JP2000102398A - Apparatus for methane fermentation and fermentation of methane - Google Patents

Apparatus for methane fermentation and fermentation of methane

Info

Publication number
JP2000102398A
JP2000102398A JP10277141A JP27714198A JP2000102398A JP 2000102398 A JP2000102398 A JP 2000102398A JP 10277141 A JP10277141 A JP 10277141A JP 27714198 A JP27714198 A JP 27714198A JP 2000102398 A JP2000102398 A JP 2000102398A
Authority
JP
Japan
Prior art keywords
methane
treatment
acetic acid
formic acid
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10277141A
Other languages
Japanese (ja)
Inventor
Isao Matsushita
功 松下
Manabu Nakamoto
学 中本
Naoya Ichimura
直也 市村
Mayumi Hamaura
真由美 浜浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10277141A priority Critical patent/JP2000102398A/en
Publication of JP2000102398A publication Critical patent/JP2000102398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out methane fermentation more rapidly in a state of readily controllable reaction conditions. SOLUTION: This method for methane fermentation comprises a process for forming acetic acid or formic acid by treating an object to be treated by a first treating tank 1 containing a microorganism capable of forming acetic acid or formic acid from the object to be treated containing an organic substance, a process for supplying the acetic acid and/or formic acid-containing treated solution treated by the first treating tank 1 to a second treating tank 6 containing a thermophilic methane forming microorganism for converting acetic acid and/or formic acid into methane under anaerobic conditions and a process for treating the treated solution in the second treating tank 6 at a high temperature of >=50 deg.C under anaerobic conditions to convert acetic acid and/or formic acid in the treated solution into methane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタン発酵装置及
びメタン発酵方法に関する。
[0001] The present invention relates to a methane fermentation apparatus and a methane fermentation method.

【0002】[0002]

【従来の技術とその課題】従来のメタン発酵は、嫌気発
酵槽に有機酸、糖類などの有機物を投入し、発酵槽内に
15日から30日間滞留させることにより行われてい
る。このメタン発酵槽中の微生物としては、メタン生成
菌を含む混合微生物群を利用しているが、微生物が馴化
されるまでに長期間かかるため、装置運転開始の立ち上
げに時間を要することや、微生物が複雑な共生系として
存在するため発酵条件を最適な状態に保つのが困難であ
る等の問題があった。
2. Description of the Related Art Conventional methane fermentation is carried out by putting organic substances such as organic acids and sugars into an anaerobic fermenter and keeping the fermenter in the fermenter for 15 to 30 days. As the microorganisms in this methane fermentation tank, a mixed microorganism group containing methanogens is used, but since it takes a long time until the microorganisms are acclimated, it takes time to start up the operation of the apparatus, Since microorganisms exist as a complex symbiotic system, it has been difficult to maintain fermentation conditions in an optimal state.

【0003】本発明は、メタン発酵をより迅速にかつ反
応条件の制御の容易な状態で行うことを目的とする。
[0003] It is an object of the present invention to carry out methane fermentation more quickly and in a state where reaction conditions can be easily controlled.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
に鑑み検討を重ねた結果、好熱性のメタン発酵菌を使用
して高温で処理することにより、排水などの有機物を含
む処理対象物の処理速度が実用化可能な程度に短縮され
ることを見出した。
Means for Solving the Problems As a result of repeated studies in view of the above-mentioned problems, the present inventors have conducted a treatment at a high temperature using a thermophilic methane fermentation bacterium, thereby obtaining a treatment target containing organic matter such as wastewater. It has been found that the processing speed of an object is reduced to the extent that it can be put to practical use.

【0005】本発明は、以下のメタン発酵装置及びメタ
ン発酵方法を提供するものである。
[0005] The present invention provides the following methane fermentation apparatus and methane fermentation method.

【0006】項1. 酢酸またはギ酸を生成可能な微生
物を含む第1処理槽で有機物を含む被処理対象物を嫌気
性条件下に処理する工程、酢酸および/またはギ酸を嫌
気性条件下にメタンに変換する好熱性メタン生成菌を含
む第2処理槽に第1処理槽で処理されたギ酸及び/又は
酢酸を含む処理液を供給する工程、第2処理槽中の該処
理液を50℃以上の高温で嫌気性条件下に処理して処理
液中のギ酸及び/又は酢酸をメタンに変換する工程を含
むメタン発酵方法。
Item 1. A step of treating an object containing an organic substance under anaerobic conditions in a first treatment tank containing a microorganism capable of producing acetic acid or formic acid, a process of converting acetic acid and / or formic acid to methane under anaerobic conditions; Supplying a treatment liquid containing formic acid and / or acetic acid treated in the first treatment tank to the second treatment tank containing the produced bacteria, and subjecting the treatment liquid in the second treatment tank to a high temperature of 50 ° C. or more under anaerobic conditions A methane fermentation method comprising a step of converting the formic acid and / or acetic acid in the treatment liquid into methane by performing the treatment below.

【0007】項2. 生成するメタンを回収する工程を
さらに含む項1に記載のメタン発酵方法。
Item 2. Item 4. The methane fermentation method according to Item 1, further comprising a step of collecting generated methane.

【0008】項3. 第1処理槽で処理されたギ酸又は
酢酸を含む処理液を濾過する工程をさらに含む項1に記
載のメタン発酵方法。
Item 3. Item 4. The methane fermentation method according to Item 1, further comprising a step of filtering a treatment solution containing formic acid or acetic acid treated in the first treatment tank.

【0009】項4. 第2処理槽の好熱性メタン生成菌
が多孔質の担体に担持されたものである項1に記載のメ
タン発酵方法。
Item 4. Item 4. The methane fermentation method according to Item 1, wherein the thermophilic methane-producing bacterium in the second treatment tank is supported on a porous carrier.

【0010】項5. 酢酸またはギ酸を生成可能な微生
物を含む第1処理槽、酢酸またはギ酸を嫌気性条件下に
メタンに変換する好熱性メタン生成菌を含む第2処理
槽、および、第1処理槽の処理液を第2処理槽に供給す
る供給手段を備えたメタン発酵装置。
Item 5. A first treatment tank containing a microorganism capable of producing acetic acid or formic acid, a second treatment tank containing a thermophilic methanogen that converts acetic acid or formic acid to methane under anaerobic conditions, and a treatment liquid of the first treatment tank. A methane fermentation apparatus provided with a supply means for supplying to the second treatment tank.

【0011】項6. 第2処理槽の好熱性メタン生成菌
を多孔質の担体に担持させてなる項5に記載のメタン発
酵処理装置。
Item 6. Item 6. The methane fermentation treatment apparatus according to Item 5, wherein the thermophilic methane-producing bacteria in the second treatment tank are supported on a porous carrier.

【0012】項7. 前記供給手段に濾過装置を設け、
第2処理槽に送液される処理液の固形分を除去可能とし
てなる項5に記載のメタン発酵処理装置。
Item 7. Providing a filtration device in the supply means,
Item 6. The methane fermentation treatment apparatus according to item 5, wherein the solid content of the treatment liquid sent to the second treatment tank can be removed.

【0013】項8. メタン回収機構をさらに含む項5
に記載のメタン発酵処理装置。
Item 8. Item 5 further including a methane recovery mechanism
The methane fermentation treatment apparatus according to item 1.

【0014】[0014]

【発明の実施の形態】本発明において、処理対象物とし
ては、食品工場やレストラン等の飲食業の事業所からの
食品ないし食品原料を含むゴミや排液、集合住宅などの
生ゴミ、紙類や衣類、可燃ゴミないし下水、パルプ工場
などの工場からの排水などの有機物を含む固形物、半固
形物ないし液状物が例示される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, objects to be treated include garbage and effluent containing food or food raw materials from food and drink establishments such as food factories and restaurants, raw garbage such as apartment houses, paper and the like. Solids, semi-solids or liquids containing organic substances such as clothes, combustible waste or sewage, and wastewater from factories such as pulp mills are exemplified.

【0015】処理対象物に含まれる有機物としては、微
生物等を用いた生物学的処理によりギ酸または酢酸に導
くことが可能な有機物が挙げられ、具体的には糖類(単
糖、二糖、オリゴ糖、多糖)、アミノ酸、蛋白質、脂肪
酸、脂肪酸エステル、セルロース等が挙げられ、より具
体的には、ギ酸、酢酸、メタノール、乳酸、酪酸、プロ
ピオン酸、マレイン酸、コハク酸、フマル酸、リンゴ
酸、クエン酸、グルタル酸、吉草酸、ラウリン酸、ミリ
スチン酸、ミリスチン酸、パルミチン酸等の有機酸、グ
ルコース、マンノース、ガラクトース、フルクトース、
マルトース、ラクトース、シュクロース、キシリトー
ル、デンプンなどの単糖、二糖又は多糖等の糖類が例示
される。
Examples of the organic substance contained in the object to be treated include organic substances which can be converted to formic acid or acetic acid by biological treatment using a microorganism or the like, and specifically, saccharides (monosaccharide, disaccharide, oligosaccharide). Sugars, polysaccharides), amino acids, proteins, fatty acids, fatty acid esters, cellulose and the like. More specifically, formic acid, acetic acid, methanol, lactic acid, butyric acid, propionic acid, maleic acid, succinic acid, fumaric acid, malic acid , Citric acid, glutaric acid, valeric acid, lauric acid, myristic acid, myristic acid, organic acids such as palmitic acid, glucose, mannose, galactose, fructose,
Monosaccharides such as maltose, lactose, sucrose, xylitol and starch, and sugars such as disaccharides or polysaccharides are exemplified.

【0016】好熱性メタン生成菌としては、好ましくは
50℃以上、特に55℃以上の至適温度を有するメタン
生成菌が挙げられ、具体的には、Methanobacterium s
p., Methanobacterium thermoautotrophicum, Methanob
acterium wolfei, Methanobacterium thermoaggregans,
Methanobacterium thermophilum, Methanobacterium d
efluvii, Methanococcus thermolithotrophicus, Metha
noculleus thermophilicusなどのギ酸変換菌およびMeth
anothrix thermophila, Methanothrix thermoacetophil
a, Methanosarcina thermophilaなどの酢酸変換菌が挙
げられる。これらの好熱性メタン生成菌は公知の菌であ
り、容易に入手することができる。好熱性メタン生成菌
は、排水中のメタノール、ギ酸、酢酸をメタンに変換す
るとができるが、メタノール及びギ酸からのメタン生成
速度は、酢酸からのメタン生成速度よりも速いため、好
ましくはメタノール及びギ酸からメタンを生成する好熱
性メタン生成菌が使用される。
The thermophilic methanogen is preferably a methanogen having an optimum temperature of 50 ° C. or higher, particularly 55 ° C. or higher.
p., Methanobacterium thermoautotrophicum, Methanob
acterium wolfei, Methanobacterium thermoaggregans,
Methanobacterium thermophilum, Methanobacterium d
efluvii, Methanococcus thermolithotrophicus, Metha
Formic acid converting bacteria such as noculleus thermophilicus and Meth
anothrix thermophila, Methanothrix thermoacetophil
a, acetic acid conversion bacteria such as Methanosarcina thermophila. These thermophilic methanogens are known bacteria and can be easily obtained. Thermophilic methanogens can convert methanol, formic acid, and acetic acid in wastewater into methane, but the rate of methane production from methanol and formic acid is faster than the rate of methane production from acetic acid. A thermophilic methanogen that produces methane from is used.

【0017】有機物を含む処理対象物の処理時の温度
は、50℃以上、好ましくは55℃以上である。温度の
上限は、微生物の種類により適宜設定される。
The temperature at the time of processing the processing object containing an organic substance is 50 ° C. or higher, preferably 55 ° C. or higher. The upper limit of the temperature is appropriately set according to the type of microorganism.

【0018】処理期間は、処理対象物の種類や処理槽の
容量と処理量との関係により異なるが、通常2〜3日程
度である。
The processing period varies depending on the type of the object to be processed and the relationship between the capacity of the processing tank and the processing amount, but is usually about 2 to 3 days.

【0019】有機物を含む対象物のギ酸又は酢酸への処
理は、タンクなどの密閉系の第1処理槽で嫌気性条件下
に行うことができる。第1処理槽には、有機物を含む処
理対象物から酢酸またはギ酸を生成可能な微生物が存在
する。このような微生物としては、酢酸生成菌(Acetoba
cter、Pyrococcus furiosusなど)やギ酸生成菌(Oxalob
acter formigenes, Bacteroides sp., Escherichia, Kl
ebsiella, Enterobacter等)が挙げられるが、このよう
な特定の酢酸生成菌やギ酸生成菌を用いなくても、多数
の微生物が混在した混合微生物群を用い、該微生物群の
複合的な作用により、ギ酸又は酢酸を生成させてもよ
い。特に、処理対象物が生ゴミ等の多数の微生物を含む
場合には、これらの微生物が第1処理槽に導入されるこ
とになるので、混合微生物群によりギ酸又は酢酸を生成
させることになる。第1処理槽の処理条件は、特に限定
されないが、例えば常温から高温(60℃程度以下)、
pH=5〜6程度の条件で、好ましくは嫌気性条件で行
うことができる。処理対象物がセルロースを含む場合、
セルロース分解細菌を共存させるのが好ましい。
The treatment of an object containing an organic substance with formic acid or acetic acid can be carried out in an enclosed first treatment tank such as a tank under anaerobic conditions. In the first treatment tank, microorganisms capable of producing acetic acid or formic acid from a treatment target containing organic matter exist. Such microorganisms include acetic acid producing bacteria (Acetoba
cter, Pyrococcus furiosus, etc.) and formic acid-producing bacteria (Oxalob
acter formigenes, Bacteroides sp., Escherichia, Kl
ebsiella, Enterobacter etc.). Formic acid or acetic acid may be produced. In particular, when the object to be treated contains a large number of microorganisms such as garbage, these microorganisms are introduced into the first treatment tank, and formic acid or acetic acid is generated by the mixed microorganism group. Although the processing conditions of the first processing tank are not particularly limited, for example, from normal temperature to high temperature (about 60 ° C. or less),
The reaction can be performed under conditions of pH = about 5 to 6, preferably under anaerobic conditions. When the processing object contains cellulose,
It is preferable that cellulolytic bacteria coexist.

【0020】第1処理槽から第2処理槽への送液のため
の供給手段としては、例えばポンプを用いることができ
る。該供給手段には濾過装置、例えばRO膜(逆浸透圧
膜)を設けるのが好ましい。特に、処理対象物として生
ゴミや紙類、繊維製品等の固形物を用いた場合不溶物が
存在し、該不溶物中には微生物が吸着されているため、
不溶物を濾過装置で除去し、溶液を第2処理槽に供給
し、濾過で除かれた不溶物は第1処理槽に戻してさらに
分解処理するのが好ましい。
As a supply means for feeding the liquid from the first processing tank to the second processing tank, for example, a pump can be used. The supply means is preferably provided with a filtration device, for example, an RO membrane (reverse osmosis membrane). In particular, when solid materials such as garbage and papers and textiles are used as processing objects, insolubles are present, and microorganisms are adsorbed in the insolubles,
It is preferable that the insoluble matter is removed by a filtration device, the solution is supplied to the second treatment tank, and the insoluble matter removed by the filtration is returned to the first treatment tank for further decomposition treatment.

【0021】第2処理槽には、前記好熱性メタン生成菌
の1種又は2種以上が含まれる。第2処理槽の処理条件
は、50℃以上の温度、pH=7〜8、嫌気性の条件下
に処理する。
The second treatment tank contains one or more of the thermophilic methanogens. The processing conditions in the second processing tank are anaerobic under the condition of a temperature of 50 ° C. or more, a pH of 7 to 8, and the like.

【0022】第1処理槽、第2処理槽ともに、好ましく
は撹拌下に処理する。
Both the first and second processing tanks are preferably processed under stirring.

【0023】第2処理槽に含まれる好熱性メタン生成菌
等の細菌は、担体に固定化したものを用いるのが好まし
い。好熱性メタン生成菌の固定化方法としては、好熱性
メタン生成菌を多孔質の担体の存在下に嫌気性条件下で
培養し、好熱性メタン生成菌を多孔質の担体中で増殖さ
せ、固定化させるのが好ましい。
As the bacteria such as thermophilic methanogens contained in the second treatment tank, those immobilized on a carrier are preferably used. As a method for immobilizing thermophilic methanogens, thermophilic methanogens are cultured under anaerobic conditions in the presence of a porous carrier, and the thermophilic methanogen is grown in the porous carrier and fixed. It is preferred that the

【0024】細菌を担持する多孔質の担体としては、焼
成ケイソウ土、シリカゲル、ガラスビーズ、アルミナ、
セラミック、カーボン、活性炭、モレキュラーシーブ、
シリコンゴム、セルロース、アガロース、アミノ酸系ポ
リマーなどが例示される。
As the porous carrier for carrying bacteria, calcined diatomaceous earth, silica gel, glass beads, alumina,
Ceramic, carbon, activated carbon, molecular sieve,
Examples include silicone rubber, cellulose, agarose, and amino acid-based polymers.

【0025】担体に固定化された細菌の形態としては、
好熱性メタン生成菌が固定化された多数の担体を第2処
理槽中にバラバラに存在させておいてもよく、好熱性メ
タン生成菌が固定化された該担体をカラム、膜、中空糸
等のリアクターに充填してもよい。
The form of the bacteria immobilized on the carrier includes:
A large number of carriers on which the thermophilic methane-forming bacteria are immobilized may be separately present in the second treatment tank, and the carrier on which the thermophilic methane-forming bacteria are immobilized may be used as a column, a membrane, a hollow fiber, or the like. May be filled in the reactor.

【0026】処理槽には、生成するメタンを回収するた
めの回収装置を設けるのが好ましい。該回収装置として
は、ガスホルダーなどのメタン回収機構が処理槽の上部
に設けられており、メタンを回収することができる。
It is preferable to provide a recovery device for recovering the generated methane in the treatment tank. As the recovery device, a methane recovery mechanism such as a gas holder is provided at the upper part of the processing tank, and can recover methane.

【0027】[0027]

【発明の効果】本発明によれば、有機物の処理時の汚泥
の副生量を大幅に低減できる。また、有機物を含む対象
物の処理時に生成するメタンを分離することにより、エ
ネルギーとして利用することができる。
According to the present invention, the amount of sludge by-produced during the treatment of organic substances can be greatly reduced. Further, by separating methane generated at the time of processing an object containing an organic substance, it can be used as energy.

【0028】[0028]

【実施例】以下、本発明を実施例を用いてより詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments.

【0029】実施例1 図1に示されるメタン発酵装置を用いた。該装置は、第
1処理槽(1)、第2処理槽(6)、第1処理槽の処理
液を第2処理槽に供給する供給装置(3)としてのポン
プ、濾過装置(4)及び処理液を供給する供給管(5)
を備えてなり、第1処理槽には被処理物の供給装置
(2)が接続され、第2処理槽にはメタン回収機構
(8)としてのガスホルダーが接続してある。
Example 1 The methane fermentation apparatus shown in FIG. 1 was used. The apparatus includes a first processing tank (1), a second processing tank (6), a pump as a supply device (3) for supplying the processing liquid in the first processing tank to the second processing tank, a filtration device (4), and Supply pipe for supplying processing liquid (5)
A supply device (2) for the object to be processed is connected to the first processing tank, and a gas holder as a methane recovery mechanism (8) is connected to the second processing tank.

【0030】好熱性メタン生成菌としてMethanobacteri
um sp.を焼成ケイソウ土(培地1リットルあたり10
g)に担持した固定化メタン生成菌(7)を第2処理槽
に加え、ギ酸生成菌(Oxalobacter formigenes, Bacter
oides sp., Escherichia, Klebsiella, Enterobacter
等)を含む混合微生物群を第1処理槽に加えた。
Methanobacteri as thermophilic methanogen
um sp. in calcined diatomaceous earth (10
g) and immobilized methane-producing bacteria (7) were added to the second treatment tank, and formic acid-producing bacteria (Oxalobacter formigenes, Bacter
oides sp., Escherichia, Klebsiella, Enterobacter
) Was added to the first treatment tank.

【0031】第1処理槽にはグルコースまたはフルクト
ース等のヘキソース又は乳酸(培地1リットルあたり2
0g)を含む培養液を加え、pH6.5、30℃で24
時間培養した。次いで、第1処理槽で処理されたギ酸を
含む処理液を、濾過装置(4)を通し、ポンプ(3)で
第2処理槽(6)に供給した。次いで第2処理槽を培養
温度60℃、pH7.5で2日間培養した。培養に伴い
発生するメタンは、1日あたりのメタン生成量として培
地1mlあたり286μモルであった。
In the first treatment tank, hexose such as glucose or fructose or lactic acid (2 liters per liter of medium)
0g), pH 6.5, 30 ° C and 24 ° C.
Cultured for hours. Next, the treatment liquid containing formic acid treated in the first treatment tank was supplied to the second treatment tank (6) by the pump (3) through the filtration device (4). Next, the second treatment tank was cultured at a culture temperature of 60 ° C. and a pH of 7.5 for 2 days. The amount of methane generated during the cultivation was 286 μmol / ml of the medium as the amount of methane produced per day.

【0032】比較例1 第2処理槽の固定化メタン生成菌(7)に代えて、メタ
ンを生成することが既知の混合微生物群を用い、1つの
反応槽でメタン発酵する他は、実施例1と同様な条件で
反応させ、メタン生成量を測定した。1日あたりのメタ
ン生成量として培地1mlあたり30μモルであった。
COMPARATIVE EXAMPLE 1 Instead of the immobilized methanogen (7) in the second treatment tank, a mixed microorganism group known to produce methane was used, and methane fermentation was carried out in one reaction tank. The reaction was performed under the same conditions as in Example 1, and the amount of methane produced was measured. The amount of methane produced per day was 30 mol per ml of medium.

【0033】実施例1及び比較例1の結果から、本発明
によると、メタンの生成速度が10倍速くなり、実用的
な速度でのメタン発酵が可能になった。
From the results of Example 1 and Comparative Example 1, according to the present invention, the production rate of methane was ten times faster, and methane fermentation at a practical rate became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】メタン発酵装置の一例を示す。FIG. 1 shows an example of a methane fermentation apparatus.

【符号の説明】[Explanation of symbols]

1 第1処理槽 2 被処理物の供給装置 3 ポンプ 4 濾過装置 5 供給管 6 第2処理槽 7 固定化メタン生成菌 8 ガスホルダー DESCRIPTION OF SYMBOLS 1 1st treatment tank 2 Supply apparatus of the to-be-processed object 3 Pump 4 Filtration apparatus 5 Supply pipe 6 2nd treatment tank 7 Immobilized methane generating bacteria 8 Gas holder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12P 39/00 C12R 1:01 1:185 1:22) (72)発明者 市村 直也 京都市下京区中堂寺南町17京都リサーチパ ーク 株式会社関西新技術研究所内 (72)発明者 浜浦 真由美 京都市下京区中堂寺南町17京都リサーチパ ーク 株式会社関西新技術研究所内 Fターム(参考) 4B064 AB03 AD03 AD04 CA02 CC03 CC06 CD23 DA16 4D059 AA03 AA07 BA12 BA17 BA22 BA27 CA07 DA54 DA55 DA61 DA63 DA65 DB11 DB31 EB06──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) (C12P 39/00 C12R 1:01 1: 185 1:22) (72) Inventor Naoya Ichimura Shimogyo, Kyoto 17 Nakadoji Minamicho, Ward Kyoto Research Park Kansai New Technology Research Institute Co., Ltd. (72) Inventor Mayumi Hamaura 17 Nakadoji Minamimachi Shimogyo Ward, Kyoto City Kyoto Research Park Kansai New Technology Research Institute Co., Ltd. F term (reference) 4B064 AB03 AD03 AD04 CA02 CC03 CC06 CD23 DA16 4D059 AA03 AA07 BA12 BA17 BA22 BA27 CA07 DA54 DA55 DA61 DA63 DA65 DB11 DB31 EB06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】有機物を含む処理対象物から酢酸またはギ
酸を生成可能な微生物を含む第1処理槽で該処理対象物
を処理して酢酸またはギ酸を生成する工程、酢酸および
/またはギ酸を嫌気性条件下にメタンに変換する好熱性
メタン生成菌を含む第2処理槽に第1処理槽で処理され
たギ酸及び/又は酢酸を含む処理液を供給する工程、第
2処理槽中の該処理液を50℃以上の高温で嫌気性条件
下に処理して処理液中のギ酸及び/又は酢酸をメタンに
変換する工程を含むメタン発酵方法。
1. A step of treating an object to be treated in a first treatment tank containing a microorganism capable of producing acetic acid or formic acid from an object containing an organic substance to produce acetic acid or formic acid; Supplying a treatment liquid containing formic acid and / or acetic acid treated in the first treatment tank to a second treatment tank containing a thermophilic methanogen that converts to methane under anaerobic conditions; A methane fermentation method comprising a step of treating a solution at a high temperature of 50 ° C. or higher under anaerobic conditions to convert formic acid and / or acetic acid in the treated solution to methane.
【請求項2】生成するメタンを回収する工程をさらに含
む請求項1に記載のメタン発酵方法。
2. The methane fermentation method according to claim 1, further comprising a step of collecting the generated methane.
【請求項3】第1処理槽で処理されたギ酸又は酢酸を含
む処理液を濾過する工程をさらに含む請求項1に記載の
メタン発酵方法。
3. The methane fermentation method according to claim 1, further comprising a step of filtering a treatment solution containing formic acid or acetic acid treated in the first treatment tank.
【請求項4】第2処理槽の好熱性メタン生成菌が多孔質
の担体に担持されたものである請求項3に記載のメタン
発酵方法。
4. The methane fermentation method according to claim 3, wherein the thermophilic methanogen in the second treatment tank is supported on a porous carrier.
【請求項5】酢酸またはギ酸を生成可能な微生物を含む
第1処理槽、酢酸またはギ酸を嫌気性条件下にメタンに
変換する好熱性メタン生成菌を含む第2処理槽、およ
び、第1処理槽の処理液を第2処理槽に供給する供給手
段を備えたメタン発酵装置。
5. A first treatment tank containing a microorganism capable of producing acetic acid or formic acid, a second treatment tank containing a thermophilic methanogen that converts acetic acid or formic acid to methane under anaerobic conditions, and a first treatment. A methane fermentation apparatus including supply means for supplying a processing liquid in a tank to a second processing tank.
【請求項6】第2処理槽の好熱性メタン生成菌を多孔質
の担体に担持させてなる請求項5に記載のメタン発酵処
理装置。
6. The methane fermentation treatment apparatus according to claim 5, wherein the thermophilic methanogen in the second treatment tank is supported on a porous carrier.
【請求項7】前記供給手段に濾過装置を設け、第2処理
槽に送液される処理液の固形分を除去可能としてなる請
求項5に記載のメタン発酵処理装置。
7. The methane fermentation treatment apparatus according to claim 5, wherein a filtration device is provided in the supply means, and a solid content of the treatment liquid sent to the second treatment tank can be removed.
【請求項8】メタン回収機構をさらに含む請求項5に記
載のメタン発酵処理装置。
8. The methane fermentation treatment apparatus according to claim 5, further comprising a methane recovery mechanism.
JP10277141A 1998-09-30 1998-09-30 Apparatus for methane fermentation and fermentation of methane Pending JP2000102398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10277141A JP2000102398A (en) 1998-09-30 1998-09-30 Apparatus for methane fermentation and fermentation of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10277141A JP2000102398A (en) 1998-09-30 1998-09-30 Apparatus for methane fermentation and fermentation of methane

Publications (1)

Publication Number Publication Date
JP2000102398A true JP2000102398A (en) 2000-04-11

Family

ID=17579378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10277141A Pending JP2000102398A (en) 1998-09-30 1998-09-30 Apparatus for methane fermentation and fermentation of methane

Country Status (1)

Country Link
JP (1) JP2000102398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069865A (en) * 1996-07-31 1998-03-10 Chuka Eikan Kofun Yugenkoshi Video display device
JP2013529088A (en) * 2010-05-24 2013-07-18 ザイレコ,インコーポレイテッド Biomass processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069865A (en) * 1996-07-31 1998-03-10 Chuka Eikan Kofun Yugenkoshi Video display device
JP2013529088A (en) * 2010-05-24 2013-07-18 ザイレコ,インコーポレイテッド Biomass processing
US9206453B2 (en) 2010-05-24 2015-12-08 Xyleco, Inc. Processing biomass

Similar Documents

Publication Publication Date Title
Sołowski et al. Production of hydrogen from biomass and its separation using membrane technology
Liu et al. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation
Margaritis et al. Advances in ethanol production using immobilized cell systems
Park et al. Biohydrogen production integrated with an external dynamic membrane: A novel approach
Zheng et al. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier
CN106591179B (en) Methyl packing bacterium and its prepare the application on (S)-α-ethyl -2- oxygen -1- pyrrolidine acetic acid salt in selective fractionation
WO2010131224A2 (en) Bioreactor process for production of hydrogen from biomass
Cheng et al. Pilot study of cold-rolling wastewater treatment using single-stage anaerobic fluidized membrane bioreactor
TWI494433B (en) Method of producing carboxylic acids and/or alcohols
Abbott Immobilized cells
CN102925418B (en) Method for recycling sucrose phospholylase in alpha-arbutin production process
JPS6138698A (en) Manufacture of methane by fermentation of seaweeds
KR101990059B1 (en) Apparatus and method of producing high purity methane gas using gas recycle
CN113981011A (en) Method for synchronously realizing mineralization of azo dye and methanation of straw by ECMO-like device
JP2000102398A (en) Apparatus for methane fermentation and fermentation of methane
Diz et al. Xylitol production from eucalyptus wood hydrolysates in low-cost fermentation media
JP2009261287A (en) Chlorella/hydrogen production method and chlorella/hydrogen production apparatus
JP2000153292A (en) Method for anaerobically digesting organic waste water and/or organic waste utilizing light, and production of photosynthetic bacteria
CN210261773U (en) Fermentation reactor for producing citric acid by immobilized aspergillus niger
Shi et al. Continuous enzymatic production of 5′-nucleotides using free nuclease P1 in ultrafiltration membrane reactor
JPS61257180A (en) Immobilization and recovery of biocatalyst
CN1458278A (en) Method for producing yeast extracellular trehalose by two step fermentation method
JP2006042691A (en) Method for continuously producing hydrogen
WO2010046913A2 (en) Selective filtration process for biogas production
Parekh et al. Performance of a novel continuous dynamic immobilized cell bioreactor in ethanolic fermentation