JP2000101101A - Sic schottky diode - Google Patents

Sic schottky diode

Info

Publication number
JP2000101101A
JP2000101101A JP10284780A JP28478098A JP2000101101A JP 2000101101 A JP2000101101 A JP 2000101101A JP 10284780 A JP10284780 A JP 10284780A JP 28478098 A JP28478098 A JP 28478098A JP 2000101101 A JP2000101101 A JP 2000101101A
Authority
JP
Japan
Prior art keywords
voltage
conductivity
type
sic
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10284780A
Other languages
Japanese (ja)
Other versions
JP4088852B2 (en
Inventor
Tsutomu Yao
勉 八尾
Toshiyuki Ono
俊之 大野
Hidekatsu Onose
秀勝 小野瀬
Katsunori Asano
勝則 浅野
Tomomoto Hayashi
智基 林
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP28478098A priority Critical patent/JP4088852B2/en
Publication of JP2000101101A publication Critical patent/JP2000101101A/en
Application granted granted Critical
Publication of JP4088852B2 publication Critical patent/JP4088852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an SiC Schottky diode which has reduced leakage current, a reverse voltage stop characteristic is improved without increasing voltage drop at conducting current in the forward direction and withstand voltage and has current heavy. SOLUTION: An SiC semiconductor substrate 1, which has a pair of main surfaces and in which the two semiconductor layers of a heavily-high doped concentration 3 and a lightly-doped 2 of a first conductivity-type are stacked, Schottky metal 5 which is formed on the first surface of the substrate 1 and forms a Schottky barrier 51 with the semiconductor layer of the lightly-doped first conductivity-type and a cathode electrode 6, which is formed on the second main surface of the substrate 1 and brought into contact with the semiconductor layer of the heavily-doped first conductivity-type in terms of ohmic resistance are installed. A plurality of buried layers 7 of a second conductivity-type, which forms a p-n junction with the semiconductor layer of the lightly-doped first conductivity-type in a part close to the first main surface in the substrate 1, and the intervals are enlarged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SiCショットキ
ーダイオードに係り、特に、高耐圧、大電流を制御する
SiCショットキーダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC Schottky diode, and more particularly, to a SiC Schottky diode for controlling a high breakdown voltage and a large current.

【0002】[0002]

【従来の技術】インバータ等の電力変換機器の動作周波
数の高周波化に伴って、半導体スイッチング素子の高速
化とともに、スイッチング素子に並列接続される還流ダ
イオードやフリーホイルダイオードの高速化が強く求め
られている。これらのダイオードには、高電圧かつ大電
流を低損失で整流する機能が要求されるので、一般には
pn接合ダイオードが広く適用されている。しかし、p
n接合ダイオードは、電流通電時に半導体内部に蓄積さ
れる少数キャリアによってターンオフ過渡時には大きな
逆電流が流れる性質があるため、スイッチング素子のタ
ーンオン時に過大な損失を発生させるだけでなく、過大
なノイズの発生源となっており、電力変換装置の動作の
高周波化を阻害する主要な要因になっている。このた
め、リカバリー特性の改善したpn接合ダイオードが種
々開発されいるが、少数キャリアの注入を伴うこの種の
ダイオードには、リカバリー時の逆電流の低減に本質的
な限界がある。このような要求に応える整流ダイオード
としてショットキーダイオードがある。ショットキーダ
イオードでは、半導体内部で電流を運ぶ担体が多数キャ
リアのみであり、電流通電時においても少数キャリアの
注入や蓄積がないので、ターンオフ時の逆電流を極めて
小さくすることができる。しかし、シリコンを基材とす
る従来のショットキーダイオードは、電流導通時のオン
抵抗が高く、発生損失が著しく大きくなり、高電圧、大
電流の電力変換装置に適用できない、という問題があ
る。SiCを基材とすれば、この問題を解消できる。し
かしながら、SiCのショットキーダイオードでも逆電
圧を印加した時の漏れ電流が大きくなる性質がある。特
に、高温で耐電圧近くの高い電圧が印加されると、漏れ
電流が増加するので、逆電圧阻止状態における発生損失
が増大する。これがダイオード素子内の局所的な場所で
起こり、部分的な熱暴走によって素子が破壊し易い、と
いう欠点がある。
2. Description of the Related Art As the operating frequency of power conversion devices such as inverters becomes higher, the speed of semiconductor switching elements and the speed of freewheeling diodes and freewheel diodes connected in parallel to switching elements are strongly required. I have. Since these diodes are required to have a function of rectifying a high voltage and a large current with low loss, a pn junction diode is generally widely used. But p
Since the n-junction diode has a property that a large reverse current flows during a turn-off transition due to minority carriers accumulated inside the semiconductor when a current flows, not only an excessive loss occurs when the switching element is turned on, but also an excessive noise occurs. It is a major factor that hinders the operation of the power converter from having a higher frequency. For this reason, various pn junction diodes with improved recovery characteristics have been developed, but this type of diode with minority carrier injection has an inherent limitation in reducing the reverse current during recovery. There is a Schottky diode as a rectifier diode meeting such a demand. In the Schottky diode, the carrier that carries the current inside the semiconductor is only the majority carrier, and the minority carrier is not injected or accumulated even when the current is supplied, so that the reverse current at the time of turn-off can be extremely reduced. However, the conventional Schottky diode using silicon as a base material has a problem that the on-resistance at the time of current conduction is high, the generation loss is extremely large, and it cannot be applied to a high-voltage, large-current power converter. This problem can be solved by using SiC as a base material. However, even a SiC Schottky diode has the property that the leakage current when a reverse voltage is applied increases. In particular, when a high voltage near the withstand voltage is applied at a high temperature, the leakage current increases, so that the generation loss in the reverse voltage blocking state increases. This has the disadvantage that it occurs locally in the diode element and the element is easily destroyed by partial thermal runaway.

【0003】このようなショットキーダイオードの逆方
向の電圧印加時の漏れ電流を改善する従来技術として、
例えばSolid−State Electronic
s,Vol.28.No.11,pp.1089−10
93(1985)の技術論文にB.J.Baliga氏
によってSiを基材としたショットキーダイオードに適
用されたJunction−Barrier−Cont
rolled Schottky(JBS) Rect
ifierという技術が開示されている。図2は、その
ショットキーダイオードの概略構成を示す断面図であ
る。図2において、1は高不純物濃度のn+型層2と比
較的低不純物濃度のn−型層3とからなる半導体基体、
6はn型層2に低抵抗のオーム性接触したカソード電
極、5は比較的低不純物濃度のn型層3の表面にショッ
トキー障壁51を形成するショットキー金属であって、
その表面終端部には局所電界を緩和するカードリング用
のp+型層4が設けられると共に、ショットキー障壁部
分にはp+型層8が複数個具備されている。このp+型
層8は、逆電圧印加時に隣接するp+型層のpn接合か
らn−型層3に向かって拡がる空乏層が互いに重なる程
度の間隔で分散配置され、介在するショットキー障壁5
1に加わる逆電圧の電界強度を低減する作用があり、シ
ョットキー障壁部分における漏れ電流を減少させる働き
がある、と説明されている。この従来技術をSiCを基
材にしたショットキーダイオードに適用すれば、逆電圧
阻止特性を格段に向上させ得ることが期待できる。
As a conventional technique for improving the leakage current when a voltage is applied in the reverse direction to such a Schottky diode,
For example, Solid-State Electronic
s, Vol. 28. No. 11, pp. 1089-10
93 (1985). J. Junction-Barrier-Cont applied to a Si-based Schottky diode by Baliga
rolled Shottky (JBS) Rect
A technique called "ifier" is disclosed. FIG. 2 is a sectional view showing a schematic configuration of the Schottky diode. In FIG. 2, reference numeral 1 denotes a semiconductor substrate comprising an n + type layer 2 having a high impurity concentration and an n− type layer 3 having a relatively low impurity concentration;
Reference numeral 6 denotes a cathode electrode which is in ohmic contact with the n-type layer 2 having a low resistance, and 5 denotes a Schottky metal which forms a Schottky barrier 51 on the surface of the n-type layer 3 having a relatively low impurity concentration.
A p + -type layer 4 for card ring for relaxing a local electric field is provided at the surface terminal portion, and a plurality of p + -type layers 8 are provided at a Schottky barrier portion. The p + -type layers 8 are dispersedly arranged at intervals such that the depletion layers extending from the pn junction of the adjacent p + -type layers toward the n − -type layer 3 when a reverse voltage is applied overlap each other.
It is described that this has the function of reducing the electric field strength of the reverse voltage applied to 1 and the function of reducing the leakage current in the Schottky barrier portion. If this conventional technique is applied to a Schottky diode using SiC as a base material, it can be expected that the reverse voltage blocking characteristic can be significantly improved.

【0004】しかしながら、以下に述べるSiC特有の
製作プロセス上の制限から、この構造をそのままSiC
のショットキーダイオードに適用するには多大な困難が
ある。すなわち、前記の従来例において、p+型層8
は、介在するショットキー障壁51に加わる逆電圧の電
界強度を低減するために、逆電圧印加時に互いの空乏層
が重なる程度に間隔を狭くする必要があるとともに、数
100〜数1000Vの高い逆電圧に対して電圧阻止能
力を保持するために、比較的深い高濃度層として形成し
なければならない。しかし、SiCの場合、その接合絶
縁破壊電界がSiの約10倍という物性上の特長を生か
した接合設計になるので、一般にn−型層3の不純物濃
度はSiの場合の70〜100倍の高濃度に設定され、
そのため空乏層の拡がりは著しく少なくなり、空乏層の
ピンチオフ効果を発揮するためには、前記のp+型層8
の間隔は1μm程度の極めて狭い値にする必要がある。
この結果、電流導通時において電圧降下が著しく増大す
る、という問題が起こる。また、深いp型層の形成には
Siではボロンやアルミニウム等のアクセプタ不純物を
熱拡散法で拡散されるが、SiCではこれらの不純物の
拡散係数が極めて小さいので、この拡散法は適用でき
ず、イオン注入法を適用しなければならない。しかし、
イオン注入によって1μm以上の深い打ち込み層を選択
的に形成することは極めて難しい。厚い膜厚の注入マス
クの形成が困難なことに加えて、消去できない結晶欠陥
が誘起されるからである。したがって、漏れ電流が低減
できるSiでのJBS構造をSiCのショットキーダイ
オードにそのままは適用することは殆ど不可能である。
However, due to the limitations on the manufacturing process peculiar to SiC described below, this structure is directly used for SiC.
There is a great difficulty in applying this to Schottky diodes. That is, in the above conventional example, the p + type layer 8
In order to reduce the electric field strength of the reverse voltage applied to the intervening Schottky barrier 51, it is necessary to narrow the interval so that the depletion layers overlap each other when the reverse voltage is applied, and to increase the reverse voltage of several hundreds to several thousand volts. In order to maintain the voltage blocking ability with respect to the voltage, it must be formed as a relatively deep high concentration layer. However, in the case of SiC, the junction design takes advantage of the physical property that the junction breakdown electric field is about 10 times that of Si. Therefore, the impurity concentration of the n − -type layer 3 is generally 70 to 100 times that of Si. Set to high concentration,
Therefore, the expansion of the depletion layer is significantly reduced. In order to exhibit the depletion layer pinch-off effect, the p +
Is required to be a very narrow value of about 1 μm.
As a result, there arises a problem that the voltage drop significantly increases when the current is conducted. For forming a deep p-type layer, acceptor impurities such as boron and aluminum are diffused by thermal diffusion in Si. However, in SiC, since the diffusion coefficients of these impurities are extremely small, this diffusion method cannot be applied. Ion implantation must be applied. But,
It is extremely difficult to selectively form a deep implanted layer of 1 μm or more by ion implantation. This is because it is difficult to form an implantation mask having a large thickness, and crystal defects that cannot be erased are induced. Therefore, it is almost impossible to directly apply the JBS structure made of Si, which can reduce the leakage current, to a Schottky diode made of SiC.

【0005】[0005]

【発明が解決しようとする課題】以上のように、高耐
圧、大電流のパワーショットキーダイオードには、高
温、高電圧における逆電圧時の漏れ電流の低減というシ
ョットキーダイオードの従来からの課題と、順方向の電
流導通時において電圧降下が著しく増大するという課題
を解決する必要がある。本発明の課題は、上記問題点に
鑑み、順方向の電流導通時の電圧降下の増大を伴うこと
なく、漏れ電流を低減して逆電圧阻止特性を著しく向上
させた高耐圧、大電流のSiCショットキーダイオード
を提供することにある。
As described above, the power Schottky diode with a high breakdown voltage and a large current has the conventional problem of the Schottky diode of reducing the leakage current at the time of reverse voltage at high temperature and high voltage. In addition, it is necessary to solve the problem that the voltage drop significantly increases during forward current conduction. SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a high-breakdown-voltage, large-current SiC which has a reduced leakage current and a remarkably improved reverse voltage blocking characteristic without increasing a voltage drop during forward current conduction. It is to provide a Schottky diode.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、ショットキー障壁が形成され、SiC半導体基体の
表面近くの基体内に基体と反対導電型の埋込み層を複数
個分散配置する。さらに、該埋込み層とショットキー障
壁が形成される間に介在する半導体基体の不純物濃度を
低減する。
In order to solve the above problems, a Schottky barrier is formed, and a plurality of buried layers of the opposite conductivity type to the substrate are dispersedly arranged in a substrate near the surface of the SiC semiconductor substrate. Further, the impurity concentration of the semiconductor substrate interposed between the formation of the buried layer and the Schottky barrier is reduced.

【0007】本発明は、素子に逆電圧が印加されると、
半導体基体と埋込み層の間のpn接合に印加される逆電
圧によって、そこに拡がる空乏層が重なり合い、ショッ
トキー障壁部分に印加される電界強度を緩和できる。こ
のとき、埋込み層間の空乏層は従来の表面層間より拡が
りやすいので、層間の間隔も幅広く設定できる。また、
埋込み層は実質的な深いpn接合となり、高電圧に耐え
る阻止能力が可能になる。以上の作用により、順方向の
電流導通時の電圧降下の増大を伴うことなく、逆方向の
漏れ電流が低減された高耐圧のSiCショットキーダイ
オードを実現することができる。さらに、ショットキー
障壁と埋込み層間に不純物濃度の低い層を介在させるこ
とによって、ショットキー障壁にかかる逆バイアス電界
をさらに低減できるので、漏れ電流の一層の低減と阻止
電圧の向上が可能になる。
According to the present invention, when a reverse voltage is applied to the element,
Due to the reverse voltage applied to the pn junction between the semiconductor substrate and the buried layer, the depletion layers extending there overlap, and the electric field intensity applied to the Schottky barrier can be reduced. At this time, the depletion layer between the buried layers is easier to spread than the conventional surface layer, so that the distance between the layers can be set wider. Also,
The buried layer becomes a substantially deep pn junction, allowing blocking capability to withstand high voltages. By the above operation, a SiC Schottky diode with a high withstand voltage in which the leakage current in the reverse direction is reduced can be realized without increasing the voltage drop when the current flows in the forward direction. Further, by interposing a layer having a low impurity concentration between the Schottky barrier and the buried layer, the reverse bias electric field applied to the Schottky barrier can be further reduced, so that the leakage current can be further reduced and the blocking voltage can be improved.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の第一の実施形態であ
り、逆特性の改良された高耐圧のSiCショットキーダ
イオードの断面図を示す。図1において、上下に主表面
を有する平行平板状のSiC半導体基体1は、不純物濃
度約3×10の19乗、厚さ約200μmの低抵抗のn
+型層2と、不純物濃度約1×10の16乗、厚さ約1
2μmの高抵抗のn−型層3とからなり、n+型層2が
露出する一方の主表面に低抵抗のオーム性接触したNi
金属等のカソード電極6、n−型層3が露出する他方の
主表面にはアノード電極となるTi/A1またはPt等
のショットキー金属5をそれぞれ設け、n−型層3とシ
ョットキー金属5との接する部分にはショットキー障壁
51を形成する。ショットキー金属5が終端する部分に
は他方の主表面からn−型層3内にボロンのイオン注入
により形成された注入量約1×10の15乗/cm2
深さ約0.5μmの比較的高濃度のp+型層4を設け、
その表面においてショットキー電極5と低抵抗にオーム
性接触する。そして、基体表面中央の主な機能領域とな
る部分において、他方の主表面から約1μmの位置のn
−型層3内に高さ約0.5μm、幅約1μmのボロン注
入により形成された比較的高濃度のp+型埋込み層7を
約3μmの間隔つまり幅広の間隔で複数個設け、それぞ
れn−型層3との間にpn接合71を形成する。図1に
は3ヶの埋込み層7を示したが、実際の素子では半導体
基体の大きさに応じて多数個配列する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a high-breakdown-voltage SiC Schottky diode according to a first embodiment of the present invention, which has improved reverse characteristics. In FIG. 1, a parallel-plate-shaped SiC semiconductor substrate 1 having upper and lower main surfaces is a low-resistance n having an impurity concentration of about 3 × 10 19 and a thickness of about 200 μm.
+ Type layer 2, impurity concentration of about 1 × 10 16, thickness of about 1
A n-type layer 3 having a high resistance of 2 .mu.m, and a low resistance ohmic contact Ni contacting one main surface where the n + type layer 2 is exposed.
A Schottky metal 5 such as Ti / A1 or Pt serving as an anode electrode is provided on the other main surface where the cathode electrode 6 of metal or the like and the n− type layer 3 are exposed, respectively. A Schottky barrier 51 is formed in a portion in contact with. In the portion where the Schottky metal 5 terminates, an implantation amount of about 1 × 10 15 / cm 2 formed by boron ion implantation into the n − -type layer 3 from the other main surface,
A relatively high concentration p + type layer 4 having a depth of about 0.5 μm is provided,
On the surface thereof, the Schottky electrode 5 makes ohmic contact with low resistance. Then, in a portion to be a main functional area at the center of the substrate surface, n at a position of about 1 μm from the other main surface.
A plurality of relatively high-concentration p + type buried layers 7 formed by boron implantation having a height of about 0.5 μm and a width of about 1 μm are provided in the − type layer 3 at intervals of about 3 μm, that is, at a wide interval. A pn junction 71 is formed with the mold layer 3. FIG. 1 shows three buried layers 7, but in an actual device, many buried layers 7 are arranged according to the size of the semiconductor substrate.

【0009】本実施形態における各部の作用を以下に説
明する。ダイオードとしての電流の整流作用は、n−型
層3とショットキー金属5の間に形成されたショットキ
ー障壁51の部分で動作する。すなわち、ショットキー
金属5がカソード電極6に対して正電位となる向きの電
圧が印加されたとき、ショットキー障壁51の概ね0.
1〜0.5Vの比較的低い障壁を超えて電子がショット
キー金属5からn−型層3へ流れ、さらにカソード電極
6に向かって流れて導通する。また、上記と逆向きの電
圧が印加されたとき、電子の流れはショットキー障壁5
1によって塞き止められ、電流の流れを阻止する。ショ
ットキー金属5の終端部に設けたp+型層4は、逆電圧
印加状態においてショットキー障壁51にかかる局所集
中電界による降伏電圧の低下を防ぐもので、p+n接合
の高い逆電圧阻止特性を利用している。この例では、通
常よく使われているいわゆるガードリング構造を示した
が、他の構造、例えばフィールドリミッティングリング
(FLR)、フィールドプレート(FP)、またはジャ
ンクション・ターミネーション・エクステンション(J
TE)なども適用できる。
The operation of each part in this embodiment will be described below. The rectifying action of the current as a diode operates in a portion of the Schottky barrier 51 formed between the n − -type layer 3 and the Schottky metal 5. That is, when a voltage in a direction in which the Schottky metal 5 has a positive potential with respect to the cathode electrode 6 is applied, the voltage of the Schottky barrier 51 becomes approximately 0.1.
Electrons flow from the Schottky metal 5 to the n − -type layer 3 beyond the relatively low barrier of 1 to 0.5 V, and further flow toward the cathode electrode 6 to conduct. When a voltage in the opposite direction is applied, the flow of electrons is reduced by the Schottky barrier 5.
1 to block the flow of current. The p + -type layer 4 provided at the end of the Schottky metal 5 prevents the breakdown voltage from decreasing due to the local concentrated electric field applied to the Schottky barrier 51 in the state where a reverse voltage is applied, and utilizes the high reverse voltage blocking characteristic of the p + n junction. are doing. In this example, a so-called guard ring structure that is commonly used is shown, but other structures such as a field limiting ring (FLR), a field plate (FP), or a junction termination extension (J) are used.
TE) can also be applied.

【0010】本実施形態において、複数個のp+型埋込
み層7が新規な点である。逆電圧印加時において、空乏
層ははじめショットキー障壁51よりn−型層3内に拡
がるが、約100Vの逆電圧においてこの空乏層はp+
型埋込み層7に到達する。さらに高い逆電圧により、空
乏層はp+型埋込み層7から拡がり、約400Vの電圧
で隣り合ったp+型埋込み層7から拡がる空乏層が重な
る。それ以上の逆電圧では空乏層はn−型層3内をn+
型層2に向かって一様に拡がり、約1200Vでその先
端はn+型層2に到達し、素子はパンチスルーにより降
伏する。上記した逆電圧印加時の動作において、ショッ
トキー障壁51にかかる逆方向の電界は、はじめ逆電圧
の増加とともに強くなるが、p+型埋込み層7から拡が
る空乏層が重なる電圧以上の逆電圧ではこの部分のピン
チオフ効果によって、さらに高い強度の電界にはならな
い。この作用によって高電圧印加時のショットキー障壁
部51における漏れ電流の著しい増加を防止することが
できる。また、図2の従来例のp+型層8の間隔が1μ
m程度の極めて狭い値であるに比し、本実施形態では、
p+型埋込み層7を約3μmの間隔つまり幅広の間隔で
分散配置するので、順方向の電流導通時の電圧降下の増
大を伴うことなく、逆に低くすることがでる。
In this embodiment, a plurality of p + type buried layers 7 is a novel point. When a reverse voltage is applied, the depletion layer first expands into the n − -type layer 3 from the Schottky barrier 51, but at a reverse voltage of about 100 V, the depletion layer becomes p +
The mold buried layer 7 is reached. Due to the higher reverse voltage, the depletion layer spreads from the p + -type buried layer 7, and the depletion layer spreading from the adjacent p + -type buried layer 7 at a voltage of about 400 V overlaps. At a reverse voltage higher than that, the depletion layer becomes n + in the n− type layer 3.
It spreads uniformly toward the mold layer 2, and at about 1200 V, its tip reaches the n + type layer 2, and the element breaks down by punch-through. In the operation when the reverse voltage is applied, the electric field in the reverse direction applied to the Schottky barrier 51 initially increases as the reverse voltage increases. However, when the reverse voltage is higher than the voltage at which the depletion layer spreading from the p + -type buried layer 7 overlaps, the reverse electric field increases. Due to the pinch-off effect of the parts, no higher strength electric field is created. By this function, it is possible to prevent a remarkable increase in leakage current in Schottky barrier portion 51 when a high voltage is applied. Further, the interval between the p + type layers 8 of the conventional example shown in FIG.
In contrast to the extremely narrow value of about m, in the present embodiment,
Since the p + type buried layers 7 are dispersedly arranged at intervals of about 3 μm, that is, at wide intervals, the voltage can be lowered without increasing the voltage drop during forward current conduction.

【0011】図3は、本発明の第二の実施形態であり、
図1の第一の実施形態のさらに逆電圧特性の改善された
ショットキーダイオードの断面図を示す。図中の各部に
付した構成部分の番号が図1に示した第一の実施形態と
同じ部分はその構造、導電型および作用が等しい部分を
指している。図3では、n−型層3内に比較的高濃度の
p+型埋込み層7が複数個設けられる点は第一の実施形
態と同じであるが、さらに、該p+型埋込み層7より上
に不純物濃度が1〜3×10の15乗の高抵抗のn−−
型層31をn−型層3との界面313で接して積層する
点が異なる。かかる構成にすれると、素子に逆電圧が印
加されたとき、ショットキー障壁51より拡がる空乏層
がp+型埋込み層7に到達する電圧は50V以下に減少
し、p+型埋込み層7間のピンチオフ状態以降でもこの
電圧が保持される。その結果、ショットキー障壁51に
かかる電界が低減されることになり、逆電圧印加時の漏
れ電流を著しく低減できる。
FIG. 3 shows a second embodiment of the present invention.
FIG. 2 shows a cross-sectional view of a Schottky diode of the first embodiment of FIG. 1 with further improved reverse voltage characteristics. The same reference numerals as those in the first embodiment shown in FIG. 1 indicate the parts having the same structure, conductivity type and function. In FIG. 3, the point that a plurality of p + -type buried layers 7 having a relatively high concentration are provided in the n − -type layer 3 is the same as in the first embodiment, but is further provided above the p + -type buried layers 7. High resistance n−− with impurity concentration of 1 to 3 × 10 15
The difference is that the mold layer 31 is laminated in contact with the interface 313 with the n − -type layer 3. With this configuration, when a reverse voltage is applied to the element, the voltage at which the depletion layer extending from the Schottky barrier 51 reaches the p + -type buried layer 7 is reduced to 50 V or less, and the pinch-off between the p + -type buried layers 7 is reduced. This voltage is maintained even after the state. As a result, the electric field applied to the Schottky barrier 51 is reduced, and the leakage current when a reverse voltage is applied can be significantly reduced.

【0012】本実施形態では、接合温度150℃におい
て、逆方向に1000Vの電圧を印加したときの漏れ電
流密度が1×10の−4乗A/cm2程度に極めて低減
され、降伏電圧順が1200Vと高く、かつ、順方向の
電流導通時の電圧降下が100A/cm2の電流密度に
おいて1.1〜1.2Vと極めて低いショットキーダイ
オードが得られる。したがって、本実施形態では導通特
性および逆電圧特性がともに優れた高耐圧、大電流のS
iCショットキーダイオードを実現することができる。
In this embodiment, at a junction temperature of 150 ° C., the leakage current density when a voltage of 1000 V is applied in the reverse direction is extremely reduced to about 1 × 10 −4 A / cm 2 , and the breakdown voltage order is reduced. A Schottky diode as high as 1200 V and having an extremely low voltage drop of 1.1 to 1.2 V at a current density of 100 A / cm 2 at the time of forward current conduction is obtained. Therefore, in this embodiment, a high breakdown voltage and a large current
An iC Schottky diode can be realized.

【0013】図4は、図3のの第二の実施形態の製作方
法の主要な工程を示す。図中の各部に付した構成部分の
番号が図3に示した第二の実施形態と同じ部分はその構
造、導電型および作用が等しい部分を指している。図4
(a)は、n−型層3の一方の主表面部分であり、下部
のn+型層などの半導体基体の部分は省略されている。
図4(b)では、n−型層3の表面よりボロンの選択的
なイオン注入によりp+型埋込み層7を部分的に形成す
る。注入量を約1×10の15乗/cm2とし、打ち込
みエネルギーを50keV,30keVおよび10ke
Vの3段階に注入して、ボックス状の不純物分布とした
後、約1500℃のアニールを行い、活性化処理する。
続いて、図4(c)では、エピタキシャル成長法により
窒素をドーパントとして濃度1〜3×10の15乗、厚
さ約1μmのn−−型層31を積層する。その後、図4
(d)では、Ti/A1のショットキー金属を表面に蒸
着してデバイスの機能領域を製作する。
FIG. 4 shows the main steps of the manufacturing method of the second embodiment shown in FIG. The same reference numerals as in the second embodiment shown in FIG. 3 denote the same parts in the structure, conductivity type and function as those in the second embodiment shown in FIG. FIG.
(A) is one main surface portion of the n − -type layer 3 and a portion of the semiconductor substrate such as a lower n + -type layer is omitted.
In FIG. 4B, the p + -type buried layer 7 is partially formed by selective ion implantation of boron from the surface of the n − -type layer 3. The implantation amount is about 1 × 10 15 / cm 2 and the implantation energy is 50 keV, 30 keV and 10 keV.
V is implanted into three stages to form a box-shaped impurity distribution, and then annealing is performed at about 1500 ° C. to perform an activation process.
Subsequently, in FIG. 4C, an n − -type layer 31 having a concentration of 1 to 3 × 10 and a thickness of about 1 μm is stacked using nitrogen as a dopant by an epitaxial growth method. Then, FIG.
In (d), a functional region of the device is manufactured by depositing a Schottky metal of Ti / A1 on the surface.

【0014】本発明の実施形態では、半導体基体1の導
電型をn型の場合を示したが、記述した伝導型を全て反
対伝導型にすれば、p型の場合にも適用される。
In the embodiment of the present invention, the case where the conductivity type of the semiconductor substrate 1 is n-type has been described. However, if all the described conductivity types are of the opposite conductivity type, the present invention can be applied to the case of p-type.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
高耐圧、大電流のSiCショットキーダイオードの逆方
向の漏れ電流特性を著しく向上させることができる。ま
た、ショットキー障壁と埋込み層間に不純物濃度の低い
層を介在させることによって、ショットキー障壁にかか
る逆バイアス電界をさらに低減することができ、漏れ電
流の一層の低減と阻止電圧の向上が可能になる。また、
順方向の電流導通時の電圧降下の増大を伴うことなく、
逆方向の漏れ電流を低減した導通特性および逆電圧特性
がともに優れた高耐圧、大電流のSiCショットキーダ
イオードを実現することができる。
As described above, according to the present invention,
The leakage current characteristics in the reverse direction of a SiC Schottky diode with a high breakdown voltage and a large current can be significantly improved. In addition, by interposing a low impurity concentration layer between the Schottky barrier and the buried layer, the reverse bias electric field applied to the Schottky barrier can be further reduced, thereby further reducing the leakage current and improving the blocking voltage. Become. Also,
Without increasing the voltage drop during forward current conduction,
It is possible to realize a SiC Schottky diode with a high breakdown voltage and a large current, which is excellent in both the conduction characteristics and the reverse voltage characteristics in which the leakage current in the reverse direction is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態であり、逆特性の改良
された高耐圧のSiCショットキーダイオードの断面図
FIG. 1 is a cross-sectional view of a high-breakdown-voltage SiC Schottky diode with improved reverse characteristics according to a first embodiment of the present invention.

【図2】従来例を示す断面図FIG. 2 is a sectional view showing a conventional example.

【図3】本発明の第二の実施形態を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】本発明のショットキーダイオードの製作工程を
示す図
FIG. 4 is a diagram showing a manufacturing process of the Schottky diode of the present invention.

【符号の説明】[Explanation of symbols]

1…SiC半導体基体、2…n+型層、3…n−型層、
31…低濃度n−−型層、313…n−型層とn−−型
層の接合する界面、4…ガードリングとなるp+型層、
5…アノード電極となるショットキー金属、51…ショ
ットキー障壁、6…カソード電極、7…比較的高濃度p
+型層埋込み層、8…p+型層
DESCRIPTION OF SYMBOLS 1 ... SiC semiconductor base, 2 ... n + type layer, 3 ... n- type layer,
31 ... low-concentration n- type layer, 313 ... interface joining n-type layer and n- type layer, 4 ... p + type layer serving as guard ring,
5: Schottky metal serving as anode electrode, 51: Schottky barrier, 6: cathode electrode, 7: relatively high concentration p
+ Type layer buried layer, 8 ... p + type layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 俊之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小野瀬 秀勝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 浅野 勝則 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 林 智基 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 菅原 良孝 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 Fターム(参考) 4M104 AA03 CC03 FF31 FF35 GG18 HH20  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshiyuki Ohno 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Hidekatsu Onose 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd.Hitachi Research Laboratories (72) Katsunori Asano 3--22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Tomoki Hayashi Nakanoshima, Kita-ku, Osaka, Osaka 3-2-2, Kansai Electric Power Co., Inc. (72) Inventor Yoshitaka Sugawara 3-2-2, Nakanoshima, Kita-ku, Osaka-shi, Osaka F-term in Kansai Electric Power Co., Inc. 4M104 AA03 CC03 FF31 FF35 GG18 HH20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対の主表面を有し、第一導電型の高不
純物濃度および低不純物濃度の二つの半導体層が積層さ
れたSiC半導体基体と、前記基体の第一主表面に形成
され、前記第一導電型の低不純物濃度の半導体層との間
にショットキー障壁をなすショットキー金属と、前記基
体の第二主表面に形成され、前記第一導電型の高不純物
濃度の半導体層にオーム性抵抗接触されるカソード電極
からなるSiCショットキーダイオードにおいて、前記
基体内の第一主表面に近い部分に前記第一導電型の低不
純物濃度の半導体層との間にpn接合を形成する第二導
電型の埋込み層を複数個分散配置することを特徴とする
SiCショットキーダイオード。
1. An SiC semiconductor substrate having a pair of main surfaces, on which two semiconductor layers of a first conductivity type having a high impurity concentration and a low impurity concentration are stacked, and formed on a first main surface of the substrate. A Schottky metal forming a Schottky barrier between the first conductive type low impurity concentration semiconductor layer and the first conductive type high impurity concentration semiconductor layer formed on the second main surface of the base; In a SiC Schottky diode comprising a cathode electrode in ohmic resistance contact, a pn junction is formed between the first conductive type low impurity concentration semiconductor layer and a portion near the first main surface in the base. An SiC Schottky diode, wherein a plurality of buried layers of two conductivity types are dispersedly arranged.
【請求項2】 一対の主表面を有し、第一導電型の高不
純物濃度および低不純物濃度の二つの半導体層が積層さ
れたSiC半導体基体と、前記基体の第一主表面に形成
され、前記第一導電型の低不純物濃度の半導体層との間
にショットキー障壁をなすショットキー金属と、前記基
体の第二主表面に形成され、前記第一導電型の高不純物
濃度の半導体層にオーム性抵抗接触されるカソード電極
からなるSiCショットキーダイオードにおいて、前記
基体内の第一主表面に近い部分に前記第一導電型の低不
純物濃度の半導体層との間にpn接合を形成する第二導
電型の埋込み層を複数個分散配置するとともに、前記第
一導電型の低不純物濃度の半導体層が前記埋込み層と前
記ショットキー障壁の間でさらに減じられた低不純物濃
度を有する領域を具備することを特徴とするSiCショ
ットキーダイオード。
2. An SiC semiconductor substrate having a pair of main surfaces, on which two semiconductor layers of a high conductivity concentration and a low impurity concentration of a first conductivity type are stacked, and formed on a first main surface of the substrate. A Schottky metal forming a Schottky barrier between the first conductive type low impurity concentration semiconductor layer and the first conductive type high impurity concentration semiconductor layer formed on the second main surface of the base; In a SiC Schottky diode comprising a cathode electrode in ohmic resistance contact, a pn junction is formed between the first conductive type low impurity concentration semiconductor layer and a portion near the first main surface in the base. A plurality of two-conductivity-type buried layers are dispersed and arranged, and the first-conductivity-type low-impurity-concentration semiconductor layer has a further reduced low-impurity-concentration region between the buried layer and the Schottky barrier. An SiC Schottky diode, comprising:
【請求項3】 請求項1または請求項2において、前記
第二導電型の埋込み層を複数個分散配置する際、前記埋
込み層の間隔を幅広くして順方向の電流導通時の電圧降
下を低くすることを特徴とするSiCショットキーダイ
オード。
3. The buried layer of the second conductivity type according to claim 1, wherein a plurality of the buried layers of the second conductivity type are dispersed, so that the distance between the buried layers is widened to reduce a voltage drop during forward current conduction. A SiC Schottky diode.
【請求項4】 請求項1から請求項3のいずれかにおい
て、カソード電極がショットキー金属に対して正電位と
なる向きの電圧が主電極間に印加されたとき、半導体素
子の降伏電圧より十分低い電圧において前記ショットキ
ー障壁より拡がる空乏層が前記第二導電型の埋込み層に
到達し、それ以上の電圧の印加によって該埋込み層の間
に拡がる空乏層が互いに重なるように設定されることを
特徴とするSiCショットキーダイオード。
4. The semiconductor device according to claim 1, wherein when a voltage having a direction in which the cathode electrode has a positive potential with respect to the Schottky metal is applied between the main electrodes, the voltage is sufficiently higher than the breakdown voltage of the semiconductor element. At a low voltage, a depletion layer extending from the Schottky barrier reaches the buried layer of the second conductivity type, and the depletion layers extending between the buried layers are set so as to overlap each other by applying a voltage higher than that. Characteristic SiC Schottky diode.
JP28478098A 1998-09-21 1998-09-21 SiC Schottky diode Expired - Fee Related JP4088852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28478098A JP4088852B2 (en) 1998-09-21 1998-09-21 SiC Schottky diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28478098A JP4088852B2 (en) 1998-09-21 1998-09-21 SiC Schottky diode

Publications (2)

Publication Number Publication Date
JP2000101101A true JP2000101101A (en) 2000-04-07
JP4088852B2 JP4088852B2 (en) 2008-05-21

Family

ID=17682928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28478098A Expired - Fee Related JP4088852B2 (en) 1998-09-21 1998-09-21 SiC Schottky diode

Country Status (1)

Country Link
JP (1) JP4088852B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100784A (en) * 2000-09-21 2002-04-05 Mitsubishi Electric Corp Schottky barrier diode and semiconductor module
WO2002099869A1 (en) * 2001-05-25 2002-12-12 Abb Research Limited A method concerning a junction barrier schottky diode, such a diode and use thereof
US7588958B2 (en) 2003-07-04 2009-09-15 Panasonic Corporation Schottky barrier diode and manufacturing method thereof
JP2011055002A (en) * 2010-12-03 2011-03-17 Mitsubishi Electric Corp Semiconductor module
JP2011135094A (en) * 2011-02-25 2011-07-07 Sumitomo Electric Ind Ltd Semiconductor device, and method of manufacturing the same
JP2013051346A (en) * 2011-08-31 2013-03-14 Toyota Central R&D Labs Inc Diode, semiconductor device and mosfet
JP2014017326A (en) * 2012-07-06 2014-01-30 Rohm Co Ltd Semiconductor device and semiconductor device manufacturing method
WO2014132689A1 (en) * 2013-03-01 2014-09-04 住友電気工業株式会社 Silicon carbide semiconductor device
CN104134703A (en) * 2014-08-08 2014-11-05 上海安微电子有限公司 Low-electric-leakage and low-forward-voltage-drop Schottky diode structure and manufacturing method of low-electric-leakage and low-forward-voltage-drop Schottky diode structure
JP2015162577A (en) * 2014-02-27 2015-09-07 住友電気工業株式会社 Wide bandgap semiconductor device and method for manufacturing the same
KR20170013107A (en) * 2015-07-27 2017-02-06 현대자동차주식회사 Schottky barrier diode and method for manufacturing the same
ITUB20153251A1 (en) * 2015-08-27 2017-02-27 St Microelectronics Srl SEMICONDUCTOR SWITCHING DEVICE WITH A WIDE BAND FORBIDDEN WITH WIDE SCHOTTKY JUNCTION AREA AND ITS MANUFACTURING PROCESS
CN113471302A (en) * 2021-07-09 2021-10-01 弘大芯源(深圳)半导体有限公司 Schottky diode with inner and outer potential protection rings
CN116093164A (en) * 2023-04-07 2023-05-09 深圳市晶扬电子有限公司 High-voltage Schottky diode with floating island type protection ring
JP7498325B2 (en) 2019-06-27 2024-06-11 ルネサスエレクトロニクス株式会社 Semiconductor Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681781A (en) * 2012-09-18 2014-03-26 桂林斯壮微电子有限责任公司 Buried PN junction barrier Schottky diode

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100784A (en) * 2000-09-21 2002-04-05 Mitsubishi Electric Corp Schottky barrier diode and semiconductor module
WO2002099869A1 (en) * 2001-05-25 2002-12-12 Abb Research Limited A method concerning a junction barrier schottky diode, such a diode and use thereof
US7588958B2 (en) 2003-07-04 2009-09-15 Panasonic Corporation Schottky barrier diode and manufacturing method thereof
JP2011055002A (en) * 2010-12-03 2011-03-17 Mitsubishi Electric Corp Semiconductor module
JP2011135094A (en) * 2011-02-25 2011-07-07 Sumitomo Electric Ind Ltd Semiconductor device, and method of manufacturing the same
JP2013051346A (en) * 2011-08-31 2013-03-14 Toyota Central R&D Labs Inc Diode, semiconductor device and mosfet
JP2014017326A (en) * 2012-07-06 2014-01-30 Rohm Co Ltd Semiconductor device and semiconductor device manufacturing method
WO2014132689A1 (en) * 2013-03-01 2014-09-04 住友電気工業株式会社 Silicon carbide semiconductor device
JP2015162577A (en) * 2014-02-27 2015-09-07 住友電気工業株式会社 Wide bandgap semiconductor device and method for manufacturing the same
CN104134703A (en) * 2014-08-08 2014-11-05 上海安微电子有限公司 Low-electric-leakage and low-forward-voltage-drop Schottky diode structure and manufacturing method of low-electric-leakage and low-forward-voltage-drop Schottky diode structure
KR20170013107A (en) * 2015-07-27 2017-02-06 현대자동차주식회사 Schottky barrier diode and method for manufacturing the same
US9865701B2 (en) 2015-07-27 2018-01-09 Hyundai Motor Company Schottky barrier diode and method for manufacturing the same
KR101724464B1 (en) * 2015-07-27 2017-04-07 현대자동차 주식회사 Schottky barrier diode and method for manufacturing the same
EP3136447A1 (en) * 2015-08-27 2017-03-01 STMicroelectronics S.r.l. Wide bandgap semiconductor switching device and manufacturing process thereof
CN106486552A (en) * 2015-08-27 2017-03-08 意法半导体股份有限公司 There are wide band gap semiconducter switching device and its manufacture method of wide area schottky junction
US9748411B2 (en) 2015-08-27 2017-08-29 Stmicroelectronics S.R.L. Wide bandgap semiconductor switching device with wide area schottky junction, and manufacturing process thereof
ITUB20153251A1 (en) * 2015-08-27 2017-02-27 St Microelectronics Srl SEMICONDUCTOR SWITCHING DEVICE WITH A WIDE BAND FORBIDDEN WITH WIDE SCHOTTKY JUNCTION AREA AND ITS MANUFACTURING PROCESS
US10276729B2 (en) 2015-08-27 2019-04-30 Stmicroelectronics S.R.L. Wide bandgap semiconductor switching device with wide area Schottky junction, and manufacturing process thereof
US10651319B2 (en) 2015-08-27 2020-05-12 Stmicroelectronics S.R.L. Wide bandgap semiconductor switching device with wide area Schottky junction, and manufacturing process thereof
US11177394B2 (en) 2015-08-27 2021-11-16 Stmicroelectronics S.R.L. Wide bandgap semiconductor switching device with wide area schottky junction, and manufacturing process thereof
JP7498325B2 (en) 2019-06-27 2024-06-11 ルネサスエレクトロニクス株式会社 Semiconductor Device
CN113471302A (en) * 2021-07-09 2021-10-01 弘大芯源(深圳)半导体有限公司 Schottky diode with inner and outer potential protection rings
CN116093164A (en) * 2023-04-07 2023-05-09 深圳市晶扬电子有限公司 High-voltage Schottky diode with floating island type protection ring
CN116093164B (en) * 2023-04-07 2023-07-11 深圳市晶扬电子有限公司 High-voltage Schottky diode with floating island type protection ring

Also Published As

Publication number Publication date
JP4088852B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP3943749B2 (en) Schottky barrier diode
JP3630594B2 (en) SiC Schottky diode
US7138668B2 (en) Heterojunction diode with reduced leakage current
US7572683B2 (en) Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
CN103563087B (en) Be recessed terminal structure and with depression terminal structure electronic device preparation method
US7781786B2 (en) Semiconductor device having a heterojunction diode and manufacturing method thereof
US7282753B2 (en) Vertical conducting power semiconducting devices made by deep reactive ion etching
US9349797B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
JP4088852B2 (en) SiC Schottky diode
CN111466032B (en) Silicon carbide semiconductor device and power conversion device
JPH08306937A (en) High-breakdown strength semiconductor device
JP2000077682A (en) Schottky diode
JP4119148B2 (en) diode
KR20140035594A (en) Shottky barrier diode and method for manufacturing the same
JP2002530869A (en) Semiconductor component having a dielectric or semi-insulating shield structure
TWI776173B (en) Silicon carbide semiconductor device
JP3673334B2 (en) Semiconductor diode
WO2023183215A1 (en) Support shield structures for trenched semiconductor devices
CN108336129B (en) Super junction Schottky diode and manufacturing method thereof
CN112216746B (en) Silicon carbide semiconductor device
JP2002231965A (en) Semiconductor device
CN112909098A (en) Schottky diode and preparation method thereof
CN108598153B (en) Soft recovery power semiconductor diode and preparation method thereof
JP2004253510A (en) Semiconductor device
CN114335146B (en) Semiconductor structure and preparation method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees