JP2000102291A - Inverter control system - Google Patents

Inverter control system

Info

Publication number
JP2000102291A
JP2000102291A JP11235882A JP23588299A JP2000102291A JP 2000102291 A JP2000102291 A JP 2000102291A JP 11235882 A JP11235882 A JP 11235882A JP 23588299 A JP23588299 A JP 23588299A JP 2000102291 A JP2000102291 A JP 2000102291A
Authority
JP
Japan
Prior art keywords
circuit
current
speed
power failure
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11235882A
Other languages
Japanese (ja)
Inventor
Motonobu Hattori
元信 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11235882A priority Critical patent/JP2000102291A/en
Publication of JP2000102291A publication Critical patent/JP2000102291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress transient currents by operating a current command, which is related to torque from the difference between a motor speed and a speed command and performing operation control in relation to the difference between the current command, and the output current of an inverter. SOLUTION: Differences among a speed command signal FR* outputted from a speed setting circuit 23, a speed signal FR detected by a speed detection circuit 18 and a speed correction signal FΔVDC for continuous operation control at power interrupt are subjected to proportion, integration and differentiation by a speed correction circuit 28 to output a torque command T*. A current calculating circuit 30 calculates a torque current command I1T* from the torque command T*. Then in relation to the difference between the torque current command I1T* and the output current from an inverter 3, operation control is performed by difference circuits 38, 39, current correction circuits 40, 41, a coordinate conversion circuit 42 and a two-phase/three-phase conversion circuit 43, i.e., an output operation control circuit. According to the system, transient current can be suppressed, and continuous operation control can be stabilized at power interrupt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源の異常低下や
停電時におけるインバータによる電動機の運転を制御失
敗無く継続させるインバータ制御技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter control technique for continuing the operation of an electric motor by an inverter at the time of an abnormal drop of a power supply or a power failure without control failure.

【0002】[0002]

【従来の技術】従来例として特開平3−89895をあ
げる。従来例の構成を図1に示し、その動作作用を図2
に示す。従来例1は、交流電源101を直流に変換する
交流/直流変換機102と、入力の直流側にこの交流/
直流変換機102が接続され、出力の交流側に電動機1
04が接続されるインバータ103と、インバータ10
3に速度指令を与える速度設定回路123と、電源の停
電を検出する停電検出回路121と、直流側の電圧を検
出する直流電圧検出回路122と、直流側の目標電圧を
発生する目標電圧設定回路124と、この目標電圧と直
流電圧検出回路122によって検出された直流電圧を比
較して偏差を出力する直流電圧偏差回路125と、この
偏差に関連して連続的に変化する速度補正信号を発生す
る速度補正回路126と、この速度補正信号を速度設定
回路123の出力に加える速度加算回路127と、速度
加算回路127の出力指令信号で電圧/周波数を制御す
る電圧/周波数制御回路142で構成されており(この
中、直流電圧検出回路122、目標電圧設定回路12
4、直流電圧偏差回路125、速度補正回路126、速
度加算回路127を従来例における停電時運転継続制御
回路120と定義する)、停電検出回路121が停電を
検出すると直ぐに、直流側の目標電圧と検出電圧の偏差
を比例、積分、微分処理し、連続的に変化する速度補正
信号として速度指令に加算して、負帰還閉ループの出力
周波数制御を行なうものである。言い換えれば、電動機
を減速させる回生領域運転を基調とした周波数制御を行
なうことによって、直流回路に回生する電気エネルギー
量を調整しながら直流回路電圧を目標電圧に保持するよ
うにして、停電時運転継続制御するものである。
2. Description of the Related Art A conventional example is disclosed in Japanese Patent Application Laid-Open No. 3-89895. FIG. 1 shows a configuration of a conventional example, and FIG.
Shown in Conventional example 1 includes an AC / DC converter 102 for converting an AC power supply 101 to DC, and an AC / DC converter 102 on an input DC side.
The DC converter 102 is connected, and the motor 1 is connected to the AC side of the output.
04 is connected to the inverter 103 and the inverter 10
3, a speed setting circuit 123 for giving a speed command, a power failure detecting circuit 121 for detecting a power failure of the power supply, a DC voltage detecting circuit 122 for detecting a DC voltage, and a target voltage setting circuit for generating a DC target voltage. 124, a DC voltage deviation circuit 125 which compares the target voltage with the DC voltage detected by the DC voltage detection circuit 122 and outputs a deviation, and generates a speed correction signal which continuously changes in relation to the deviation. It comprises a speed correction circuit 126, a speed addition circuit 127 for adding the speed correction signal to the output of the speed setting circuit 123, and a voltage / frequency control circuit 142 for controlling the voltage / frequency by the output command signal of the speed addition circuit 127. (The DC voltage detection circuit 122, the target voltage setting circuit 12
4, the DC voltage deviation circuit 125, the speed correction circuit 126, and the speed addition circuit 127 are defined as a power failure operation continuation control circuit 120 in the conventional example), and immediately after the power failure detection circuit 121 detects a power failure, The deviation of the detected voltage is proportionally, integrated, and differentiated, added as a continuously changing speed correction signal to the speed command, and the output frequency of the negative feedback closed loop is controlled. In other words, by performing frequency control based on the regenerative region operation in which the motor is decelerated, the DC circuit voltage is maintained at the target voltage while adjusting the amount of electric energy regenerated in the DC circuit, and the operation during the power failure is continued. To control.

【0003】このように、従来例の停電時運転継続制御
(停電時の出力周波数制御)は、比例、積分、微分によ
る連続的な負帰還閉ループ制御であるため、従来技術の
中では比較的負荷条件の限定が少なく、安定した制御で
ある。ただし停電発生直後の制御が不安定であるという
課題は残っている。
As described above, the conventional operation continuous control during power failure (output frequency control during power failure) is a continuous negative feedback closed loop control based on proportionality, integration, and differentiation. Stable control with few restrictions on conditions. However, there remains a problem that the control immediately after a power failure occurs is unstable.

【0004】[0004]

【発明が解決しようとする課題】従来例では、定格に近
い負荷の運転中に停電が発生した場合、停電発生直後の
インバータ直流電圧の大きな落込みや大きな過渡電流の
発生を抑制できず、停電時運転継続制御の失敗を引起こ
してしまう。これが、本発明の解決しようとする課題で
ある。
In the prior art, when a power failure occurs during the operation of a load close to the rating, a large drop in the inverter DC voltage or a large transient current immediately after the power failure occurs cannot be suppressed, and the power failure occurs. When this happens, the operation continuation control fails. This is the problem to be solved by the present invention.

【0005】直流電圧の落込みは、停電検出の遅れ、検
出から周波数制御の開始までの遅れ及び周波数制御の開
始から回生領域運転までの遅れが原因で発生する。大き
な過渡電流は、回生領域運転までの遅れを改善するため
に周波数と電圧を微分的に応答させて、回生領域へ強引
に引込もうとすることが原因で発生する。停電検出の遅
れは、かなり改善されているが、他は未解決である。
The drop in the DC voltage occurs due to a delay in detection of a power failure, a delay from the detection to the start of frequency control, and a delay from the start of frequency control to operation in the regeneration region. The large transient current is caused by forcibly attempting to draw the frequency and voltage differentially into the regeneration region in order to improve the delay until the operation in the regeneration region. The delay in power outage detection has been significantly improved, but others are unresolved.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
めに、次の点に着目した。停電検出時の速度に対し
て、停電検出直後の回生領域の動作点の電気量を予測演
算して指令値とすれば、電流、速度の過渡現象を短時間
で抑制でき、直流回路電圧の落込みを改善できる。停
電検出時の速度に対して、停電検出直後の回生領域の動
作点の電気量を近似的に予測演算して指令値とすれば、
電流、速度の過渡現象を比較的、短時間で抑制でき、直
流回路電圧の落込みを改善できる。停電検出時の速度
に対して、停電検出直後の回生領域の動作点の電気量を
近似的に予測演算して指令値とし、かつ電流を瞬時比較
して補正する電流制御形の出力演算制御回路にすること
によって、電流、速度の過渡現象をかなり短時間で抑制
でき、直流回路電圧の落込みを改善できる。停電検出
時のインバータ直流回路部から流出入する電力に関連す
る電気量で算出した電流指令の初期値とすれば、さらに
直流回路電圧の落込みを改善できる。本発明はこのよう
な観点からなされたものである。
Means for Solving the Problems In order to solve the above problems, attention has been paid to the following points. By predicting and calculating the amount of electricity at the operating point in the regenerative region immediately after the detection of a power failure and setting it as a command value with respect to the speed at the time of the power failure detection, transient phenomena of current and speed can be suppressed in a short time, and the DC circuit voltage drop Can be improved. If the amount of electricity at the operating point in the regeneration area immediately after the detection of the power failure is approximately predicted and calculated with respect to the speed at the time of the detection of the power failure, and is used as a command value,
Transient phenomena of current and speed can be suppressed in a relatively short time, and a drop in DC circuit voltage can be improved. Current control type output operation control circuit that approximately predicts and calculates the amount of electricity at the operating point in the regenerative area immediately after the detection of a power failure, sets it as a command value, and instantaneously compares and corrects the current with respect to the speed at the time of the power failure detection By doing so, the transient phenomena of the current and the speed can be suppressed in a considerably short time, and the drop of the DC circuit voltage can be improved. If the initial value of the current command is calculated based on the amount of electricity related to the power flowing into and out of the inverter DC circuit unit when the power failure is detected, the drop in the DC circuit voltage can be further improved. The present invention has been made from such a viewpoint.

【0007】請求項1に記載した本発明に係るインバー
タ制御システムは、入力の直流回路部が、交流/直流変
換回路を通して交流電源に接続される少なくとも1台の
インバータと、前記インバータで運転される少なくとも
1台の電動機と、前記電動機の速度指令を設定する速度
設定回路と、さらに電源の異常低下や停電を検出する停
電検出回路と、停電検出以後、少なくとも1台の前記イ
ンバータによって、少なくとも1台の前記電動機の負荷
の回転エネルギーを電気エネルギーに変換し、前記直流
回路部に回生しながら前記電動機を継続運転する停電時
運転継続制御回路を有しており、前記電動機の速度を検
出する速度検出回路と、前記速度指令と検出した前記速
度の偏差からトルクに関連する電流指令を演算する電流
演算回路と、前記インバータの出力電流を検出する電流
検出回路と、前記電流指令と前記出力電流の偏差に関連
して、演算制御する出力演算制御回路を少なくとも構成
することを特徴としている。
In the inverter control system according to the first aspect of the present invention, the input DC circuit unit is operated by at least one inverter connected to an AC power supply through an AC / DC conversion circuit, and the inverter. At least one electric motor, a speed setting circuit for setting a speed command of the electric motor, a power failure detection circuit for detecting an abnormal decrease in power supply and a power failure, and at least one inverter after the power failure detection. A power outage operation continuation control circuit that converts the rotational energy of the load of the electric motor into electric energy and continuously operates the electric motor while regenerating the electric power to the DC circuit unit, and detects a speed of the electric motor. A current calculation circuit for calculating a current command related to torque from a deviation between the speed command and the detected speed; A current detection circuit for detecting an output current of the converter, in relation to the deviation of the current command and said output current, is characterized in that at least constituting the output calculation control circuit for calculating control.

【0008】請求項1に記載した本発明に係るインバー
タ制御システムは、停電検出時の前記速度に対して、停
電検出以後の回生領域の前記出力電流の大きさと位相と
周波数の、少なくとも近似的に算出した初期値を指令値
として設定して出力演算制御を行なうことによって、過
渡電流を抑え、前記停電時運転継続制御を安定して実行
できる作用効果がある。
In the inverter control system according to the present invention, the magnitude, phase, and frequency of the output current in the regenerative region after the detection of the power failure are at least approximately equal to the speed at the time of the power failure detection. By setting the calculated initial value as the command value and performing the output calculation control, there is an effect that the transient current is suppressed and the above-mentioned operation continuation control during power failure can be stably executed.

【0009】停電検出以後の電流指令値の初期設定につ
いて、回生領域の電流指令とするためには、速度設定回
路から出力(速度加算回路に入力)される速度指令を瞬
時に停電検出時の速度より低い任意の値に切換え、設定
すればよい。なお停電検出時、既に回生領域で動作して
いるなら、新たに指令値を設定しなくてもそれまでの出
力演算制御を続ければよい。
In order to set the current command value after the power failure detection to the current command in the regenerative region, the speed command output from the speed setting circuit (input to the speed addition circuit) is instantaneously set to the speed at the time of the power failure detection. What is necessary is just to switch to any lower value and set it. When the power failure is detected, if the operation has already been performed in the regenerative region, the output calculation control up to that time may be continued without setting a new command value.

【0010】停電検出以後の電流指令値の演算や出力演
算制御については、回転座標系における2軸(磁束軸や
トルク軸)ベクトル量として扱う電流、電圧及び磁束等
の電気量、トルク、及び検出した速度の間の関係式を演
算し、2相/3相変換して出力を演算制御するベクトル
演算制御で実行することができる。また、これら電気量
を固定座標系における近似ベクトルと見なして演算制御
することもできる。
Regarding the calculation of the current command value and the output calculation control after the detection of the power failure, electric quantities such as current, voltage and magnetic flux, torque, and detection are treated as two-axis (magnetic flux axis and torque axis) vector quantities in the rotating coordinate system. A relational expression between the calculated speeds is calculated, and two-phase / three-phase conversion is performed, and the output can be calculated and controlled. Further, it is also possible to perform arithmetic control by regarding these electric quantities as approximate vectors in a fixed coordinate system.

【0011】出力演算制御については、電流指令と出力
電流の偏差に関連して出力電圧を演算し出力する電圧制
御形でもよいし、電流指令と出力電流の偏差に関連して
出力電圧を補正して、出力電流が電流指令に等しくなる
ように瞬時制御する電流制御形でもよい。
The output operation control may be of a voltage control type which calculates and outputs an output voltage in relation to a deviation between the current command and the output current, or corrects the output voltage in relation to a deviation between the current command and the output current. Alternatively, a current control type in which the output current is instantaneously controlled to be equal to the current command may be used.

【0012】請求項2に記載した本発明に係るインバー
タ制御システムは、入力の直流回路部が、交流/直流変
換回路を通して交流電源に接続される少なくとも1台の
インバータと、前記インバータで運転される少なくとも
1台の電動機と、前記電動機の速度指令を設定する速度
設定回路と、さらに電源の異常低下や停電を検出する停
電検出回路と、停電検出以後、少なくとも1台の前記イ
ンバータによって、少なくとも1台の前記電動機の負荷
の回転エネルギーを電気エネルギーに変換し、前記直流
回路部に回生しながら前記電動機を継続運転する停電時
運転継続制御回路を有しており、前記電動機の速度を推
定するための電動機端子電圧を検出する電圧検出回路
と、前記速度指令と推定した前記速度の偏差からトルク
に関連する電流指令を演算する電流演算回路と、前記イ
ンバータの出力電流を検出する電流検出回路と、前記電
流指令と前記出力電流の偏差に関連して、演算制御する
出力演算制御回路を少なくとも構成することを特徴とし
ている。
In an inverter control system according to a second aspect of the present invention, an input DC circuit unit is operated by at least one inverter connected to an AC power supply through an AC / DC conversion circuit, and the inverter. At least one electric motor, a speed setting circuit for setting a speed command of the electric motor, a power failure detection circuit for detecting an abnormal decrease in power supply and a power failure, and at least one inverter after the power failure detection. A power outage operation continuation control circuit that converts the rotational energy of the load of the electric motor into electric energy and continuously operates the electric motor while regenerating to the DC circuit unit, for estimating the speed of the electric motor. A voltage detection circuit for detecting a motor terminal voltage; and a current command related to torque from a deviation between the speed command and the estimated speed. It is characterized by comprising at least a current calculation circuit for calculating, a current detection circuit for detecting an output current of the inverter, and an output calculation control circuit for performing calculation control in relation to the deviation between the current command and the output current. .

【0013】請求項2に記載した本発明に係るインバー
タ制御システムは、停電検出時の推定した前記速度に対
して、停電検出以後の回生領域の前記出力電流の大きさ
と位相と周波数の、少なくとも近似的に算出した初期値
を指令値として設定して出力演算制御を行なうことによ
って、過渡電流を抑え、前記停電時運転継続制御を安定
して実行できる作用効果がある。
In the inverter control system according to the present invention, the magnitude, phase and frequency of the output current in the regenerative region after the detection of the power failure are at least approximated with respect to the estimated speed at the time of the power failure detection. By setting the initially calculated value as a command value and performing the output calculation control, there is an effect that the transient current is suppressed and the above-mentioned operation continuation control during power failure can be stably executed.

【0014】停電検出以後の電流指令値の演算や出力演
算制御については、回転座標系における2軸(磁束軸や
トルク軸)ベクトル量として扱う電流、電圧及び磁束等
の電気量、トルク、及び検出電圧から推定した速度の間
の関係式を演算し、2相/3相変換して出力を演算制御
するセンサレスベクトル演算制御で実行することができ
る。また、これら電気量を固定座標系における近似ベク
トルと見なして演算制御することもできる。
Regarding the calculation of the current command value and the output calculation control after the detection of the power failure, the electric quantity such as current, voltage and magnetic flux, torque, and the like which are treated as two-axis (magnetic flux axis and torque axis) vector quantities in the rotating coordinate system A relational expression between the speeds estimated from the voltage is calculated, and the two-phase / three-phase conversion is performed, and the output can be calculated and controlled. Further, it is also possible to perform arithmetic control by regarding these electric quantities as approximate vectors in a fixed coordinate system.

【0015】請求項3に記載した本発明に係るインバー
タ制御システムは、請求項1乃至2の特徴に加えて、前
記出力演算制御回路が、前記電流指令と前記出力電流の
偏差に関連して出力電圧を補正して前記出力電流が前記
電流指令に等しくなるように瞬時制御する電流制御形で
あることを構成上の特徴としており、電流を瞬時制御す
るため電流の過渡現象が殆ど起こらず、安定しており、
停電時運転継続制御を安定して実行できる作用効果があ
る。
According to a third aspect of the present invention, in addition to the features of the first and second aspects, the output operation control circuit outputs an output in association with a deviation between the current command and the output current. It is a current control type that instantaneously controls the voltage so that the output current is equal to the current command by correcting the voltage. And
There is an operational effect that the operation continuation control during power outage can be executed stably.

【0016】請求項4に記載した本発明に係るインバー
タ制御システムは、請求項1乃至3の特徴に加えて、停
電検出時の前記速度に対して、停電検出時から回生領域
動作となる前記出力電流の大きさの初期値が、前記直流
回路部から流出入する電力に関連する電流と電圧の少な
くとも何れか一つに関連して算出されることを特徴とし
ており、停電検出前後における直流回路部から流出入す
る電力をほぼ連続するように制御するため、直流回路の
電圧の落込みや過渡電流を小さく抑えることができ、停
電時運転継続制御を安定して実行できる作用効果があ
る。
According to a fourth aspect of the present invention, in addition to the features of the first to third aspects, the inverter control system according to any one of the first to third aspects, wherein the output which is in the regenerative region operation from the time of the power failure detection with respect to the speed of the power failure detection is provided. The initial value of the magnitude of the current is calculated in relation to at least one of the current and the voltage related to the power flowing into and out of the DC circuit unit, and the DC circuit unit before and after the power failure detection Since the power flowing into and out of the DC power supply is controlled so as to be substantially continuous, it is possible to suppress the voltage drop and the transient current of the DC circuit to be small, and it is possible to stably execute the power failure interruption operation continuation control.

【0017】[0017]

【発明の実施の形態】各図を参照しながら、本発明の実
施の形態(以下、「実施例」という)について説明す
る。図1〜図2は従来の例の停電時運転継続制御の回路
と動作を示すものである(前述)。図3は請求項1の実
施例1の回路例を示し、図4は請求項2の実施例2の回
路例を示し、図5は請求項3の実施例3の回路例を示
し、図6は実施例1乃至3の電圧/電流ベクトル図を示
す。図7は実施例4の電圧/電流ベクトル図を示し、図
8は実施例4の回路例を示し、図9は実施例3及び4の
電流の切換り動作を示す。図10は実施例5の回路例を
示す。
Embodiments of the present invention (hereinafter referred to as "embodiments") will be described with reference to the drawings. FIGS. 1 and 2 show the circuit and operation of the power failure operation continuation control of the conventional example (described above). FIG. 3 shows a circuit example of the first embodiment of claim 1, FIG. 4 shows a circuit example of the second embodiment of claim 2, FIG. 5 shows a circuit example of the third embodiment of claim 3, and FIG. Shows voltage / current vector diagrams of Examples 1 to 3. 7 shows a voltage / current vector diagram of the fourth embodiment, FIG. 8 shows a circuit example of the fourth embodiment, and FIG. 9 shows a current switching operation of the third and fourth embodiments. FIG. 10 shows a circuit example of the fifth embodiment.

【0018】実施例1の回路構成と動作を図3で説明す
。インバータ3は、入力の直流回路部が、交流電源1
を直流電源に変換する交流/直流変換回路2に接続さ
れ、その出力側に接続された少なくとも1台の電動機4
と負荷5を運転する。
The circuit configuration and operation of the first embodiment will be described with reference to FIG.
You . The inverter 3 is configured such that the input DC circuit unit
At least one motor 4 connected to an AC / DC conversion circuit 2 for converting
And the load 5 is operated.

【0019】停電時運転継続制御の基本部分は従来例と
同じである。停電が(例えば交流電源電圧の整流波形の
最下部を高速検出する)停電検出回路21によって検出
され、速度補正回路26に伝達されて、停電時運転継続
制御が始まる。直流電圧検出回路22で検出された直流
回路部の電圧と目標電圧設定回路24で設定された目標
電圧の偏差が直流電圧偏差回路25によって算出され、
速度補正回路26に入力される。その偏差は、速度補正
回路26で比例、積分、微分され、連続的に変化する速
度補正信号として、速度偏差回路27で速度設定回路2
3から出力される速度指令に加算され、電動機を減速さ
せる回生領域運転を基調とした周波数制御を行なうこと
によって、直流回路に回生する電気エネルギー量を調整
しながら直流回路電圧を目標電圧に保持するように、停
電時運転継続制御するものである。
The basic part of the operation continuation control during power failure is the same as the conventional example. The power failure is detected by the power failure detection circuit 21 (for example, detecting the lowest part of the rectified waveform of the AC power supply voltage at high speed), transmitted to the speed correction circuit 26, and the power failure operation continuation control is started. A deviation between the voltage of the DC circuit unit detected by the DC voltage detection circuit 22 and the target voltage set by the target voltage setting circuit 24 is calculated by a DC voltage deviation circuit 25,
It is input to the speed correction circuit 26. The deviation is proportionally integrated, differentiated, and differentiated by the speed correction circuit 26, and converted into a continuously changing speed correction signal.
3 is added to the speed command output from 3 to perform frequency control based on regenerative region operation for decelerating the motor, thereby maintaining the DC circuit voltage at the target voltage while adjusting the amount of electric energy regenerated to the DC circuit. In this way, the operation continuation control at the time of power failure is performed.

【0020】実施例1のインバータは、出力電圧指令を
演算して出力する電圧制御形のベクトル演算制御インバ
ータの例である。速度設定回路23の出力である速度指
令信号FR*と速度検出回路11で検出された速度信号
及び停電時運転継続制御 トルク指令Tを出力する。このトルク指令Tから電
流演算回路30で(1)式が演算され、トルク電流指令
1T*が算出される。一方、速度信号F入力から磁
束演算回路29でパターンデータによって二次磁束指令
ψ2*が出力され、磁化電流演算回路31で(2)式の
演算またはパターンデータによって磁化電流指令I
1M*が算出される。 I1T*=K×T/ψ2* ………(1)式 I1M*=(1+pT)ψ2*/M ………(2)式 ここで K ;定数 p ;演算子 d/dt ;2次抵抗 M’;相互インダクタンス
The inverter according to the first embodiment is an example of a voltage control type vector operation control inverter that calculates and outputs an output voltage command. Which is the output of the speed setting circuit 23 speed command signal F R * and the speed detection circuit 11 detected speed signal F R and a power failure during operation continuation control Outputs torque command T * . Equation (1) is calculated by the current calculation circuit 30 from the torque command T * , and a torque current command I 1T * is calculated. On the other hand, the speed signal F by the pattern data in magnetic flux calculation circuit 29 from the R input secondary flux command [psi 2 * is output, the magnetization current command I by calculation or pattern data (2) by magnetizing current calculation circuit 31
1M * is calculated. I 1T * = K × T * / ψ 2 * (1) Equation I 1M * = (1 + pT 2 ) ψ 2 * / M (2) where K: constant p; operator d / dt r 2 ; secondary resistance M '; mutual inductance

【0021】このトルク電流指令I1T*、磁化電流指
令I1M*各々と、(電流検出回路9で検出された出力
電流I1U、I1V、I1Wを3相/2相変換回路36
を通して固定子2軸座標変換し、さらに座標変換回路3
7を通して二次磁束指令ψ2*の固定子座標に対する位
相角θによって2軸の磁界座標に変換して得られた)
トルク電流I1T、磁化電流I1Mとの(各々の電流I
1T、I1M偏差回路38、39で算出された)偏差
は、各々の電流(I1T、I1M)補正回路40、41
を通して比例、積分、微分され、座標変換回路42を通
して固定子2軸座標変換され、さらに2相/3相変換回
路43を通して3相に変換され、3相出力電圧指令V
1U*、V1V*、V1W*として、インバータ3に対
して出力される。二次磁束ψ2*の固定子座標に対する
位相角θは、速度信号Fの積分値(積分回路33)
とすべり周波数FSLの積分値(積分回路34)の加算
(加算回路35)で算出される。すべり周波数F
SLは、トルク電流指令I1T*と二次磁束指令ψ
2’*からすべり周波数演算回路32において(3)式
の演算によって算出される。 FSL*=r×I1T*/2π(1+σ)ψ2* ………(3)式 p ;演算子 d/dt
Each of the torque current command I 1T * and the magnetizing current command I 1M * and the output currents I 1U , I 1V and I 1W detected by the current detection circuit 9 are converted into a three-phase / two-phase conversion circuit 36.
And the coordinate conversion circuit 3
7 through the phase angle θ 1 of the secondary magnetic flux command に2 * with respect to the stator coordinates.
The torque current I 1T and the magnetization current I 1M (each current I 1T)
The deviations (calculated by the 1T , I 1M deviation circuits 38, 39) are calculated by the respective current (I 1T , I 1M ) correction circuits 40, 41.
, And is converted into two-axis coordinates through a coordinate conversion circuit 42, further converted into three phases through a two-phase / three-phase conversion circuit 43, and a three-phase output voltage command V
1U *, V 1V *, as V 1W *, is outputted to the inverter 3. Phase angle theta 1 with respect to the secondary flux [psi 2 * of the stator coordinates, the integral value of the speed signal F R (integration circuit 33)
It is calculated by the integral value of the slip frequency F SL addition of (integration circuit 34) (summing circuit 35). Slip frequency F
SL is the torque current command I 1T * and the secondary magnetic flux command ψ
It is calculated from 2 ′ * in the slip frequency calculation circuit 32 by the calculation of the equation (3). F SL * = r 2 × I 1T * / 2π (1 + σ) ψ2 * (3) p; operator d / dt

【0022】請求項1に記述した「出力演算制御回路」
は、実施例1の各々の電流(I1T*とI1T、I
1M*とI1Mの)偏差回路38、39と電流
(I1T、I1M)補正回路40、41と座標変換回路
42及び2相/3相変換回路43を指している。
The "output operation control circuit" described in claim 1
Are the currents (I 1T * and I 1T , I 1T *
1M * and I 1M deviation circuits 38 and 39, current (I 1T , I 1M ) correction circuits 40 and 41, a coordinate conversion circuit 42, and a two-phase / three-phase conversion circuit 43.

【0023】実施例1の電圧/電流ベクトルの動作を図
6で説明する。各座標は3相のベクトル量を2軸変換表
示するものである。固定子座標は電動機の固定子上の静
止座標であり、回転子座標は電動機の回転子上の回転座
標で回転子と同一速度、dθ/dtで回転する座標で
あり、磁界座標は回転磁界に軸を合わせ、回転磁界と同
一速度、dθ/dtで回転する座標である。回転子か
らみた磁界座標の回転速度は、dθSL/dtである。
2つの座標変換式、例えば、磁界座標と固定子座標間の
電流変換式は(4)式で表わされる。図6(a)は電動
機の電動領域動作時の電圧/電流ベクトルを表わし、図
6(b)は電動機の回生領域動作時の電圧/電流ベクト
ルを表わしている。トルクの大きさを表わすトルク電流
1Tと二次磁束を表わす磁化電流I1Mは直交するベ
クトルである。 I1a =I1MCOSθ−I1TSINθ1b =I1MSINθ+I1TCOSθ ………(4)式
The operation of the voltage / current vector according to the first embodiment will be described with reference to FIG. Each coordinate represents two-axis transformation display of a three-phase vector quantity. The stator coordinates are stationary coordinates on the stator of the motor, the rotor coordinates are rotation coordinates on the rotor of the motor and are coordinates rotating at the same speed as the rotor and dθ R / dt, and the magnetic field coordinates are rotating magnetic fields. Are coordinates that are rotated at the same speed as the rotating magnetic field and at dθ 1 / dt. The rotational speed of the magnetic field coordinates viewed from the rotor is dθ SL / dt.
Two coordinate conversion equations, for example, a current conversion equation between the magnetic field coordinates and the stator coordinates are expressed by equation (4). FIG. 6A shows a voltage / current vector when the motor operates in the electric region, and FIG. 6B shows a voltage / current vector when the motor operates in the regenerative region. The torque current I 1T representing the magnitude of the torque and the magnetizing current I 1M representing the secondary magnetic flux are orthogonal vectors. I 1a = I 1M COSθ 1 −I 1T SINθ 1 I 1b = I 1M SINθ 1 + I 1T COSθ 1 Equation (4)

【0024】ベクトル制御インバータは、二次磁束(磁
化電流I1M)を一定に制御し、電動機のトルクは(磁
化電流I1Mと直交する)トルク電流I1Tだけで制御
するものである。電動機の電動領域動作時の二次側誘起
電圧V2Tとトルク電流I の積は正極性で、電力は
力行方向の流れであることを示している。反対に電動機
の回生領域動作時の二次側誘起電圧V2Tとトルク電流
1Tの積は負極性で、電力は回生方向の流れであるこ
とを示している。
The vector control inverter controls the secondary magnetic flux (magnetizing current I 1M ) to be constant, and controls the motor torque only by the torque current I 1T (perpendicular to the magnetizing current I 1M ). The product of secondary induced voltage V 2T and the torque current I 1 T at the electric area operation of the motor in the positive polarity, power indicates that the flow of power running direction. Conversely, the product of the secondary-side induced voltage V 2T and the torque current I 1T when the motor operates in the regeneration region has a negative polarity, indicating that the electric power flows in the regeneration direction.

【0025】実施例1は、停電発生時の電動領域の動作
点から瞬時に回生領域の動作点に切換えるため、トルク
電流I1Tが負極性になるように、負極性のトルク電流
指令I1T*を即座に初期設定してから(または、停電
発生時の電動機速度Fより低い速度FR*に即座に初
期設定にしてその偏差が負極性になるようにしてから)
停電発生以後の停電時運転継続制御を続けるものであ
る。時間遅れなく回生領域の動作が行われるので、過渡
電流も抑えられ、直流回路電圧の落込みも少なく、制御
失敗がない。
In the first embodiment, since the operating point in the motorized region at the time of the occurrence of the power failure instantaneously switches to the operating point in the regenerative region, the negative torque current command I 1T * is set so that the torque current I 1T becomes negative . the after initialization immediately (or, from as the deviation becomes negative polarity in the immediately initialized to power failure during the motor speed F lower than the R rate F R *)
The power continuation operation continuation control after the power failure occurs is continued. Since the operation in the regeneration region is performed without a time delay, the transient current is suppressed, the drop of the DC circuit voltage is small, and there is no control failure.

【0026】実施例2の回路構成と動作を図4で説明す
。インバータ3は、入力の直流回路部が、交流電源1
を直流電源に変換する交流/直流変換回路2に接続さ
れ、その出力側に接続された少なくとも1台の電動機4
と負荷5を運転する。停電時運転継続制御の基本部分
は、実施例1と同一である。
The circuit configuration and operation of the second embodiment will be described with reference to FIG.
You . The inverter 3 is configured such that the input DC circuit unit
At least one motor 4 connected to an AC / DC conversion circuit 2 for converting
And the load 5 is operated. The basic part of the operation continuation control during power failure is the same as that of the first embodiment.

【0027】実施例2のインバータは、実施例1と同じ
く出力電圧指令を演算して出力する電圧制御形ある。実
施例1との相違点は、電動機の速度検出器を持たないで
電動機の端子電圧から演算によって速度を推定する電圧
制御形センサレスベクトル演算制御が行われることであ
る。実施例1との相違点を中心に説明する。電動機の速
度推定値θ/dt(またはF)は、電圧検出器13
によって検出された電動機の端子電圧V1U,V1V
1Wと3相/2相変換回路36の出力I1a
1b、及び電動機定数から、二次側誘起電圧演算回路
61で算出された二次磁束ψの位相角θの微分dθ
/d(またはF)からすべり周波数指令dθ
SL*/dt(またはFSL*)、或いはすべり周波数
dθSL/dt(またはFSL)を減算して求められ
る。すべり周波数指令dθSL*/dt(またはF
SL*)、或いはすべり周波数dθSL/dt(または
SL)は(5)式で算出できる。 FSL*=I1T*(1+pT)/2πT1M*ψ2*………(5)式
The inverter according to the second embodiment is of a voltage control type that calculates and outputs an output voltage command as in the first embodiment. The difference from the first embodiment is that a voltage-controlled sensorless vector calculation control for estimating the speed by calculation from the terminal voltage of the motor without a speed detector of the motor is performed. The following description focuses on differences from the first embodiment. The estimated motor speed θ R / dt (or F R ) is calculated by the voltage detector 13.
Terminal voltages V 1U , V 1V ,
V 1W and the output I 1a of the three-phase / two-phase conversion circuit 36,
The differential dθ of the phase angle θ 1 of the secondary magnetic flux ψ 2 calculated by the secondary side induced voltage calculation circuit 61 from I 1b and the motor constant.
From 1 / dt (or F 1 ), the slip frequency command dθ
It is determined by subtracting SL * / dt (or F SL * ) or slip frequency dθ SL / dt (or F SL ). Slip frequency command dθ SL * / dt (or F
SL * ) or the slip frequency dθ SL / dt (or F SL ) can be calculated by equation (5). F SL * = I 1T * (1 + pT 2 ) / 2πT 2 I 1M * ψ 2 * Equation (5)

【0028】電動機の速度推定値dθ/dt(または
)と実際値が異なっていると、 くなるように二次磁束ψ2’の位相角指令値θ1*を制
御する。以上の調節によって、調節回路53の出力は速
度推定値dθ/dt(またはF)となる。
If the estimated speed dθ R / dt (or F R ) of the motor is different from the actual value, The phase angle command value θ 1 * of the secondary magnetic flux ψ 2 ′ is controlled so that With the above adjustment, the output of the adjustment circuit 53 becomes the estimated speed value dθ R / dt (or F R ).

【0029】請求項2に記述した「出力演算制御回路」
は、実施例2の各々の電流(I1T*とI1T、I
1M*とI1Mの)偏差回路38、39と電流
(I1T、I1M)補正回路40、41と座標変換回路
42及び2相/3相変換回路43を指している。
The "output operation control circuit" described in claim 2
Are the currents (I 1T * and I 1T , I 1T *
1M * and I 1M deviation circuits 38 and 39, current (I 1T , I 1M ) correction circuits 40 and 41, a coordinate conversion circuit 42, and a two-phase / three-phase conversion circuit 43.

【0030】実施例2の電圧/電流ベクトルの動作は、
実施例1と同一で図6に示す。停電発生時の電動領域の
動作点から瞬時に回生領域の動作点に切換えるため、ト
ルク電流I1Tが負極性になるように、負極性のトルク
電流指令I1T*を即座に初期設定してから(または、
停電発生時の電動機速度Fより低い速度FR*に即座
に初期設定にしてその偏差が負極性になるようにしてか
ら)停電発生以後の停電時運転継続制御を続けるもので
ある。時間遅れなく回生領域の動作が行われるので、過
渡電流も抑えられ、直流回路電圧の落込みも少なく、制
御失敗がない。
The operation of the voltage / current vector according to the second embodiment is as follows.
FIG. 6 shows the same as in the first embodiment. In order to instantaneously switch from the operating point in the motorized area to the operating point in the regenerative area when a power failure occurs, immediately set the negative torque current command I 1T * so that the torque current I 1T becomes negative. (Or
In which the deviation in the immediately initialized to power failure during the motor speed F lower than the R rate F R * is continued manner from) power failure after a power failure during operation continuation control a negative polarity. Since the operation in the regeneration region is performed without a time delay, the transient current is suppressed, the drop of the DC circuit voltage is small, and there is no control failure.

【0031】実施例3の回路構成と動作を図5で説明す
。インバータ3は、入力の直流回路部が、交流電源1
を直流電源に変換する交流/直流変換回路2に接続さ
れ、その出力側に接続された少なくとも1台の電動機4
と負荷5を運転する。停電時運転継続制御の基本部分
は、実施例1乃至2と同一である。
The circuit configuration and operation of the third embodiment will be described with reference to FIG.
You . The inverter 3 is configured such that the input DC circuit unit
At least one motor 4 connected to an AC / DC conversion circuit 2 for converting
And the load 5 is operated. The basic part of the operation continuation control at the time of power failure is the same as the first and second embodiments.

【0032】実施例3のインバータは、電流指令と出力
電流の偏差に関連して出力電圧を補正して出力電流が電
流指令に等しくなるように瞬時制御する電流制御形のベ
クトル演算制御インバータの例である。この点を中心に
説明する。実施例1と同一手順で、磁界座標上でトルク
電流指令I1T*と磁化電流指令I1M*が算出され
る。この各々のトルク電流指令I1T*、磁化電流指令
1M*は二次磁束指令ψ2*の固定子座標に対する位
相角θをもとに座標変換回路61によって固定子2軸
座標変換され、さらに2相/3相変換回路62を通して
3相電流指令I1U*、I1V*、I1W*に変換され
る。この3相電流指令と電流検出回路9で検出された出
力電流I1U、I1V、I1Wとの偏差が電流偏差回路
63によって算出され、その偏差が電流補正回路64に
よって比例、積分、微分されて、電流制御信号としてイ
ンバータ3に出力されることになる。なお二次磁束ψ
2*の固定子座標に対する位相角θは、実施例1と同
一の手順で算出される。
The inverter according to the third embodiment is an example of a current control type vector operation control inverter that corrects an output voltage in relation to a deviation between a current command and an output current and instantaneously controls the output current to be equal to the current command. It is. This point will be mainly described. The torque current command I 1T * and the magnetizing current command I 1M * are calculated on the magnetic field coordinates in the same procedure as in the first embodiment. The torque current command I 1T * and the magnetizing current command I 1M * are subjected to stator 2-axis coordinate conversion by the coordinate conversion circuit 61 based on the phase angle θ 1 of the secondary magnetic flux command ψ 2 * with respect to the stator coordinates. Further, the signals are converted into three-phase current commands I 1U * , I 1V * and I 1W * through a two-phase / three-phase conversion circuit 62. Deviations between the three-phase current command and the output currents I 1U , I 1V , I 1W detected by the current detection circuit 9 are calculated by a current deviation circuit 63, and the deviation is proportionally, integrated, and differentiated by a current correction circuit 64. Thus, the current is output to the inverter 3 as a current control signal. Note that the secondary magnetic flux ψ
The phase angle θ 1 with respect to the 2 * stator coordinates is calculated in the same procedure as in the first embodiment.

【0033】請求項3に記述した「出力演算制御回路」
は、実施例3の電流指令I1T*とI1M*の座標変換
回路61、2相/3相変換回路62、電流偏差回路63
及び電流補正回路64を指している。
An output operation control circuit according to claim 3
Is a coordinate conversion circuit 61 for current commands I 1T * and I 1M * according to the third embodiment, a two-phase / three-phase conversion circuit 62, and a current deviation circuit 63.
And the current correction circuit 64.

【0034】実施例3の電圧/電流ベクトルの動作は、
実施例1乃至2と同一で図6に示す。停電発生時の電動
領域の動作点から瞬時に回生領域の動作点に切換えるた
め、トルク電流I1Tが負極性になるように、負極性の
トルク電流指令I1T*を即座に初期設定してから(ま
たは、停電発生時の電動機速度Fより低い速度FR*
に即座に初期設定にしてその偏差が負極性になるように
してから)停電発生以後の停電時運転継続制御を続ける
ものである。時間遅れなく回生領域の動作が行われて、
しかも出力電流が電流指令に等しくなるように直接、瞬
時制御されるので過渡電流が確実に抑えられ、直流回路
電圧の落込みも少なく、制御失敗がない。図9に、この
時の電流波形を示す。
The operation of the voltage / current vector according to the third embodiment is as follows.
FIG. 6 shows the same as the first and second embodiments. In order to instantaneously switch from the operating point in the motorized area to the operating point in the regenerative area when a power failure occurs, immediately set the negative torque current command I 1T * so that the torque current I 1T becomes negative. (or, lower than the motor speed F R at the time of occurrence of a power failure rate F R *
(After the initial setting is made immediately so that the deviation becomes negative), the operation continuation control at the time of power failure after the occurrence of the power failure is continued. The operation of the regeneration area is performed without time delay,
In addition, since the instantaneous control is performed directly so that the output current becomes equal to the current command, the transient current is reliably suppressed, the drop of the DC circuit voltage is small, and there is no control failure. FIG. 9 shows a current waveform at this time.

【0035】実施例4の回路構成と動作を図7で説明す
。インバータ3は、入力の直流回路部が、交流電源1
を直流電源に変換する交流/直流変換回路2に接続さ
れ、その出力側に接続された少なくとも1台の電動機4
と負荷5を運転する。停電時運転継続制御の基本部分
は、実施例1乃至3と同一である。
The circuit configuration and operation of the fourth embodiment will be described with reference to FIG.
You . The inverter 3 is configured such that the input DC circuit unit
At least one motor 4 connected to an AC / DC conversion circuit 2 for converting
And the load 5 is operated. The basic part of the operation continuation control at the time of power failure is the same as the first to third embodiments.

【0036】実施例4のインバータは、電流指令と出力
電流の偏差に関連して出力電圧を補正して出力電流が電
流指令に等しくなるように瞬時制御する電流制御形イン
バータの例である。ベクトル演算制御インバータではな
いが、近似的なベクトル演算を行なうことによって過渡
電流を小さく抑えられる点に特長がある。この点を中心
に説明する。
The inverter according to the fourth embodiment is an example of a current control type inverter that corrects an output voltage in relation to a deviation between a current command and an output current and instantaneously controls the output current to be equal to the current command. Although it is not a vector operation control inverter, it is characterized in that a transient current can be reduced by performing an approximate vector operation. This point will be mainly described.

【0037】実施例4の電圧/電流ベクトルの動作を図
7で説明する。図7は、3相電圧/電流ベクトルの1相
分を磁化電流ベクトルI1MU(または二次磁束ベクト
ルψ2U)を基準軸として表示したものである。図中の
トルク電流ベクトルI1TU及び二次側誘起電圧ベクト
ルV2Uは、磁化電流ベクトルI1MU(二次磁束ベク
トルψ2U)と直交している。1次電圧(電動機端子電
圧)は二次側誘起電圧ベクトルV2Uに1次巻線インピ
ーダンスによる電圧ベクトルV1ZUを加えたものであ
る。図7(a)の各ベクトルの位相関係は電動領域の動
作状態を表わし、図7(b)は回生領域の動作状態を表
わしている。
The operation of the voltage / current vector according to the fourth embodiment will be described with reference to FIG. FIG. 7 shows one phase of the three-phase voltage / current vector in which the magnetizing current vector I 1MU (or the secondary magnetic flux vector ψ 2U ) is used as a reference axis. The torque current vector I 1TU and the secondary side induced voltage vector V 2U in the figure are orthogonal to the magnetizing current vector I 1MU (secondary magnetic flux vector ψ 2U ). Primary voltage (motor terminal voltage) is obtained by adding the voltage vector V 1ZU by primary winding impedance on the secondary side induced voltage vector V 2U. The phase relationship between the respective vectors in FIG. 7A represents the operating state of the electric region, and FIG. 7B represents the operating state of the regeneration region.

【0038】実施例4の回路構成と動作を図8で説明す
。速度設定回路23の出力である速度指令FR*と速
度検出回路11で検出された速度信号F及び停電時運
転継 され、各相のトルク電流指令I1TU*を出力する。一
方、速度信号Fから磁化電流演算回路31でパターン
データによって各相の磁化電流指令I1MU*を出力す
る。このトルク電流指令I1TU*と磁化電流指令I
1MU*は、各相電流指令発生回路71に入力されて、
そこでROMに記憶させた正弦波パターンを発生し、加
算され、周波数指令F1*のパルス列入力のタイミング
で、3相の各相電流指令I1U*、I1V*、I1W*
として出力される。周波数指令F1*は、トルク電流指
令I1TU*から算出されるすべり周波数指令FSL*
と検出された速度信号Fが加算されたものである。こ
の3相電流指令I1U*、I1V*、I1W*は、電流
検出回路9で検出された出力電流I1U、I1V、I
1Wと比較され、その偏差は各々の電流(I1U、I
1V、I1W)補正回路54を通して比例、積分、微分
されて、電流制御信号としてインバータ3に出力される
ことになる。
The circuit configuration and operation of the fourth embodiment will be described with reference to FIG.
You . Which is the output of the speed setting circuit 23 the speed command F R * and velocity signals detected by the speed detecting circuit 11 F R and a power failure during operation splicing Then, a torque current command I1TU * of each phase is output. On the other hand, the pattern data from the speed signal F R magnetization current calculation circuit 31 outputs the phase of the magnetization current command I 1 MU *. The torque current command I 1TU * and the magnetizing current command I
1MU * is input to each phase current command generation circuit 71,
Then, the sine wave patterns stored in the ROM are generated and added, and the three-phase current commands I 1U * , I 1V * , and I 1W * are input at the timing of the pulse train input of the frequency command F 1 * .
Is output as The frequency command F 1 * is a slip frequency command F SL * calculated from the torque current command I 1TU * .
It is detected that the speed signal F R are those obtained by adding. The three-phase current commands I 1U * , I 1V * , and I 1W * correspond to the output currents I 1U , I 1V , I
1W, and the deviation is determined for each current (I 1U, I
1V , I 1W ) is proportionally, integrated, and differentiated through the correction circuit 54 and output to the inverter 3 as a current control signal.

【0039】実施例4は3相/2相変換した2軸回転座
標系での正確なベクトル演算制御ではなく、近似的な演
算制御で、停電発生時の電動領域の動作点から瞬時に回
生領域の動作点に切換えるための負極性のトルク電流指
令I1TU*を即座に初期設定して(または、停電発生
時の電動機速度Fより低い速度FR*に即座に初期設
定して)停電発生以後の停電時運転継続制御を続けるも
のである。時間遅れなく回生領域の動作が行われ、しか
も出力電流が電流指令に等しくなるように瞬時制御され
るので、過渡電流が抑えられ、直流回路電圧の落込みも
少なく、制御失敗がない。図9に、この時の電流波形を
示す。
The fourth embodiment is not an accurate vector operation control in a three-phase / two-phase converted two-axis rotary coordinate system, but an approximate operation control. the negative torque current command I 1 TU * and immediately initialized to a for switching the operating point (or real and initialized to the power failure when the motor speed F lower than the R rate F R *) power failure Thereafter, the operation continuation control at the time of power failure is continued. The operation in the regenerative region is performed without a time delay, and the instantaneous control is performed so that the output current becomes equal to the current command. Therefore, the transient current is suppressed, the drop of the DC circuit voltage is small, and there is no control failure. FIG. 9 shows a current waveform at this time.

【0040】請求項3に記述した「出力演算制御回路」
は、実施例4の電流指令I1U*、I1V*、I1W*
の各相電流指令発生回路71、電流偏差回路73及び電
流補正回路74を指している。
An output operation control circuit according to claim 3
Are the current commands I 1U * , I 1V * , I 1W * of the fourth embodiment .
Of each phase current command generation circuit 71, current deviation circuit 73, and current correction circuit 74.

【0041】実施例5の回路構成と動作を図10で説明
する。入力の直流回路部がインバータ3の入力部に接続
された第2のインバータ6が、その出力側に接続された
少なくとも1台の電動機7と負荷8を運転する。負荷8
は、慣性エネルギを持たない摩擦負荷(例えば圧延や延
伸ローラ)を想定する。直流電流検出回路76または
(第2のインバータ6の)出力電流検出回路77は、停
電時運転継続制御中も電動領域で動作する電動機7に向
かう電流を検出する。
The circuit configuration and operation of the fifth embodiment will be described with reference to FIG. A second inverter 6 having an input DC circuit connected to the input of the inverter 3 operates at least one motor 7 and a load 8 connected to its output. Load 8
Assumes a frictional load without inertial energy (eg, rolling or stretching rollers). The DC current detection circuit 76 or the output current detection circuit 77 (of the second inverter 6) detects a current flowing to the electric motor 7 operating in the electric region even during the power failure operation continuation control.

【0042】実施例5では、停電発生時の電動領域の動
作点から瞬時に回生領域の動作点に切換えるためのトル
ク電流指令I1TU*の初期値は、直流回路部から流出
入する電力に関連する電気量で算出されている。(6)
式は、停電以後の直流回路部から流出入する電力の平衡
式である。(7)式は、トルク電流指令I1TU*の初
期値を算出する近似式の例である。(7)式のように電
力平衡条件を満足するトルク電流指令I1TU*の初期
値にすれば、直流電圧の落込みを大幅に改善できる。 3V1U・I1U*・COSφ=VDC・IDC ………(6)式 I1TU*≒I1U*・COSφ=VDC・IDC/3V1U ………(7)式 ここで COSφ ;電動機の力率 IDC ;直流電流(インバータ直流回路部から第2の
インバータや他の装置へ流出入する電流)
In the fifth embodiment, the initial value of the torque current command I 1TU * for instantaneously switching from the operating point in the motorized area to the operating point in the regenerative area when a power failure occurs is related to the power flowing into and out of the DC circuit section. Is calculated by the amount of electricity to be generated. (6)
The equation is an equilibrium equation of the power flowing into and out of the DC circuit unit after the power failure. Expression (7) is an example of an approximate expression for calculating the initial value of the torque current command I1TU * . By setting the initial value of the torque current command I1TU * that satisfies the power balance condition as in the equation (7), the drop of the DC voltage can be greatly improved. 3V 1U · I 1U * · COS φ = V DC · I DC (6) Equation I 1TU * TI 1U * · COS φ = V DC · I DC / 3V 1U (7) Here, COS φ; Motor power factor I DC ; DC current (current flowing into and out of the second inverter and other devices from the inverter DC circuit section)

【0043】電動機の力率は、電圧/電流ベクトル演算
で算出してもよいし、近似値を使ってもよい。また電力
の平衡式は、各インバータの出力段の交流電気量で表わ
すこともできるが、(6)式の方が計算が簡単である。
The power factor of the motor may be calculated by a voltage / current vector calculation, or an approximate value may be used. The power balance equation can also be represented by the amount of AC electricity at the output stage of each inverter, but equation (6) is simpler to calculate.

【0044】[0044]

【発明の効果】本発明に係るインバータ制御システムを
使用すれば、電源の異常低下や停電の発生時におけるイ
ンバータの大きな過渡電流や直流電圧の大きな落込みの
発生による制御失敗を防止できて、停電以後のインバー
タによる誘導電動機の運転を、負荷の回転エネルギーを
利用できる限りにおいて継続することができる。
By using the inverter control system according to the present invention, it is possible to prevent a control failure due to the occurrence of a large transient current of the inverter or a large drop of the DC voltage at the time of occurrence of an abnormal drop in the power supply or a power failure, and The subsequent operation of the induction motor by the inverter can be continued as long as the rotational energy of the load can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例の回路を示す。FIG. 1 shows a circuit of a conventional example.

【図2】従来例の動作を示す。FIG. 2 shows the operation of a conventional example.

【図3】本発明の実施例1の回路例を示す。FIG. 3 shows a circuit example of Embodiment 1 of the present invention.

【図4】本発明の実施例2の回路例を示す。FIG. 4 shows a circuit example according to a second embodiment of the present invention.

【図5】本発明の実施例3の回路例を示す。FIG. 5 shows a circuit example of Embodiment 3 of the present invention.

【図6】本発明の実施例1乃至3の電圧/電流ベクトル
図を示す。
FIG. 6 shows a voltage / current vector diagram according to the first to third embodiments of the present invention.

【図7】本発明の実施例4の電圧/電流ベクトル図を示
す。
FIG. 7 shows a voltage / current vector diagram according to a fourth embodiment of the present invention.

【図8】本発明の実施例4の回路例を示す。FIG. 8 shows a circuit example according to a fourth embodiment of the present invention.

【図9】本発明の実施例3及び4の電流の切換り動作を
示す。
FIG. 9 shows a current switching operation according to the third and fourth embodiments of the present invention.

【図10】本発明の実施例5の回路例を示す。FIG. 10 shows a circuit example of Embodiment 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 交流電源 2 交流/直流変換回路 3 インバータ 4 電動機 5 負荷 6 第2のインバータ 7 第2の誘導電動機 8 第2の負荷 17 出力電流検出回路 18 速度検出回路 19 出力電圧検出回路 21 停電検出回路 22 直流電圧検出回路 23 速度設定回路 24 目標電圧設定回路 25 直流電圧偏差回路 26 停電時速度補正回路 27 速度偏差回路 28 速度補正回路 29 磁束演算回路 30 電流演算回路 31 磁化電流演算回路 32 すべり周波数演算回路 33 (F)積分回路 34 (FSL)積分回路 35 (F、FSL)加算回路 36 3相/2相変換回路 37 座標変換回路 38 電流(I1T)偏差回路 39 電流(I1M)偏差回路 40 電流(I1T)補正回路 41 電流(I1M)補正回路 42 座標変換回路 43 2相/3相変換回路 51 2次誘起電圧演算回路 52 座標変換回路 53 補正回路 61 座標変換回路 62 2相/3相変換回路 63 電流偏差回路 64 電流補正回路 76 直流電流検出回路 77 (第2のインバータの)出力電流検出回路 101 交流電源 102 交流/直流変換機 103 インバータ 104 電動機 105 負荷 120 停電時運転継続制御回路 121 停電検出回路 122 直流電圧検出回路 123 速度設定回路 124 目標電圧設定回路 125 直流電圧偏差回路 126 速度補正回路 127 速度偏差回路 161 出力演算制御回路 以下の記号の末尾の「*」印(例 F )は指令値
であることを表わす。 COSφ 電動機の力率 F (出力)周波数 F (検出)速度 FSL すべり周波数 I 出力電流(電動機1次電流) I1U U相出力電流(電動機U相1次電流) I1U(2) (第2のインバータの)U相出力電流 I1a (a軸成分)出力電流 I1b (b軸成分)出力電流 I1M 磁化電流 I1MU U相磁化電流 I1T トルク電流 I1TU U相トルク電流 I1U U相出力電流 I1V V相出力電流 I1W W相出力電流 IDC 直流(回路)電流 T 電動機トルク V 出力電圧(電動機1次電圧) V1a (a軸成分)出力電圧 V1b (b軸成分)出力電圧 V1U U相出力電圧 V1V V相出力電圧 V1W W相出力電圧 VDC 直流電圧 V 2次側誘起電圧(電動機2次電圧) V2U U相2次側誘起電圧 θ 回転磁界座標の(固定子座標に対する)
位相 θSL 回転磁界座標の(回転子座標に対する)
位相 θ 回転子座標の(固定子座標に対する)位
相 dθ/dt 回転磁界の速度(周波数) dθSL/dt すべり速度(周波数) dθ/dt 回転子の速度(周波数)
REFERENCE SIGNS LIST 1 AC power supply 2 AC / DC conversion circuit 3 Inverter 4 Electric motor 5 Load 6 Second inverter 7 Second induction motor 8 Second load 17 Output current detection circuit 18 Speed detection circuit 19 Output voltage detection circuit 21 Power failure detection circuit 22 DC voltage detection circuit 23 Speed setting circuit 24 Target voltage setting circuit 25 DC voltage deviation circuit 26 Power failure speed correction circuit 27 Speed deviation circuit 28 Speed correction circuit 29 Magnetic flux calculation circuit 30 Current calculation circuit 31 Magnetization current calculation circuit 32 Slip frequency calculation circuit 33 (F R ) integration circuit 34 (F SL ) integration circuit 35 (F R , F SL ) addition circuit 36 3-phase / 2-phase conversion circuit 37 Coordinate conversion circuit 38 Current (I 1T ) deviation circuit 39 Current (I 1M ) Deviation circuit 40 Current (I 1T ) correction circuit 41 Current (I 1M ) correction circuit 42 Coordinate conversion circuit 4 Reference Signs List 3 2 phase / 3 phase conversion circuit 51 secondary induced voltage calculation circuit 52 coordinate conversion circuit 53 correction circuit 61 coordinate conversion circuit 62 2 phase / 3 phase conversion circuit 63 current deviation circuit 64 current correction circuit 76 DC current detection circuit 77 2) Inverter output current detection circuit 101 AC power supply 102 AC / DC converter 103 Inverter 104 Motor 105 Load 120 Power failure continuous operation control circuit 121 Power failure detection circuit 122 DC voltage detection circuit 123 Speed setting circuit 124 Target voltage setting circuit 125 DC voltage deviation circuit 126 Speed correction circuit 127 Speed deviation circuit 161 Output operation control circuit The symbol "*" (ex. F1 * ) at the end of the following symbol indicates that it is a command value. COSφ motor power factor F 1 (output) frequency F R (detection) speed F SL slip frequency I 1 output current (motor primary current) I 1U U-phase output current (motor U-phase primary current) I 1U (2) U-phase output current (of the second inverter) I 1a (a-axis component) output current I 1b (b-axis component) output current I 1M magnetizing current I 1MU U-phase magnetizing current I 1T torque current I 1TU U-phase torque current I 1U U-phase output current I 1V V-phase output current I 1W W-phase output current I DC DC (circuit) current T Motor torque V 1 Output voltage (motor primary voltage) V 1a (a-axis component) output voltage V 1b (b axis component) output voltage V 1U U-phase output voltage V 1V V-phase output voltage V 1W W-phase output voltage V DC DC voltage V 2 secondary induced voltage (motor secondary voltage) V 2U U-phase secondary side induced voltage θ 1 times Magnetic field coordinate (relative to the stator coordinate)
Phase θ SL Rotating magnetic field coordinates (relative to rotor coordinates)
Phase θ R Phase of rotor coordinates (relative to stator coordinates) dθ 1 / dt Speed (frequency) of rotating magnetic field dθ SL / dt Sliding speed (frequency) dθ R / dt Speed (frequency of rotor)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】入力の直流回路部が、交流/直流変換回路
を通して交流電源に接続される少なとも1台のインバー
タと、前記インバータで運転される少なくとも1台の電
動機と、前記電動機の速度指令を設定する速度設定回路
と、さらに電源の異常低下や停電を検出する停電検出回
路と、停電検出以後、少なくとも1台の前記インバータ
によって、少なくとも1台の前記電動機の負荷の回転エ
ネルギーを電気エネルギーに変換し、前記直流回路部に
回生しながら前記電動機を継続運転する停電時運転継続
制御回路を有するインバータ制御システムにおいて、前
記電動機の速度を検出する速度検出回路と、前記速度指
令と検出した前記速度の偏差からトルクに関連する電流
指令を演算する電流演算回路と、前記インバータの出力
電流を検出する電流検出回路と、前記電流指令と前記出
力電流の偏差に関連して、演算制御する出力演算制御回
路を少なくとも構成し、停電検出時の前記速度に対し
て、停電検出以後の回生領域の前記出力電流の大きさと
位相と周波数の、少なくとも近似的に算出した初期値を
指令値として設定して出力演算制御を行ない、前記停電
時運転継続制御を実行することを特徴とするインバータ
制御システム。
An input DC circuit section includes at least one inverter connected to an AC power supply through an AC / DC conversion circuit, at least one electric motor driven by the inverter, and a speed command of the electric motor. A speed setting circuit that further sets a power failure, and a power failure detection circuit that detects an abnormal drop in power or a power failure. After the power failure is detected, at least one of the inverters converts the rotational energy of the load of at least one of the motors into electrical energy. In an inverter control system having a power failure interruption continuation control circuit for continuously operating the motor while regenerating to the DC circuit unit, a speed detection circuit for detecting a speed of the motor, the speed command and the detected speed A current calculation circuit for calculating a current command related to torque from the deviation of the inverter, and a current detection circuit for detecting an output current of the inverter. A detection circuit, and at least an output operation control circuit for performing operation control in association with a deviation between the current command and the output current, wherein the output current in a regenerative region after the detection of the power failure with respect to the speed at the time of the power failure detection An inverter control system characterized in that at least an approximate value of an initial value of the magnitude, phase and frequency is set as a command value, output calculation control is performed, and the power failure operation continuation control is executed.
【請求項2】入力の直流回路部が、交流/直流変換回路
を通して交流電源に接続される少なくとも1台のインバ
ータと、前記インバータで運転される少なくとも1台の
電動機と、前記電動機の速度指令を設定する速度設定回
路と、さらに電源の異常低下や停電を検出する停電検出
回路と、停電検出以後、少なくとも1台の前記インバー
タによって、少なくとも1台の前記電動機の負荷の回転
エネルギーを電気エネルギーに変換し、前記直流回路部
に回生しながら前記電動機を継続運転する停電時運転継
続制御回路を有するインバータ制御システムにおいて、
前記電動機の速度を推定するための電動機端子電圧を検
出する電圧検出回路と、前記速度指令と推定した前記速
度の偏差からトルクに関連する電流指令を演算する電流
演算回路と、前記インバータの出力電流を検出する電流
検出回路と、前記電流指令と前記出力電流の偏差に関連
して、演算制御する出力演算制御回路を少なくとも構成
し、停電検出時の前記速度に対して、停電検出以後の回
生領域の前記出力電流の大きさと位相と周波数の、少な
くとも近似的に算出した初期値を指令値として設定して
出力演算制御を行ない、前記停電時運転継続制御を実行
することを特徴とするインバータ制御システム。
2. An input DC circuit comprising: at least one inverter connected to an AC power supply through an AC / DC conversion circuit; at least one motor driven by the inverter; and a speed command for the motor. A speed setting circuit to be set; a power failure detection circuit for detecting a power failure or a power failure; and, after the power failure is detected, at least one of the inverters converts rotational energy of at least one of the motor loads into electric energy. And an inverter control system having a power failure time continuation control circuit for continuously operating the motor while regenerating to the DC circuit portion,
A voltage detection circuit for detecting a motor terminal voltage for estimating the speed of the motor; a current calculation circuit for calculating a current command related to torque from the difference between the speed command and the estimated speed; and an output current of the inverter. And at least an output operation control circuit for performing operation control in relation to the deviation between the current command and the output current. An inverter control system comprising: setting an initial value, at least approximately calculated, of the magnitude, phase and frequency of the output current as a command value, performing output calculation control, and executing the power failure operation continuation control. .
【請求項3】前記出力演算制御回路が、前記電流指令と
前記出力電流の偏差に関連して出力電圧を補正して前記
出力電流が前記電流指令に等しくなるように瞬時制御す
る電流制御形であることを特徴とする請求項1乃至2に
記載したインバータ制御システム。
3. A current control type wherein the output operation control circuit corrects an output voltage in association with a deviation between the current command and the output current, and instantaneously controls the output current to be equal to the current command. The inverter control system according to claim 1, wherein:
【請求項4】停電検出時の前記速度に対して、停電検出
時から回生領域動作となる前記出力電流の大きさの初期
値が、前記直流回路部から流出入する電力に関連する電
流と電圧の少なくとも何れか一つに関連して算出される
ことを特徴とする請求項1乃至3に記載したインバータ
制御システム。
4. The method according to claim 1, wherein the initial value of the magnitude of the output current, which is in the regenerative region operation from the time of detecting the power failure, is a current and a voltage relating to the power flowing into and out of the DC circuit unit. The inverter control system according to claim 1, wherein the calculation is performed in association with at least one of the following.
JP11235882A 1998-07-24 1999-07-21 Inverter control system Pending JP2000102291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11235882A JP2000102291A (en) 1998-07-24 1999-07-21 Inverter control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-240989 1998-07-24
JP24098998 1998-07-24
JP11235882A JP2000102291A (en) 1998-07-24 1999-07-21 Inverter control system

Publications (1)

Publication Number Publication Date
JP2000102291A true JP2000102291A (en) 2000-04-07

Family

ID=26532379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235882A Pending JP2000102291A (en) 1998-07-24 1999-07-21 Inverter control system

Country Status (1)

Country Link
JP (1) JP2000102291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020383A (en) * 2004-06-30 2006-01-19 Daikin Ind Ltd Control method and controller of inverter, and control method and controller of motor
JP2016010309A (en) * 2014-06-21 2016-01-18 有限会社シー・アンド・エス国際研究所 Rotor magnetic flux estimation device for induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020383A (en) * 2004-06-30 2006-01-19 Daikin Ind Ltd Control method and controller of inverter, and control method and controller of motor
JP4682546B2 (en) * 2004-06-30 2011-05-11 ダイキン工業株式会社 Inverter control method, inverter control device, motor control method, and motor control device
JP2016010309A (en) * 2014-06-21 2016-01-18 有限会社シー・アンド・エス国際研究所 Rotor magnetic flux estimation device for induction motor

Similar Documents

Publication Publication Date Title
JP4063166B2 (en) Electric motor control device
US8816622B2 (en) Control apparatus for rotating machine
US9543868B2 (en) Apparatus for controlling rotary electric machine
US9935568B2 (en) Control apparatus of rotary electric machine
WO2012017766A1 (en) Control device
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP2009268304A (en) Inverter apparatus
JP6726390B2 (en) Controller for permanent magnet type synchronous motor
WO2020196719A1 (en) Rotating electric machine control system
JP2012138982A (en) Motor controller and electric apparatus
JP3939481B2 (en) AC motor control device
CA2806514C (en) Control apparatus and control method for ac rotary machine
JP2018042315A (en) Inverter controller
JP2003009598A (en) Device and method of ac motor vector control
JP2000102291A (en) Inverter control system
JP2005033932A (en) Motor controller
JP2009268303A (en) Inverter apparatus
JP2005168140A (en) Motor controller and its control method
JP4115785B2 (en) Inverter control device
JP2000324881A (en) Controller for permanent magnet type synchronous motor
JP2005137052A (en) Apparatus and method for controlling motor
JP2014176135A (en) Motor drive device, inverter controller, and inverter control method
JP2022175118A (en) Power conversion device and program
CN106655948B (en) Control device for electric motor
JP2007312462A (en) Motor control device