JP2000096193A - Production of high strength and high corrosion resistance ferritic steel - Google Patents

Production of high strength and high corrosion resistance ferritic steel

Info

Publication number
JP2000096193A
JP2000096193A JP27116698A JP27116698A JP2000096193A JP 2000096193 A JP2000096193 A JP 2000096193A JP 27116698 A JP27116698 A JP 27116698A JP 27116698 A JP27116698 A JP 27116698A JP 2000096193 A JP2000096193 A JP 2000096193A
Authority
JP
Japan
Prior art keywords
less
powder
crystal grain
grain size
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27116698A
Other languages
Japanese (ja)
Other versions
JP3020924B1 (en
Inventor
Makoto Ishibashi
良 石橋
Kazuya Nishi
西  和也
Teruyoshi Abe
輝宜 阿部
Yasuhisa Aono
泰久 青野
Masatoshi Inagaki
正寿 稲垣
Hidehiko Sumitomo
秀彦 住友
Koki Masumoto
弘毅 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Hitachi Ltd
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Hitachi Ltd
Priority to JP10271166A priority Critical patent/JP3020924B1/en
Application granted granted Critical
Publication of JP3020924B1 publication Critical patent/JP3020924B1/en
Publication of JP2000096193A publication Critical patent/JP2000096193A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high strength and high corrosion resistance steel with a superfine crystal structure of nanoscale in which the average crystal grain size is controlled to the value below the specified one by vacuum-sealing worked powder obtd. by subjecting powder composed of C, Si, Mn, Cr, and the balance Fe to alloying treatment by mechanical grinding into a vessel and executing isostatic press sintering. SOLUTION: Powder composed of, by weight, 0.07 to 0.3% C, <=1% Si, <=1.25% Mn, 8 to 30% Cr, and the balance Fe is used to obtain ferritic steel in which the average crystal grain size is <=1 μm. A powdery mixture obtd. by adding strengthening elements of carbide forming elements in addition to C and Cr is subjected to mechanical grinding or alloying by an 'Attoritor(R)',0 a ball mill or the like, is vacuum-sealed into a vessel made of metal and is thereafter solidified at 500 to 900 deg.C. The solidification is executed by hot isostatic press sintering under 200 to 400 MPa. The structure of the powder is made to be the superfine one to suppress the growth of the crystal grains, by which a bulk material in which the superfine structure of nanoscale is uniformly distributed is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なフェライト鋼
に係わり、腐食環境、高応力負荷環境下で使用するに好
適な高強度高耐食性フェライト鋼とその製造方法に関す
る。
The present invention relates to a novel ferritic steel, and more particularly to a high-strength and high-corrosion-resistant ferritic steel suitable for use in a corrosive environment and a high stress load environment, and a method for producing the same.

【0002】[0002]

【従来の技術】鉄鋼材料の中でもフェライト鋼は、応力
腐食割れが起こりにくく、熱膨張率が低いと云ったオー
ステナイト鋼にない長所を有しており、構造部品の材料
として広く使われている。
2. Description of the Related Art Among steel materials, ferritic steel has advantages that austenitic steel does not easily suffer from stress corrosion cracking and has a low coefficient of thermal expansion, which is not found in austenitic steel, and is widely used as a material for structural parts.

【0003】しかし、一般に耐食性はオーステナイト鋼
より劣り、耐食性向上のためCr量を高くした高Cr鋼
ではσ相等の析出に伴う脆化が問題になる。また近年、
装置類の高効率化や軽量化が進められ、これに伴ない高
強度の構造材料が求められており、レアメタルなどの合
金添加元素による高強度化が図られているが、リサイク
ル性の観点で好ましくない。
However, corrosion resistance is generally inferior to that of austenitic steel, and embrittlement due to precipitation of a σ phase and the like becomes a problem in high Cr steels in which the Cr content is increased to improve corrosion resistance. In recent years,
Higher efficiency and lighter weight of equipment are being promoted, and high-strength structural materials are being demanded.Higher strength is being sought by alloying elements such as rare metals, but from the viewpoint of recyclability. Not preferred.

【0004】合金組成を変えずに、強度と耐食性を向上
させる方法として、結晶粒の微細化がある。金属材料の
変形の主な要因は、結晶内に存在する転位と呼ばれる格
子欠陥の移動により生じるすべり変形にあり、結晶粒界
は転位との相互作用により、転位が粒界を通過する際に
大きな抵抗を生む。
As a method of improving strength and corrosion resistance without changing the alloy composition, there is a method of making crystal grains fine. The main cause of the deformation of the metal material is slip deformation caused by the movement of lattice defects called dislocations existing in the crystal, and the crystal grain boundaries are large when the dislocations pass through the grain boundaries due to the interaction with the dislocations. Create resistance.

【0005】結晶粒の微細化は、結晶粒界の密度を高く
することを意味し、この結晶粒界による変形抵抗の増加
は、降伏応力が結晶粒径の−1/2乗に比例して増加す
るホール・ペッチの法則としてよく知られている。
[0005] Refining of crystal grains means increasing the density of crystal grain boundaries. The increase in deformation resistance due to the crystal grain boundaries is caused by the fact that the yield stress is proportional to the -1/2 power of the crystal grain size. Well known as the increasing Hall-Petch law.

【0006】Crなど保護性皮膜を生成する元素を含む
合金は、結晶粒が微細な程粒界拡散が促され保護性被膜
が生成し易くなる。特に、Cr含有量が18%以下のフ
ェライト鋼では、高温水蒸気酸化特性に結晶粒径による
差が顕著に現れる。
[0006] In an alloy containing an element that forms a protective film such as Cr, the finer the crystal grain, the more the grain boundary diffusion is promoted, and the easier the protective film is formed. In particular, in a ferrite steel having a Cr content of 18% or less, a difference due to the crystal grain size appears in the high-temperature steam oxidation characteristics.

【0007】鉄鋼材料の結晶粒径を微細化する一般的な
プロセスとしては、圧延や据え込みなどの加工と、その
後の熱処理を組み合わせた加工熱処理法がある。
As a general process for reducing the crystal grain size of a steel material, there is a thermomechanical treatment method in which a process such as rolling or upsetting is combined with a subsequent heat treatment.

【0008】オーステナイト系ステンレス鋼に対して、
加工誘起マルテンサイト変態および高温での逆変態を利
用した加工熱処理によって、サブミクロンサイズまで結
晶粒を微細化させた研究が進められており、その製造方
法などが例えば鉄と鋼,日本鉄鋼協会,第80巻,52
9〜535頁(1994年)、および、日本金属学会会
報,第27巻,第5号,400〜402頁(1988
年)に報告されている。
[0008] For austenitic stainless steel,
Research is underway to refine crystal grains to submicron size by thermomechanical processing utilizing work-induced martensitic transformation and reverse transformation at high temperatures, and the production method is, for example, iron and steel, Japan Iron and Steel Association, Vol. 80, 52
9-535 (1994) and the Bulletin of the Japan Institute of Metals, Vol. 27, No. 5, pp. 400-402 (1988).
Year).

【0009】しかしながら、一般的な傾向として、溶体
化材が一度に圧延される熱加工の工程では、結晶粒径は
強い加工性の影響、即ち、圧延方向および厚さ方向の加
工度に強く依存し、不均一な分布となり易い。さらに加
工度には上限があり、サブミクロンからナノスケールま
での超微細結晶化は困難である。
However, as a general tendency, in the thermal working step in which the solution is rolled at once, the crystal grain size is strongly affected by the strong workability, that is, the workability in the rolling direction and the thickness direction. In addition, the distribution tends to be non-uniform. Furthermore, there is an upper limit to the degree of processing, and it is difficult to achieve ultrafine crystallization from submicron to nanoscale.

【0010】ボールミル装置などにより金属粉末を強加
工する機械的ミリング法(機械的アロイング法、あるい
は、機械的グラインディング法)は、圧延等の従来の方
法に比べて加工の際に蓄積される歪みエネルギーが飛躍
的に大きいことから、結晶粒径がサブミクロンサイズの
結晶組織を有する粉末を作製できる。
[0010] The mechanical milling method (mechanical alloying method or mechanical grinding method) in which metal powder is strongly processed by a ball mill or the like is more strained than the conventional method such as rolling. Since the energy is remarkably large, a powder having a submicron-sized crystal structure can be produced.

【0011】機械的ミリング処理された粉末を固形化す
るためには、高温で高い圧力を加えて焼結する必要があ
る。通常その高温加熱の際に歪みエネルギーが開放され
て、結晶粒の粗大化が生じるため、ナノ結晶状態を維持
したまま粉末を固形化することは難しい。
In order to solidify the mechanically milled powder, it is necessary to apply a high pressure at a high temperature and sinter the powder. Usually, the strain energy is released during the high-temperature heating, and the crystal grains become coarse. Therefore, it is difficult to solidify the powder while maintaining the nanocrystalline state.

【0012】オーステナイトステンレス鋼に対して、相
変態を利用することにより、サブミクロンサイズまで結
晶粒を微細化させたバルク材を得る研究が進められてお
り、例えば、特公平7−142917号公報、および、
鉄と鋼,日本鉄鋼協会,第84巻,357〜362頁
(1998年)に報告されている。
Research has been conducted to obtain a bulk material in which crystal grains are refined to a submicron size by utilizing phase transformation in austenitic stainless steel. For example, Japanese Patent Publication No. 7-142917, and,
Iron and steel, reported by The Iron and Steel Institute of Japan, Vol. 84, pp. 357-362 (1998).

【0013】相変態を利用できないフェライト鋼に対し
ては、結晶粒成長を抑制して固形化する必要がある。例
えば、粒径数十ナノメートルのサイズの微細Y23を添
加し分散させることによって、1000℃以上の高温ま
で粒径がナノメートルサイズの微細結晶組織を安定化で
きることが、日本鉄鋼協会1998年大会概要集、第1
1巻,563頁に報告されている。
[0013] For ferrite steels that cannot utilize phase transformation, it is necessary to suppress crystal grain growth and solidify. For example, by adding and dispersing fine Y 2 O 3 having a size of several tens of nanometers, it is possible to stabilize a fine crystal structure having a nanometer size to a high temperature of 1000 ° C. or more. Annual Meeting Summary, First
1, p. 563.

【0014】しかしながら、材料の再利用を考慮する
と、鉄鋼材料としてイットリウム等の特殊な合金元素の
添加は、精錬プロセスを煩雑化し、コスト上昇につなが
ることが懸念され好ましくない。
However, considering the reuse of the material, the addition of a special alloying element such as yttrium as a steel material is not preferable because it may complicate the refining process and increase the cost.

【0015】また、機械的ミリング処理を施した純鉄粉
末を鉄製缶に真空封入し、比較的低温(700℃付近)
で圧延によりバルク化した例が、日本金属学会会報,第
36巻,1062頁(1997年)等に報告されてい
る。
Also, pure iron powder subjected to mechanical milling is vacuum-sealed in an iron can and kept at a relatively low temperature (around 700 ° C.).
An example of bulking by rolling is reported in the Bulletin of the Japan Institute of Metals, Vol. 36, p. 1062 (1997).

【0016】しかしながら、その場合、内部に空洞のな
い緻密かつ均一な組織とするために、断面減少率80%
以上まで圧延を繰り返す必要がある。その結果、製造さ
れる固形化材の形状は薄板材、あるいは、断面積の小さ
な細い棒材に限定されることになり、構造材料としての
適用範囲に制限を受けることになる。
However, in that case, in order to obtain a dense and uniform structure without voids inside, the cross-sectional reduction rate is 80%.
It is necessary to repeat rolling up to the above. As a result, the shape of the solidified material to be manufactured is limited to a thin plate material or a thin rod material having a small cross-sectional area, and the range of application as a structural material is limited.

【0017】このように、従来公表されている鉄鋼材料
の固形化手法では、鋼種の合金組成、または、製品の寸
法および形状に制約を受けた条件下でしかナノスケール
の超微細結晶組織を維持したバルク材は得られていな
い。
As described above, according to the conventionally disclosed solidification method of steel materials, a nano-scale ultrafine crystal structure is maintained only under conditions that are restricted by the alloy composition of the steel type or the size and shape of the product. No bulk material was obtained.

【0018】フェライト鋼に関しては特開平1−272
746号公報、特開平1−287252号公報で知られ
ている。
Japanese Patent Application Laid-Open No. 1-272-1982 discloses a ferrite steel.
746 and JP-A-1-287252.

【0019】[0019]

【発明が解決しようとする課題】本発明の目的は、従来
材と比較して高強度並びに高耐食性を有するフェライイ
ト鋼の提供にあるが、前記の公知例には特定の組成にお
ける特定の結晶粒について示されていない。
SUMMARY OF THE INVENTION An object of the present invention is to provide ferrite steel having higher strength and higher corrosion resistance than conventional materials. Not shown.

【0020】本発明の目的は、ナノスケールの超微細結
晶組織を有する高強度高耐食性フェライト鋼とその製造
方法を提供することにある。
An object of the present invention is to provide a high-strength, high-corrosion-resistant ferritic steel having a nanoscale ultrafine crystal structure and a method for producing the same.

【0021】[0021]

【課題を解決するための手段】前記目的を達成する本発
明の要旨は下記のとおりである。
The gist of the present invention to achieve the above object is as follows.

【0022】〔1〕 重量でC:0.3%以下,Si:
1%以下,Mn:1.25%以下,Cr:8〜30%を
含有し、平均結晶粒径が1μm以下であることを特徴と
する高強度高耐食性フェライト鋼。
[1] C: 0.3% or less by weight, Si:
A high-strength, high-corrosion-resistant ferritic steel containing 1% or less, Mn: 1.25% or less, Cr: 8 to 30%, and having an average crystal grain size of 1 µm or less.

【0023】〔2〕 重量でC:0.3%以下,Si:
1%以下,Mn:1.25%以下,Cr:8〜30%,
Mo:3%以下,W:4%以下,Ni:6%以下を含有
し、平均結晶粒径が1μm以下であることを特徴とする
高強度高耐食性フェライト鋼。
[2] C: 0.3% or less by weight, Si:
1% or less, Mn: 1.25% or less, Cr: 8 to 30%,
A high-strength, high-corrosion-resistant ferritic steel containing Mo: 3% or less, W: 4% or less, Ni: 6% or less, and having an average crystal grain size of 1 µm or less.

【0024】〔3〕 重量でC:0.3%以下,Si:
1%以下,Mn:1.25%以下,Cr:8〜30%を
含み、Ti:1.0%以下,V:1.0%以下,Nb:
2.0%以下,Zr:2.0%以下の少なくとも1種を2
%以下含有し、平均結晶粒径が1μm以下であることを
特徴とする高強度高耐食性フェライト鋼。
[3] C: 0.3% or less by weight, Si:
1% or less, Mn: 1.25% or less, Cr: 8 to 30%, Ti: 1.0% or less, V: 1.0% or less, Nb:
2.0% or less, Zr: 2.0% or less
%, And an average crystal grain size of 1 μm or less.

【0025】〔4〕 重量でC:0.3%以下,Si:
1%以下,Mn:1.25%以下,Cr:8〜30%,
Mo:3%以下,W:4%以下,Ni:6%以下を含
み、Ti:1.0%以下,V:1.0%以下,Nb:2.
0%以下,Zr:2.0%以下の少なくとも1種を2%
以下含有し、平均結晶粒径が1μm以下であることを特
徴とする高強度高耐食性フェライト鋼。
[4] C: 0.3% or less by weight, Si:
1% or less, Mn: 1.25% or less, Cr: 8 to 30%,
Mo: 3% or less, W: 4% or less, Ni: 6% or less, Ti: 1.0% or less, V: 1.0% or less, Nb: 2.
0% or less, Zr: 2.0% or less, at least one of 2%
A high-strength, high-corrosion-resistant ferritic steel, characterized by having an average crystal grain size of 1 μm or less.

【0026】〔5〕 主としてフェライト相と炭化物か
らなる組織を呈し、フェライト相の平均結晶粒径Dが
0.03μm以下であるとき、Dと炭化物の平均結晶粒
径dとの比(D/d)が0.8〜2である前記〔1〕〜
〔4〕のいずれかに記載の高強度高耐食性フェライト
鋼。
[5] When the ferrite phase has a structure mainly composed of a ferrite phase and a carbide, and the average crystal grain size D of the ferrite phase is 0.03 μm or less, the ratio of D to the average crystal grain size d of the carbide (D / d) ) Is 0.8 to 2, wherein [1] to
The high-strength, high-corrosion-resistant ferritic steel according to any one of [4].

【0027】〔6〕 主としてフェライト相と炭化物か
らなる組織を呈し、フェライト相の平均結晶粒径Dが
0.03μm以上であるときDと炭化物の平均結晶粒径
dとの比(D/d)が1〜10である前記〔1〕〜
〔4〕のいずれかに記載の高強度高耐食性フェライト
鋼。
[6] The ratio (D / d) between D and the average crystal grain size d of carbide when the average crystal grain size D of ferrite phase is 0.03 μm or more, showing a structure mainly composed of ferrite phase and carbide. Is [1] to [10].
The high-strength, high-corrosion-resistant ferrite steel according to any one of [4].

【0028】〔7〕 前記〔1〕〜〔4〕のいずれかに
記載した組成を有する合金の粉末、あるいは、総体とし
て前記組成を満たす混合粉末を、機械的グラインディン
グにより合金化処理し、該合金化処理した加工粉末を容
器に真空封入した後、500〜900℃で200MPa
以上で等方圧加圧処理するすることを特徴とする高強度
高耐食性フェライト鋼の製造方法。
[7] An alloy powder having the composition described in any one of the above [1] to [4] or a mixed powder satisfying the above composition as a whole is alloyed by mechanical grinding. After vacuum-sealing the alloyed processing powder in a container, it is 200MPa at 500-900 ° C.
A method for producing a high-strength, high-corrosion-resistant ferritic steel, characterized by performing isotropic pressure treatment as described above.

【0029】〔8〕 前記〔1〕〜〔4〕のいずれかに
記載した組成を有する合金の粉末、あるいは総体として
前記組成を満たす混合粉末を、機械的グラインディング
により合金化処理し、該合金化処理した加工粉末を容器
に真空封入した後、500〜900℃で400MPa以
下で等方圧加圧処理し、次いで、500〜900℃で圧
延を行うことを特徴とする高強度高耐食性フェライト鋼
の製造方法。
[8] An alloy powder having the composition described in any of the above [1] to [4] or a mixed powder satisfying the above composition as a whole is subjected to alloying treatment by mechanical grinding. A high-strength, high-corrosion-resistant ferritic steel characterized in that, after vacuum-sealing the processed powder in a container, isotropically pressurizing at 500 to 900 ° C. at 400 MPa or less, and then rolling at 500 to 900 ° C. Manufacturing method.

【0030】[0030]

【発明の実施の形態】本発明のナノ結晶鉄鋼材料の製造
方法は、CおよびCrの他に炭化物形成元素の強化元素
を加えた所定の組成比に調整された混合粉末を、アトラ
イター,ボールミル等により機械的にグラインディン
グ、あるいは、合金化し、金属製の容器に真空封入した
後、500〜900℃で固形化することにより解決され
る。固形化手法には2通りの手順があり、一つは200
MPa以上好ましくは400MPa以上の圧力下で熱間
等方圧加圧処理(以下、HIP処理と云う)のみで固形
化する手法、もう一つは300MPa以下の圧力下での
HIP処理に加えて、500〜900℃で断面減少率7
5%以下の圧延を行う手法である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a nanocrystalline steel material according to the present invention comprises the steps of: mixing a mixed powder adjusted to a predetermined composition ratio in which a reinforcing element of a carbide forming element is added in addition to C and Cr; The problem can be solved by mechanically grinding or alloying by, for example, vacuum-sealing in a metal container, and then solidifying at 500 to 900 ° C. There are two procedures for solidification, one for 200
A method of solidifying only by hot isostatic pressing under a pressure of at least 400 MPa, preferably at least 400 MPa (hereinafter, referred to as HIP treatment), and another method in addition to the HIP treatment under a pressure of 300 MPa or less, Cross-sectional reduction rate 7 at 500-900 ° C
This is a method of performing rolling of 5% or less.

【0031】上記において、前者の手法は比較的低い温
度で、比較的高い圧力下でHIP処理を行うことにあ
り、形成された超微細結晶粒をその結晶成長を抑えた焼
結により粉末から直接緻密なバルク材を作製することが
できる。微細結晶粒粉末を用いることにより塑性流動性
が高く、低い温度で容易に焼結ができ、焼結体より微細
な結晶粒となる。
In the above method, the former method is to perform HIP treatment at a relatively low temperature and under a relatively high pressure, and the formed ultrafine crystal grains are directly converted from powder by sintering while suppressing the crystal growth. A dense bulk material can be manufactured. By using the fine crystal grain powder, the plastic fluidity is high, the sintering can be easily performed at a low temperature, and the crystal grains are finer than the sintered body.

【0032】HIP処理で200MPa以上、特に、4
00MPaの高い圧力を加えるには、ガスの加熱による
昇圧と同時に、処理室の体積を強制的に減少させること
が必要になる。
In the HIP process, 200 MPa or more, especially 4 MPa
In order to apply a high pressure of 00 MPa, it is necessary to forcibly reduce the volume of the processing chamber at the same time as increasing the pressure by heating the gas.

【0033】その場合、処理室の容積に制限を受けるこ
とから、処理粉末の重量も一定量以下に限定される。し
かしながら、等方的な加圧による焼結であることから、
形状に関する制約は無く、ニアネットシェイプが可能に
なる。
In this case, since the volume of the processing chamber is limited, the weight of the processing powder is also limited to a certain amount or less. However, because of sintering by isotropic pressure,
There is no restriction on the shape, and near net shape is possible.

【0034】後者の手法は、比較的低圧のHIP処理と
圧延との2段階工程が必要であるが、前者のようなHI
P処理時の粉末量の制限は通常緩和される。従って、多
量の粉末の焼結が可能になる場合が多い。しかしながら
設定された温度範囲では圧力が低いため、HIPのみで
は緻密なバルクとはならず、粉末同士の間に空洞が残
る。この空洞を潰して緻密化する目的から圧延を行う必
要がある。機械的合金化に当っては、温度が再結晶温度
以上にならないように冷却して行うのが好ましい。
The latter method requires a two-step process of relatively low-pressure HIP processing and rolling.
The restriction on the amount of powder during the P treatment is usually relaxed. Therefore, it is often possible to sinter a large amount of powder. However, since the pressure is low in the set temperature range, the HIP alone does not form a dense bulk, and a cavity remains between the powders. It is necessary to perform rolling for the purpose of crushing and densifying this cavity. In the mechanical alloying, it is preferable to perform the cooling so that the temperature does not exceed the recrystallization temperature.

【0035】ナノスケールまでの結晶粒の微細化は、粉
末冶金法を適用し、極めて強い加工を達成でき、合金化
プロセスの併用が可能な機械的ミリング法を活用するの
がよい。
For the refinement of the crystal grains down to the nanoscale, it is preferable to apply a powder metallurgy method and to use a mechanical milling method which can achieve extremely strong working and can be used in combination with an alloying process.

【0036】強加工を行うには、粉末加工の量産が期待
できる大型のボールミルあるいはアトリッションミルが
適している。機械的性質の優れたナノ結晶バルク材料を
得るには、機械的ミリング中に容器を空冷または水冷し
ながら、粉末の温度を好ましくは100℃以下、より好
ましくは60℃以下に保持することにより、処理粉末の
結晶粒径の平均サイズが、0.2μm以下、好ましくは
0.05μm以下まで加工することができる。
A large ball mill or an attrition mill, which can be expected to be mass-produced in powder processing, is suitable for performing strong processing. In order to obtain a nanocrystalline bulk material having excellent mechanical properties, by keeping the temperature of the powder preferably at 100 ° C. or lower, more preferably at 60 ° C. or lower while air-cooling or water-cooling the container during mechanical milling, The processing powder can be processed to have an average crystal grain size of 0.2 μm or less, preferably 0.05 μm or less.

【0037】機械的ミリング粉末の焼結は、加圧による
粉末の塑性変形のみでなく、結晶粒界の拡散を介して生
じる超塑性変形の助けにより進行する。加工粉末の平均
結晶粒径が0.2μmを超える場合は、超塑性変形が十
分でなく、本発明で提示した焼結条件では、内部に空洞
が残ってしまい、緻密なバルク材を提供することができ
ない。本発明材は平均結晶粒径が1μm以下、好ましく
は0.01〜0.5μm、より好ましくは0.05〜0.2
5μmがよい。
The sintering of the mechanical milling powder proceeds not only with the plastic deformation of the powder under pressure, but also with the aid of superplastic deformation that occurs through the diffusion of grain boundaries. If the average crystal grain size of the processed powder exceeds 0.2 μm, the superplastic deformation is not sufficient, and the sintering conditions presented in the present invention leave voids inside and provide a dense bulk material. Can not. The material of the present invention has an average crystal grain size of 1 μm or less, preferably 0.01 to 0.5 μm, more preferably 0.05 to 0.2 μm.
5 μm is preferred.

【0038】原料の粉末は、所定の組成比に配合された
合金粉末を使うことが通常は好ましい。必要に応じて複
数の合金あるいは元素粉末を添加し、組成比を調整する
ことも可能である。各組成の元素粉末の混合粉体を原料
とすることもできるが、その際ボールミリングの処理時
間を十分に長くするなどのミリング条件を調整して、各
元素が加工粉末内部に偏析せず、均一化させることが必
要になる。
As the raw material powder, it is usually preferable to use an alloy powder blended in a predetermined composition ratio. If necessary, a plurality of alloys or elemental powders may be added to adjust the composition ratio. It is also possible to use a mixed powder of elemental powders of each composition as a raw material, but at that time, adjust the milling conditions such as sufficiently lengthening the ball milling time so that each element does not segregate inside the processing powder, It is necessary to make it uniform.

【0039】機械的グラインディング処理された加工粉
末は、金属製の容器に真空封入された後、HIP処理に
より固形化される。封入容器の材質は延性に優れた軟鋼
あるいはSUS304等を使用することが好ましい。容
器の形状、寸法および肉厚は、HIP装置の処理室の容
量あるいは最終製品の形状等の条件により決定される。
HIP処理後に圧延を行う場合は、圧延に適した角柱形
状等の容器を使用することが好ましい。
The mechanically ground processed powder is vacuum-sealed in a metal container and then solidified by HIP. It is preferable to use mild steel having excellent ductility, SUS304, or the like as the material of the sealed container. The shape, size and thickness of the container are determined by conditions such as the capacity of the processing chamber of the HIP device and the shape of the final product.
When rolling is performed after the HIP treatment, it is preferable to use a container having a prism shape or the like suitable for rolling.

【0040】HIP処理の温度は、500℃〜900℃
の範囲で実施することが必要である。HIP処理温度が
500℃未満では内部に空洞が残存し、緻密なバルクと
することができない。900℃を超えると結晶粒成長が
顕著となり、ナノ結晶組織を維持することができなくな
る。結晶粒成長の抑制の観点からは、特に、550℃〜
750℃の範囲が好ましい。
The temperature of the HIP process is 500 ° C. to 900 ° C.
It is necessary to implement within the range. If the HIP processing temperature is lower than 500 ° C., cavities remain inside, and a dense bulk cannot be obtained. If the temperature exceeds 900 ° C., crystal grain growth becomes remarkable, and it becomes impossible to maintain the nanocrystalline structure. From the viewpoint of suppressing crystal grain growth, in particular, 550 ° C.
A range of 750 ° C. is preferred.

【0041】十分に加工歪みが蓄積された粉末の場合
は、HIP処理時に前記の温度範囲で200MPa以上
の圧力を加えることで、内部空洞を含まない緻密なバル
ク材が形成される。好ましくは350MPa以上の圧力
とするのがよい。HIP処理時の最高温度における保持
時間は、少なくとも1時間以上、好ましくは3時間以上
がよい。
In the case of a powder having sufficiently accumulated processing strain, a dense bulk material containing no internal cavity is formed by applying a pressure of 200 MPa or more in the aforementioned temperature range during the HIP process. Preferably, the pressure is 350 MPa or more. The holding time at the maximum temperature during the HIP treatment is at least 1 hour or more, preferably 3 hours or more.

【0042】粉末の組成、あるいは、機械的ミリングの
加工の程度によっては、前記の温度範囲における圧力4
00MPa以下のHIP処理後に、試料内部に空洞が残
る場合がある。特に、HIP処理時の圧力が200MP
a以下の場合その傾向は顕著となる。その際は、HIP
処理後の試料に圧延等の熱間加工を行って、内部空洞を
消滅させ緻密化させる必要がある。
Depending on the composition of the powder or the degree of mechanical milling, the pressure in the above-mentioned temperature range may be less than 4.
After the HIP treatment at a pressure of 00 MPa or less, a cavity may remain inside the sample. In particular, the pressure during HIP processing is 200MP
In the case of a or less, the tendency becomes remarkable. In that case, HIP
It is necessary to subject the processed sample to hot working such as rolling to eliminate the internal cavities and make them denser.

【0043】加工温度はHIP処理と同じ温度範囲とす
ることが好ましい。熱間加工は材料の破壊を防ぐため、
加工工程を数回繰り返して、最終的な加工度に仕上げる
ことが好ましい。
The processing temperature is preferably in the same temperature range as the HIP processing. Hot working prevents material destruction,
It is preferable to repeat the processing steps several times to finish to the final processing degree.

【0044】最終的な加工度は、加工前に比べて断面減
少率で75%以下とすることが好ましい。最終加工製品
の寸法を考慮すると、加工度は60%以下とすることが
より好ましい。加工前の試料は内部に空洞を含むもの
の、個々の粉末は周囲の粉末と強固に密着しているた
め、加工時に十分な拘束が作用する。同時に超塑性変形
の作用が加わることで、少ない加工度でも十分に緻密な
バルクを作製することができる。
It is preferable that the final working ratio is 75% or less in terms of a cross-sectional reduction ratio before the working. Considering the dimensions of the final processed product, it is more preferable that the degree of processing be 60% or less. Although the sample before processing contains cavities inside, the individual powders are firmly adhered to the surrounding powder, so that a sufficient constraint acts during processing. At the same time, by the action of superplastic deformation, a sufficiently dense bulk can be produced even with a small working ratio.

【0045】強度および耐食性を最も高めるための望ま
しい組織形態は、合金がFe−Crフェライト相をマト
リックスとし、マトリックスを形成する結晶の平均粒径
が0.01〜0.5μmの範囲にあることである。
A desirable morphology for maximizing strength and corrosion resistance is that the alloy has an Fe-Cr ferrite phase as a matrix, and the average grain size of crystals forming the matrix is in the range of 0.01 to 0.5 μm. is there.

【0046】組織中にはM236およびMC等の炭化
物、あるいは、Cr23等の析出物も存在する。析出物
のサイズは通常マトリックスの結晶粒と同程度かそれ以
下である。多量の粒界の導入は、変形抵抗を増加させ強
度を向上させる。また粒界はPやSといった不純物が偏
析して腐食サイトになるのだが、高密度に導入されるこ
とによって不純物を分散させ、局部的に大きく腐食され
にくくなる他、粒界を通じたCrなどの保護皮膜生成元
素の表面への拡散が促進され、迅速な保護皮膜生成によ
り腐食を抑制する。
The structure also contains carbides such as M 23 C 6 and MC, or precipitates such as Cr 2 O 3 . The size of the precipitate is usually about the same as or smaller than the crystal grains of the matrix. The introduction of a large amount of grain boundaries increases deformation resistance and improves strength. At the grain boundaries, impurities such as P and S segregate to become corrosion sites. However, by being introduced at a high density, the impurities are dispersed, so that they are hardly corroded locally. Diffusion of the protective film forming element to the surface is promoted, and corrosion is suppressed by rapid protective film formation.

【0047】このように、炭化物形成元素の添加によっ
て、機械的合金化に際して結晶粒がどんどん細かくで
き、超微細な結晶が得られる。
As described above, by the addition of the carbide forming element, the crystal grains can be made finer and finer at the time of mechanical alloying, and an ultrafine crystal can be obtained.

【0048】Crは合金の耐食性向上の目的から通常8
%、好ましくは10%以上の濃度とすることが好まし
い。濃度が30%を超えると、脆化を引き起こす化合物
の析出が顕著となることから8〜30%とする。
Cr is usually 8 for the purpose of improving the corrosion resistance of the alloy.
%, Preferably 10% or more. If the concentration exceeds 30%, precipitation of the compound causing embrittlement becomes remarkable, so that the content is set to 8 to 30%.

【0049】MoおよびWは通常マトリックスに固溶
し、一部は炭化物として析出することで材料を強化する
作用を持つ。従って材料を高強度化する場合は、これら
の元素を添加することが有効となる。両元素共に過剰な
添加は、脆化の要因となる金属間化合物の析出を引き起
こすので好ましくない。Moを添加する場合は上限を3
%、Wを添加する場合は上限を4%とする。特に、Mo
は0.5〜1.5%、Wは0.5〜3%、より好ましくは
1.0〜2.5%がよい。
Mo and W usually have a function of strengthening the material by forming a solid solution in the matrix and partially precipitating them as carbides. Therefore, when increasing the strength of the material, it is effective to add these elements. Excessive addition of both elements is not preferable because it causes precipitation of an intermetallic compound which causes embrittlement. When adding Mo, the upper limit is 3
% And W, the upper limit is 4%. In particular, Mo
Is preferably 0.5 to 1.5%, W is 0.5 to 3%, and more preferably 1.0 to 2.5%.

【0050】Niは通常マトリックスに固溶し、耐食性
を向上させる作用を持つ。従って材料の耐食性を向上さ
せるのに有効となる。過剰な添加はフェライト相を不安
定にするため好ましくない。添加する場合は上限を6%
とすることが好ましい。特に、Niは0.3〜1.0%が
好ましい。
Ni usually forms a solid solution in the matrix and has an effect of improving corrosion resistance. Therefore, it is effective for improving the corrosion resistance of the material. Excessive addition is not preferable because it makes the ferrite phase unstable. When adding, the upper limit is 6%
It is preferable that In particular, Ni is preferably from 0.3 to 1.0%.

【0051】Ti、Zrは鉄鋼材料へ添加した場合、通
常炭化物として析出し材料を強化するほか、結晶粒成長
を抑制する作用を持つ。粉末を原料とする本合金におい
ては、酸素不純物のゲッター材として作用して、マトリ
ックスを高純度化する作用を有する。一方、過度の合金
への添加は材料の脆化を引き起こす。Tiを添加する際
の好ましい範囲は1.0%以下とすることが望ましい。
Zrを添加する際の好ましい範囲は2.0%以下とする
ことが望ましい。特に、Tiは0.05〜0.5%、Zr
は0.05〜0.5%が好ましい。
When Ti and Zr are added to a steel material, they usually precipitate as carbides to strengthen the material and also have an effect of suppressing the growth of crystal grains. In the present alloy using powder as a raw material, it acts as a getter material for oxygen impurities, and has an effect of purifying the matrix. On the other hand, excessive addition to the alloy causes embrittlement of the material. The preferred range for adding Ti is desirably 1.0% or less.
The preferable range for adding Zr is desirably 2.0% or less. In particular, Ti is 0.05-0.5%, Zr
Is preferably 0.05 to 0.5%.

【0052】V、Nbは鉄鋼材料へ添加した場合、通常
炭化物として析出し材料を強化するほか、結晶粒成長を
抑制する作用を持つ。一方過度の合金への添加は材料の
脆化を引き起こす。Vを添加する際の好ましい範囲は
1.0%以下とすることが望ましい。Nbを添加する際
の好ましい範囲は2.0%以下とすることが望ましい。
特に、Vは0.05〜0.5%、Nbは0.2〜1.0%が
好ましい。
When V and Nb are added to a steel material, they usually precipitate as carbides to strengthen the material, and also have the effect of suppressing the growth of crystal grains. On the other hand, excessive addition to the alloy causes embrittlement of the material. The preferred range for adding V is desirably 1.0% or less. The preferred range for adding Nb is desirably 2.0% or less.
In particular, V is preferably 0.05 to 0.5%, and Nb is preferably 0.2 to 1.0%.

【0053】さらにTi、Zr、VおよびNbの4元素
の内、複数元素を同時に添加物する場合は、炭化物の過
剰な析出を抑制する目的から、前記4元素の添加量の総
量を2%以下とすることが好ましい。総量が2%を超え
ると炭化物の析出量が増大し、材料の脆化を引き起こす
ことから好ましくない。
Further, when a plurality of elements are simultaneously added among the four elements of Ti, Zr, V and Nb, the total amount of the four elements to be added is 2% or less for the purpose of suppressing excessive precipitation of carbide. It is preferable that If the total amount exceeds 2%, the precipitation amount of carbides increases, which causes embrittlement of the material, which is not preferable.

【0054】Cは固溶強化、炭化物析出強化の観点から
少なくとも0.02%以上含まれることが好ましい。し
かしながら過度の添加は、クロム炭化物の過剰な析出を
生じさせ、マトリックスの固溶クロム量の減少による耐
食性の低下を引き起こす懸念がある。その上限は0.3
%以下とすることが好ましい。特に、0.07〜0.2%
が好ましい。
C is preferably contained at least 0.02% or more from the viewpoint of solid solution strengthening and carbide precipitation strengthening. However, excessive addition may cause excessive precipitation of chromium carbides, which may cause a reduction in the corrosion resistance due to a decrease in the amount of solute chromium in the matrix. The upper limit is 0.3
% Is preferable. In particular, 0.07 to 0.2%
Is preferred.

【0055】Si、Mnは素材粉末製造時の脱酸材とし
て添加され、さらに、Mnは脱硫剤として添加される。
フェライト系ステンレス鋼のJIS規格に準じてSiは
1%以下、Mnは1.25%以下とすることが好まし
い。特に、Siは0.05〜0.5%が、Mnは0.2〜
1.0%が好ましい。
Si and Mn are added as deoxidizers during the production of the raw material powder, and Mn is added as a desulfurizer.
According to the JIS standard of ferritic stainless steel, it is preferable that Si is 1% or less and Mn is 1.25% or less. In particular, Si is 0.05 to 0.5%, and Mn is 0.2 to 0.5%.
1.0% is preferred.

【0056】P、Sは素材粉末の製造時に含有され、耐
食性を減ずる作用を有する。フェライト系ステンレス鋼
のJIS規格に準じてPは0.6%以下、Sは0.03%
以下とすることが好ましい。次に本発明を実施例に基づ
き説明する。
P and S are contained during the production of the raw material powder, and have an effect of reducing the corrosion resistance. According to the JIS standard of ferritic stainless steel, P is 0.6% or less and S is 0.03%
It is preferable to set the following. Next, the present invention will be described based on examples.

【0057】[0057]

【実施例】〔実施例 1〕本発明に係るナノ結晶鉄鋼材
料の作製方法の実施例を説明する。本実施例では機械的
グラインディング処理に、図1の模式斜視図に示すアト
リッションミルを用いた。この装置は、容積25リット
ルのステンレス製粉砕タンク1、タンク1の冷却水入口
2、冷却水出口3、アルゴンまたは窒素ガスの置換ガス
をシールするガスシール4、重量5kgの原料混合粉末
5、粉砕タンク内の直径10mmの粉砕用鋼製ボール
6、アジテータアーム7からなる。
[Embodiment 1] An embodiment of a method for producing a nanocrystalline steel material according to the present invention will be described. In the present embodiment, an attrition mill shown in the schematic perspective view of FIG. 1 was used for the mechanical grinding process. This apparatus comprises a 25-liter stainless steel grinding tank 1, a cooling water inlet 2, a cooling water outlet 3, a gas seal 4 for sealing a replacement gas of argon or nitrogen gas, a raw material mixed powder 5 weighing 5 kg, It is composed of a steel ball for grinding 10 mm in diameter in a tank and an agitator arm 7.

【0058】外部から回転駆動力がアーム軸8に伝えら
れ、アジテータアーム7が回転運動する。アジテータア
ーム7によって粉砕用鉄鋼ボール6が撹拌され、該ボー
ル6同士、ボール6とタンク1の内壁間で衝突が生じ、
原料混合粉末5が加工され微細結晶粒の合金粉末が得ら
れた。アーム軸8の回転速度は150rpmとし、ミリ
ング処理時間は150時間とした。ミリング中の容器内
は60℃以下であった。
A rotational driving force is transmitted from the outside to the arm shaft 8, and the agitator arm 7 rotates. The agitator arm 7 stirs the crushing steel balls 6 and causes collision between the balls 6 and between the balls 6 and the inner wall of the tank 1.
The raw material mixed powder 5 was processed to obtain a fine crystal grain alloy powder. The rotation speed of the arm shaft 8 was set to 150 rpm, and the milling time was set to 150 hours. The temperature inside the container during the milling was 60 ° C. or less.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】本発明に係る各種ナノ結晶フェライト鋼の
主要化学成分(重量%)を表1に示す。No.1〜6の
鋼種は12クロム鋼、No.7〜10は18クロム鋼、
No.11,12は25クロム鋼の組成にそれぞれ調整
された。この内、No.6,10,12は粉末焼結材で
はなく、溶解後に1100℃溶体化熱処理、600℃焼
戻し熱処理を経て作製された比較材である。
Table 1 shows the main chemical components (% by weight) of the various nanocrystalline ferritic steels according to the present invention. No. 1 to 6 steel type is 12 chrome steel, No. 7 to 10 is 18 chrome steel,
Nos. 11 and 12 were each adjusted to a composition of 25 chromium steel. Among them, Nos. 6, 10, and 12 are not powdered sintered materials, but are comparative materials produced through a solution heat treatment at 1100 ° C. and a tempering heat treatment at 600 ° C. after melting.

【0062】粉末焼結材のミリング処理粉末は、重量約
500gを外径50mm×高さ75mm×肉厚1mmの
軟鋼製の円筒状容器に真空封入され、温度650℃、圧
力590MPaの条件下で、4時間のHIP処理を行う
ことで固形化された。
The milled powder of the powdered sintered material is vacuum-enclosed in a mild steel cylindrical container having an outer diameter of 50 mm, a height of 75 mm and a wall thickness of 1 mm at a temperature of 650 ° C. and a pressure of 590 MPa. And was solidified by performing HIP treatment for 4 hours.

【0063】粉末原料としては、各鋼種の組成に調整さ
れた合金粉末を使用した。これら合金粉末はArガスア
トマイズ法により作製した。粉末焼結材に関して、HI
P処理後の光学顕微鏡による組織観察を行った結果、内
部に空洞の存在は確認されず、650℃のHIP処理に
よりほぼ完全なバルク試料が形成されることが確認され
た。
As the powder raw material, an alloy powder adjusted to the composition of each steel type was used. These alloy powders were produced by an Ar gas atomizing method. Regarding powder sintered materials, HI
As a result of observation of the structure with an optical microscope after the P treatment, the presence of a cavity was not confirmed, and it was confirmed that an almost complete bulk sample was formed by the 650 ° C. HIP treatment.

【0064】表2は、表1に示した各鋼種のバルク試料
における平均結晶粒径とビッカース硬さの値を示す。平
均結晶粒径の値は電子顕微鏡による組織観察から求め
た。
Table 2 shows the average crystal grain size and Vickers hardness values of the bulk samples of each steel type shown in Table 1. The value of the average crystal grain size was determined by observing the structure with an electron microscope.

【0065】表2において、比較材No.3,5,7の
硬さはいずれもHV200以下であるのに対し、粉末焼
結材の硬さはHV400以上の値を示す。鉄鋼材料の硬
さは降伏応力にほぼ比例することが知られており、この
硬さの増大は機械的グラインディング処理の強加工によ
り、結晶粒が微細化された結果であると考えられる。
In Table 2, the hardness of each of Comparative Materials Nos. 3, 5, and 7 is HV 200 or less, while the hardness of the powder sintered material is HV 400 or more. It is known that the hardness of a steel material is almost proportional to the yield stress, and it is considered that the increase in the hardness is a result of the crystal grains being refined by the strong working of the mechanical grinding process.

【0066】電子顕微鏡による組織観察を行った結果、
表1の本発明材の組織はいずれも、α−フェライト相を
マトリックスとし、Cr236型、Cr73型の炭化物
が析出していることが確認された。またV,Nb,T
i,Zrを比較的多く含む鋼No.4,5,8,9にお
いては、これら元素と炭素が反応したMC型の炭化物の
析出も確認された。
As a result of observation of the structure with an electron microscope,
In each of the structures of the materials of the present invention in Table 1, it was confirmed that the α-ferrite phase was used as a matrix and that Cr 23 C 6 type and Cr 7 C 3 type carbides were precipitated. V, Nb, T
In steels Nos. 4, 5, 8, and 9 containing relatively large amounts of i and Zr, precipitation of MC type carbide in which these elements reacted with carbon was also confirmed.

【0067】〔実施例 2〕鋼種1の組成のミリング処
理粉末2kgを、外径50×60×130mm、厚さ
1.2mmのSUS304ステンレス製の缶に真空封入
して、温度650℃、圧力196MPaの条件下で4時
間のHIP処理を行った。
Example 2 2 kg of milling powder having the composition of steel type 1 was vacuum-sealed in a SUS304 stainless steel can having an outer diameter of 50 × 60 × 130 mm and a thickness of 1.2 mm, and the temperature was 650 ° C. and the pressure was 196 MPa. HIP treatment was performed for 4 hours under the conditions described above.

【0068】HIP処理後の試料は外側の缶を削除され
ることなく、大気中で650℃で加熱した後、断面減少
率54%(最終試料厚さ18mm)まで繰り返し圧延に
よる熱間加工を行った。
The sample after the HIP treatment was heated at 650 ° C. in the air without removing the outer can, and then hot-worked by rolling repeatedly until the cross-sectional reduction rate was 54% (final sample thickness 18 mm). Was.

【0069】圧延後の試料組織を光学顕微鏡観察により
調べた結果、内部空洞は存在せず、上記成形プロセスに
よりミリング粉末が、ほぼ完全に固形化されることが確
認された。表3に196MPa,HIP+圧延材につい
て室温で引張り試験を行い(表3−1)、同じ組成を持
つ溶解材(表1の鋼種No.6)の強度(表3−2)、
および、650℃,590MPaでHIP処理して固形
化した試料と、強度(表3−3)を比較した結果を示
す。
As a result of examining the sample structure after rolling by an optical microscope, it was confirmed that there was no internal cavity and the milling powder was almost completely solidified by the above-mentioned molding process. In Table 3, a tensile test was conducted at room temperature on the 196 MPa, HIP + rolled material (Table 3-1), and the strength (Table 3-2) of a molten material having the same composition (steel type No. 6 in Table 1) was obtained.
And the result which compared the intensity | strength (Table 3-3) with the sample solidified by HIP processing at 650 degreeC and 590 Mpa is shown.

【0070】[0070]

【表3】 [Table 3]

【0071】196MPa,HIP+圧延材は、590
MPa,HIP材に比べると、僅かな強度の低下が見ら
れるのみで、溶解材に比べると0.2%耐力、引張強さ
共に2倍以上の高い値を示す。また表3に、電子顕微鏡
観察から評価した各試料の平均結晶粒径も併記するが、
引張り強度の増大に伴い結晶粒径が減少する傾向が明瞭
に示されている。
196 MPa, HIP + rolled material is 590
Only a slight decrease in strength is seen as compared with the MPa and HIP materials, and both the 0.2% proof stress and the tensile strength show twice or more higher values than the melted material. Table 3 also shows the average crystal grain size of each sample evaluated from electron microscope observation.
The tendency of the crystal grain size to decrease with increasing tensile strength is clearly shown.

【0072】この結果から、機械的グラインディング粉
末を、低温域におけるHIP+圧延加工によるプロセス
により固形化することで、内部空洞の存在しない緻密、
かつ、高強度の高クロム鉄鋼材料が作製できることが示
された。
From the above results, it was found that the mechanical grinding powder was solidified by a process of HIP + rolling in a low temperature range, so that the fine powder having no internal cavities was obtained.
And it was shown that a high strength high chromium steel material can be produced.

【0073】[0073]

【発明の効果】本発明のフェライト鋼およびその製造方
法は、機械的ミリング処理により粉末の組織を超微細化
し、結晶粒成長を抑制して固形化しているので、得られ
たバルク材はナノスケールの微細結晶粒組織が均一に分
布しており、高強度並びに高耐食性を有し、前記特性が
材料の全体に均一とすることができる。
According to the ferrite steel and the method for producing the same of the present invention, since the powder structure is made ultra-fine by mechanical milling treatment and crystal growth is suppressed and solidified, the obtained bulk material is nanoscale. The fine grain structure is uniformly distributed, has high strength and high corrosion resistance, and the above characteristics can be uniform throughout the material.

【0074】通常の鉄鋼材料に添加されている合金元素
からなる組成でナノスケールの微細結晶粒組織を達成し
ているので、レアメタルなどを含有することもなく、リ
サイクル性に優れたフェライト鋼を提供できる。
Since a nano-scale fine grain structure has been achieved with a composition comprising alloying elements added to a normal steel material, a ferrite steel excellent in recyclability without containing a rare metal or the like is provided. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アトミッションミルの説明図である。FIG. 1 is an explanatory view of an atomization mill.

【符号の説明】[Explanation of symbols]

1…粉砕タンク、2…冷却水入口、3…冷却水出口、4
…ガスシール、5…原料混合粉末、6…粉砕用鉄鋼ボー
ル、7…アジテータアーム、8…アーム軸。
1 ... Crushing tank, 2 ... Cooling water inlet, 3 ... Cooling water outlet, 4
... gas seal, 5 ... raw material mixed powder, 6 ... steel balls for grinding, 7 ... agitator arm, 8 ... arm shaft.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年7月26日(1999.7.2
6)
[Submission date] July 26, 1999 (1999.7.2)
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 高強度高耐食性フェライト鋼の製造方
[Title of the Invention] Manufacturing method of high strength and high corrosion resistant ferritic steel

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【請求項】 請求項1〜4のいずれかにおいて50
0〜900℃で200〜400MPaで等方圧加圧焼結
し、次いで、500〜900℃で圧延を行うことを特徴
とする高強度高耐食性フェライト鋼の製造方法。
7. The claim 1, 50
0-900 isostatic and pressure sintering <br/> in 200~400MP a at ° C., then, the high strength and high corrosion resistance method for producing a ferritic steel which is characterized in that the rolling at 500 to 900 ° C..

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は新規なフェライト鋼
に係わり、腐食環境、高応力負荷環境下で使用するに好
適な高強度高耐食性フェライト鋼の製造方法に関する。
The present invention relates to a novel ferritic steel, and more particularly to a method for producing a high-strength and high-corrosion-resistant ferritic steel suitable for use in a corrosive environment and a high stress load environment.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】本発明の目的は、ナノスケールの超微細結
晶組織を有する高強度高耐食性フェライト鋼の製造方法
を提供することにある。
An object of the present invention is to provide a method for producing a high-strength, high-corrosion-resistant ferritic steel having a nanoscale ultrafine crystal structure.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】〔1〕 重量でC:0.07〜0.3%,
i:1%以下,Mn:1.25%以下,Cr:8〜30
%、および、残部Feからなる粉末を機械的グラインデ
ィングにより合金化処理し、該合金化処理した加工粉末
を容器に真空封入した後、等方圧加圧焼結し、該焼結体
の平均結晶粒径1μm以下とすることを特徴とする高
強度高耐食性フェライト鋼の製造方法
[1] C: 0.07 to 0.3 % by weight , S
i: 1% or less, Mn: 1.25% or less, Cr: 8 to 30
% And the powder consisting of the balance Fe
Alloyed by the alloying, the alloyed processed powder
After vacuum-sealed to the vessel, isostatic-pressure and sintered, high strength and high manufacturing method of corrosion-resistant ferritic steel characterized by average to Rukoto and the crystal grain size 1μm or less of the sintered body.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】〔2〕 重量でC:0.07〜0.3%,
i:1%以下,Mn:1.25%以下,Cr:8〜30
%,Mo:3%以下,W:4%以下,Ni:6%以下、
および、残部Feからなる粉末を機械的グラインディン
グにより合金化処理し、該合金化処理した加工粉末を容
器に真空封入した後、等方圧加圧焼結し、該焼結体の平
均結晶粒径1μm以下とすることを特徴とする高強度
高耐食性フェライト鋼の製造方法
[2] C: 0.07 to 0.3 % by weight , S
i: 1% or less, Mn: 1.25% or less, Cr: 8 to 30
%, Mo: 3% or less, W: 4% or less, Ni: 6% or less,
And mechanically grind the powder consisting of the balance Fe.
Alloying treatment with the alloy, and process the alloyed processing powder.
After vacuum sealed in a vessel, isostatic-pressure and sintered, high strength and high manufacturing method of corrosion-resistant ferritic steel characterized by average to Rukoto and the crystal grain size 1μm or less of the sintered body.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】〔3〕 重量でC:0.07〜0.3%,
i:1%以下,Mn:1.25%以下,Cr:8〜30
%を含み、Ti:1.0%以下,V:1.0%以下,N
b:2.0%以下,Zr:2.0%以下の少なくとも1種
を2%以下、および、残部Feからなる粉末を機械的グ
ラインディングにより合金化処理し、該合金化処理した
加工粉末を容器に真空封入した後、等方圧加圧焼結し、
該焼結体の平均結晶粒径を1μm以下とすることを特徴
とする高強度高耐食性フェライト鋼の製造方法
[3] C: 0.07 to 0.3 % by weight , S
i: 1% or less, Mn: 1.25% or less, Cr: 8 to 30
%, Ti: 1.0% or less, V: 1.0% or less, N
b: 2.0% or less, Zr: 2.0% or less, at least one kind is 2% or less, and the powder consisting of the balance Fe is mechanically crushed.
Alloyed by lineding and alloyed
After vacuum-sealing the processed powder in a container, isostatic pressing and sintering,
A high strength and high manufacturing method of corrosion-resistant ferritic steel which the average crystal grain size, wherein 1μm or less and to Rukoto the sintered body.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】〔4〕 重量でC:0.07〜0.3%,
i:1%以下,Mn:1.25%以下,Cr:8〜30
%,Mo:3%以下,W:4%以下,Ni:6%以下を
含み、Ti:1.0%以下,V:1.0%以下,Nb:
2.0%以下,Zr:2.0%以下の少なくとも1種を2
%以下、および、残部Feからなる粉末を機械的グライ
ンディングにより合金化処理し、該合金化処理した加工
粉末を容器に真空封入した後、等方圧加圧焼結し、該焼
結体の平均結晶粒径1μm以下とすることを特徴とす
る高強度高耐食性フェライト鋼の製造方法
[4] C: 0.07 to 0.3 % by weight , S
i: 1% or less, Mn: 1.25% or less, Cr: 8 to 30
%, Mo: 3% or less, W: 4% or less, Ni: 6% or less, Ti: 1.0% or less, V: 1.0% or less, Nb:
2.0% or less, Zr: 2.0% or less
% Or less and the balance consisting of Fe
Alloying process by bonding
After the powder was vacuum sealed to the vessel, isostatic-pressure and sintered, high strength and high manufacturing method of corrosion-resistant ferritic steel characterized by average to Rukoto and the crystal grain size 1μm or less of the sintered body.

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】〔5〕 前記焼結体は、主としてフェライ
ト相と炭化物からなる組織を呈し、フェライト相の平均
結晶粒径Dが0.03μm以下であるとき、Dと炭化物
の平均結晶粒径dとの比(D/d)を1〜10とする前
記〔1〕〜〔4〕のいずれかに記載の高強度高耐食性フ
ェライト鋼の製造方法
[5] The sintered body has a structure mainly composed of a ferrite phase and a carbide. When the average crystal grain diameter D of the ferrite phase is 0.03 μm or less, the average crystal grain diameter d and the average crystal grain diameter d of the carbide are determined. the method of manufacturing a ratio (D / d) said you 1 to 10 (1) to the high strength and high corrosion resistance ferritic steel according to any one of [4].

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】〔6〕 前記焼結体は、主としてフェライ
ト相と炭化物からなる組織を呈し、フェライト相の平均
結晶粒径Dが0.03μm以上であるときDと炭化物
の平均結晶粒径dとの比(D/d)を0.8〜2とす
前記〔1〕〜〔4〕のいずれかに記載の高強度高耐食性
フェライト鋼の製造方法
[6] The sintered body presents a structure mainly composed of a ferrite phase and a carbide, and when the average crystal grain size D of the ferrite phase is 0.03 μm or more , D and the average crystal grain size d of the carbide the method of manufacturing a ratio (D / d) of the shall be the 0.8 to 2 (1) to the high strength and high corrosion resistance ferritic steel according to any one of [4].

【手続補正11】[Procedure amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】削除[Correction method] Deleted

【手続補正12】[Procedure amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】〔〕 前記〔1〕〜〔4〕のいずれかに
おいて500〜900℃で200〜400MPaで
方圧加圧焼結し、次いで、500〜900℃で圧延を行
うことを特徴とする高強度高耐食性フェライト鋼の製造
方法。
[0029] In any one of [7] above [1] to [4], and isostatic pressure sintering at 200~400MP a at 500 to 900 ° C., then, to carry out rolling at 500 to 900 ° C. Production method of high strength and high corrosion resistance ferritic steel.

【手続補正13】[Procedure amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】[0030]

【発明の実施の形態】本発明のナノ結晶鉄鋼材料の製造
方法は、CおよびCrの他に炭化物形成元素の強化元素
を加えた所定の組成比に調整された混合粉末を、アトラ
イター,ボールミル等により機械的にグラインディン
グ、あるいは、合金化し、金属製の容器に真空封入した
後、500〜900℃で固形化することにより解決され
る。固形化手法には2通りの手順があり、一つは200
〜400MPaの圧力下で熱間等方圧加圧処理(以下、
HIP処理と云う)のみで固形化する手法、もう一つは
300MPa以下の圧力下でのHIP処理に加えて、5
00〜900℃で断面減少率75%以下の圧延を行う手
法である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a nanocrystalline steel material according to the present invention comprises the steps of: mixing a mixed powder adjusted to a predetermined composition ratio in which a reinforcing element of a carbide forming element is added in addition to C and Cr; The problem can be solved by mechanically grinding or alloying by, for example, vacuum-sealing in a metal container, and then solidifying at 500 to 900 ° C. There are two procedures for solidification, one for 200
Hot isostatic pressing under a pressure of ~ 400 MPa (hereinafter, referred to as
Another method is to solidify only by HIP treatment, and the other method is to add 5% to HIP treatment under a pressure of 300 MPa or less.
This is a method in which rolling is performed at a temperature of 00 to 900 ° C. with a reduction in area of 75% or less.

【手続補正14】[Procedure amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0065[Correction target item name] 0065

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0065】表2において、比較材No.6,10,1
の硬さはいずれもHV200以下であるのに対し、粉
末焼結材の硬さはHV400以上の値を示す。鉄鋼材料
の硬さは降伏応力にほぼ比例することが知られており、
この硬さの増大は機械的グラインディング処理の強加工
により、結晶粒が微細化された結果であると考えられ
る。
In Table 2, comparative materials No. 6, 10, 1
Whereas the hardness of 2 are both HV200 or less, the hardness of the sintered powder material shows a value of more than HV400. It is known that the hardness of steel materials is almost proportional to the yield stress,
This increase in hardness is considered to be the result of crystal grains being refined by the strong processing of the mechanical grinding process.

【手続補正15】[Procedure amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0067[Correction target item name] 0067

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0067】〔実施例 2〕鋼種No.1の組成のミリ
ング処理粉末2kgを、外径50×60×130mm、
厚さ1.2mmのSUS304ステンレス製の缶に真空
封入して、温度650℃、圧力196MPaの条件下で
4時間のHIP処理を行った。
Example 2 2 kg of a milling powder having a composition of steel type No. 1 was put into an outer diameter of 50 × 60 × 130 mm.
It was vacuum-sealed in a SUS304 stainless steel can having a thickness of 1.2 mm, and subjected to a HIP treatment at 650 ° C. and a pressure of 196 MPa for 4 hours.

【手続補正16】[Procedure amendment 16]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0073[Correction target item name] 0073

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0073】[0073]

【発明の効果】本発明によれば、機械的ミリング処理に
より粉末の組織を超微細化し、結晶粒成長を抑制して固
形化しているので、得られたバルク材はナノスケールの
微細結晶粒組織が均一に分布しており、高強度並びに高
耐食性を有し、前記特性が材料の全体に均一とすること
ができる。
According to the present invention , the microstructure of the powder is made ultra-fine by mechanical milling and the solidification is suppressed by suppressing the crystal grain growth. Are uniformly distributed, have high strength and high corrosion resistance, and the characteristics can be uniform throughout the material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 和也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 阿部 輝宜 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 稲垣 正寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 住友 秀彦 山口県宇部市大字沖宇部573番地の3 株 式会社超高温材料研究所山口研究所内 (72)発明者 桝本 弘毅 山口県宇部市大字沖宇部573番地の3 株 式会社超高温材料研究所山口研究所内 Fターム(参考) 4K018 AA32 BA16 BC08 EA14 EA16 FA02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Kazuya Nishi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Teruyoshi Abe Omikamachi, Hitachi City, Ibaraki Prefecture Hitachi 1-1, Hitachi, Ltd. (72) Inventor Yasuhisa Aono 7-1-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi Research Laboratory, Hitachi, Ltd. (72) Masatoshi Inagaki Hitachi, Ibaraki 7-1-1, Omika-cho, Hitachi, Ltd.Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Hidehiko Sumitomo 573, Oki-Ube, Oji, Ube-shi, Yamaguchi Pref. Hiroki Masumoto F-term (reference) 4U018 AA32 BA1 at Yamaguchi Research Laboratory, Ultra High Temperature Materials Research Laboratories, 573 Oki Ube, Obe, Ube City, Yamaguchi Prefecture 6 BC08 EA14 EA16 FA02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.3%以下,Si:1%以
下,Mn:1.25%以下,Cr:8〜30%を含有
し、平均結晶粒径が1μm以下であることを特徴とする
高強度高耐食性フェライト鋼。
Claims 1. C: 0.3% or less, Si: 1% or less, Mn: 1.25% or less, Cr: 8 to 30% by weight, and the average crystal grain size is 1 μm or less. High strength, high corrosion resistance ferritic steel.
【請求項2】 重量でC:0.3%以下,Si:1%以
下,Mn:1.25%以下,Cr:8〜30%,Mo:
3%以下,W:4%以下,Ni:6%以下を含有し、平
均結晶粒径が1μm以下であることを特徴とする高強度
高耐食性フェライト鋼。
2. C: 0.3% or less, Si: 1% or less, Mn: 1.25% or less, Cr: 8 to 30%, Mo: by weight
A high-strength, high-corrosion-resistant ferritic steel containing 3% or less, W: 4% or less, Ni: 6% or less, and having an average crystal grain size of 1 μm or less.
【請求項3】 重量でC:0.3%以下,Si:1%以
下,Mn:1.25%以下,Cr:8〜30%を含み、
Ti:1.0%以下,V:1.0%以下,Nb:2.0%
以下,Zr:2.0%以下の少なくとも1種を2%以下
含有し、平均結晶粒径が1μm以下であることを特徴と
する高強度高耐食性フェライト鋼。
3. The composition contains, by weight, C: 0.3% or less, Si: 1% or less, Mn: 1.25% or less, and Cr: 8 to 30%.
Ti: 1.0% or less, V: 1.0% or less, Nb: 2.0%
A high-strength and high-corrosion-resistant ferritic steel containing at least one kind of Zr: 2.0% or less and 2% or less, and having an average crystal grain size of 1 μm or less.
【請求項4】 重量でC:0.3%以下,Si:1%以
下,Mn:1.25%以下,Cr:8〜30%,Mo:
3%以下,W:4%以下,Ni:6%以下を含み、T
i:1.0%以下,V:1.0%以下,Nb:2.0%以
下,Zr:2.0%以下の少なくとも1種を2%以下含
有し、平均結晶粒径が1μm以下であることを特徴とす
る高強度高耐食性フェライト鋼。
4. By weight, C: 0.3% or less, Si: 1% or less, Mn: 1.25% or less, Cr: 8 to 30%, Mo:
3% or less, W: 4% or less, Ni: 6% or less, T
i: not more than 1.0%, V: not more than 1.0%, Nb: not more than 2.0%, Zr: not more than 2.0%, not more than 2%, and having an average crystal grain size of not more than 1 μm. A high-strength, high-corrosion-resistant ferritic steel characterized by having
【請求項5】 主としてフェライト相と炭化物からなる
組織を呈し、フェライト相の平均結晶粒径Dが0.03
μm以下であるとき、Dと炭化物の平均結晶粒径dとの
比(D/d)が0.8〜2である請求項1〜4のいずれ
かに記載の高強度高耐食性フェライト鋼。
5. A structure mainly comprising a ferrite phase and a carbide, wherein the ferrite phase has an average crystal grain size D of 0.03.
The high-strength and high-corrosion-resistant ferritic steel according to any one of claims 1 to 4, wherein the ratio (D / d) of D to the average crystal grain size d of the carbide is 0.8 to 2 when the diameter is not more than μm.
【請求項6】 主としてフェライト相と炭化物からなる
組織を呈し、フェライト相の平均結晶粒径Dが0.03
μm以上であるときDと炭化物の平均結晶粒径dとの比
(D/d)が1〜10である請求項1〜4のいずれかに
記載の高強度高耐食性フェライト鋼。
6. A structure mainly comprising a ferrite phase and a carbide, wherein the ferrite phase has an average crystal grain size D of 0.03.
The high-strength and high-corrosion-resistant ferritic steel according to any one of claims 1 to 4, wherein the ratio (D / d) of D to the average crystal grain size d of the carbide is 1 to 10 when it is at least μm.
【請求項7】 請求項1〜4のいずれかに記載した組成
を有する合金の粉末、あるいは、総体として前記組成を
満たす混合粉末を、機械的グラインディングにより合金
化処理し、該合金化処理した加工粉末を容器に真空封入
した後、500〜900℃で200MPa以上で等方圧
加圧処理するすることを特徴とする高強度高耐食性フェ
ライト鋼の製造方法。
7. An alloyed powder having the composition according to claim 1 or a mixed powder satisfying the above-described composition as a whole is alloyed by mechanical grinding, and is subjected to the alloying treatment. A method for producing a high-strength, high-corrosion-resistant ferritic steel, comprising vacuum-sealing a processing powder in a container and isostatic-pressing at 500 to 900 ° C. at 200 MPa or more.
【請求項8】 請求項1〜4のいずれかに記載した組成
を有する合金の粉末、あるいは総体として前記組成を満
たす混合粉末を、機械的グラインディングにより合金化
処理し、該合金化処理した加工粉末を容器に真空封入し
た後、500〜900℃で400MPa以下で等方圧加
圧処理し、次いで、500〜900℃で圧延を行うこと
を特徴とする高強度高耐食性フェライト鋼の製造方法。
8. An alloyed powder having the composition according to claim 1 or a mixed powder satisfying the above composition as a whole is alloyed by mechanical grinding, and the alloyed processing is performed. A method for producing a high-strength, high-corrosion-resistant ferritic steel, comprising vacuum-encapsulating a powder in a container, isostatic pressing at 500 to 900 ° C at 400 MPa or less, and then rolling at 500 to 900 ° C.
JP10271166A 1998-09-25 1998-09-25 Manufacturing method of high strength and high corrosion resistant ferritic steel Expired - Fee Related JP3020924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10271166A JP3020924B1 (en) 1998-09-25 1998-09-25 Manufacturing method of high strength and high corrosion resistant ferritic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10271166A JP3020924B1 (en) 1998-09-25 1998-09-25 Manufacturing method of high strength and high corrosion resistant ferritic steel

Publications (2)

Publication Number Publication Date
JP3020924B1 JP3020924B1 (en) 2000-03-15
JP2000096193A true JP2000096193A (en) 2000-04-04

Family

ID=17496269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10271166A Expired - Fee Related JP3020924B1 (en) 1998-09-25 1998-09-25 Manufacturing method of high strength and high corrosion resistant ferritic steel

Country Status (1)

Country Link
JP (1) JP3020924B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295958A1 (en) * 2001-09-21 2003-03-26 Hitachi, Ltd. High-toughness and high-strength ferritic steel and method of producing the same
EP1536031A1 (en) * 2002-08-09 2005-06-01 JFE Steel Corporation Metal material for fuel cell, fuel cell using the same and method for producing the material
WO2008013498A1 (en) * 2006-07-26 2008-01-31 Sandvik Intellectual Property Ab Ferritic chromium steel
JP2013209729A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
CN104593693A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Metal powder for powder metallurgy, compound, granulated powder, and sintered body
CN112605390A (en) * 2020-10-19 2021-04-06 西安斯瑞先进铜合金科技有限公司 Preparation method of vacuum-grade low-nitrogen metal chromium for preparing high-temperature alloy by using chromium powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359263B (en) * 2020-11-10 2022-02-22 江西理工大学 Biodegradable iron alloy with stress-induced martensitic transformation and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295958A1 (en) * 2001-09-21 2003-03-26 Hitachi, Ltd. High-toughness and high-strength ferritic steel and method of producing the same
JP2003096506A (en) * 2001-09-21 2003-04-03 Hitachi Ltd High toughness and high strength ferritic steel, and production method therefor
US6827755B2 (en) 2001-09-21 2004-12-07 Hitachi, Ltd. High-toughness and high-strength ferritic steel and method of producing the same
KR100490912B1 (en) * 2001-09-21 2005-05-19 가부시끼가이샤 히다치 세이사꾸쇼 High-toughness and high-strength sintered ferritic steel and method of producing the same
EP1536031A1 (en) * 2002-08-09 2005-06-01 JFE Steel Corporation Metal material for fuel cell, fuel cell using the same and method for producing the material
EP1536031A4 (en) * 2002-08-09 2005-10-12 Jfe Steel Corp Metal material for fuel cell, fuel cell using the same and method for producing the material
US7531053B2 (en) 2002-08-09 2009-05-12 Jfe Steel Corporation Fuel cell produced using a metallic material and its method of making
WO2008013498A1 (en) * 2006-07-26 2008-01-31 Sandvik Intellectual Property Ab Ferritic chromium steel
JP2013209729A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
CN104593693A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Metal powder for powder metallurgy, compound, granulated powder, and sintered body
CN112605390A (en) * 2020-10-19 2021-04-06 西安斯瑞先进铜合金科技有限公司 Preparation method of vacuum-grade low-nitrogen metal chromium for preparing high-temperature alloy by using chromium powder

Also Published As

Publication number Publication date
JP3020924B1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP3689009B2 (en) High corrosion resistance high strength austenitic stainless steel and its manufacturing method
Zhou et al. Al0. 5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders
JP4975916B2 (en) High toughness and high strength ferritic steel and its manufacturing method
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
US7922841B2 (en) Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
CN101563476B (en) Steel plate for producing light structures and method for producing said plate
Suryanarayana et al. Nanostructured materials and nanocomposites by mechanical alloying: an overview
US20100143177A1 (en) Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
US20110088510A1 (en) Hot and cold rolling high strength L12 aluminum alloys
JP2008208401A (en) Martensitic nanocrystal alloy steel powder, bulk material thereof, and method for producing them
JP3753101B2 (en) High strength and high rigidity steel and manufacturing method thereof
EP1024917A1 (en) A steel and a heat treated tool thereof manufactured by an integrated powder metallurgical process and use of the steel for tools
JP2006274323A (en) Nanocrystal alloy steel powder having high hardness and excellent corrosion resistance and nanocrystal alloy steel bulk material having high strength/toughness and excellent corrosion resistance and production method thereof
JP3020924B1 (en) Manufacturing method of high strength and high corrosion resistant ferritic steel
US5854434A (en) High-modulus iron-based alloy with a dispersed boride
JP2007051341A (en) Steel with high young&#39;s modulus
JPH1143748A (en) High strength austenitic sintered steel, its production and its use
JP2003055747A (en) Sintered tool steel and production method therefor
JPH1060527A (en) Production of steel having high young&#39;s modulus
EP1068915A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance
JP3379203B2 (en) High-rigidity iron-based alloy and method for producing the same
Muchavi Effects of thermal processing of blended and roll compacted Ti6Al4V strips on microstructure and properties
JP4055657B2 (en) High rigidity steel with excellent toughness and method for producing the same
JPH07188874A (en) Ferrous alloy with high rigidity and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees