction amount output means 37 outputs
M, and the like, and the characteristic data of the absolute value | βfr | of the angle difference signal and the oversteer correction amount DO shown in FIG. 8 are stored in advance, and when the angle difference signal βfr is supplied from the selection unit 32, The corresponding oversteer correction amount DO is read, and the oversteer correction amount signal DO is supplied to the switching means 36 via the adding means 43.

【0053】アンダステア補正量出力手段38は、RO
M等のメモリを備え、予め図7に示す角差信号の絶対値
|βfr|とアンダステア補正量DAとの特性データを記
憶しておき、選択手段34から角差信号βfrが供給され
ると、対応するアンダステア補正量DAを読み出し、ア
ンダステア補正量信号DAを加算手段42に供給する。
The understeer correction amount output means 38 outputs
M, and stores in advance the characteristic data of the absolute value | βfr | of the angular difference signal shown in FIG. 7 and the understeer correction amount DA, and when the angular difference signal βfr is supplied from the selection unit 34, The corresponding understeer correction amount DA is read, and the understeer correction amount signal DA is supplied to the adding means 42.

【0054】カウンタステア補正量出力手段39は、R
OM等のメモリを備え、予め図9に示す角差信号の絶対
値|βfr|とカウンタステア補正量DCとの特性データ
を記憶しておき、選択手段34から角差信号βfrが供給
されると、対応するカウンタステア補正量DCを読み出
し、カウンタステア補正量信号DCを加算手段43を介
して選択手段36に供給する。
The counter steer correction amount output means 39 outputs R
A memory such as an OM is provided, and characteristic data of the absolute value | βfr | of the angle difference signal and the countersteer correction amount DC shown in FIG. The corresponding counter steer correction amount DC is read, and the counter steer correction amount signal DC is supplied to the selecting means 36 via the adding means 43.

【0055】加算手段42は、加算機能を備え、アンダ
ステア補正量出力手段38から供給されるアンダステア
補正量DAと選択手段36(破線表示側)から供給され
るオーバステア補正量DOもしくはカウンタステア補正
量DCを加算し、アンダステア状態ではアンダステア補
正量DA、オーバステアステア状態ではオーバステア補
正量DO、カウンタステア状態ではカウンタステア補正
量DCを乗算手段44に供給する。
The adding means 42 has an adding function, and provides an understeer correction amount DA supplied from the understeer correction amount output means 38 and an oversteer correction amount DO or countersteer correction amount DC supplied from the selection means 36 (shown by a broken line). The understeer correction amount DA is supplied to the multiplication means 44 in the understeer state, the oversteer correction amount DO in the oversteersteer state, and the countersteer correction amount DC in the countersteer state.

【0056】乗算手段44は、乗算機能を備え、加算手
段42から供給されるアンダステア補正量DA、カウン
タステア補正量DCもしくはオーバステア補正量DOに角
差変化係数発生手段41から供給される角差変化係数K
Vと定数−1(極性反転)を乗算し、それぞれアンダス
テア補正量信号−IDA(=−KV*DA)、カウンタステ
ア補正量信号−IDC(=−KV*DC)もしくはオーバス
テア補正量−IDO(=−KV*DO)を加算手段46に供
給する。
The multiplying means 44 has a multiplying function, and provides the understeer correction amount DA, the countersteer correction amount DC or the oversteer correction amount DO supplied from the adding means 42 to the angular difference change coefficient supplied from the angular difference change coefficient generating means 41. Coefficient K
V is multiplied by a constant -1 (polarity inversion), and an understeer correction amount signal −IDA (= −KV * DA), a countersteer correction amount signal −IDC (= −KV * DC), or an oversteer correction amount −IDO (= -KV * DO) to the adding means 46.

【0057】乗算手段45は、乗算機能を備え、選択手
段36から供給されるオーバステア補正量DOまたはカ
ウンタステア補正量DCに角差変化係数発生手段41か
ら供給される角差変化係数KVを乗算し、それぞれオー
バステア補正量信号IDO(=KV*DO)またはカウンタ
ステア補正量信号IDC(=KV*DC)を加算手段46に
供給する。
The multiplying means 45 has a multiplying function, and multiplies the oversteer correction amount DO or the countersteer correction amount DC supplied from the selecting means 36 by the angular difference variation coefficient KV supplied from the angular difference variation coefficient generating means 41. The oversteer correction amount signal IDO (= KV * DO) or the countersteer correction amount signal IDC (= KV * DC) is supplied to the adding means 46.

【0058】加算手段46は、加算機能を備え、アンダ
ステア補正量信号−IDA(=−KV*DA)、オーバステ
ア補正量信号−IDO(=−−KV*DO)もしくはカウン
タステア補正量信号−IDC(=−KV*DC)、またはオ
ーバステア補正量信号IDO(=KV*DO)またはカウン
タステア補正量信号IDC(=KV*DC)を加算処理し、
アンダステア状態、2つのオーバステア状態または2つ
のカウンタステア状態に対応してそれぞれアンダステア
補正量信号−IDA、オーバステア補正量信号−IDOまた
はオーバステア補正量信号IDO、カウンタステア補正量
信号−IDCまたはカウンタステア補正量信号IDCを補正
量IDとして図2に示す乗算手段17に出力する。
The adding means 46 has an adding function, and provides an understeer correction amount signal −IDA (= −KV * DA), an oversteer correction amount signal −IDO (= −− KV * DO) or a countersteer correction amount signal −IDC ( = −KV * DC), the oversteer correction amount signal IDO (= KV * DO), or the countersteer correction amount signal IDC (= KV * DC).
An understeer correction amount signal -IDA, an oversteer correction amount signal -IDO or an oversteer correction amount signal IDO, a countersteer correction amount signal -IDC or a countersteer correction amount corresponding to the understeer state, the two oversteer states or the two countersteer states, respectively. The signal IDC is output as the correction amount ID to the multiplication means 17 shown in FIG.

【0059】図2に戻り、摩擦補正係数発生手段16
は、演算機能、ROM等のメモリを備え、車速信号V、
ヨー角速度信号Y、前輪の切れ角に対応する切れ角信号
δに基づいて路面摩擦に応じた摩擦補正係数Kμを発生
し、摩擦補正係数Kμを乗算手段17に供給する。
Returning to FIG. 2, the friction correction coefficient generating means 16
Has an arithmetic function, a memory such as a ROM, and has a vehicle speed signal V,
Based on the yaw angular velocity signal Y and the turning angle signal δ corresponding to the turning angle of the front wheels, a friction correction coefficient Kμ corresponding to the road surface friction is generated, and the friction correction coefficient Kμ is supplied to the multiplying means 17.

【0060】図4はこの発明に係る摩擦補正係数発生手
段の一実施の形態要部ブロック構成図である。図4にお
いて、摩擦補正係数発生手段16は、摩擦応動係数発生
手段18、車速応動係数発生手段19、乗算手段20を
備える。
FIG. 4 is a block diagram of a main part of an embodiment of the friction correction coefficient generating means according to the present invention. In FIG. 4, the friction correction coefficient generation means 16 includes a friction response coefficient generation means 18, a vehicle speed response coefficient generation means 19, and a multiplication means 20.

【0061】摩擦応動係数発生手段18は、演算手段、
ROM等のメモリを備え、路面摩擦係数μが小さくなっ
て路面が低μ路になるにつれてヨー角速度Yに対する切
れ角δが大きくなる現象を利用し、ヨー角速度Yと切れ
角信号δの比Y/δを演算する。
The friction response coefficient generating means 18 is a computing means,
A memory, such as a ROM, is used, utilizing the phenomenon that the turning angle δ with respect to the yaw angular velocity Y increases as the road surface friction coefficient μ decreases and the road surface becomes a low μ road. Calculate δ.

【0062】予め実験的に求めた図11に示すヨー角速
度Yと切れ角信号δの比Y/δ−摩擦応動係数Kα特性
データを記憶しておき、ヨー角速度センサ9が検出した
ヨー角速度信号Yおよび切れ角センサ10が検出した切
れ角信号δが供給されると、対応した摩擦応動係数Kα
を読み出し、摩擦応動係数Kαを乗算手段20に供給す
る。
The yaw angular velocity signal Y detected by the yaw angular velocity sensor 9 is stored in advance by storing experimentally obtained characteristic data of the ratio Y / δ-friction response coefficient Kα of the yaw angular velocity Y and the turning angle signal δ shown in FIG. When the turning angle signal δ detected by the turning angle sensor 10 is supplied, the corresponding friction response coefficient Kα
And supplies the friction response coefficient Kα to the multiplication means 20.

【0063】車速応動係数発生手段19は、ROM等の
メモリを備え、予め図12に示す車速信号V−車速応動
係数Kβ特性データを記憶しておき、車速センサ11が
検出した車速信号Vが供給されると、対応する車速応動
係数Kβを読み出して乗算手段20に供給する。
The vehicle speed response coefficient generating means 19 has a memory such as a ROM, and stores in advance the vehicle speed signal V-vehicle speed response coefficient Kβ characteristic data shown in FIG. 12 and supplies the vehicle speed signal V detected by the vehicle speed sensor 11. Then, the corresponding vehicle speed response coefficient Kβ is read and supplied to the multiplication means 20.

【0064】乗算手段20は、乗算機能を有し、摩擦応
動係数発生手段18から供給される摩擦応動係数Kαと
車速応動係数発生手段19から供給される車速応動係数
Kβを乗算(Kα*Kβ)し、摩擦補正係数Kμ(=K
α*Kβ)を乗算手段17に供給する。
The multiplication means 20 has a multiplication function, and multiplies the friction response coefficient Kα supplied from the friction response coefficient generation means 18 and the vehicle speed response coefficient Kβ supplied from the vehicle speed response coefficient generation means 19 (Kα * Kβ). And the friction correction coefficient Kμ (= K
α * Kβ) is supplied to the multiplication means 17.

【0065】図2に戻り、乗算手段17は、乗算機能を
備え、車両挙動判定手段24から出力される補正量ID
に、摩擦補正係数発生手段16から出力される摩擦補正
係数Kμ(=Kα*Kβ)を乗算してトルク補正信号I
H(=Kμ*ID)を補正手段25に供給する。
Returning to FIG. 2, the multiplying means 17 has a multiplying function and the correction amount ID output from the vehicle behavior determining means 24.
Is multiplied by a friction correction coefficient Kμ (= Kα * Kβ) output from the friction correction coefficient generation means 16 to obtain a torque correction signal I
H (= Kμ * ID) is supplied to the correction means 25.

【0066】補正手段25は、加算機能を備え、目標ト
ルク信号設定手段21から供給される目標トルク信号I
MOを、車両挙動判定手段24から出力される補正量ID
に摩擦補正係数発生手段16から出力される摩擦補正係
数Kμを乗算した補正トルク信号IH(=Kμ*ID)で
補正し、新たな目標トルク信号IMH(=IMO+IH)を
差演算手段22に供給する。
The correcting means 25 has an adding function, and the target torque signal I supplied from the target torque signal setting means 21 is provided.
MO is determined by the correction amount ID output from the vehicle behavior determining means 24.
Is corrected by a correction torque signal IH (= Kμ * ID) obtained by multiplying the difference correction coefficient Kμ output from the friction correction coefficient generation means 16 and a new target torque signal IMH (= IMO + IH) is supplied to the difference calculation means 22. .

【0067】なお、車両挙動判定手段24から出力され
る補正量IDは、アンダステア補正量が−IDA、オーバ
ステア補正量が−IDOとIDO、カウンタステア補正量が
−IDCとIDCなので、極性がマイナス(−)の補正量−
IDA、−IDOおよび−IDCは補正手段25で減算補正と
なり、極性がプラス(+)の補正量IDOおよびIDCは補
正手段25で増加補正となる。
The correction amount ID output from the vehicle behavior determining means 24 has an understeer correction amount of -IDA, oversteer correction amounts of -IDO and IDO, and countersteer correction amounts of -IDC and IDC. −) Correction amount −
IDA, -IDO and -IDC are subtraction corrections by the correction means 25, and the correction amounts IDO and IDC having the positive (+) polarity are correction corrections by the correction means 25.

【0068】このように、この発明に係る電動パワース
テアリング装置1は、制御手段13に、路面摩擦に応じ
た摩擦補正係数Kμを発生する摩擦補正係数発生手段1
6と、車両挙動判定手段24からの補正量IDに摩擦補
正係数Kμを乗算してトルク補正信号IHを出力する乗
算手段17とを備え、目標トルク信号IMOをトルク補正
信号IHで補正するので、アンダステアやオーバステア
の車両状態および路面摩擦係数に対応した操舵反力をハ
ンドルを介してドライバに伝達するとともに、ドライバ
の操舵に適した操舵特性を与えることができる。
As described above, the electric power steering apparatus 1 according to the present invention provides the control means 13 with the friction correction coefficient generating means 1 for generating the friction correction coefficient Kμ corresponding to the road surface friction.
6 and a multiplying means 17 for multiplying the correction amount ID from the vehicle behavior determining means 24 by the friction correction coefficient Kμ to output a torque correction signal IH, and the target torque signal IMO is corrected by the torque correction signal IH. The steering reaction force corresponding to the vehicle state of understeer or oversteer and the road surface friction coefficient are transmitted to the driver via the steering wheel, and steering characteristics suitable for the driver's steering can be given.

【0069】また、この発明に係る摩擦補正係数発生手
段16は、ヨー角速度センサ9が検出するヨー角速度信
号Yと切れ角センサ10が検出する切れ角信号δとに基
づいて摩擦応動係数Kαを発生する摩擦応動係数発生手
段18と、車速信号Vに基づいて車速応動係数Kβを発
生する車速応動係数発生手段19と、摩擦応動係数Kα
と車速応動係数Kβを乗算して摩擦補正係数Kμを出力
する乗算手段20とを備えたので、路面摩擦係数(μ)
の影響を摩擦応動係数Kαと車速応動係数Kβの積であ
る摩擦補正係数Kμ(=Kα*Kβ)で補償することが
できる。
The friction correction coefficient generating means 16 according to the present invention generates a friction response coefficient Kα based on the yaw angular velocity signal Y detected by the yaw angular velocity sensor 9 and the steering angle signal δ detected by the steering angle sensor 10. A friction response coefficient generating means 18, a vehicle speed response coefficient generating means 19 for generating a vehicle speed response coefficient Kβ based on the vehicle speed signal V, and a friction response coefficient Kα.
And a multiplying means 20 for multiplying the vehicle speed response coefficient Kβ to output a friction correction coefficient Kμ.
Can be compensated by a friction correction coefficient Kμ (= Kα * Kβ) which is a product of the friction response coefficient Kα and the vehicle speed response coefficient Kβ.

【0070】[0070]

【発明の効果】以上説明したようにこの発明に係る電動
パワーステアリング装置は、目標トルク信号を補正量に
摩擦補正係数を乗算したトルク補正信号で補正するの
で、アンダステアやオーバステアの車両状態および路面
摩擦係数に対応した操舵反力をハンドルを介してドライ
バに伝達するとともに、ドライバに操舵に適した操舵特
性を提供することができるので、ドライバは低μ路でも
オーバステアやアンダステアの車両挙動に応じた良好な
操舵フィーリングを得ることができる。
As described above, the electric power steering apparatus according to the present invention corrects the target torque signal with the torque correction signal obtained by multiplying the correction amount by the friction correction coefficient, so that the vehicle state of understeer or oversteer and the road surface friction are corrected. The steering reaction force corresponding to the coefficient is transmitted to the driver via the steering wheel, and the driver can be provided with steering characteristics suitable for steering, so that the driver can respond to over-steer and under-steer vehicle behavior even on a low μ road. A good steering feeling can be obtained.

【0071】また、この発明に係る摩擦補正係数発生手
段は、路面摩擦係数(μ)の影響を摩擦応動係数と車速
応動係数の積である摩擦補正係数で路面摩擦の影響を補
償することができるので、低μ路でも車両挙動を操舵反
力としてドライバに正確に伝えることができる。
Further, the friction correction coefficient generating means according to the present invention can compensate for the influence of the road surface friction coefficient (μ) by the friction correction coefficient which is a product of the friction response coefficient and the vehicle speed response coefficient. Therefore, even on a low μ road, the vehicle behavior can be accurately transmitted to the driver as a steering reaction force.

【0072】よって、低μ路でも操舵特性に優れ、良好
な操舵フィーリングが得られる電動パワーステアリング
装置を提供することができる。
Accordingly, it is possible to provide an electric power steering apparatus which is excellent in steering characteristics even on a low μ road and which can obtain a good steering feeling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る電動パワーステアリング装置の
全体構成図
FIG. 1 is an overall configuration diagram of an electric power steering device according to the present invention.

【図2】本発明に係る電動パワーステアリング装置の一
実施の形態基本要部ブロック構成図
FIG. 2 is a block diagram of an essential part of an electric power steering apparatus according to an embodiment of the present invention.

【図3】この発明に係る車両挙動判定手段の要部ブロッ
ク構成図
FIG. 3 is a block diagram of a main part of a vehicle behavior determining unit according to the present invention.

【図4】この発明に係る摩擦補正係数発生手段の一実施
の形態要部ブロック構成図
FIG. 4 is a block diagram of a main part of an embodiment of a friction correction coefficient generating means according to the present invention;

【図5】操舵トルク信号T−目標トルク信号IMS特性図FIG. 5 is a characteristic diagram of a steering torque signal T-target torque signal IMS.

【図6】車速信号V−車速係数KT特性図FIG. 6 is a characteristic diagram of a vehicle speed signal V-vehicle speed coefficient KT.

【図7】角差信号の絶対値|βfr|−アンダステア補正
量DA特性図
FIG. 7 is an absolute value | βfr | -understeer correction amount DA characteristic diagram of the angle difference signal;

【図8】角差信号の絶対値|βfr|−オーバステア補正
量DO特性図
FIG. 8 is an absolute value | βfr | -oversteer correction amount DO characteristic diagram of the angle difference signal.

【図9】角差信号の絶対値|βfr|−カウンタステア補
正量DC特性図
FIG. 9 is a characteristic diagram of an absolute value | βfr | -counter steer correction amount DC of the angle difference signal.

【図10】角差変化量DV−角差変化係数KV特性図FIG. 10 is a characteristic diagram of an angle difference change amount DV-angle difference change coefficient KV.

【図11】ヨー角速度Yと切れ角信号δの比Y/δ−摩
擦応動係数Kα特性図
FIG. 11 is a characteristic diagram of a ratio Y / δ-friction response coefficient Kα between the yaw angular velocity Y and the turning angle signal δ.

【図12】車速信号V−車速応動係数Kβ特性図FIG. 12 is a characteristic diagram of a vehicle speed signal V and a vehicle speed response coefficient Kβ.

【符号の説明】[Explanation of symbols]

1…電動パワーステアリング装置、2…ステアリングホ
イール、9…ヨー角速度センサ、10…切れ角センサ、
11…車速センサ、12…操舵トルクセンサ、13…制
御手段、16…摩擦補正係数発生手段、17,20…乗
算手段、18…摩擦応動係数発生手段、19…車速応動
係数発生手段、21…目標トルク信号設定手段、24…
車両挙動判定手段、25…補正手段。
DESCRIPTION OF SYMBOLS 1 ... Electric power steering device, 2 ... Steering wheel, 9 ... Yaw angular velocity sensor, 10 ... Cutting angle sensor,
11: vehicle speed sensor, 12: steering torque sensor, 13: control means, 16: friction correction coefficient generation means, 17, 20: multiplication means, 18: friction response coefficient generation means, 19: vehicle speed response coefficient generation means, 21: target Torque signal setting means, 24 ...
Vehicle behavior determination means, 25 correction means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B62D 137:00 (72)発明者 滝本 繁規 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3D032 CC08 CC16 DA03 DA15 DA23 DA33 DA40 DA64 DA82 DB02 DC01 DC02 DC03 DC21 DD02 DD10 DD17 EA01 EB11 EC25 GG01 3D033 CA03 CA11 CA12 CA13 CA16 CA17 CA18 CA20 CA21 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) B62D 137: 00 (72) Inventor Shigenori Takimoto 1-4-1, Chuo, Wako-shi, Saitama Japan Honda Motor Co., Ltd. F term in the laboratory (reference) 3D032 CC08 CC16 DA03 DA15 DA23 DA33 DA40 DA64 DA82 DB02 DC01 DC02 DC03 DC21 DD02 DD10 DD17 EA01 EB11 EC25 GG01 3D033 CA03 CA11 CA12 CA13 CA16 CA17 CA18 CA20 CA21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステアリング系の操舵トルクを検出する
操舵トルクセンサと、ステアリング系に補助トルクを付
加する電動機と、前後輪の滑り角差に基づいて車両挙動
を判定して補正信号を出力する車両挙動判定手段、少な
くとも前記操舵トルクセンサからの操舵トルク信号に基
づいて目標トルク信号を設定する目標トルク設定手段、
この目標トルク設定手段からの目標トルク信号を前記車
両挙動判定手段からの補正量に基づいて補正する補正手
段を備え、前記電動機の駆動を制御する制御手段と、か
らなる電動パワーステアリング装置において、 前記制御手段は、路面摩擦に応じた摩擦補正係数を発生
する摩擦補正係数発生手段と、前記車両挙動判定手段か
らの補正量に摩擦補正係数を乗算してトルク補正信号を
出力する乗算手段と、を備え、目標トルク信号をトルク
補正信号で補正することを特徴とする電動パワーステア
リング装置。
1. A steering torque sensor that detects a steering torque of a steering system, an electric motor that applies an auxiliary torque to the steering system, and a vehicle that determines a vehicle behavior based on a difference in slip angle between front and rear wheels and outputs a correction signal. Behavior determining means, target torque setting means for setting a target torque signal based on at least a steering torque signal from the steering torque sensor,
An electric power steering apparatus comprising: a correction unit that corrects a target torque signal from the target torque setting unit based on a correction amount from the vehicle behavior determination unit; and a control unit that controls driving of the electric motor. The control means includes: a friction correction coefficient generation means for generating a friction correction coefficient according to road surface friction; and a multiplication means for multiplying the correction amount from the vehicle behavior determination means by a friction correction coefficient to output a torque correction signal. An electric power steering apparatus comprising: a target torque signal that is corrected by a torque correction signal;
【請求項2】 前記摩擦補正係数発生手段は、ヨー角速
度センサが検出するヨー角速度信号と切れ角センサが検
出する切れ角信号とに基づいて摩擦応動係数を発生する
摩擦応動係数発生手段と、車速信号に基づいて車速応動
係数を発生する車速応動係数発生手段と、摩擦応動係数
と車速応動係数を乗算して摩擦補正係数を出力する乗算
手段と、を備えたことを特徴とする請求項1記載の電動
パワーステアリング装置。
2. A friction response coefficient generating means for generating a friction response coefficient based on a yaw angular velocity signal detected by a yaw angular velocity sensor and a steering angle signal detected by a steering angle sensor; 2. The vehicle according to claim 1, further comprising: a vehicle speed response coefficient generating means for generating a vehicle speed response coefficient based on the signal; and a multiplying means for multiplying the friction response coefficient and the vehicle speed response coefficient to output a friction correction coefficient. Electric power steering device.
JP28698698A 1998-10-08 1998-10-08 Electric power steering device Expired - Fee Related JP3630278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28698698A JP3630278B2 (en) 1998-10-08 1998-10-08 Electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28698698A JP3630278B2 (en) 1998-10-08 1998-10-08 Electric power steering device

Publications (2)

Publication Number Publication Date
JP2000108919A true JP2000108919A (en) 2000-04-18
JP3630278B2 JP3630278B2 (en) 2005-03-16

Family

ID=17711547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28698698A Expired - Fee Related JP3630278B2 (en) 1998-10-08 1998-10-08 Electric power steering device

Country Status (1)

Country Link
JP (1) JP3630278B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019012A1 (en) * 2003-08-26 2005-03-03 Toyota Jidosha Kabushiki Kaisha Controller for electric power steering device
WO2005019011A1 (en) * 2003-08-26 2005-03-03 Toyota Jidosha Kabushiki Kaisha Controller for electric power steering device
CN100408406C (en) * 2004-09-20 2008-08-06 丰田自动车株式会社 Controlling device for vehicle running
US8016365B2 (en) 2005-03-16 2011-09-13 Honda Motor Co., Ltd. Understeer suppressing apparatus for vehicle
JP2013212811A (en) * 2012-04-04 2013-10-17 Toyota Motor Corp Electric power steering device
US11003339B2 (en) 2007-02-14 2021-05-11 International Business Machines Corporation Managing transparent windows

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021201141A1 (en) * 2021-02-08 2022-08-11 Continental Automotive Gmbh Control device and method for steering angle control of a vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019012A1 (en) * 2003-08-26 2005-03-03 Toyota Jidosha Kabushiki Kaisha Controller for electric power steering device
WO2005019011A1 (en) * 2003-08-26 2005-03-03 Toyota Jidosha Kabushiki Kaisha Controller for electric power steering device
CN100381322C (en) * 2003-08-26 2008-04-16 丰田自动车株式会社 Controller for electric power steering device
CN100408406C (en) * 2004-09-20 2008-08-06 丰田自动车株式会社 Controlling device for vehicle running
US8016365B2 (en) 2005-03-16 2011-09-13 Honda Motor Co., Ltd. Understeer suppressing apparatus for vehicle
US11003339B2 (en) 2007-02-14 2021-05-11 International Business Machines Corporation Managing transparent windows
JP2013212811A (en) * 2012-04-04 2013-10-17 Toyota Motor Corp Electric power steering device

Also Published As

Publication number Publication date
JP3630278B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP3469098B2 (en) Electric power steering device
JP3497746B2 (en) Electric power steering device
US6405113B1 (en) Vehicle behavior control apparatus
KR100889709B1 (en) Controller of electric power steering device of vehicle in which steered wheels are driven
US10889320B2 (en) Electric power-assisted steering apparatus and method of controlling the same
JPH10310074A (en) Steering controller
JP2000108919A (en) Motor-driven power steering device
JP2000108918A (en) Motor-driven power steering device
US11745792B2 (en) Steering device
US11180190B2 (en) Four-wheel steering system
JPH01247281A (en) Steering control device of four-wheel steering car
JP3630280B2 (en) Electric power steering device
JP3630281B2 (en) Electric power steering device
JP3603991B2 (en) Electric power steering device
JP3209054B2 (en) Electric power steering device
JP4000782B2 (en) Electric power steering device
JP2527194B2 (en) Front and rear wheel steering system
JP2000079880A (en) Electric power steering device
JP2726306B2 (en) Vehicle front and rear wheel steering system
JP3239530B2 (en) Drive control device for electric motor
JPH08268309A (en) Electric power steering device
JP2532113B2 (en) Steering control device for front and rear wheel steering vehicles
JP2002293259A (en) Controlled variable calculating device
JP2021151806A (en) Steering controller and steering system
JP2003276629A (en) Electric power steering device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees