JP2000097772A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JP2000097772A
JP2000097772A JP10266725A JP26672598A JP2000097772A JP 2000097772 A JP2000097772 A JP 2000097772A JP 10266725 A JP10266725 A JP 10266725A JP 26672598 A JP26672598 A JP 26672598A JP 2000097772 A JP2000097772 A JP 2000097772A
Authority
JP
Japan
Prior art keywords
light
optical fiber
wavelength
wavelength calibration
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10266725A
Other languages
Japanese (ja)
Other versions
JP3790630B2 (en
Inventor
Mitsunao Sekiwa
三直 関和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP26672598A priority Critical patent/JP3790630B2/en
Publication of JP2000097772A publication Critical patent/JP2000097772A/en
Application granted granted Critical
Publication of JP3790630B2 publication Critical patent/JP3790630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To match the optical axis of light-receiving optical fiber with a measurement point by projecting the light from a wavelength calibration light source of known wavelength in a deflection optical fiber for easy wavelength calibration with the entire light-receiving optical fiber fixed. SOLUTION: An optical coupler 5a has a unidirectional function wherein light coming from a deflection optical fiber 5 is transferred to a light-receiving optical fiber 2 while the light in the opposite direction is transferred as it is. By projecting the light of known wavelength in the deflection optical fiber 5 from a wavelength calibration light source 6, a light is emitted from a light- receiving part 2a of the light-receiving optical fiber 2, and a spot is formed on a substrate 10. It is confirmed that the centers of the spot and a sample 1 are aligned. After confirming an optical axis, it is confirmed for calibration that the reflection light from the spot is condensed at a specified position of an imaging element 4 through the light-receiving optical fiber 2 and a spectroscope 3. After that, samples are sequentially transported to automatically measure the light-emission of them. Measurement is accurately performed since wavelength is calibrated after an optical axis is set.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料からの光を、
受光用光ファイバを通して受光し分光測定する分光光度
計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
The present invention relates to a spectrophotometer that receives light through an optical fiber for light reception and performs spectral measurement.

【0002】[0002]

【従来の技術】ウェハ上に形成されたLEDなど、狭所
にある微小発光体の発光機能を分光測定によって検査す
る場合、前記微小発光体の回りには、通常、搬送機構、
位置決め機構、電圧印加機構などが密集しているため、
そのなかに分光光度計の大きな光学測定部を挿入するこ
とは困難である。
2. Description of the Related Art When inspecting the light emitting function of a small luminous body located in a narrow place such as an LED formed on a wafer by spectroscopic measurement, usually, a transport mechanism,
Because the positioning mechanism, voltage application mechanism, etc. are dense,
It is difficult to insert a large optical measurement part of the spectrophotometer into it.

【0003】一方、光ファイバは、受光端の直径を数m
mにすることが可能であり、試料との距離も1mm程度
まで近づけることができる。また、フレキシブルであ
り、入り組んだ所にも光ファイバを自在に曲げて容易に
取り付けることができる。そこで、試料からの光を、フ
レキシブルな細い受光用光ファイバを通して受光し分光
測定することが行われている。
On the other hand, an optical fiber has a light receiving end having a diameter of several meters.
m, and the distance to the sample can be reduced to about 1 mm. Further, the optical fiber is flexible, and the optical fiber can be freely bent and easily attached to a complicated place. Therefore, light from a sample is received through a flexible thin light-receiving optical fiber and spectrally measured.

【0004】図4(a) は、測定ポイントS0から出た試
料光を測定する構成を示す。測定ポイントS0から出た
試料光は、受光端2aから受光用光ファイバ2に入り、
受光用光ファイバ2の出射端2bから出て、凹面回折格
子3aに入射する。そして回折格子3aによって波長に
応じた角度で反射され、受光素子アレイ4のうちの波長
に応じた位置にある受光素子により検出される。
FIG. 4A shows a configuration for measuring a sample light emitted from a measurement point S0. The sample light emitted from the measurement point S0 enters the light receiving optical fiber 2 from the light receiving end 2a,
The light exits from the emission end 2b of the light receiving optical fiber 2 and enters the concave diffraction grating 3a. The light is reflected by the diffraction grating 3a at an angle corresponding to the wavelength, and is detected by a light receiving element in the light receiving element array 4 at a position corresponding to the wavelength.

【0005】前記の構成では、所定の波長の光が、所定
の受光素子に検出されているかどうか、波長校正を行う
必要がある。なぜなら、分光光度計のメーカが波長校正
を行う場合は、メーカでは光ファイバがどのように曲げ
られて使用するのか不明なので、光ファイバを直線状に
して波長校正を行うのが一般的である。しかし、実際に
は光ファイバを曲げた状態で使うので、直線状にして波
長校正したままであると曲げによる伝搬状態の変化によ
り、分光誤差が発生するからである。したがって、実際
に使う状態で校正することが好ましい。
In the above configuration, it is necessary to perform wavelength calibration to determine whether light of a predetermined wavelength is detected by a predetermined light receiving element. This is because when a spectrophotometer maker performs wavelength calibration, it is generally unknown how the optical fiber is bent and used, so that the wavelength calibration is generally performed by straightening the optical fiber. However, since the optical fiber is actually used in a bent state, a spectral error occurs due to a change in the propagation state due to the bending if the optical fiber is straightened and the wavelength is calibrated. Therefore, it is preferable to calibrate in a state of actual use.

【0006】ところが、実際に使う状態で校正すること
は困難であり、従来では校正をする場合、図4(a) に破
線で示したように受光用光ファイバ2の受光端2aを動
かして、図4(b) のように、波長が既知の波長校正用光
源6に正対させ、波長校正用光源6の光を受光用光ファ
イバ2に入射し、その光が所定の受光素子に検出されて
いるかどうかを確認していた。ただし、受光用光ファイ
バ2の受光端2aと、波長校正用光源6との位置関係
は、光軸が互いに一致するように正確に定められている
ものとする。
However, it is difficult to calibrate in an actual use state. Conventionally, when performing calibration, the light receiving end 2a of the light receiving optical fiber 2 is moved as shown by a broken line in FIG. As shown in FIG. 4 (b), the light from the wavelength calibration light source 6 is directly incident on the light receiving optical fiber 2, and the light is detected by a predetermined light receiving element. I was checking if it was. However, it is assumed that the positional relationship between the light receiving end 2a of the light receiving optical fiber 2 and the wavelength calibration light source 6 is accurately determined so that the optical axes coincide with each other.

【0007】[0007]

【発明が解決しようとする課題】前記の図4(a) の構成
で、測定ポイントS0が光軸外にずれる場合がある。測
定ポイントがずれている場合は、図5に示すように、受
光用光ファイバ2に入射する角度によって、凹面回折格
子3aに照射される位置が変化して、凹面回折格子3a
の分散及び反射特性の違いにより、スペクトルが変化す
る。また、本来の角度の光を測定するはずのものが、間
違って他の角度の光を測定してしまう場合もある。
In the configuration shown in FIG. 4A, the measurement point S0 may be off the optical axis. In the case where the measurement points are shifted, as shown in FIG. 5, the position of irradiation on the concave diffraction grating 3a changes depending on the angle of incidence on the light receiving optical fiber 2, and the concave diffraction grating 3a
The spectrum changes due to the difference between the dispersion and the reflection characteristics. Further, there is a case where a device that should measure light at an original angle incorrectly measures light at another angle.

【0008】しかし、前記図4(a) の構成では、受光用
光ファイバ2の光軸と測定ポイントのずれが確認できな
いという問題がある。特に、受光用光ファイバ2が入り
組んだ場所に取り付けられている場合は、なおさら確認
が難しい。また、受光用光ファイバ2を図4(b) のよう
に測定部から外して波長校正を行う場合、受光端2a、
出射端2bが固定されていても、受光用光ファイバ2の
曲げ方が異なると、ファイバ内の光伝搬の仕方が異なる
ので、受光素子アレイ4の出力は変化する。
However, in the configuration of FIG. 4A, there is a problem that the deviation between the optical axis of the light receiving optical fiber 2 and the measurement point cannot be confirmed. In particular, when the optical fiber 2 for light reception is attached to a complicated place, it is even more difficult to confirm. Also, when wavelength calibration is performed by removing the light receiving optical fiber 2 from the measuring unit as shown in FIG. 4B, the light receiving end 2a,
Even if the emitting end 2b is fixed, if the bending of the light receiving optical fiber 2 is different, the way of light propagation in the fiber is different, so that the output of the light receiving element array 4 changes.

【0009】さらに、入り組んだ場所に受光用光ファイ
バ2が取り付けられているケースでは、波長校正用の光
を受光用光ファイバ2に入射させるのが困難なこともあ
った。以上のように、波長確認作業が正確にできず、時
間を要するために、波長確認及び波長校正を始業点検と
して行えなかった。したがって、ISOでいうトレーサ
ビリティの確保もできていなかった。
Further, in the case where the light receiving optical fiber 2 is attached at a complicated place, it is sometimes difficult to make the light for wavelength calibration incident on the light receiving optical fiber 2. As described above, since the wavelength confirmation operation could not be performed accurately and time was required, wavelength confirmation and wavelength calibration could not be performed as a start-up inspection. Therefore, traceability referred to in the ISO has not been secured.

【0010】そこで、本発明は、分光測定をより正確に
行うために、受光用光ファイバ2全体を固定したまま波
長校正を簡単に行え、受光用光ファイバ2の光軸と測定
ポイントを一致させることのできる分光光度計を実現す
ることを目的とする。
Therefore, in order to perform spectroscopic measurement more accurately, the present invention can easily perform wavelength calibration while fixing the entire light receiving optical fiber 2 and make the optical axis of the light receiving optical fiber 2 coincide with the measurement point. It is an object of the present invention to realize a spectrophotometer that can perform the measurement.

【0011】[0011]

【課題を解決するための手段】本発明の分光光度計は、
波長が既知の波長校正用光源と、前記受光用光ファイバ
の途中に設けた光結合器と、前記光結合器に接続された
分岐光ファイバとを備え、前記波長校正用光源の光を、
前記分岐光ファイバに入射させることができるようにな
っているものである(請求項1)。
SUMMARY OF THE INVENTION The spectrophotometer of the present invention comprises:
A wavelength calibration light source having a known wavelength, an optical coupler provided in the middle of the light receiving optical fiber, and a branch optical fiber connected to the optical coupler, the light of the wavelength calibration light source,
The light can be incident on the branch optical fiber (claim 1).

【0012】前記の構成によれば、波長校正用光源の光
を分岐光ファイバに入射させ、光結合器を通して受光用
光ファイバの受光端(試料に対面している側)から出射
させることができる。これにより、試料が光軸上にある
かどうか知ることができる。また、試料又は試料に代わ
る反射物からの反射光を分光器を通して受けることによ
り、誤差のない状態で測定波長の校正をすることができ
る。
According to the above configuration, the light of the wavelength calibration light source can be made incident on the branch optical fiber, and can be emitted from the light receiving end (the side facing the sample) of the light receiving optical fiber through the optical coupler. . This makes it possible to know whether or not the sample is on the optical axis. In addition, by receiving the reflected light from the sample or a reflecting object in place of the sample through the spectroscope, the measurement wavelength can be calibrated without error.

【0013】請求項2記載の分光光度計は、波長校正用
光源の光を、分岐光ファイバを通さずに光結合器に入射
させるものであり、請求項1記載の分光光度計と同じ作
用効果を奏する。請求項3記載の分光光度計は、波長が
既知の波長校正用光源と、試料に投光する波長校正用光
ファイバとを備え、前記受光用光ファイバが1本の光フ
ァイバ又は複数本のバンドル光ファイバからなってお
り、前記受光用光ファイバの受光端における光学軸と、
前記波長校正用光ファイバの投光端における光学軸とが
隣接し平行になっている。
According to a second aspect of the present invention, there is provided a spectrophotometer in which light from a wavelength calibration light source is incident on an optical coupler without passing through a branch optical fiber. To play. 4. The spectrophotometer according to claim 3, further comprising a wavelength calibration light source having a known wavelength, and a wavelength calibration optical fiber for projecting light onto the sample, wherein the light receiving optical fiber is a single optical fiber or a plurality of bundles. An optical axis at the light receiving end of the light receiving optical fiber,
The optical axis at the light emitting end of the wavelength calibration optical fiber is adjacent to and parallel to the optical axis.

【0014】この構成では、波長校正用光ファイバから
出射させ、これと隣接し平行になっている受光用光ファ
イバを通して受光させるので、光結合器を省略すること
ができる。
In this configuration, the light is emitted from the wavelength calibration optical fiber and is received through the light receiving optical fiber which is adjacent and parallel to the wavelength calibration optical fiber, so that the optical coupler can be omitted.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面を参照しながら詳細に説明する。図1は、分光光
度計の全体構成を示す図である。分光光度計は、試料1
からの光を、受光用光ファイバ2を通して受光し、分光
器3により分光し、撮像素子4により測定する構成とな
っている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing the entire configuration of the spectrophotometer. Spectrophotometer is sample 1
Is received through the light receiving optical fiber 2, separated by the spectroscope 3, and measured by the image pickup device 4.

【0016】さらに、波長が既知の波長校正用光源6
と、受光用光ファイバ2の途中に設けた光結合器5a
と、前記光結合器に接続された分岐光ファイバ5とを備
え、前記波長校正用光源6の光を、前記分岐光ファイバ
5に入射させることができるようになっている。前記試
料1は、特に限定されないが、本実施の形態では基板1
0などに配置された微小発光体である。基板10は、図
示しない搬送機構により搬送される。
Further, a wavelength calibration light source 6 having a known wavelength.
And an optical coupler 5a provided in the middle of the light receiving optical fiber 2.
And a branch optical fiber 5 connected to the optical coupler, so that light from the wavelength calibration light source 6 can be made incident on the branch optical fiber 5. The sample 1 is not particularly limited, but in the present embodiment, the substrate 1
It is a minute light emitter arranged at 0 or the like. The substrate 10 is transported by a transport mechanism (not shown).

【0017】受光用光ファイバ2には、投光部2b及び
レンズなどを組み込んだ受光部2aが取り付けられてい
る。また、分岐光ファイバ5の受光端には、受光部5b
が取り付けられている。なお、これらの受光部2a、投
光部2b、受光部5bは絶対必要ではなく、省略する場
合もある。また、受光用光ファイバ2の途中には、光結
合器5aが設けられている。この光結合器5aは、光フ
ァイバ間又は光導波路間の光結合を利用した素子で、分
岐光ファイバ5から入る光を受光用光ファイバ2に移
し、受光用光ファイバ2を伝送する逆方向の光はそのま
ま伝送させる一方向性機能を持つ。その構成は、周知の
3dBカップラーなどで実現してもよく、同じく周知の
ハーフミラー、レンズなどの構成で実現してもよい。ハ
ーフミラーとレンズを用いた光結合器5aの構成例を図
6に示す。
The light receiving optical fiber 2 is provided with a light projecting section 2b and a light receiving section 2a incorporating a lens and the like. The light receiving end of the branch optical fiber 5 has a light receiving portion 5b.
Is attached. The light receiving unit 2a, the light projecting unit 2b, and the light receiving unit 5b are not absolutely necessary and may be omitted. An optical coupler 5a is provided in the optical fiber 2 for light reception. The optical coupler 5a is an element using optical coupling between optical fibers or optical waveguides, and transfers light entering from the branch optical fiber 5 to the light receiving optical fiber 2 and transmits the light through the light receiving optical fiber 2 in the reverse direction. Light has a one-way function to transmit light as it is. The configuration may be realized by a well-known 3 dB coupler or the like, or may be realized by a well-known half mirror, lens, or the like. FIG. 6 shows a configuration example of an optical coupler 5a using a half mirror and a lens.

【0018】波長校正用光源6は、波長が既知の光源で
あれば種類は問わない。例えばレーザ光源でもよく、何
らかの光源とモノクロメータとの組み合わせでも実現で
きる。分光器3は、凹面回折格子3aを使ったものを図
示しているが、これに限定されるものではなく、プリズ
ムを使ったものでもよい。
The wavelength calibration light source 6 may be of any type as long as it has a known wavelength. For example, a laser light source may be used, or a combination of some light source and a monochromator may be realized. The spectroscope 3 uses a concave diffraction grating 3a, but is not limited to this, and may use a prism.

【0019】撮像素子4は、分光器3により分光された
光の光強度を記録するもので、CCD素子アレイなどの
固体撮像素子を使ってもよく、ビジコンなどの撮像管を
使ってもよい。なお、以上の図1の構成において、分岐
光ファイバ5を省略して、波長校正用光源6と光結合器
5aとを一体化することにより、波長校正用光源6の光
を光結合器5aに直接入射させてもよい。
The image pickup device 4 is for recording the light intensity of the light separated by the spectroscope 3, and may be a solid-state image pickup device such as a CCD device array or an image pickup tube such as a vidicon. In the configuration of FIG. 1, the light from the wavelength calibration light source 6 is transmitted to the optical coupler 5a by omitting the branch optical fiber 5 and integrating the wavelength calibration light source 6 with the optical coupler 5a. The light may be directly incident.

【0020】次に前記分光光度計の使用方法を説明す
る。 (1)光軸の確認 波長校正用光源6により既知の波長の光を、分岐光ファ
イバ5に照射することにより、受光用光ファイバ2の受
光部2aから光が出射され、基板10にスポットを形成
する。このスポットと試料1との中心が一致しているか
どうか確認し、一致していなければ、搬送機構や受光用
光ファイバ2の受光部2aの位置などを調整して、完全
に一致するようにする。
Next, a method of using the spectrophotometer will be described. (1) Confirmation of Optical Axis By irradiating light having a known wavelength to the branch optical fiber 5 by the wavelength calibration light source 6, the light is emitted from the light receiving portion 2 a of the light receiving optical fiber 2, and a spot is formed on the substrate 10. Form. It is checked whether the center of the spot coincides with the center of the sample 1, and if not, the transport mechanism and the position of the light receiving section 2a of the light receiving optical fiber 2 are adjusted so that they completely match. .

【0021】(2)波長の校正 光軸を確認した後、スポットからの反射光が受光用光フ
ァイバ2、分光器3を通して撮像素子4の所定の位置
(既知の波長に対応する位置)に集光しているかどうか
確認する。 所定の位置からずれていれば、そのずれが
検出波長誤差に対応するので、そのずれの分だけ波長の
校正をする。
(2) Calibration of wavelength After confirming the optical axis, the reflected light from the spot is collected at a predetermined position (a position corresponding to a known wavelength) of the image pickup device 4 through the light receiving optical fiber 2 and the spectroscope 3. Check if it is lit. If the position deviates from the predetermined position, the deviation corresponds to the detected wavelength error. Therefore, the wavelength is calibrated by the deviation.

【0022】(3)通常測定 前記の(1),(2)の手順を踏んだ後は、試料を次々と搬送
して、試料の発光を自動測定する。以上のように、光軸
の設定を済ませた後、波長の校正を行うので、正確なス
ペクトル測定を行うことができる。
(3) Normal Measurement After following the steps (1) and (2), the samples are transported one after another, and the luminescence of the sample is automatically measured. As described above, since the wavelength is calibrated after the setting of the optical axis, accurate spectrum measurement can be performed.

【0023】次に、分光光度計の他の実施形態を説明す
る。図2は、波長校正用光源6により光を分岐光ファイ
バ5に照射する場合に、正の所定の開口角αで光を入射
させる例を示す。同図によれば、波長校正用光源6に拡
散板6aを正対させ、さらにこれに拡散板6bを正対さ
せることにより、光をそれぞれ拡散させ、アパーチャ6
cにより所定の開口角αが得られるようにする。このよ
うにして、光を分岐光ファイバ5に入射させる。
Next, another embodiment of the spectrophotometer will be described. FIG. 2 shows an example in which light is incident at a predetermined positive aperture angle α when light is irradiated on the branch optical fiber 5 by the wavelength calibration light source 6. According to the drawing, the light is diffused by directing the diffusion plate 6a to the wavelength calibration light source 6 and directly facing the diffusion plate 6b to the wavelength calibration light source 6, and the aperture 6a.
A predetermined aperture angle α is obtained by c. In this way, light is made incident on the branch optical fiber 5.

【0024】受光用光ファイバ2の受光部2aから出射
した光は、図3に示すように、開口角αに対応した所定
の半径の円を照らす。この円の中心に、試料1を置くこ
とにより、光軸の確認ができる。図7は、光結合器5a
を使用するのに代えて、受光用光ファイバと分岐光ファ
イバとを完全に分離して、互いに隣接して沿わせた例を
示す。この例における分岐光ファイバのことを、その機
能に注目して「波長校正用光ファイバ」51という。波
長校正用光ファイバ51は1本の光ファイバ、受光用光
ファイバはバンドル光ファイバ21となっており、バン
ドル光ファイバ21の受光端における各バンドル光ファ
イバ21の光学軸と、波長校正用光ファイバ51の投光
端における波長校正用光ファイバ51の光学軸とは平行
に設定されている。
Light emitted from the light receiving portion 2a of the light receiving optical fiber 2 illuminates a circle having a predetermined radius corresponding to the opening angle α, as shown in FIG. By placing the sample 1 at the center of this circle, the optical axis can be confirmed. FIG. 7 shows an optical coupler 5a.
In this example, the light receiving optical fiber and the branch optical fiber are completely separated from each other and are arranged adjacent to each other. The branch optical fiber in this example is referred to as “wavelength calibration optical fiber” 51 by focusing on its function. The wavelength calibration optical fiber 51 is a single optical fiber, the light receiving optical fiber is a bundle optical fiber 21, and the optical axis of each bundle optical fiber 21 at the light receiving end of the bundle optical fiber 21 and the wavelength calibration optical fiber. The optical axis of the wavelength calibration optical fiber 51 at the light emitting end of 51 is set in parallel.

【0025】図8はバンドル光ファイバ21の受光端及
び波長校正用光ファイバ51の投光端を示す斜視図であ
る。バンドル光ファイバ21は、1本の波長校正用光フ
ァイバ51を囲んでいる。図7、図8の構成によれば、
波長校正用光源6の光を波長校正用光ファイバ51に入
射し、その出射端から試料1に向けて出射させる。ユー
ザは照射スポットを見ながら光軸の調整ができる。試料
1からの反射光は、バンドル光ファイバ21に入射され
る。その光は完全に平行ではないが、ほぼ平行な光とな
っているので、分光器3における分光誤差は極力排除さ
れる。
FIG. 8 is a perspective view showing the light receiving end of the bundle optical fiber 21 and the light projecting end of the wavelength calibration optical fiber 51. The bundle optical fiber 21 surrounds one wavelength calibration optical fiber 51. According to the configuration of FIGS. 7 and 8,
The light from the wavelength calibration light source 6 is incident on the wavelength calibration optical fiber 51 and emitted from the emission end toward the sample 1. The user can adjust the optical axis while looking at the irradiation spot. Light reflected from the sample 1 is incident on the bundle optical fiber 21. Although the light is not perfectly parallel, it is almost parallel light, so that a spectral error in the spectroscope 3 is eliminated as much as possible.

【0026】なお、受光用光ファイバは必ずしもバンド
ル光ファイバ21に限るものではなく、図9に示すよう
に、波長校正用光ファイバ51に平行に沿った1本の受
光用光ファイバ22を使用してもよい。この場合も、試
料1からの反射光は、受光用光ファイバ22に入り、分
光器3により分光される。
The light receiving optical fiber is not necessarily limited to the bundle optical fiber 21. As shown in FIG. 9, one light receiving optical fiber 22 parallel to the wavelength calibration optical fiber 51 is used. You may. Also in this case, the reflected light from the sample 1 enters the light receiving optical fiber 22 and is separated by the spectroscope 3.

【0027】[0027]

【発明の効果】以上のように本発明の分光光度計によれ
ば、試料測定ポイントが正確に位置しているかどうかの
確認を行って、その上で、分光器の分光波長の校正を行
うことができる。したがって、波長のシフトのない、正
確な分光測定をすることができる。
As described above, according to the spectrophotometer of the present invention, it is confirmed whether or not the sample measurement point is accurately located, and then the spectral wavelength of the spectrometer is calibrated. Can be. Therefore, an accurate spectroscopic measurement without a wavelength shift can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分光光度計の全体構成を示す図であ
る。
FIG. 1 is a diagram showing an overall configuration of a spectrophotometer of the present invention.

【図2】波長校正用光源6により光を分岐光ファイバ5
に照射する場合に、開口角αで光を入射させる光学系を
示す図である。
FIG. 2 shows an optical fiber 5 for splitting light by a wavelength calibration light source 6
FIG. 3 is a diagram showing an optical system that causes light to enter at an aperture angle α when irradiating light.

【図3】受光用光ファイバ2の受光部2aから出射した
光が作る、開口角αに対応した所定の半径のスポットを
示す図である。
FIG. 3 is a view showing a spot having a predetermined radius corresponding to an opening angle α, which is formed by light emitted from a light receiving portion 2a of the light receiving optical fiber 2.

【図4】測定ポイントS0から出た試料光を測定する従
来の分光光度計の構成を示す図である。
FIG. 4 is a diagram showing a configuration of a conventional spectrophotometer for measuring a sample light emitted from a measurement point S0.

【図5】測定ポイントがS0からS1にずれた場合に、
受光用光ファイバ2の出射端から出た光が、凹面回折格
子3aを含む分光系を通して受光素子に集光する様子を
示す図である。
FIG. 5 shows a case where a measurement point shifts from S0 to S1.
FIG. 4 is a diagram showing a state in which light emitted from an emission end of a light receiving optical fiber 2 is condensed on a light receiving element through a spectral system including a concave diffraction grating 3a.

【図6】ハーフミラーとレンズを用いた光結合器5aの
構成例を示す図である。
FIG. 6 is a diagram showing a configuration example of an optical coupler 5a using a half mirror and a lens.

【図7】光結合器5aを使用するのに代えて、受光用光
ファイバと分岐光ファイバとを完全に分離して、互いに
隣接して沿わせた分光光度計の要部を示す図である。
FIG. 7 is a diagram illustrating a main part of a spectrophotometer in which a light receiving optical fiber and a branch optical fiber are completely separated from each other and are arranged adjacent to each other instead of using the optical coupler 5a. .

【図8】バンドル光ファイバ21の受光端及び波長校正
用光ファイバ51の投光端(図7のA−A端面)を示す
斜視図である。
8 is a perspective view showing a light receiving end of the bundle optical fiber 21 and a light emitting end (end AA in FIG. 7) of the wavelength calibration optical fiber 51. FIG.

【図9】バンドル光ファイバ21の代わりに、波長校正
用光ファイバ51に平行に沿った1本の受光用光ファイ
バ22を使用した場合の、受光用光ファイバ22の受光
端及び波長校正用光ファイバ51の投光端を示す斜視図
である。
FIG. 9 shows a light receiving end of the light receiving optical fiber 22 and light for wavelength calibration when one light receiving optical fiber 22 is used in parallel with the wavelength calibration optical fiber 51 instead of the bundle optical fiber 21. FIG. 3 is a perspective view showing a light projecting end of a fiber 51.

【符号の説明】[Explanation of symbols]

1 試料 2 受光用光ファイバ 3 分光器 4 撮像素子 5 分岐光ファイバ 5a 光結合器 6 波長校正用光源 21 バンドル光ファイバ 22 受光用光ファイバ 51 波長校正用光ファイバ DESCRIPTION OF SYMBOLS 1 Sample 2 Optical fiber for light reception 3 Spectroscope 4 Image sensor 5 Branch optical fiber 5a Optical coupler 6 Light source for wavelength calibration 21 Bundle optical fiber 22 Optical fiber for light reception 51 Optical fiber for wavelength calibration

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料からの光を、受光用光ファイバを通し
て受光し分光測定する分光光度計であって、 波長が既知の波長校正用光源と、 前記受光用光ファイバの途中に設けた光結合器と、 前記光結合器に接続された分岐光ファイバとを備え、 前記波長校正用光源の光を、前記分岐光ファイバに入射
させることができるようになっていることを特徴とする
分光光度計。
1. A spectrophotometer for receiving light from a sample through a light receiving optical fiber and performing spectrophotometry, comprising: a wavelength calibration light source having a known wavelength; and an optical coupling provided in the light receiving optical fiber. And a branch optical fiber connected to the optical coupler, wherein the light of the wavelength calibration light source can be incident on the branch optical fiber. .
【請求項2】試料からの光を、受光用光ファイバを通し
て受光し分光測定する分光光度計であって、 波長が既知の波長校正用光源と、 前記受光用光ファイバの途中に設けた光結合器とを備
え、 前記波長校正用光源の光を、光結合器に入射させること
ができるようになっていることを特徴とする分光光度
計。
2. A spectrophotometer for receiving light from a sample through a light-receiving optical fiber and performing spectrophotometry, comprising: a wavelength calibration light source having a known wavelength; and an optical coupling provided in the light-receiving optical fiber. A spectrophotometer, wherein the light from the wavelength calibration light source can be made incident on an optical coupler.
【請求項3】試料からの光を、受光用光ファイバを通し
て受光し分光測定する分光光度計であって、 波長が既知の波長校正用光源と、 試料に投光する波長校正用光ファイバとを備え、 前記受光用光ファイバが1本の光ファイバ又は複数本の
バンドル光ファイバからなっており、 前記受光用光ファイバの受光端における受光用光ファイ
バの光学軸と、前記波長校正用光ファイバの投光端にお
ける波長校正用光ファイバの光学軸とが隣接し平行にな
っていることを特徴とする分光光度計。
3. A spectrophotometer for receiving light from a sample through an optical fiber for light reception and spectrally measuring the light, the light source for wavelength calibration having a known wavelength, and the optical fiber for wavelength calibration projecting to the sample. The optical fiber for light reception comprises one optical fiber or a plurality of bundled optical fibers, the optical axis of the optical fiber for light reception at the light receiving end of the optical fiber for light reception, and the optical fiber for wavelength calibration. A spectrophotometer wherein the optical axis of the wavelength calibration optical fiber at the light emitting end is adjacent to and parallel to the optical axis.
JP26672598A 1998-09-21 1998-09-21 Spectrophotometer and spectral wavelength calibration method Expired - Fee Related JP3790630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26672598A JP3790630B2 (en) 1998-09-21 1998-09-21 Spectrophotometer and spectral wavelength calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26672598A JP3790630B2 (en) 1998-09-21 1998-09-21 Spectrophotometer and spectral wavelength calibration method

Publications (2)

Publication Number Publication Date
JP2000097772A true JP2000097772A (en) 2000-04-07
JP3790630B2 JP3790630B2 (en) 2006-06-28

Family

ID=17434825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26672598A Expired - Fee Related JP3790630B2 (en) 1998-09-21 1998-09-21 Spectrophotometer and spectral wavelength calibration method

Country Status (1)

Country Link
JP (1) JP3790630B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454263B1 (en) * 2002-04-17 2004-10-26 한국과학기술원 Multichannel Near Infrared Ray(NIR) SpectroPhotometer(SP) using Acousto-Optic Tunable Filter(AOTF)
JP2010262887A (en) * 2009-05-11 2010-11-18 Konica Minolta Holdings Inc Plasma measuring device
GB2479012A (en) * 2010-03-25 2011-09-28 Avalon Instr Ltd Aligning a collection fibre with a sampling region in an emission measurement system
EP3136086A1 (en) * 2015-08-31 2017-03-01 Otsuka Electronics Co., Ltd. Microspectroscope including optical fibers and spectroscope
CN115014526A (en) * 2022-08-10 2022-09-06 武汉精立电子技术有限公司 Multichannel optical measurement equipment, installation method and application method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454263B1 (en) * 2002-04-17 2004-10-26 한국과학기술원 Multichannel Near Infrared Ray(NIR) SpectroPhotometer(SP) using Acousto-Optic Tunable Filter(AOTF)
JP2010262887A (en) * 2009-05-11 2010-11-18 Konica Minolta Holdings Inc Plasma measuring device
GB2479012A (en) * 2010-03-25 2011-09-28 Avalon Instr Ltd Aligning a collection fibre with a sampling region in an emission measurement system
EP3136086A1 (en) * 2015-08-31 2017-03-01 Otsuka Electronics Co., Ltd. Microspectroscope including optical fibers and spectroscope
JP2017049043A (en) * 2015-08-31 2017-03-09 大塚電子株式会社 Microspectroscopic apparatus
CN115014526A (en) * 2022-08-10 2022-09-06 武汉精立电子技术有限公司 Multichannel optical measurement equipment, installation method and application method
CN115014526B (en) * 2022-08-10 2022-12-02 武汉精立电子技术有限公司 Multichannel optical measurement equipment, installation method and application method

Also Published As

Publication number Publication date
JP3790630B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US4991971A (en) Fiber optic scatterometer for measuring optical surface roughness
US4886355A (en) Combined gloss and color measuring instrument
JP2008522145A (en) Method and apparatus for measuring instability of an output signal in a light source
EP1213567B1 (en) Device and process for measurement of the spectral reflectance
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
US10041875B2 (en) Apparatus and method for reading out an optical chip
JPH0827212B2 (en) Spectroscope
WO2003091676A1 (en) Small packaged spectroscopic sensor unit
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JP2002005823A (en) Thin-film measuring apparatus
JP3790630B2 (en) Spectrophotometer and spectral wavelength calibration method
CN107037437A (en) Measurer for thickness and method for measuring thickness
CN100425958C (en) Spectroscope
CN110779874B (en) Device for simultaneously measuring optical parameters and morphology
JP3169027B2 (en) Optical fiber spectral transmittance measuring device
JP2001091357A (en) Simultaneous analysis method of multiple optical spectrum
US6870617B2 (en) Accurate small-spot spectrometry systems and methods
JP2002206967A (en) Photometer and colorimeter
JP2004294072A (en) Multiwavelength light source device and optical measuring apparatus
JPH11142241A (en) Measuring apparatus for spectral transmittance
JP2000206047A (en) Spectrum-measuring device
US5118926A (en) Device for separating a beam of white light into a plurality of elementary beams of particular color
JP3056460B2 (en) Spectroscope
JPS59138930A (en) Absorbancy measuring device
EP0731346A1 (en) Spectrometer accessory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees