JP2000104141A - Soft magnetic alloy excellent in corrosion resistance - Google Patents

Soft magnetic alloy excellent in corrosion resistance

Info

Publication number
JP2000104141A
JP2000104141A JP10311570A JP31157098A JP2000104141A JP 2000104141 A JP2000104141 A JP 2000104141A JP 10311570 A JP10311570 A JP 10311570A JP 31157098 A JP31157098 A JP 31157098A JP 2000104141 A JP2000104141 A JP 2000104141A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
soft magnetic
coercive force
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10311570A
Other languages
Japanese (ja)
Inventor
Takafumi Nakayama
孝文 中山
Osamu Okuno
攻 奥野
Kohei Kimura
幸平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP10311570A priority Critical patent/JP2000104141A/en
Publication of JP2000104141A publication Critical patent/JP2000104141A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic alloy which is hardly changed chemically even if being exposed to severe environments such as the insides of the living body and oral cavity and excellent in corrosion resistance, particularly a soft magnetic alloy exhibiting most excellent corrosion resistance by making a structure in the combination with an Fe-Pt permanent magnet alloy. SOLUTION: This alloy is a high corrosion resistance soft magnetic alloy contg., by atomic ratio, 17 to 37% Pt as the main component, contg. 0.001 to 35% in total one or more kinds among Cr, Co and Ni respectively by <=25% and B, C, Al, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta, Nb, Mo, W, Ir, Ag and Au respectively by <=10% as assistant components, and the balance Fe with a small amt. of impurities, and by executing working and heat treatment, its coercive force Hc is made to be <=10 Oe, its saturation magnetic flux density Bs is made to be >=10 kG, and excellent soft magnetic properties can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,酸化性,還元性および
その他の腐食性雰囲気中においても化学的変化を生じ難
い耐食性に優れた軟磁性合金に関する。特に,生体毒性
に対して高い安全性を有するPtとFe元素を主成分と
し,副成分は耐食性に優れ,あるいは耐食性を改善する
性質を有し,且つ軟磁気特性の向上に有効な元素から構
成されるため,医療,歯科ならびに生体適合性機能材料
の各分野において安全に使用できる。特に,近年の歯科
補綴物の分野における磁石構造体の応用化に際し,吸引
磁石を密封保持ならびに維持固定する高耐食性軟磁性合
金の開発は重要視されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic alloy which is resistant to chemical changes even in oxidizing, reducing and other corrosive atmospheres and has excellent corrosion resistance. In particular, the main component is Pt and Fe, which have high safety against biotoxicity, and the minor component is composed of an element that has excellent corrosion resistance or has the property of improving corrosion resistance and is effective in improving soft magnetic properties. Therefore, it can be used safely in medical, dental and biocompatible functional materials. In particular, in the application of the magnet structure in the field of dental prostheses in recent years, development of a highly corrosion-resistant soft magnetic alloy for hermetically holding and maintaining and fixing a suction magnet is regarded as important.

【0002】[0002]

【従来の技術】これまで,生体適合性を有する材料に
は,オーステナイト系およびフェライト系ステンレス鋼
やTiおよびTi系合金が知られている。このうち,磁
性を有する材料はステンレス鋼のみであり,高濃度のC
rを含むSUSXM27,SUS447J1,SUS3
16L等が実用に耐えるとされてきた。しかし,これら
のステンレス系合金は,食塩水中における自然電極電位
が卑であり,またFeおよびCrの溶出量も多いため,
口腔内のような化学的に過酷な環境下におかれた場合の
耐食性が問題となる。また,Cr量が多い組成の合金は
軟磁気特性が低下し,溶接性あるいは鋳接性が劣る欠点
を有する。
2. Description of the Related Art Austenitic and ferritic stainless steels and Ti and Ti-based alloys have been known as biocompatible materials. Among them, stainless steel is the only magnetic material,
r containing SUSXM27, SUS447J1, SUS3
It has been considered that 16L or the like can withstand practical use. However, these stainless steel alloys have a low natural electrode potential in saline and a large amount of Fe and Cr eluted.
Corrosion resistance when placed in a chemically harsh environment such as the oral cavity becomes a problem. Alloys having a composition with a large amount of Cr have the drawback that the soft magnetic properties are reduced and the weldability or castability is poor.

【0003】[0003]

【発明が解決しようとする課題】そこで,本発明者等
は,単体では生体毒性に関して極めて高い安全性を示
し,且つ高い耐食性を有するFeとPtの合金に着目
し,原子比にてPt17〜37%を主成分とし,副成分
としてCr,Co,Niのそれぞれ25%以下,B,
C,Al,Si,Ti,Mn,Cu,Ge,Y,Pd,
Ta,Nb,Mo,W,Ir,Ag,Auのそれぞれ1
0%以下のうち1種または2種以上合計0.001〜3
5%および残部Feと少量の不純物からなる合金の耐食
性および軟磁気特性について検討した。
Therefore, the present inventors have focused on an alloy of Fe and Pt which has extremely high safety with respect to biotoxicity and has high corrosion resistance by itself, and has a Pt of 17 to 37 in atomic ratio. % As a main component, and 25% or less of each of Cr, Co, and Ni as subcomponents, and B,
C, Al, Si, Ti, Mn, Cu, Ge, Y, Pd,
1 each of Ta, Nb, Mo, W, Ir, Ag, Au
0% or less, 1 or 2 or more types in total 0.001 to 3
The corrosion resistance and soft magnetic properties of an alloy comprising 5% and the balance Fe and a small amount of impurities were examined.

【0004】特に,合金化した場合,アレルギー等の原
因となるような生体毒性に対して,高い安全性を有する
材料として,原子比にて,Pt26〜36%を主成分と
し,副成分としてCr25%以下,B,C,Si,T
i,Mn,Ge,Y,Ta,Nb,Mo,W,Ir,A
gのそれぞれ10%以下のうち1種または2種以上合計
0.001〜35%および残部Feと少量の不純物から
なる合金は,歯科補綴ならびに医療分野における応用が
期待される。
In particular, when alloyed, Pt is 26-36% in atomic ratio as a main component and Cr25 as an auxiliary component as a material having high safety against biotoxicity that may cause allergy and the like. % Or less, B, C, Si, T
i, Mn, Ge, Y, Ta, Nb, Mo, W, Ir, A
An alloy comprising 0.001 to 35% of one or more of 10% or less of each g and a balance of Fe and a small amount of impurities is expected to be applied to dental prostheses and medical fields.

【0005】ところが,原子比にて,26〜36%のP
tを含む基礎的組成のFe−Pt系2元合金は,生理食
塩水中において貴の自然電極電位を示し,且つアノード
分極特性も良好であるが,Feが多く溶出する。Fe元
素の溶出は毒性を示すものではないが,多量になると錆
を誘発し,材料強度の劣化に至る。
However, in terms of atomic ratio, 26-36% of P
An Fe-Pt binary alloy having a basic composition containing t exhibits a noble natural electrode potential in physiological saline and has good anodic polarization characteristics, but a large amount of Fe is eluted. The elution of the Fe element does not indicate toxicity, but when the amount is large, rust is induced and the strength of the material is deteriorated.

【0006】[0006]

【課題を解決するための手段】本発明者等は,上記の課
題を解決するため,原子比でFe−17〜37%Pt系
2元合金またはこれを主成分とし,副成分としてCr,
CoまたはNiのそれぞれを25%以下,B,C,A
l,Si,Ti,Mn,Cu,Ge,Y,Pd,Ta,
Nb,Mo,W,Ir,Ag,Auのそれぞれを10%
以下のうち1種または2種以上合計0.001〜35%
と少量の不純物を含み,保磁力が10Oe以下,飽和磁
束密度が10kG以上を有する耐食性に優れた軟磁性合
金を開発した。
Means for Solving the Problems To solve the above-mentioned problems, the inventors of the present invention have proposed a binary alloy of Fe-17 to 37% Pt based on an atomic ratio or a binary alloy containing Cr and Cr as minor components.
25% or less of each of Co or Ni, B, C, A
1, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta,
10% of each of Nb, Mo, W, Ir, Ag and Au
One or more of the following: Total 0.001 to 35%
And a small amount of impurities, a coercive force of 10 Oe or less, and a saturation magnetic flux density of 10 kG or more.

【0007】これらの合金は,従来のステンレス鋼が示
す低飽和磁束密度および口腔内環境における低耐食性と
いう欠点を改善し,磁石エネルギーを有効に活用し得る
高い軟磁気特性と生体内のように苛酷な条件下でも腐食
されない特徴を持っている。さらに,高耐食性と優れた
磁石特性を兼備するFe−Pt系磁石合金と組合わせた
構造にすることにより,従来の,ステンレス鋼と組合わ
せた構造にするよりも優れた耐食性が発揮されるため,
歯科補綴物のキーパー材料ならびに生体内埋込み用機能
性部品として最適であり,また腐食性雰囲気中における
電磁部品として使用できる。
[0007] These alloys improve the drawbacks of the conventional stainless steel such as low saturation magnetic flux density and low corrosion resistance in the oral environment, and have high soft magnetic properties capable of effectively utilizing magnet energy and severe in vivo. It does not corrode even under mild conditions. Furthermore, the structure combined with the Fe-Pt-based magnet alloy, which has both high corrosion resistance and excellent magnet properties, provides better corrosion resistance than the conventional structure combined with stainless steel. ,
It is ideal as a keeper material for dental prostheses and as a functional part for implanting in a living body, and can be used as an electromagnetic part in a corrosive atmosphere.

【0008】本発明の特徴とするところは以下の通りで
ある。
The features of the present invention are as follows.

【0009】第1発明は,原子比にて,Pt17〜37
%および残部Feと少量の不純物からなり,保磁力Hc
が10Oe以下,飽和磁束密度Bが10kG以上を有
する耐食性に優れた軟磁性合金であることを特徴とす
る。
According to the first invention, Pt 17 to 37 in atomic ratio is used.
% And the balance of Fe and a small amount of impurities, the coercive force Hc
There 10Oe hereinafter, wherein the saturation magnetic flux density B S is soft magnetic alloy having excellent corrosion resistance with more than 10 kG.

【0010】第2発明は,原子比にて,Pt17〜37
%を主成分とし,副成分としてCr,Co,Niのそれ
ぞれ25%以下,B,C,Al,Si,Ti,Mn,C
u,Ge,Y,Pd,Ta,Nb,Mo,W,Ir,A
g,Auのそれぞれ10%以下のうち1種または2種以
上合計0.001〜35%および残部Feと少量の不純
物からなり,保磁力が10Oe以下,飽和磁束密度が1
0kG以上を有する耐食性に優れた軟磁性合金であるこ
とを特徴とする。
[0010] The second invention is characterized in that Pt 17 to 37 in atomic ratio.
% As a main component and 25% or less of each of Cr, Co, and Ni as subcomponents, B, C, Al, Si, Ti, Mn, C
u, Ge, Y, Pd, Ta, Nb, Mo, W, Ir, A
g and Au are each 10% or less of one or two or more of 0.001 to 35% in total, and the balance is Fe and a small amount of impurities.
It is a soft magnetic alloy excellent in corrosion resistance having 0 kG or more.

【0011】第3発明は,原子比にて,Pt26〜36
%を主成分とし,副成分としてCrを25%以下,B,
C,Si,Ti,Mn,Ge,Y,Ta,Nb,Mo,
W,Ir,Agのそれぞれ10%以下のうち1種または
2種以上合計0.001〜35%および残部Feと少量
の不純物からなり,保磁力が10Oe以下,飽和磁束密
度が10kG以上を有する生体適合性ならびに耐食性に
優れた軟磁性合金であることを特徴とする。
[0011] The third invention is based on an atomic ratio of Pt 26 to 36.
% As a main component, and Cr as a sub-component at 25% or less.
C, Si, Ti, Mn, Ge, Y, Ta, Nb, Mo,
One or two or more of W, Ir, and Ag of 10% or less, each containing 0.001 to 35% in total, the balance being Fe and a small amount of impurities, and having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more. It is a soft magnetic alloy with excellent compatibility and corrosion resistance.

【0012】第4発明は,第1発明ないし第3発明のい
ずれか1発明の合金を,高周波炉またはアーク炉で溶解
し,得られたインゴットを熱間または冷間で加工率30
%以上加工し,これを真空中または非酸化性雰囲気中5
00℃以上融点以下の温度で1分間以上100時間以下
加熱した後0.1℃/秒以上1500℃/秒以下の速度
で冷却することにより,保磁力が10Oe以下,飽和磁
束密度が10kG以上を有する耐食性に優れた軟磁性合
金の製造方法に関する。
In a fourth aspect, the alloy according to any one of the first to third aspects is melted in a high-frequency furnace or an arc furnace, and the obtained ingot is hot or cold worked at a working rate of 30%.
% In a vacuum or in a non-oxidizing atmosphere.
After heating for 1 minute to 100 hours at a temperature between 00 ° C. and the melting point and then cooling at a rate of 0.1 ° C./s to 1500 ° C./s, the coercive force is 10 Oe or less and the saturation magnetic flux density is 10 kG or more. The present invention relates to a method for producing a soft magnetic alloy having excellent corrosion resistance.

【0013】第5発明は,第1発明ないし第3発明のい
ずれか1発明の合金を,高周波炉またはアーク炉で溶解
し,得られたインゴットを熱間または冷間で加工率30
%以上加工し,これを真空中または非酸化性雰囲気中5
00℃以上融点以下の温度で1分間以上100時間以下
加熱した後0.1℃/秒以上1500℃/秒以下の速度
で冷却し,これをさらに真空中または非酸化性雰囲気中
400℃以上融点以下の温度で1分間以上1000時間
以下加熱した後冷却することにより,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優
れた軟磁性合金の製造方法に関する。
In a fifth aspect, the alloy of any one of the first to third aspects is melted in a high-frequency furnace or an arc furnace, and the obtained ingot is hot or cold worked at a working rate of 30%.
% In a vacuum or in a non-oxidizing atmosphere.
After heating for 1 minute to 100 hours at a temperature between 00 ° C. and the melting point and then cooling at a rate of 0.1 ° C./s to 1500 ° C./s, it is further heated in a vacuum or a non-oxidizing atmosphere to a temperature of 400 ° C. or more. The coercive force is 10 Oe by heating at the following temperature for 1 minute to 1000 hours and then cooling.
The present invention relates to a method for producing a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and having excellent corrosion resistance.

【0014】第6発明は,第3発明の合金を,精密鋳造
法により鋳造し,これを真空中または非酸化性雰囲気中
400℃以上融点以下の温度で1分間以上1000時間
以下加熱した後冷却することにより,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する生体適合性
ならびに耐食性に優れた軟磁性合金の製造方法に関す
る。
According to a sixth aspect, the alloy of the third aspect is cast by a precision casting method, and the alloy is heated in a vacuum or a non-oxidizing atmosphere at a temperature of 400 ° C. or more and a melting point of 1 minute or more and 1000 hours or less, and then cooled. The coercive force is 10 Oe
The present invention relates to a method for manufacturing a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and having excellent biocompatibility and corrosion resistance.

【0015】第7発明は,第1発明ないし第3発明のい
ずれか1発明の合金を,第4発明ないし第6発明のいず
れか1発明の方法によって製造した,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優
れた軟磁性合金からなる電磁部品であることを特徴とす
る。
In a seventh aspect, the alloy of any one of the first to third aspects is manufactured by the method of any one of the fourth to sixth aspects, wherein the coercive force is 10 Oe.
Hereinafter, the electromagnetic component is characterized by being an electromagnetic component made of a soft magnetic alloy excellent in corrosion resistance and having a saturation magnetic flux density of 10 kG or more.

【0016】第8発明は,第1発明ないし第3発明のい
ずれか1発明の合金を,第4発明ないし第6発明のいず
れか1発明の方法によって製造した,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優
れた軟磁性合金と,永久磁石合金から構成される電磁機
器であることを特徴とする。
In an eighth aspect, the alloy according to any one of the first to third aspects is manufactured by the method according to any one of the fourth to sixth aspects, and the coercive force is 10 Oe.
Hereinafter, the present invention is characterized in that it is an electromagnetic device composed of a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and excellent in corrosion resistance and a permanent magnet alloy.

【0017】第9発明は,第3発明の合金を,第4発明
ないし第6発明のいずれかの方法によって製造した,保
磁力が10Oe以下,飽和磁束密度が10kG以上を有
する耐食性に優れた軟磁性合金からなる医療・健康用具
であることを特徴とする。
A ninth invention is a soft alloy excellent in corrosion resistance having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more produced by the method of any of the fourth to sixth inventions. It is a medical / health tool made of a magnetic alloy.

【0018】第10発明は,第3発明の合金を,第4発
明ないし第6発明のいずれかの方法によって製造した,
保磁力が10Oe以下,飽和磁束密度が10kG以上を
有する,耐食性に優れた軟磁性合金からなる歯科補綴物
のキーパーであることを特徴とする。
According to a tenth aspect, the alloy according to the third aspect is manufactured by the method according to any one of the fourth to sixth aspects.
It is a keeper of a dental prosthesis made of a soft magnetic alloy excellent in corrosion resistance and having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more.

【0019】第11発明は,第3発明の合金を,第4発
明ないし第5発明のいずれかの方法によって製造した,
保磁力が10Oe以下,飽和磁束密度が10kG以上を
有する,耐食性に優れた軟磁性合金からなる生体内埋込
み用機能性部品であることを特徴とする。
According to an eleventh aspect, the alloy according to the third aspect is manufactured by the method according to any one of the fourth to fifth aspects.
It is a functional part to be implanted in a living body, which has a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more and is made of a soft magnetic alloy having excellent corrosion resistance.

【0020】[0020]

【作用】以下に本発明の構成を説明する。耐食性軟磁性
合金の成分は,原子比にてPt17〜37%を主成分と
し,副成分としてCr,Co,Niのそれぞれ25%以
下,B,C,Al,Si,Ti,Mn,Cu,Ge,
Y,Pd,Ta,Nb,Mo,W,Ir,Ag,Auの
それぞれ10%以下のうち1種または2種以上合計0.
001〜35%および残部Feと少量の不純物からな
る。
The structure of the present invention will be described below. The composition of the corrosion-resistant soft magnetic alloy is 17 to 37% of Pt in atomic ratio as a main component, and 25% or less of each of Cr, Co, and Ni as minor components, and B, C, Al, Si, Ti, Mn, Cu, Ge. ,
Each of Y, Pd, Ta, Nb, Mo, W, Ir, Ag, and Au is one or more of 10% or less.
001-35%, the balance being Fe and a small amount of impurities.

【0021】特に,生体毒性に対して高い安全性を有す
る材料としては,原子比にて,Pt26〜36%を主成
分とし,副成分としてCr25%以下,B,C,Si,
Ti,Mn,Ge,Y,Ta,Nb,Mo,W,Ir,
Agのそれぞれ10%以下のうち1種または2種以上合
計0.001〜35%および残部Feと少量の不純物か
らなる。
Particularly, as a material having high safety against biotoxicity, Pt is 26 to 36% in atomic ratio as a main component, and 25% or less of Cr, B, C, Si,
Ti, Mn, Ge, Y, Ta, Nb, Mo, W, Ir,
One or two or more of each of 10% or less of Ag are 0.001 to 35% in total, and the balance is Fe and a small amount of impurities.

【0022】これらの合金を高周波炉で溶解後,金型に
鋳造して冷間および熱間で加工率30%以上加工する
か,あるいは複雑形状を有する歯科補綴物や生体内埋込
み用インプラント等は精密鋳造法によって,要求される
形態を直接作製する。本系合金は,鋳造状態でも熱処理
によって軟磁気特性を示すが,冷間加工あるいは熱間加
工と熱処理との組合わせにより,集合組織あるいは再結
晶組織を得ることで耐食性および軟磁気特性がさらに向
上する。
After melting these alloys in a high-frequency furnace, they are cast into a mold and worked at a working ratio of 30% or more in cold and hot conditions. Alternatively, dental prostheses and implants for implanting in a living body having a complicated shape are used. The required form is directly produced by precision casting. This alloy shows soft magnetic properties by heat treatment even in the cast state, but the corrosion resistance and soft magnetic properties are further improved by obtaining a texture or recrystallized structure by a combination of cold working or hot working and heat treatment. I do.

【0023】軟磁性合金の組成範囲を上述のように限定
した理由は,原子比にてPt17%未満では室温におい
て所期の磁気特性が得られなくなる。また,Pt37%
以上では均質化熱処理後急冷しても磁気特性が不安定
で,大きな保磁力を発生し易く,軟磁気特性が失われて
しまうからである。
The reason why the composition range of the soft magnetic alloy is limited as described above is that if the atomic ratio is less than 17% of Pt, desired magnetic properties cannot be obtained at room temperature. In addition, Pt37%
In the above, the magnetic properties are unstable even if quenched after the homogenizing heat treatment, a large coercive force is easily generated, and the soft magnetic properties are lost.

【0024】生体適合性を重視した場合,Pt26%未
満では生理食塩水中におけるFeの溶出量が増加し,P
t37%未満であれば上記熱処理後大気中放冷によって
も確実に均質化相を得ることができる。且つ,冷間圧延
やしぼり等の強加工が可能である。
When biocompatibility is considered important, if Pt is less than 26%, the elution amount of Fe in physiological saline increases,
If it is less than 37%, a homogenized phase can be surely obtained even after cooling in the air after the heat treatment. In addition, strong working such as cold rolling and squeezing is possible.

【0025】次に,副成分としてCr,Co,Niのそ
れぞれ25%以下とした理由は,Cr量を増すと鋳造性
ならびに加工性が劣化して加工が難しくなり,残留磁束
密度も減少して所期の軟磁気特性が得られなくなるの
で,25%以下とした。また,CoおよびNiは飽和磁
束密度を上昇させるが,生体に対してはアレルギーを起
こし易い元素であることから,生体適合性軟磁性合金か
ら除いた。
Next, the reason why each of Cr, Co, and Ni is set to 25% or less as a sub-component is that when the Cr content is increased, castability and workability deteriorate, making working difficult and reducing the residual magnetic flux density. Since the desired soft magnetic characteristics cannot be obtained, the content is set to 25% or less. Although Co and Ni increase the saturation magnetic flux density, they are excluded from biocompatible soft magnetic alloys because they are allergic to living organisms.

【0026】さらに,B,C,Al,Si,Ti,M
n,Cu,Ge,Y,Pd,Ta,Nb,Mo,W,I
r,Ag,Auそれぞれの添加量を10%以上とする
と,合金の鋳造性低下,脆性増加を招き,磁気特性が劣
化する等の悪影響を及ぼすため製造が困難になったり軟
磁気特性が失われるからである。また,生体適合性軟磁
性合金を製造するためには,アルツハイマー病に関与す
るとされるAl,およびアレルギーを起こす率が高いと
されるCu,Pd,Au元素を除いた。
Further, B, C, Al, Si, Ti, M
n, Cu, Ge, Y, Pd, Ta, Nb, Mo, W, I
When the addition amount of each of r, Ag, and Au is 10% or more, the castability of the alloy is reduced, the brittleness is increased, and the magnetic properties are adversely affected, so that the production becomes difficult or the soft magnetic properties are lost. Because. In addition, in order to produce a biocompatible soft magnetic alloy, Al, which is considered to be involved in Alzheimer's disease, and Cu, Pd, and Au, which are highly likely to cause allergy, were excluded.

【0027】副成分のCr,Co,NiとB,C,A
l,Si,Ti,Mn,Cu,Ge,Y,Pd,Ta,
Nb,Mo,W,Ir,Ag,Auのうち1種または2
種以上合計0.001%以下では添加効果が得られない
からであり,添加量が両者をあわせて35%以上になる
と,合金の鋳造性の低下,脆性の増加,磁気特性の劣化
および本来Fe−Pt系合金が有する耐食性の喪失等多
くの悪影響が顕著になるためである。
Cr, Co, Ni and B, C, A
1, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta,
One or two of Nb, Mo, W, Ir, Ag, Au
This is because the effect of addition cannot be obtained if the total amount of the alloys is not less than 0.001% and the total amount thereof is not less than 35%. This is because many adverse effects such as loss of corrosion resistance of the -Pt alloy become remarkable.

【0028】軟磁性合金の製造方法に関し,インゴット
に加工率30%以上加工を加えるのは,鋳造組織をこわ
して緻密な構造とし,500℃以上融点以下の温度で均
質化熱処理後,400℃以上融点以下の温度で時効処理
を施すと,微細結晶組織となり,磁気特性の向上がはか
れることによる。
With respect to the method of manufacturing a soft magnetic alloy, the reason why the ingot is worked at a working rate of 30% or more is to break the casting structure into a dense structure, perform a homogenizing heat treatment at a temperature of 500 ° C. or more and a melting point or less, and then 400 ° C. or more. When the aging treatment is performed at a temperature lower than the melting point, a fine crystal structure is formed, and the magnetic properties are improved.

【0029】機械加工による製造が困難な形態の場合
は,精密鋳造法を含むロストワックス法等によって直
接,所望形状を作製し,これに400℃以上融点以下の
温度で熱処理後,適切な冷却速度で冷却することによっ
て軟磁気特性を得ることができる。
In the case of a form difficult to manufacture by machining, a desired shape is directly produced by a lost wax method including a precision casting method, and a heat treatment at a temperature of 400 ° C. or more and a melting point or less is performed. The soft magnetic characteristics can be obtained by cooling at the temperature.

【0030】図1および図2は代表的な合金のアノード
分極曲線を示し,また図3および図4にはFe−Pt系
2元合金を急冷処理後600℃の温度に保持した場合の
保磁力Hと飽和磁束密度Bの時効処理時間に対する
変化を示した。
FIGS. 1 and 2 show the anodic polarization curves of typical alloys. FIGS. 3 and 4 show the coercive force when the Fe—Pt-based binary alloy was kept at 600 ° C. after quenching. shows a change with respect to aging time of H C and the saturation magnetic flux density B S.

【0031】表1には代表的な合金を,37℃に保った
生理食塩水中に7日間浸積した後,溶出元素の量を測定
した結果を示した。また表2から表5には熱処理を変え
た場合の各種Fe−Pt系合金の保磁力Hと飽和磁束
密度Bの値を示した。
Table 1 shows the results obtained by immersing a typical alloy in physiological saline kept at 37 ° C. for 7 days and then measuring the amount of eluted elements. Also from Table 2 to Table 5 shows the values of the coercive force H C and the saturation magnetic flux density B S of various Fe-Pt alloy in the case of changing the heat treatment.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【実施例】以下,上記の各特性を示す合金を用いた実施
例に基づいて本発明を説明する。 〔実施例1〕高周波溶解炉により,真空中でPt33
%,残部Feと少量の不純物からなる2元合金を溶解
し,金型鋳造によって外径8mm×長さ60mmのイン
ゴットを得た。これを冷間スエージングにより減面率8
5%まで加工し,外径約3mmの丸棒を得た。これより
長さ30mmを切り出し,真空中において1000℃の
温度で5時間加熱した後大気中冷却した。0.9%生理
食塩水中におけるアノード分極特性から,この合金の自
然電極電位は0.2VvsNHEと正で高い値が得ら
れ,孔食電位も1.3VvsNHEのように良好な値で
あった。また,保磁力Hcは2.1Oe,飽和磁束密度
は14.1kGであり,これらは,耐食性ステンレス鋼
と比較して,軟磁気特性は多少劣るものの耐食性は非常
に良好であった。同一断面を有する,最大エネルギー積
が15MGOeのFe−Pt系磁石合金との間に作用す
る吸引力は,長さ方向では810gfに及び,直径方向
に並列させた場合は460gfであった。前者は小型電
磁弁等に用いた場合実用可能な吸引力である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments using alloys having the above-mentioned characteristics. [Example 1] Pt33 in a vacuum using a high-frequency melting furnace
%, A binary alloy comprising the balance Fe and a small amount of impurities was melted, and an ingot having an outer diameter of 8 mm and a length of 60 mm was obtained by die casting. This is reduced by cold swaging to 8
By processing to 5%, a round bar having an outer diameter of about 3 mm was obtained. A 30 mm length was cut out from this, heated in a vacuum at a temperature of 1000 ° C. for 5 hours, and then cooled in the atmosphere. From the anodic polarization characteristics in 0.9% saline, the natural electrode potential of this alloy was as high as 0.2 V vs. NHE, which was a positive value, and the pitting potential was as good as 1.3 V vs. NHE. In addition, the coercive force Hc was 2.1 Oe and the saturation magnetic flux density was 14.1 kG. These were very good in corrosion resistance although their soft magnetic properties were somewhat inferior to those of corrosion-resistant stainless steel. The attractive force acting between the Fe-Pt-based magnet alloy having the same cross section and the maximum energy product of 15 MGOe was 810 gf in the length direction and 460 gf in the case of being arranged in parallel in the diameter direction. The former is a practically applicable suction force when used for a small solenoid valve or the like.

【0038】〔実施例2〕高周波溶解炉により,真空中
で,原子比にてPt29%,Nb1%および残部Feと
少量の不純物からなる合金を溶解し,金型鋳造によって
外径8mm×長さ60mmのインゴットを得た。これか
ら長さ2mmの部分を切り出し,1000℃の温度で5
時間の均質化処理後炉中冷却した。この円板状試料の表
面を鏡面研摩した後,15MGOeの最大エネルギー積
を有するFe−Pt系磁石合金との間に作用する吸引力
を測定したところ,実用上充分な強度の560gfが得
られた。また,両者を組合わせた状態で0.9%生理食
塩水中に7日間浸漬したところ,Feが5.0μg/c
溶出したが,NbおよびPtの溶出量は検出限界以
下の微量であった。薄手の円板形状は磁気チャック等の
電磁部品と同等の寸法を有し,腐食ガス等の流路におい
て実用可能な吸引力である。
Example 2 An alloy composed of 29% of Pt, 1% of Nb and the balance of Fe and a small amount of impurities was melted in a vacuum using a high frequency melting furnace in an atomic ratio, and the outer diameter was 8 mm × length by die casting. A 60 mm ingot was obtained. From this, a 2 mm long portion is cut out and cut at a temperature of 1000 ° C. for 5 minutes.
After time homogenization, the furnace was cooled. After mirror-polishing the surface of the disk-shaped sample, the attractive force acting between the disk and the Fe-Pt-based magnet alloy having a maximum energy product of 15 MGOe was measured. As a result, 560 gf of sufficient strength for practical use was obtained. . When the two were combined and immersed in 0.9% saline for 7 days, the Fe content was 5.0 μg / c.
and m 2 elution, but elution of Nb and Pt had the following trace detection limit. The thin disk shape has a size equivalent to that of an electromagnetic component such as a magnetic chuck, and is a suction force that can be practically used in a flow path of a corrosive gas or the like.

【0039】〔実施例3〕高周波溶解炉により,真空中
でPt28%,Cr7%,Nb1.5%,Si0.5%
および残部Feと少量の不純物からなる合金を溶解し,
金型鋳造によって,外径6mm×長さ80mmのインゴ
ットを得た。インゴットを冷間で鍛造とロール圧延によ
り加工率90%以上加工して厚さ0.7mm×幅8mm
の板状に整形し,これから長さ20mmの部分を切り出
した。これを1000℃の温度で24時間均質化熱処理
し,水中に投入後,さらに真空中において600℃の温
度で5時間加熱後大気中冷却した。この薄板状試料の表
面を研摩して平滑化後,同一面積の最大エネルギー積1
5MGOeを有するFe−Pt系磁石合金と接触させ,
0.9%生理食塩水中に7日間浸漬したところ,Feが
4.6μg/cm,Crが0.05μg/cm,S
iが0.02μg/cm溶出し,NbおよびPtは検
出限界値以下であった。この薄板は,***閉鎖等の目的
で生体内埋め込みを想定した寸法の例であり,この後プ
レス等によって所望の形態に整形する。厚さ方向に着磁
し,両者を組み合わせて整合させた状態での吸引力は4
30gfであり,実用上有効な値であった。
Example 3 Pt 28%, Cr 7%, Nb 1.5%, Si 0.5% in a vacuum using a high frequency melting furnace
And an alloy consisting of a balance of Fe and a small amount of impurities,
An ingot having an outer diameter of 6 mm and a length of 80 mm was obtained by die casting. The ingot is cold forged and rolled to a working ratio of 90% or more and has a thickness of 0.7 mm x a width of 8 mm.
, And a 20 mm long portion was cut out from the plate. This was subjected to a homogenizing heat treatment at a temperature of 1000 ° C. for 24 hours, poured into water, further heated in a vacuum at a temperature of 600 ° C. for 5 hours, and then cooled in the air. After polishing and smoothing the surface of this thin sample, the maximum energy product of the same area is 1
5MGOe is brought into contact with a Fe-Pt based magnet alloy,
Was immersed in 0.9% saline for seven days, Fe is 4.6μg / cm 2, Cr is 0.05μg / cm 2, S
i was eluted at 0.02 μg / cm 2 , and Nb and Pt were below the detection limit. This thin plate is an example of a size assumed to be implanted in a living body for the purpose of closing a lip and the like, and thereafter, is shaped into a desired shape by a press or the like. The attractive force is 4 when magnetized in the thickness direction and both are combined and aligned.
30 gf, which was a practically effective value.

【0040】〔実施例4〕真空雰囲気中において高周波
溶解炉とArガス圧迫鋳造法を組合わせた精密鋳造によ
り,Pt17%,Cr20%,Nb3%および残部Fe
と少量の不純物からなる合金を,歯科補綴物の内冠の形
態に鋳造し,真空中において1000℃の温度で5間加
熱後大気中冷却した。同様の鋳造方法によって作製した
15MGOeの最大エネルギー積を有するFe−Pt系
磁石合金からなる外冠と組合わせ,0.9%生理食塩水
中に7日間浸漬したところ,Feが3.9μg/c
,Crが0.03μg/cm溶出し,Nbおよび
Ptは検出限界以下であった。これは,歯科分野におい
て通常観測される値以下の小さな溶出量である。また,
接触面を整合させた両者間に作用する吸引力は,610
gfであり,実用上十分な吸引力であった。
Example 4 Pt 17%, Cr 20%, Nb 3% and the balance Fe were subjected to precision casting in a vacuum atmosphere by combining a high-frequency melting furnace and Ar gas compression casting.
An alloy consisting of and a small amount of impurities was cast in the form of an inner crown of a dental prosthesis, heated in a vacuum at a temperature of 1000 ° C. for 5 minutes, and then cooled in the atmosphere. Combined with an outer crown made of a Fe-Pt-based magnet alloy having a maximum energy product of 15MGOe produced by the same casting method, and immersed in 0.9% saline for 7 days, Fe was 3.9 µg / c.
m 2 and Cr eluted at 0.03 μg / cm 2 , and Nb and Pt were below the detection limit. This is a small elution amount below the value normally observed in the dental field. Also,
The suction force acting between the two with the contact surfaces aligned is 610
gf, which was a practically sufficient suction force.

【0041】[0041]

【発明の効果】従来用いられてきた磁性ステンレス鋼に
よるヨーク,キーパー,インプラント等はいずれも構成
元素のFe,Crの溶出量が多く,特に,人体に対して
アレルギーを生じさせると考えられているNiの溶出が
懸念されている。本発明に関わる合金は,生体毒性に対
して極めて高い安全性を有するPtとFe元素を主成分
とし,副成分は耐食性に優れ,且つ軟磁気特性の向上に
有効な元素から構成される。従ってこれらの効果によ
り,生体表面や口腔内で安全に使用できる生体適合性に
優れ,且つ耐食性の高い軟磁性合金が得られ,市販の磁
性アタッチメントと組合わせた場合は勿論のこと,Fe
−Pt系磁石との組合わせ構造とした場合には,特に優
れた効果を発揮し,生体内における磁石の積極的な活用
を可能とする。他に,磁気遮蔽効果,磁気誘導効果等,
軟磁気特性を有する材料の一般的な特性を活かした応用
例えば,電磁部品,電磁機器,医療・健康用具,歯科補
綴物のキーパーならびに生体内埋込み用機能性部品に適
しているので,工業的にも非常に有用な軟磁性合金であ
る。
The yokes, keepers, implants and the like made of magnetic stainless steel which have been conventionally used all have a large amount of elution of the constituent elements Fe and Cr, and are considered to cause allergy particularly to the human body. There is concern about the elution of Ni. The alloy according to the present invention contains Pt and Fe elements, which have extremely high safety against biotoxicity, as main components, and the subcomponents are composed of elements having excellent corrosion resistance and effective in improving soft magnetic properties. Therefore, by these effects, a soft magnetic alloy having excellent biocompatibility and high corrosion resistance which can be used safely on the surface of the living body or in the oral cavity can be obtained.
In the case of a combination structure with a Pt-based magnet, a particularly excellent effect is exhibited, and the magnet can be positively used in a living body. In addition, magnetic shielding effect, magnetic induction effect, etc.
Applications that take advantage of the general properties of materials with soft magnetic properties, such as electromagnetic components, electromagnetic devices, medical and health tools, keeper of dental prostheses, and functional components for implanting in vivo Are also very useful soft magnetic alloys.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はFe−30%Pt,Fe−33%Pt両
合金のアノード分極曲線であり,比較のためSUS44
7J1についても示した。
FIG. 1 is an anodic polarization curve of both Fe-30% Pt and Fe-33% Pt alloys.
7J1 is also shown.

【図2】図2はFe−29%Pt−1%Nb,Fe−2
8%Pt−7%Cr−1.5%Nb−0.5%Si,F
e−25%Pt−10%Cr−0.5%Nb合金のアノ
ード分極曲線を示す。
FIG. 2 shows Fe-29% Pt-1% Nb, Fe-2.
8% Pt-7% Cr-1.5% Nb-0.5% Si, F
3 shows an anodic polarization curve of an e-25% Pt-10% Cr-0.5% Nb alloy.

【図3】図3はFe−26%Pt,Fe−30%Pt,
Fe−33%PtおよびFe−36%Pt合金の保磁力
の時効処理時間依存性を示している。
FIG. 3 shows Fe-26% Pt, Fe-30% Pt,
Shows the aging time dependence of the coercive force H C of Fe-33% Pt and Fe-36% Pt alloy.

【図4】図4はFe−26%Pt,Fe−30%Pt,
Fe−33%PtおよびFe−36%Pt合金の飽和磁
束密度Bの時効処理時間依存性を示している。
FIG. 4 shows Fe-26% Pt, Fe-30% Pt,
Shows the aging time dependence of the saturation magnetic flux density B S of Fe-33% Pt and Fe-36% Pt alloy.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 原子比にて,Pt17〜37%および残
部Feと少量の不純物からなり,保磁力Hが10Oe
以下,飽和磁束密度Bが10kG以上を有する耐食性
に優れたことを特徴とする軟磁性合金。
At 1. A atomic ratio consists Pt17~37% and the balance Fe and a small amount of impurities, the coercive force H C is 10Oe
Hereinafter, soft magnetic alloy, characterized in that the saturation magnetic flux density B S is excellent in corrosion resistance having the above 10 kG.
【請求項2】 原子比にて,Pt17〜37%を主成分
とし,副成分としてCr,Co,Niのそれぞれ25%
以下,B,C,Al,Si,Ti,Mn,Cu,Ge,
Y,Pd,Ta,Nb,Mo,W,Ir,Ag,Auの
それぞれ10%以下のうち1種または2種以上合計0.
001〜35%および残部Feと少量の不純物からな
り,保磁力が10Oe以下,飽和磁束密度が10kG以
上を有する耐食性に優れた軟磁性合金。
2. An atomic ratio of 17 to 37% of Pt as a main component, and 25% of each of Cr, Co, and Ni as subcomponents.
Hereinafter, B, C, Al, Si, Ti, Mn, Cu, Ge,
Each of Y, Pd, Ta, Nb, Mo, W, Ir, Ag, and Au is one or more of 10% or less.
A soft magnetic alloy comprising 001 to 35% and the balance Fe and a small amount of impurities, having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more, and having excellent corrosion resistance.
【請求項3】 原子比にて,Pt26〜36%を主成分
とし,副成分としてCrを25%以下,B,C,Si,
Ti,Mn,Ge,Y,Ta,Nb,Mo,W,Ir,
Agのそれぞれ10%以下のうち1種または2種以上合
計0.001〜35%および残部Feと少量の不純物か
らなり,保磁力が10Oe以下,飽和磁束密度が10k
G以上を有する生体適合性ならびに耐食性に優れた軟磁
性合金。
3. An atomic ratio of which Pt is 26 to 36% as a main component, Cr is 25% or less as an auxiliary component, and B, C, Si,
Ti, Mn, Ge, Y, Ta, Nb, Mo, W, Ir,
One or two or more of each of 10% or less of Ag is 0.001 to 35% in total, and the balance is Fe and a small amount of impurities.
A soft magnetic alloy having G or higher and excellent in biocompatibility and corrosion resistance.
【請求項4】 請求項1ないし請求項3のいずれか1項
に記載の合金を,高周波炉またはアーク炉で溶解し,得
られたインゴットを熱間または冷間で加工率30%以上
加工し,これを真空中または非酸化性雰囲気中500℃
以上融点以下の温度で1分間以上100時間以下均質化
熱処理した後0.1℃/秒以上1500℃/秒以下の速
度で冷却することにより,保磁力が10Oe以下,飽和
磁束密度が10kG以上を有する耐食性に優れた軟磁性
合金の製造方法。
4. The alloy according to claim 1, wherein the alloy is melted in a high-frequency furnace or an arc furnace, and the obtained ingot is worked at a working rate of 30% or more by hot or cold. , At 500 ° C. in a vacuum or non-oxidizing atmosphere
After homogenizing heat treatment at a temperature not lower than the melting point and not higher than the melting point for not shorter than 1 minute and not longer than 100 hours, the coercive force is not higher than 10 Oe and the saturation magnetic flux density is not lower than 10 kG. A method for producing a soft magnetic alloy having excellent corrosion resistance.
【請求項5】 請求項1ないし請求項3のいずれか1項
に記載の合金を,高周波炉またはアーク炉で溶解し,得
られたインゴットを熱間または冷間で加工率30%以上
加工し,これを真空中または非酸化性雰囲気中500℃
以上融点以下の温度で1分間以上100時間以下均質化
熱処理した後0.1℃/秒以上1500℃/秒以下の速
度で冷却し,これをさらに真空中または非酸化性雰囲気
中400℃以上融点以下の温度で1分間以上1000時
間以下加熱した後冷却することにより,保磁力が10O
e以下,飽和磁束密度が10kG以上を有する耐食性に
優れた軟磁性合金の製造方法。
5. The alloy according to claim 1, wherein the alloy is melted in a high-frequency furnace or an arc furnace, and the obtained ingot is worked at a working ratio of 30% or more by hot or cold. , At 500 ° C. in a vacuum or non-oxidizing atmosphere
After homogenizing heat treatment at a temperature not lower than the melting point and not higher than the melting point for not less than 1 minute and not longer than 100 hours, it is cooled at a rate of not lower than 0.1 ° C./sec and not higher than 1500 ° C./sec. By heating at the following temperature for 1 minute to 1000 hours and then cooling, the coercive force
e, a method of manufacturing a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and excellent corrosion resistance.
【請求項6】 請求項3に記載の合金を,精密鋳造法に
より鋳造し,これを真空中または非酸化性雰囲気中40
0℃以上融点以下の温度で1分間以上1000時間以下
加熱した後冷却することにより,保磁力が10Oe以
下,飽和磁束密度が10kG以上を有する生体適合性な
らびに耐食性に優れた軟磁性合金の製造方法。
6. The alloy according to claim 3, which is cast by a precision casting method, and is cast in a vacuum or in a non-oxidizing atmosphere.
A method for producing a soft magnetic alloy having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more and excellent in biocompatibility and corrosion resistance by heating at a temperature of 0 ° C. or more and a melting point or less and for 1 minute or more and 1000 hours or less. .
【請求項7】 請求項1ないし請求項3のいずれか1項
に記載の,保磁力が10Oe以下,飽和磁束密度が10
kG以上を有する耐食性に優れた軟磁性合金からなる電
磁部品。
7. The coercive force according to claim 1, wherein the coercive force is not more than 10 Oe and the saturation magnetic flux density is not more than 10 Oe.
An electromagnetic component made of a soft magnetic alloy having a corrosion resistance of at least kG.
【請求項8】 請求項1ないし請求項3のいずれか1項
に記載の,保磁力が10Oe以下,飽和磁束密度が10
kG以上を有する耐食性に優れた軟磁性合金と永久磁石
合金から構成される電磁機器。
8. The method according to claim 1, wherein the coercive force is 10 Oe or less and the saturation magnetic flux density is 10 Oe.
An electromagnetic device composed of a soft magnetic alloy having a kG or more and excellent in corrosion resistance and a permanent magnet alloy.
【請求項9】 請求項3に記載の,保磁力が10Oe以
下,飽和磁束密度が10kG以上を有する生体適合性な
らびに耐食性に優れた軟磁性合金からなる医療・健康用
具。
9. A medical / health tool according to claim 3, comprising a soft magnetic alloy excellent in biocompatibility and corrosion resistance having a coercive force of 10 Oe or less and a saturation magnetic flux density of 10 kG or more.
【請求項10】 請求項3に記載の,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する,生体適合
性ならびに耐食性に優れた軟磁性合金からなる歯科補綴
物のキーパー。
10. The coercive force according to claim 3, wherein the coercive force is 10 Oe.
Hereinafter, a keeper of a dental prosthesis made of a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and having excellent biocompatibility and corrosion resistance.
【請求項11】 請求項3に記載の,保磁力が10Oe
以下,飽和磁束密度が10kG以上を有する,生体適合
性ならびに耐食性に優れた軟磁性合金からなる生体内埋
込み用機能性部品。
11. The coercive force according to claim 3, wherein the coercive force is 10 Oe.
Hereinafter, a functional part for implanting in a living body made of a soft magnetic alloy having a saturation magnetic flux density of 10 kG or more and excellent in biocompatibility and corrosion resistance.
JP10311570A 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance Withdrawn JP2000104141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311570A JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311570A JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JP2000104141A true JP2000104141A (en) 2000-04-11

Family

ID=18018829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311570A Withdrawn JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JP2000104141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143188A (en) * 2000-11-15 2002-05-21 Gc Corp Method of making structure for magnetic force attraction type intraoral dental prosthetic appliance
EP1593132A2 (en) * 2003-01-30 2005-11-09 Metglas, Inc. Gapped amorphous metal-based magnetic core
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
CN102982956A (en) * 2012-11-08 2013-03-20 建德市易通金属粉材有限公司 High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof
EP1404391B2 (en) 2001-03-30 2014-01-15 Boston Scientific Limited Platinum - stainless steel alloy and radiopaque stents
US9339398B2 (en) 2012-04-26 2016-05-17 Medtronic Vascular, Inc. Radiopaque enhanced nickel alloy for stents
US9592135B2 (en) 2012-04-26 2017-03-14 Medtronic Vascular, Inc. Radiopaque enhanced cobalt alloy for stents

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143188A (en) * 2000-11-15 2002-05-21 Gc Corp Method of making structure for magnetic force attraction type intraoral dental prosthetic appliance
JP4536245B2 (en) * 2000-11-15 2010-09-01 株式会社ジーシー Method for producing magnetic adsorption type intraoral dental prosthesis structure
EP1404391B2 (en) 2001-03-30 2014-01-15 Boston Scientific Limited Platinum - stainless steel alloy and radiopaque stents
EP1593132A2 (en) * 2003-01-30 2005-11-09 Metglas, Inc. Gapped amorphous metal-based magnetic core
EP1593132A4 (en) * 2003-01-30 2011-03-09 Metglas Inc Gapped amorphous metal-based magnetic core
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions
EP1724365A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content compositions
US9339398B2 (en) 2012-04-26 2016-05-17 Medtronic Vascular, Inc. Radiopaque enhanced nickel alloy for stents
US9592135B2 (en) 2012-04-26 2017-03-14 Medtronic Vascular, Inc. Radiopaque enhanced cobalt alloy for stents
US11141296B2 (en) 2012-04-26 2021-10-12 Medtronic Vascular, Inc. Radiopaque enhanced cobalt alloy for stents
CN102982956A (en) * 2012-11-08 2013-03-20 建德市易通金属粉材有限公司 High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof

Similar Documents

Publication Publication Date Title
Sumita et al. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials
EP2489752B1 (en) Ferrous shape memory alloy and production method therefor
US20210156015A1 (en) 3D Printable Stainless Steel Alloy with Antibacterial Properties for Orthopedic Implants
EP3093858B1 (en) Ultra-low cobalt iron-cobalt magnet alloys
EP1229142B1 (en) High strength, high corrosion-resistant and non-magnetic stainless steel
JPH06511287A (en) Precipitation hardening martensitic stainless steel
JP2006052452A (en) High-nitrogen austenitic stainless steel
JP2003293058A (en) Biological superelastic titanium alloy
JP2000104141A (en) Soft magnetic alloy excellent in corrosion resistance
EP0641868B1 (en) A nonmagnetic ferrous alloy with excellent corrosion resistance and workability
JP2009024223A (en) Dental wire, and method for producing the same
JP2003268501A (en) SHAPE MEMORY Fe ALLOY AND PRODUCTION METHOD THEREOF
CN108677099B (en) Medical degradable Fe-Mn-Ag alloy material and preparation and application thereof
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPH0547620B2 (en)
JP3845918B2 (en) Nonmagnetic stainless steel for living organisms
JPH09263902A (en) Stainless steel stock for high hardness soft magnetic parts improved in workability
JP4554250B2 (en) Ti-based alloy shape memory element
JPH03173749A (en) Soft magnetic stainless steel for cold forging and its manufacture
JPS6326192B2 (en)
JP2000336461A (en) High hardness stainless steel superior in antibacterial property and corrosion resistance
EP4133117B1 (en) Bioresorbable fe-mn-si-x alloys for medical implants
JP2019039023A (en) Artifact-less superelastic alloy
KR100630505B1 (en) Dental casting alloy
JPH01255645A (en) Fe-co groupe magnetic alloy and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110