JP2000091234A - Manufacture of iii-v nitride compound semiconductor - Google Patents

Manufacture of iii-v nitride compound semiconductor

Info

Publication number
JP2000091234A
JP2000091234A JP25266498A JP25266498A JP2000091234A JP 2000091234 A JP2000091234 A JP 2000091234A JP 25266498 A JP25266498 A JP 25266498A JP 25266498 A JP25266498 A JP 25266498A JP 2000091234 A JP2000091234 A JP 2000091234A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
substrate
iii
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25266498A
Other languages
Japanese (ja)
Other versions
JP3279528B2 (en
Inventor
Akira Usui
彰 碓井
Haruo Sunakawa
晴夫 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25266498A priority Critical patent/JP3279528B2/en
Publication of JP2000091234A publication Critical patent/JP2000091234A/en
Application granted granted Critical
Publication of JP3279528B2 publication Critical patent/JP3279528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent characteristic deterioration of a blue light emitting element by reducing the resistance of the n-type compound semiconductor layer of the element by doping the semiconductor layer with Si by using SiHCl as a dopant gas when the semiconductor layer is vapor-phase grown. SOLUTION: A substrate for ELO which is obtained by forming a striped mask pattern on a thin GaN epitaxial layer formed on a sapphire substrate 24 by using SiO2 is set on an HVPE growth system. The growth system can transport GaCl which is the halide of a group III element and the GaCl is produced through the reaction between a Ga metal 21 and HCl supplied from an introducing pipe 22 together with a carrier gas composed of hydrogen or nitride. In a substrate area, GaN is vapor-phase grown on the substrate 24 while the GaCl is mixed with and reacts to NH3 supplied from another introducing pipe 23. In addition, the GaN is doped with Si by supplying SiHxCl4-x (x=1, 2, or 3) which is a dopant gas to the substrate area from an introducing pipe 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物系III−V
族化合物半導体の気相成長方法及びこの方法を用いた半
導体素子の製造方法に関する。
TECHNICAL FIELD The present invention relates to a nitride-based III-V
The present invention relates to a method for vapor-phase growth of a group III compound semiconductor and a method for manufacturing a semiconductor device using the method.

【0002】[0002]

【従来の技術】窒化物半導体、特に窒化ガリウム(Ga
N)はその禁制帯幅が3.4eVと大きく、かつ直接遷移型の
半導体であることから、青色発光素子材料として開発が
活発に行われている。ところで、この材料のエピタキシ
ャル成長には、ホモエピタキシャル基板の作製が困難な
ことから、通常はサファイア(Al2O3)基板、シリコンカ
ーバイド(SiC)基板、そしてMg2Al2O4等のスピネル型
結晶基板などが一般的に用いられている。その中でも、
廉価なこと、比較的結晶性の良いエピタキシャル層が成
長できることからサファイア基板がもっとも多く用いら
れている。
2. Description of the Related Art Nitride semiconductors, particularly gallium nitride (Ga)
N) has a large bandgap of 3.4 eV and is a direct transition type semiconductor, and is therefore being actively developed as a blue light emitting element material. By the way, for the epitaxial growth of this material, it is difficult to prepare a homoepitaxial substrate. Therefore, usually, a sapphire (Al 2 O 3 ) substrate, a silicon carbide (SiC) substrate, and a spinel type crystal such as Mg 2 Al 2 O 4 are used. Substrates and the like are generally used. Among them,
A sapphire substrate is most often used because it is inexpensive and can grow an epitaxial layer having relatively good crystallinity.

【0003】このサファイア基板上に例えば、図6で示
したような窒化物系半導体からなるレーザ構造が作製さ
れている(S.Nakamura et al, Jpn.J.Appl.Phys.,vo
l35,L74(1996))。この構造は、サファイア基板上61
に、まず、GaNの低温バッファー層62を成長させ、その
上に1000℃程度の高温でSiドープGaN層63を成長させ
る。さらにSiドープInGaN層64、SiドープAlGaNクラッド
層65、SiドープGaN光ガイド層66、InGaN井戸層、および
InGaNバリア層からなるInGaN多重量子井戸層67(レーザ
発光層となる)、Mgドープ型AlGaN層68、Mgドープp型G
aN光ガイド層69、Mgドープp型AlGaNクラッド層70、お
よび、MgドープGaNコンタクト層71を順次成長させる。
p電極72としてNi-Au、n型電極としてTi-Al電極73が広
く用いられている。
On this sapphire substrate, for example, a laser structure made of a nitride semiconductor as shown in FIG. 6 has been fabricated (S. Nakamura et al, Jpn. J. Appl. Phys., Vo.
l35, L74 (1996)). This structure is used on a sapphire substrate.
First, a low-temperature buffer layer 62 of GaN is grown, and a Si-doped GaN layer 63 is grown thereon at a high temperature of about 1000 ° C. Further, Si-doped InGaN layer 64, Si-doped AlGaN cladding layer 65, Si-doped GaN light guide layer 66, InGaN well layer, and
InGaN multiple quantum well layer 67 consisting of an InGaN barrier layer (to be a laser emitting layer), Mg-doped AlGaN layer 68, Mg-doped p-type G
The aN light guide layer 69, the Mg-doped p-type AlGaN cladding layer 70, and the Mg-doped GaN contact layer 71 are sequentially grown.
A Ni-Au is widely used as the p-electrode 72, and a Ti-Al electrode 73 is widely used as the n-type electrode.

【0004】図6に示すような構造をとるのは、n型電
極を絶縁物質であるサファイア上に直接形成することが
できないためであり、そのためにドライエッチングなど
により成長層の一部をnGaN層までエッチングしてその
上に電極を形成する必要があった。このようなn型電極
構造では、電流パスがn型化合物半導体層(図中GaN層6
3)を横切る構造となっているため、横方向に長くなっ
た分だけ抵抗成分が増加して、発熱等を引き起こし、デ
バイス特性を悪化させる原因となっていた。
[0006] The structure shown in FIG. 6 is because an n-type electrode cannot be formed directly on sapphire, which is an insulating material. It was necessary to form an electrode thereon by etching. In such an n-type electrode structure, the current path passes through the n-type compound semiconductor layer (the GaN layer 6 in the figure).
Since the structure crosses 3), the resistance component increases by an amount corresponding to the length in the lateral direction, causing heat generation and the like, which is a cause of deteriorating device characteristics.

【0005】[0005]

【発明が解決しようとしている課題】本発明は、上記課
題に鑑みなされたものであり、第一に青色発光素子の従
来構造におけるn型化合物半導体層の低抵抗化を行い、
デバイス特性が劣化しない化合物半導体素子の製造方法
を提供することを目的とし、第二に、上記の抵抗成分増
加の問題を根本的に解決したn型、p型電極の対極構造
を有する半導体素子の製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and firstly, by reducing the resistance of an n-type compound semiconductor layer in a conventional structure of a blue light emitting device,
Second, it is an object of the present invention to provide a method of manufacturing a compound semiconductor device in which device characteristics are not deteriorated. Second, a semiconductor device having a counter electrode structure of n-type and p-type electrodes, which fundamentally solves the problem of increase in the resistance component described above. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明は、III族元素の
ハロゲン化物と窒素元素を含む化合物を反応させ、窒化
物系III−V族化合物半導体層を気相成長させる方法で
あって、この気相成長時に、SiHxCl4-X(x=1、2、
3)をドーピング原料ガスとしてSiドーピングを行うこ
とを特徴とする窒化物系III−V族化合物半導体の気相
成長方法に関する。
SUMMARY OF THE INVENTION The present invention is directed to a method of reacting a halide of a group III element with a compound containing a nitrogen element to vapor-phase grow a nitride-based III-V compound semiconductor layer. During vapor phase growth, SiH x Cl 4-X (x = 1, 2,
The present invention also relates to a method for vapor-phase growth of a nitride III-V compound semiconductor, wherein Si doping is performed using 3) as a doping source gas.

【0007】さらに本発明は、上記の窒化物系III−V
族化合物半導体の気相成長方法を用いた基板上への窒化
物系III−V族化合物半導体の気相成長方法であって、
前記基板が、サファイア基板、SiC基板、スピンネル基
板またはSi単結晶基板であることを特徴とする窒化物系
III−V族化合物半導体の気相成長方法に関する。
Further, the present invention relates to the above-mentioned nitride III-V
A method for vapor-phase growth of a nitride III-V compound semiconductor on a substrate using a vapor-phase growth method for a group III compound semiconductor,
Wherein the substrate is a sapphire substrate, a SiC substrate, a spinel substrate or a Si single crystal substrate,
The present invention relates to a method for vapor-phase growth of a III-V compound semiconductor.

【0008】さらに本発明は、上記基板上への窒化物系
III−V族化合物半導体の気相成長方法を用いて、前記
基板上にSiをドープしながら窒化物系III−V族化合物
半導体層を形成する工程と、次いでこのSiがドープされ
た窒化物系III−V族化合物半導体層上に、半導体素子
構造を形成する工程とを有する窒化物系III−V族化合
物半導体素子の製造方法に関する。
[0008] The present invention further relates to a nitride-based material on the substrate.
Forming a nitride-based III-V compound semiconductor layer while doping Si on the substrate by using a vapor-phase growth method of a III-V compound semiconductor; and then forming a nitride-based nitride-based compound semiconductor layer on the substrate. Forming a semiconductor device structure on a III-V compound semiconductor layer.

【0009】さらに本発明は、上記基板上への窒化物系
III−V族化合物半導体の気相成長方法を用いて、前記
基板上にSiをドープしながら窒化物系III−V族化合物
半導体層を形成する工程と、次いで該基板を除去し、窒
化物系III−V族化合物半導体層のみを分離する工程と
を含む窒化物系III−V族化合物半導体基板の製造方法
に関する。
Further, the present invention provides a method for manufacturing a semiconductor device, comprising the steps of:
Forming a nitride-based III-V compound semiconductor layer while doping Si on the substrate by using a vapor-phase growth method of a III-V compound semiconductor; and then removing the substrate to form a nitride-based III-V compound semiconductor layer. And a step of separating only the group III-V compound semiconductor layer.

【0010】さらに本発明は、上記窒化物系III−V族
化合物半導体基板の製造方法を用いて窒化物系III−V
族化合物半導体基板を形成する工程と、次いで該窒化物
系III−V族化合物半導体基板上に、半導体素子構造を
形成する工程とを有する窒化物系III−V族化合物半導
体素子の製造方法に関する。さらに本発明は、さきの記
載した窒化物系III−V族化合物半導体の気相成長方法
を、製造工程の一工程として用いた半導体レーザ、発光
ダイオード、電界トランジスタまたはバイポーラの半導
体素子の製造方法に関する。
Further, the present invention provides a method of manufacturing a nitride III-V compound semiconductor substrate using the method of manufacturing a nitride III-V compound semiconductor substrate.
The present invention relates to a method for manufacturing a nitride III-V compound semiconductor device, comprising a step of forming a group III compound semiconductor substrate and a step of subsequently forming a semiconductor element structure on the nitride III-V compound semiconductor substrate. Furthermore, the present invention relates to a method for manufacturing a semiconductor laser, a light emitting diode, an electric field transistor or a bipolar semiconductor element using the vapor phase growth method of a nitride III-V compound semiconductor described above as one step of a manufacturing process. .

【0011】さらに本発明は、発光層をn伝導型のn層
とp伝導型のp層で挟んだ構造を有するIII−V族化合
物半導体を用いた発光素子において、前記n層と接合し
てn電極層が形成されており、前記p層と接合してp電
極層が形成された、n型電極層とp型電極層が対極に配
置された構造を有し、かつn層のn型電極に接している
部分にSiがドープされていることを特徴とする発光素子
に関する。
Further, the present invention provides a light emitting device using a III-V group compound semiconductor having a structure in which a light emitting layer is sandwiched between an n conductive n layer and a p conductive p layer. An n-electrode layer is formed, and has a structure in which an n-type electrode layer and a p-type electrode layer are arranged at a counter electrode, in which a p-electrode layer is formed by being joined to the p-layer, and the n-type n-type The present invention relates to a light-emitting element in which a portion in contact with an electrode is doped with Si.

【0012】従来構造での低抵抗化を図るためには、低
しきい値、低電流、低電圧で動作する光素子を形成する
必要がある。例えば、図6のレーザ構造を用いて説明す
ると、n型GaN層63に存在する抵抗成分をでるだけ低減
する必要がある。このためには、n型GaN層を厚くする
ことが考えられるが、従来は有機金属熱分解法(metalo
rganic vapor phase epitaxy: MOVPE)法により成
長が行われているために、成長速度が遅いため、数μm
の厚さ以上に成長させることは困難であった。また、Ga
Nを厚く成長させると、熱歪みなどで、成長層内にクラ
ックが導入され、デバイス構造作製には極めて不都合と
なった。
In order to reduce the resistance in the conventional structure, it is necessary to form an optical element which operates at a low threshold, a low current, and a low voltage. For example, using the laser structure of FIG. 6, it is necessary to reduce the resistance component present in the n-type GaN layer 63 as much as possible. For this purpose, it is conceivable to increase the thickness of the n-type GaN layer.
rganic vapor phase epitaxy (MOVPE) method, the growth rate is low,
It was difficult to grow to a thickness of more than. Also, Ga
When N was grown thickly, cracks were introduced into the growth layer due to thermal strain or the like, which was extremely inconvenient for device structure fabrication.

【0013】本発明では、まず気相成長手法としてIII
元素のハロゲン化物をV族元素を含む化合物(本発明で
は窒素を含む化合物)と反応させ、基板上に気相成長を
行うハロゲン輸送法による気相成長(halogen-transpor
t vapor phase epitaxy:HVPE)を用いていることが
特徴である。すなわち、III族元素をGaClやInClのよう
な塩化物として、基板領域に輸送するもので、GaNにお
いては100μm/h以上の速い成長速度を実現すること
ができ、厚膜成長には非常に適した手法である。しか
も、ラテラル成長(epitaxial lateral overgrowth
:ELO)を用いることで、貫通転位を削減でき、しかも
数100μm厚の成長を行ってもクラックが入らないと
いう特徴がある(A. Usui et al., Jpn.J.Appl.Phy
s. Vol.36, L.899(1997))。
In the present invention, first, a vapor phase growth technique III
The halide of the element is reacted with a compound containing a group V element (in the present invention, a compound containing nitrogen), and a vapor-phase growth (halogen-transpor-
t vapor phase epitaxy (HVPE). In other words, a group III element is transported to the substrate region as a chloride such as GaCl or InCl. In GaN, a high growth rate of 100 μm / h or more can be realized, which is very suitable for thick film growth. It is a technique. Moreover, lateral growth (epitaxial lateral overgrowth)
: ELO), there is a feature that threading dislocations can be reduced and cracks do not occur even when the growth is several hundred μm thick (A. Usui et al., Jpn.J.Appl.Phy.)
s. Vol.36, L.899 (1997)).

【0014】しかしながら、このHVPEによりELO成長を
行ったas-grown結晶は室温で高抵抗を示す場合が多く、
このままでは、本発明の課題を解決することができなか
った。GaNのn型低抵抗結晶を得るためには、すでにMOV
PE法においては、SiH4を用いてSiのドーピングで実現さ
れている。ところが、HVPE法でSiH4を用いると、反応管
全体が抵抗加熱で熱せられているためにSiH4が分解し
て、基板領域に到達する前に分解し、実効的なSiのドー
ピングは不可能であることが判明した。
However, as-grown crystals grown by ELO using HVPE often show high resistance at room temperature.
The problem of the present invention could not be solved as it is. In order to obtain an n-type low-resistance crystal of GaN, MOV
The PE method is realized by doping of Si using SiH 4 . However, the use of SiH4 by HVPE, SiH 4 is decomposed to the whole reaction tube is heated by resistance heating, it decomposes before reaching the substrate region, doping the effective Si impossible It turned out to be.

【0015】そこで、本発明者らは、HVPE法において実
効的なSiドーピングが可能なドーピング原料ガスを鋭意
検討した結果、Clを含んだSiHxCl4-x(x=1、2、3)
がHVPEにおける窒化物系III−V族化合物半導体のn型
ドーピング原料ガスとして有効なことを見出し本発明に
到った。したがって、低抵抗のn型窒化物系III−V族
化合物半導体層を有する半導体素子を製造する事が可能
となる。
The inventors of the present invention have intensively studied a doping source gas capable of performing effective Si doping in the HVPE method. As a result, the present inventors found that Si-containing SiH x Cl 4-x (x = 1, 2, 3)
Was found to be effective as an n-type doping source gas for a nitride III-V compound semiconductor in HVPE. Therefore, it is possible to manufacture a semiconductor device having a low-resistance n-type nitride III-V compound semiconductor layer.

【0016】さらに、本発明者らは、上記方法を用いて
低抵抗化した窒化物系III−V族化合物半導体をn型低
抵抗基板として分離できることを見出した。この分離し
たn型低抵抗基板に半導体素子構造を形成することが可
能である。これにより半導体素子構造の設計の自由度
は、格段に向上する。
Furthermore, the present inventors have found that a nitride III-V compound semiconductor whose resistance has been reduced by using the above method can be separated as an n-type low resistance substrate. A semiconductor element structure can be formed on the separated n-type low-resistance substrate. Thereby, the degree of freedom in designing the semiconductor element structure is remarkably improved.

【0017】本発明の気相成長方法を用いた発光素子
は、発光層をn伝導型のn層とp伝導型のp層で挟んだ
構造を有するIII−V族化合物半導体を用いた発光素子
において、n型電極とp型電極が対極した構造となって
いることが特徴であり、この構造により電流パスが短
く、半導体素子そのものも小型化できる。さらに、従来
構造と比較すると、成長層の一部をメサエッチングする
必要がなくなり、素子製造工程としても非常に簡略化で
き有利な構造であるといえる。
A light emitting device using the vapor phase growth method of the present invention is a light emitting device using a group III-V compound semiconductor having a structure in which a light emitting layer is sandwiched between an n-type n-type layer and a p-type p-type layer. Is characterized by having a structure in which an n-type electrode and a p-type electrode are opposed to each other, and this structure allows a short current path and the semiconductor element itself to be downsized. Further, as compared with the conventional structure, it is not necessary to mesa-etch a part of the growth layer, and it can be said that the element manufacturing process can be greatly simplified and is an advantageous structure.

【0018】また、本発明の窒化物系III−V族化合物
半導体の気相成長方法を用いて、通常行われる方法によ
り半導体レーザ、発光ダイオードなどの発光素子、及び
電界効果トランジスタ、バイポーラなどのトランジスタ
を形成することが可能である。すなわち、窒化物系III
−V族化合物半導体を用いる半導体素子において、低抵
抗のn型層を形成する場合は、本発明の気相成長方法を
用いることができる。
In addition, a light emitting device such as a semiconductor laser or a light emitting diode, and a transistor such as a field effect transistor or a bipolar transistor can be formed by a conventional method using the method for vapor-phase growth of a nitride III-V compound semiconductor of the present invention. Can be formed. That is, nitride III
In the case of forming a low-resistance n-type layer in a semiconductor element using a -V compound semiconductor, the vapor deposition method of the present invention can be used.

【0019】[0019]

【実施例】(実施例1)本発明の一実施形態として、Si
H2Cl2を用いた場合のGaNにおけるドーピングについて説
明する。基板として図1(a)に示したELO用の基板を準備
した。この方法の詳細については、すでに既発表の文献
(A. Usui et al., Jpn.J. Appl.Phys. Vol.36(1
997) pp.L.899-L.902)にあり公知技術である。すなわ
ち、サファイア基板11を用いて、薄いGaNエピタキシャ
ル層12の上に、SiO2を用いてストライプ上のマスクパタ
ーン13を形成したものである。このELO用基板を図2に
示したHVPE成長装置にセットした。この装置では、III
族元素のハロゲン化物であるGaClを基板に輸送できる装
置であり、GaClは、Ga金属21と導入管22からH2もしくは
N2といったキャリアガスとともに供給されるHClとの反
応で生成される。基板領域で、GaClと導入管23から供給
されるNH3とが混合し、反応しながら基板24上にGaNが気
相成長する。基板領域の温度は電気炉25で1000℃に設定
した。また、原料となるGaCl分圧、NH3分圧を基板領域
でそれぞれ、5×10-3atm、0.3atmとした。この条件で成
長速度は約50μm/hである。また、ドーピング原料ガ
スであるSiH2Cl2は、導入管26から基板領域に供給する
ことでドーピングを行った。図1(b)のような約100μm
厚のSiをドープしたGaN層14成長させた。図3に、ホー
ル測定により調べたキャリア濃度とSiH2Cl2濃度との関
係を示す。この図から、SiH2Cl2の分圧を変化させるこ
とで、1017〜1019cm-3の広い範囲で電子のキャリア濃度
を再現性良く制御できることがわかった。すなわち、従
来不可能であった実効的なSiのドープが可能となり、こ
れにより、HVPEにおいて、デバイスを作製するために必
要なn型厚膜低抵抗層の成長が実現できた。
EXAMPLES (Example 1) As one embodiment of the present invention, Si
The doping in GaN using H 2 Cl 2 will be described. A substrate for ELO shown in FIG. 1A was prepared as a substrate. For details of this method, see the literature already published (A. Usui et al., Jpn. J. Appl. Phys. Vol. 36 (1
997) pp. L.899-L.902) and is a known technique. That is, a mask pattern 13 on a stripe is formed on a thin GaN epitaxial layer 12 using a sapphire substrate 11 using SiO 2 . This ELO substrate was set in the HVPE growth apparatus shown in FIG. In this device, III
A device capable of transporting the substrate to GaCl a halide of group elements, GaCl is, H 2 or a Ga metal 21 and the introduction pipe 22
It is produced by a reaction with HCl supplied with a carrier gas such as N 2 . In the substrate region, GaCl is mixed with NH 3 supplied from the introduction tube 23, and GaN is vapor-phase grown on the substrate 24 while reacting. The temperature of the substrate region was set to 1000 ° C. in the electric furnace 25. Further, the GaCl partial pressure and NH 3 partial pressure as the raw materials were set to 5 × 10 −3 atm and 0.3 atm, respectively, in the substrate region. Under these conditions, the growth rate is about 50 μm / h. In addition, doping was performed by supplying SiH 2 Cl 2, which is a doping source gas, to the substrate region from the introduction pipe 26. About 100μm as shown in Fig. 1 (b)
A thick Si-doped GaN layer 14 was grown. FIG. 3 shows the relationship between the carrier concentration and the SiH 2 Cl 2 concentration determined by the Hall measurement. From this figure, it was found that by changing the partial pressure of SiH 2 Cl 2 , the electron carrier concentration can be controlled with good reproducibility over a wide range of 10 17 to 10 19 cm −3 . That is, effective doping of Si, which has been impossible in the past, became possible. As a result, in the HVPE, the growth of an n-type thick low-resistance layer required for fabricating a device was realized.

【0020】なお、本実施例では、ドーピング原料ガス
としてSiH2Cl2を用いたが、SiHCl3、SiH3Cl、SiCl4でも
n型ドーピングは可能であり、またそれらの混合物であ
っても良い。
In this embodiment, SiH 2 Cl 2 is used as a doping material gas. However, n-type doping is also possible with SiHCl 3 , SiH 3 Cl and SiCl 4 , or a mixture thereof. .

【0021】また、本実施例では、GaNへのドーピング
で示したが、同様なドーピングは、InxGa1-xN(0≦x≦
1)、AlxGa1-xN(0≦x≦1)またはAlxInyGa1-x-yN(0≦x+y
≦1)のいずれかの窒化物系III−V族化合物半導体につ
いても実現できる。また、これらの層状構造でも実現で
きる。ここで、Alを含む場合は、Al金属を、Inを含む場
合は、In金属をHVPE装置の中に配置する以外は、GaNの
場合と全く同様の方法により、ドーピングすることが可
能である。また、層状とは、組成の異なるいくつかの層
を設けたことを意味する。この層構造を形成するために
は、Ga金属、Al金属、In金属とHClとの反応によって発
生するGaCl、AlCl3、InCl3の各ハロゲン化物の分圧を制
御することにより、経時的に層構造を変化させることが
可能であり、その際も、先に示したGaNの場合と同様な
方法でSiドーピングを行うことが可能である。
In this embodiment, GaN is doped, but the same doping is performed by using In x Ga 1 -xN (0 ≦ x ≦
1), Al x Ga 1-x N (0 ≦ x ≦ 1) or Al x In y Ga 1-xy N (0 ≦ x + y
<1) Any of the nitride-based III-V compound semiconductors can be realized. Further, it can also be realized with these layered structures. Here, doping can be performed in exactly the same manner as in the case of GaN, except that Al metal is included when Al is included, and In metal when In is included in the HVPE apparatus when In is included. The term “layered” means that several layers having different compositions are provided. In order to form this layer structure, by controlling the partial pressure of each halide of GaCl, AlCl 3 , and InCl 3 generated by the reaction of Ga metal, Al metal, and In metal with HCl, the layer is formed over time. The structure can be changed, and at this time, Si doping can be performed in the same manner as in the case of GaN described above.

【0022】さらに、本実施例においては、ELO基板を
用いたが、これはより良質な結晶を得るための好適な例
として説明したに過ぎず、このELO基板の使用は本発明
の必須の条件ではない。基板としてGaN、その他のIII−
V族化合物半導体が成長可能な基板では本発明の気相成
長方法を適用することは可能である。
Furthermore, in this embodiment, the ELO substrate is used, but this is only described as a preferred example for obtaining a better crystal, and the use of this ELO substrate is an essential condition of the present invention. is not. GaN as substrate, other III-
The vapor phase growth method of the present invention can be applied to a substrate on which a group V compound semiconductor can be grown.

【0023】(実施例2)本発明の第2の実施の形態
は、本発明の一実施形態である半導体素子の製造方法と
して、実施例1で形成したn型厚膜低抵抗層上へのレー
ザ構造を形成する方法について図4を用いて説明する。
(Example 2) A second embodiment of the present invention relates to a method of manufacturing a semiconductor device according to an embodiment of the present invention, in which a method for forming a semiconductor element on an n-type thick low-resistance layer formed in Example 1 is described. A method for forming a laser structure will be described with reference to FIG.

【0024】実施例1の気相成長方法により、サファイ
ア(0001)面基板結晶11上にHVPE法を用いて、図1(b)の
ようにSiH2Cl2をドーピング原料ガスとしてSiをドーピ
ングした100μm厚のGaN層14を成長させる。
According to the vapor phase growth method of Example 1, Si was doped on the sapphire (0001) plane substrate crystal 11 using SiH 2 Cl 2 as a doping source gas as shown in FIG. A GaN layer 14 having a thickness of 100 μm is grown.

【0025】図2に示したHVPE法による成長装置を用い
て、成長温度は1000℃に設定し、原料となるGaCl分圧、
NH3分圧を基板領域でそれぞれ、5×10-3atm、0.3atmの
条件で成長を行う。同時にドーピング原料ガスであるSi
H2Cl2を、基板領域で、分圧が2×10-6atmとなるように
設定する。これにより、キャリア濃度として1×1018cm
-3が得られる。
The growth temperature was set to 1000 ° C. using the growth apparatus by the HVPE method shown in FIG.
The growth is performed under the conditions of NH 3 partial pressure of 5 × 10 −3 atm and 0.3 atm in the substrate region, respectively. At the same time, Si as the doping source gas
H 2 Cl 2 is set so that the partial pressure is 2 × 10 −6 atm in the substrate region. Thereby, the carrier concentration is 1 × 10 18 cm
-3 is obtained.

【0026】次にこの結晶をHVPE反応管から取り出し、
引き続いてMOVPE反応管に設置する。水素気流中でNH3
供給しながら昇温して、基板温度を1000℃に設定する。
続いて、図4(a)のように、キャリア濃度2×1018cm-3のS
iドープAlGaNクラッド層41、5×1017cm-3のSiドープGaN
光ガイド層42を形成する。次に、基板温度を750℃に設
定し、アンドープまたはSiを1×1018cm-3ドープしたInG
aN井戸層、アンドープまたはSiを1x×018cm-3ドープし
て、井戸層よりもInが少なく、アンドープまたはSiを1
×1018cm-3ドープしたInGaNバリア層からなる5周期の
多重量子井戸構造43を形成する。次に再び1000℃に成長
温度を設定して、キャリア濃度5×1017cm-3のMgドープG
aN光ガイド層44、キャリア濃度1×1017cm-3のMgドープA
lGaNクラッド層45、1×1018cm-3のMgドープGaNコンタク
ト層46を順次成長する。
Next, the crystals are taken out of the HVPE reaction tube,
Subsequently, it is installed in a MOVPE reaction tube. The temperature is raised while supplying NH 3 in a hydrogen stream, and the substrate temperature is set to 1000 ° C.
Subsequently, as shown in FIG. 4 (a), S at a carrier concentration of 2 × 10 18 cm -3
i-doped AlGaN cladding layer 41, 5 × 10 17 cm -3 Si-doped GaN
The light guide layer 42 is formed. Next, the substrate temperature was set to 750 ° C., and undoped or 1 × 10 18 cm −3 -doped InG
aN well layer, undoped or doped with Si 1 ×× 18 cm −3 , less In than well layer, undoped or Si
A five-period multiple quantum well structure 43 composed of an InGaN barrier layer doped with × 10 18 cm −3 is formed. Next, the growth temperature was set again to 1000 ° C., and Mg-doped G having a carrier concentration of 5 × 10 17 cm −3 was used.
aN light guide layer 44, Mg doped A with carrier concentration of 1 × 10 17 cm −3
An lGaN cladding layer 45 and a 1 × 10 18 cm −3 Mg-doped GaN contact layer 46 are sequentially grown.

【0027】この成長結晶を用いて、図4(b)のようなレ
ーザ構造を作製することができる。p型GaNコンタクト
層上には、Ni-Auからなる電極47を蒸着し、また、n側
の電極形成にはドライエッチング技術を用いて、HVPEで
作製したn型低抵抗GaN層が露出するまで結晶の一部を
エッチングする。その上に、Ti-Alからなる電極48を形
成する。また、レーザの共振器面は、へき開や、ドライ
エッチング技術を用いて作製する。
Using this grown crystal, a laser structure as shown in FIG. 4B can be manufactured. An electrode 47 made of Ni-Au is deposited on the p-type GaN contact layer, and the n-side electrode is formed using a dry etching technique until the n-type low-resistance GaN layer manufactured by HVPE is exposed. Part of the crystal is etched. An electrode 48 made of Ti-Al is formed thereon. In addition, the resonator surface of the laser is manufactured using cleavage or dry etching technology.

【0028】実施例1と同様に、ドーピング原料ガス
は、SiHxCl4-X(x=1、2、3)またこれらの混合物で
もよく、またSiドーピングを行う窒化物系III−V族化
合物半導体が、InxGa1-xN(0≦x≦1)、AlxGa1-xN(0≦x≦
1)またはAlxInyGa1-x-yN(0≦x+y≦1)のいずれの窒化物
系III−VV族化合物半導体でもよく、それらが層状構
造になったものでもよい。
As in the first embodiment, the doping source gas may be SiH x Cl 4-X (x = 1, 2, 3) or a mixture thereof, or a nitride III-V compound for Si doping. Semiconductor is In x Ga 1-x N (0 ≦ x ≦ 1), Al x Ga 1-x N (0 ≦ x ≦
Either 1) or Al x In y Ga 1-xy N (0 ≦ x + y ≦ 1) may be a nitride III-VV group compound semiconductor, or may be a layered structure thereof.

【0029】また、基板結晶として本実施例ではサファ
イアC面を用いたが、他の結晶面を用いることもでき、
さらに、SiC基板やスピネル型結晶基板、Si単結晶基板
などの窒化物系III−V族半導体の単結晶成長が可能な
バルク結晶を用いることができる。
Although a sapphire C plane is used in this embodiment as a substrate crystal, other crystal planes can be used.
Further, a bulk crystal capable of growing a single crystal of a nitride group III-V semiconductor such as a SiC substrate, a spinel type crystal substrate, or a Si single crystal substrate can be used.

【0030】(実施例3)本発明の第3の実施の形態
は、本発明の一実施形態である半導体素子の製造方法と
して、n型、p型電極を対極させた構造のレーザ構造を
形成する方法について、図5を用いて説明する。この構
造の素子は、実施例1で形成したn型厚膜低抵抗層を基
板から分離することにより製造が可能となる。
(Embodiment 3) In a third embodiment of the present invention, as a method of manufacturing a semiconductor device according to an embodiment of the present invention, a laser structure having a structure in which n-type and p-type electrodes are used as counter electrodes is formed. The method for performing this will be described with reference to FIG. An element having this structure can be manufactured by separating the n-type thick low-resistance layer formed in Example 1 from the substrate.

【0031】実施例1の気相成長方法により、サファイ
ア(0001)面基板結晶11上にHVPE法を用いて、図1(b)の
ようにSiH2Cl2をドーピング原料ガスとしてSiをドーピ
ングした200μm厚のGaN結晶14を成長させる。
According to the vapor phase growth method of Example 1, Si was doped on the sapphire (0001) plane substrate crystal 11 using SiH 2 Cl 2 as a doping source gas as shown in FIG. A GaN crystal 14 having a thickness of 200 μm is grown.

【0032】図2に示したHVPE法による成長装置を用い
て、成長温度は1000℃に設定し、原料となるGaCl分圧、
NH3分圧を基板領域でそれぞれ、1×10-2atm、0.3atmの
条件で成長を行う。この条件で成長速度は約100μm/
hである。同時にドーピング原料ガスであるSiH2Cl
2を、基板領域で、分圧が2×10-6atmとなるように設定
する。これにより、キャリア濃度として1×1018cm-3
得られる。つぎに、この結晶から、図5(a)破線部から
下の部分すなわちサファイア部分及び一部Siがドープさ
れたGaN層14を含む形で除去し、n型III−V族化合物半
導体基板のみを分離する。除去方法については、例え
ば、機械的研磨または、強アルカリ性、あるいは強酸性
薬品によりエッチングすることが可能である。また、荷
電ビームあるいは中性ビームによって物理的エッチング
を行っても良い。このようにして、n型GaNの単体結晶5
1を得る。
Using the HVPE growth apparatus shown in FIG. 2, the growth temperature was set at 1000 ° C., the GaCl partial pressure as the raw material,
The growth is performed under the conditions of NH 3 partial pressure of 1 × 10 -2 atm and 0.3 atm in the substrate region, respectively. Under these conditions, the growth rate is about 100 μm /
h. At the same time, SiH 2 Cl, a doping source gas
2 is set so that the partial pressure is 2 × 10 −6 atm in the substrate region. Thereby, a carrier concentration of 1 × 10 18 cm −3 is obtained. Next, the crystal was removed from the crystal in a form including the portion below the broken line in FIG. 5A, that is, the sapphire portion and the GaN layer 14 partially doped with Si, and only the n-type III-V compound semiconductor substrate was removed. To separate. Regarding the removing method, for example, it is possible to perform mechanical polishing or etching with a strong alkaline or strong acid chemical. Further, physical etching may be performed by a charged beam or a neutral beam. Thus, the n-type GaN single crystal 5
Get one.

【0033】引き続いてこの結晶をMOVPE反応管に設置
する。水素気流中でNH3を供給しながら昇温して、基板
温度を1000℃に設定する。続いて、図5(b)のようにキャ
リア濃度2×1018cm-3のSiドープAlGaNクラッド層52、5
×1017cm-3のSiドープGaN光ガイド層53を形成する。次
に、基板温度を750℃に設定し、アンドープまたはSiを1
×1018cm-3ドープしたInGaN井戸層、井戸層よりもInが
少なく、アンドープまたはSiを1×1018cm-3ドープしたI
nGaNバリア層からなる5周期の多重量子井戸構造54を形
成する。次に再び1000℃に成長温度を設定して、キャリ
ア濃度5×1017cm-3のMgドープGaN光ガイド層55、キャリ
ア濃度1×1017cm-3のMgドープAlGaNクラッド層56、1×1
018cm-3のMgドープGaNコンタクト層57を順次成長する。
この成長結晶を用いて、図5(c)のようなレーザ構造を作
製することができる。p型GaNコンタクト層上には、Ni-
Auからなら電極58を蒸着し、また、結晶の裏面を構成し
ているHVPE法で成長させたn側GaN上に、Ti-Alからなる
電極59を形成する。また、レーザの共振器面は、結晶の
へき開を用いて作製する。
Subsequently, the crystals are placed in a MOVPE reaction tube. The temperature is raised while supplying NH 3 in a hydrogen stream, and the substrate temperature is set to 1000 ° C. Subsequently, as shown in FIG. 5 (b), the Si-doped AlGaN cladding layers 52, 5 having a carrier concentration of 2 × 10 18 cm -3
The Si-doped GaN light guide layer 53 of × 10 17 cm −3 is formed. Next, set the substrate temperature to 750 ° C and add undoped or Si
× 10 18 cm −3 doped InGaN well layer, In less than the well layer, undoped or 1 × 10 18 cm −3 doped I
A five-period multiple quantum well structure 54 composed of an nGaN barrier layer is formed. Then by setting the growth temperature again 1000 ° C., Mg-doped GaN optical guide layer 55 having a carrier concentration 5 × 10 17 cm -3, Mg-doped AlGaN cladding layer 56,1 × a carrier concentration of 1 × 10 17 cm -3 1
An 18 cm −3 Mg-doped GaN contact layer 57 is sequentially grown.
Using this grown crystal, a laser structure as shown in FIG. 5 (c) can be manufactured. Ni- on the p-type GaN contact layer
If it is made of Au, an electrode 58 is deposited, and an electrode 59 made of Ti-Al is formed on the n-side GaN grown on the backside of the crystal by the HVPE method. The resonator surface of the laser is manufactured by using cleavage of a crystal.

【0034】実施例2と同様に、ドーピング原料ガス
は、SiHxCl4-X(x=1、2、3)またこれらの混合物で
もよく、またSiドーピングを行う窒化物系III−V族化
合物半導体が、InxGa1-xN(0≦x≦1)、AlxGa1-xN(0≦x≦
1)またはAlxInyGa1-x-yN(0≦x+y≦1)のいずれの窒化物
系III−V族化合物半導体でもよく、それらが層状構造
になったものでもよい。
As in Example 2, the doping source gas may be SiH x Cl 4-x (x = 1, 2, 3) or a mixture thereof, or a nitride III-V compound for Si doping. Semiconductor is In x Ga 1-x N (0 ≦ x ≦ 1), Al x Ga 1-x N (0 ≦ x ≦
Either 1) or Al x In y Ga 1-xy N (0 ≦ x + y ≦ 1) may be used as the nitride III-V compound semiconductor, or may be a layered structure thereof.

【0035】また、基板結晶として本実施例ではサファ
イアC面を用いたが、他の結晶面を用いることもでき、
さらに、SiCやスピネル型結晶、Siなどの窒化物系III−
V族半導体の単結晶成長が可能なバルク結晶を用いるこ
とができる。
In this embodiment, the sapphire C plane is used as the substrate crystal, but other crystal planes can be used.
In addition, nitrides such as SiC, spinel type crystals, and Si
A bulk crystal capable of growing a single crystal of a group V semiconductor can be used.

【0036】[0036]

【発明の効果】本発明によれば、Siをドープしたn型厚
膜低抵抗層の気相成長が可能となり、発光素子等の発熱
等のデバイス特性悪化の原因を取り除くことが可能とな
った。さらに、このn型厚膜低抵抗層は、窒化物系III
−V族化合物半導体基板として分離することが可能であ
り、これを素子裏面に用いることにより、発熱等の問題
を根本的に解決するとともに、素子作製のプロセスを大
幅に削減できる。本発明の方法は、半導体レーザはもと
より、その他の発光素子、またトランジスタ等にも応用
可能であり、産業上の利用価値は極めて高いと思われ
る。
According to the present invention, the n-type thick low-resistance layer doped with Si can be vapor-phase grown, and the cause of device characteristic deterioration such as heat generation of a light emitting element can be eliminated. . Further, this n-type thick low-resistance layer is made of a nitride III
It can be separated as a group V compound semiconductor substrate, and by using this on the back surface of the element, the problem of heat generation and the like can be fundamentally solved, and the element manufacturing process can be greatly reduced. The method of the present invention can be applied not only to semiconductor lasers but also to other light emitting devices, transistors, and the like, and is considered to have extremely high industrial utility value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のSiがドープされたGaN結晶の工程順
断面図である。
FIG. 1 is a cross-sectional view of a GaN crystal doped with Si according to Example 1 in a process order.

【図2】本発明で用いるHVPE装置の一例を表した模式図
である。
FIG. 2 is a schematic diagram illustrating an example of an HVPE apparatus used in the present invention.

【図3】ドーピング原料ガスとしてSiH2Cl2用いた場合
のSiH2Cl2分圧とキャリア濃度の関係を示す。測定は、
ホール測定により行った。
FIG. 3 shows the relationship between SiH 2 Cl 2 partial pressure and carrier concentration when SiH 2 Cl 2 is used as a doping source gas. The measurement is
Performed by Hall measurement.

【図4】実施例2のレーザ構造を有する半導体素子の作
製方法を示す工程順断面図を示す。
FIG. 4 is a cross-sectional view in a process order showing a method for manufacturing a semiconductor device having a laser structure of Example 2.

【図5】実施例2のレーザ構造を有する半導体素子の作
製方法を示す工程順断面図を示す。
FIG. 5 is a cross-sectional view in a process order showing a method for manufacturing a semiconductor device having a laser structure of Example 2.

【図6】従来の窒化物系III−V族化合物半導体レーザ
の構造を示す断面図である。
FIG. 6 is a sectional view showing a structure of a conventional nitride III-V compound semiconductor laser.

【符号の説明】[Explanation of symbols]

11 サファイア基板 12 薄いGaNエピタキシャル層 13 SiO2ストライプパターン 21 Ga金属 22 HCl導入管 23 NH3導入管 24 基板 25 電気炉 26 SiH2Cl2導入管 41 SiドープAlGaNクラッド層 42 SiドープGaN光ガイド層 43 InGaN井戸層、およびInGaNバリア層からなる多重量
子井戸構造 44 MgドープGaN光ガイド層 45 MgドープAlGaNクラッド層 46 MgドープGaNコンタクト層 47 Ni-Auからなら電極 48 Ti-Alからなる電極 51 サファイア基板から剥離したGaN結晶 52 SiドープAlGaNクラッド層 53 SiドープGaN光ガイド層 54 InGaN井戸層、およびInGaNバリア層からなる多重量
子井戸構造 55 MgドープGaN光ガイド層 56 MgドープAlGaNクラッド層 57 MgドープGaNコンタクト層 58 Ni-Auからなら電極 59 Ti-Alからなる電極 61 サファイア基板 62 GaNバッファー層 63 SiドープGaN層 64 SiドープInGaN層 65 SiドープAlGaNクラッド層 66 GaN光ガイド層 67 InGaN井戸層、およびInGaNバリア層からなる多重量
子井戸構造 68 Mgドープ型AlGaN層 69 Mgドープp型GaN光ガイド層 70 Mgドープp型AlGaNクラッド層 71 Mgドープp型GaNコンタクト層 72 Ni-Auからならp型電極 73 Ti-Alからなるn型電極
11 Sapphire substrate 12 Thin GaN epitaxial layer 13 SiO 2 stripe pattern 21 Ga metal 22 HCl inlet tube 23 NH 3 inlet tube 24 Substrate 25 Electric furnace 26 SiH 2 Cl 2 inlet tube 41 Si-doped AlGaN cladding layer 42 Si-doped GaN light guide layer 43 Multiple quantum well structure consisting of InGaN well layer and InGaN barrier layer 44 Mg-doped GaN optical guide layer 45 Mg-doped AlGaN cladding layer 46 Mg-doped GaN contact layer 47 Electrode made of Ni-Au 48 Electrode made of Ti-Al 51 Sapphire GaN crystal exfoliated from substrate 52 Si-doped AlGaN cladding layer 53 Si-doped GaN optical guiding layer 54 Multiple quantum well structure consisting of InGaN well layer and InGaN barrier layer 55 Mg-doped GaN optical guiding layer 56 Mg-doped AlGaN cladding layer 57 Mg-doped GaN contact layer 58 Electrode made of Ni-Au 59 Electrode made of Ti-Al 61 Sapphire substrate 62 GaN buffer layer 63 Si-doped GaN layer 64 Si-doped InGaN layer 65 Si-doped AlGaN cladding layer 66 GaN light source Id layer 67 Multiple quantum well structure consisting of InGaN well layer and InGaN barrier layer 68 Mg-doped AlGaN layer 69 Mg-doped p-type GaN optical guide layer 70 Mg-doped p-type AlGaN cladding layer 71 Mg-doped p-type GaN contact layer 72 Ni -Au p-type electrode 73 Ti-Al n-type electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 BE41 DB05 EB01 ED06 5F041 AA44 CA04 CA05 CA34 CA40 CA46 CA57 5F045 AB14 AB17 AB18 AC03 AC12 AC13 AC19 AD14 AF02 AF03 AF04 AF09 AF13 AF20 BB09 CA01 CA11 CA12 DA55 DA66 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 BE41 DB05 EB01 ED06 5F041 AA44 CA04 CA05 CA34 CA40 CA46 CA57 5F045 AB14 AB17 AB18 AC03 AC12 AC13 AC19 AD14 AF02 AF03 AF04 AF09 AF13 AF20 BB09 CA01 CA11 CA12 DA55 DA66

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 III族元素のハロゲン化物と窒素元素を
含む化合物を反応させ、窒化物系III−V族化合物半導
体層を気相成長させる方法であって、この気相成長時
に、SiHxCl4-X(x=1、2、3)をドーピング原料ガス
としてSiドーピングを行うことを特徴とする窒化物系II
I−V族化合物半導体の気相成長方法。
1. A by reacting a compound containing a halide and a nitrogen element Group III element, a method of vapor-phase growth of the nitride III-V compound semiconductor layer, when the vapor deposition, SiH x Cl 4-X (x = 1, 2, 3) is used as a doping source gas to perform Si doping, and the nitride type II is characterized in that:
A vapor phase growth method for an IV group compound semiconductor.
【請求項2】 前記Siドーピングを行う窒化物系III−
V族化合物半導体が、InxGa1-xN(0≦x≦1)、AlxGa1-xN
(0≦x≦1)またはAlxInyGa1-x-yN(0≦x+y≦1)のいずれか
の窒化物系III−V族化合物半導体であることを特徴と
する請求項1記載の窒化物系III−V族化合物半導体の
気相成長方法。
2. A nitride III-doped Si film.
Group V compound semiconductor is In x Ga 1-x N (0 ≦ x ≦ 1), Al x Ga 1-x N
(0 ≦ x ≦ 1) or Al x In y Ga 1-xy N (0 ≦ x + y ≦ 1) according to claim 1, wherein it is one of nitride-based III-V group compound semiconductor Vapor-phase growth method of nitride-based III-V compound semiconductor.
【請求項3】 請求項1または2記載の窒化物系III−
V族化合物半導体の気相成長方法を用いた基板上への窒
化物系III−V族化合物半導体の気相成長方法であっ
て、前記基板が、サファイア基板、SiC基板、スピネル
型結晶基板またはSi単結晶基板であることを特徴とする
窒化物系III−V族化合物半導体の気相成長方法。
3. The nitride III- according to claim 1 or 2.
A method for vapor-phase growth of a nitride III-V compound semiconductor on a substrate using a vapor-phase growth method for a group V compound semiconductor, wherein the substrate is a sapphire substrate, a SiC substrate, a spinel crystal substrate, or A method for vapor-phase growth of a nitride III-V compound semiconductor, which is a single crystal substrate.
【請求項4】 請求項3記載の窒化物系III−V族化合
物半導体の気相成長方法を用いて、前記基板上にSiをド
ープしながら窒化物系III−V族化合物半導体層を形成
する工程と、次いでこのSiがドープされた窒化物系III
−V族化合物半導体層上に、半導体素子構造を形成する
工程とを有する窒化物系III−V族化合物半導体素子の
製造方法。
4. A nitride III-V compound semiconductor layer is formed on the substrate while doping Si on the substrate by using the method of growing a nitride III-V compound semiconductor according to claim 3. Process and then the Si-doped nitride III
Forming a semiconductor device structure on the group V compound semiconductor layer. A method for producing a nitride III-V compound semiconductor device.
【請求項5】 前記半導体素子構造を形成する工程が、
前記Siがドープされた窒化物系III−V族化合物半導体
層上に、順次クラッド層、光ガイド層、多重量子井戸
層、クラッド層を積層する工程であることを特徴とする
請求項4記載の窒化物系III−V族化合物半導体素子の
製造方法。
5. The step of forming the semiconductor element structure,
5. The method according to claim 4, wherein a step of sequentially laminating a clad layer, a light guide layer, a multiple quantum well layer, and a clad layer on the nitride-based III-V compound semiconductor layer doped with Si is performed. A method of manufacturing a nitride III-V compound semiconductor device.
【請求項6】 請求項3記載の窒化物系III−V族化合
物半導体の気相成長方法を用いて、前記基板上にSiをド
ープしながら窒化物系III−V族化合物半導体層を形成
する工程と、次いで該基板を除去し、窒化物系III−V
族化合物半導体層のみを分離する工程とを含む窒化物系
III−V族化合物半導体基板の製造方法。
6. A nitride III-V compound semiconductor layer is formed on the substrate by doping Si on the substrate by using the method of growing a nitride III-V compound semiconductor according to claim 3. Removing the substrate and then removing the nitride III-V
Separating only the group III compound semiconductor layer
A method for manufacturing a III-V compound semiconductor substrate.
【請求項7】 請求項6記載の窒化物系III−V族化合
物半導体基板の製造方法を用いて窒化物系III−V族化
合物半導体基板を形成する工程と、次いで該窒化物系II
I−V族化合物半導体基板上に、半導体素子構造を形成
する工程とを有する窒化物系III−V族化合物半導体素
子の製造方法。
7. A step of forming a nitride-based III-V compound semiconductor substrate using the method for producing a nitride-based III-V compound semiconductor substrate according to claim 6;
Forming a semiconductor device structure on an IV group compound semiconductor substrate. A method for manufacturing a nitride III-V compound semiconductor device.
【請求項8】 前記半導体素子構造を形成する工程が、
前記窒化物系III−V族化合物半導体基板上に、順次ク
ラッド層、光ガイド層、多重量子井戸層、クラッド層を
積層する工程であることを特徴とする請求項7記載の窒
化物系III−V族化合物半導体素子の製造方法。
8. The step of forming the semiconductor device structure,
The nitride-based III- according to claim 7, further comprising a step of sequentially stacking a clad layer, an optical guide layer, a multiple quantum well layer, and a clad layer on the nitride-based III-V compound semiconductor substrate. A method for manufacturing a group V compound semiconductor device.
【請求項9】 請求項1〜3いずれかに記載の気相成長
方法を、製造工程の一工程として用いた半導体レーザ、
発光ダイオード、電界効果トランジスタまたはバイポー
ラの半導体素子の製造方法。
9. A semiconductor laser using the vapor phase growth method according to claim 1 as one step in a manufacturing process.
A method for manufacturing a light emitting diode, a field effect transistor or a bipolar semiconductor device.
【請求項10】 発光層をn伝導型のn層とp伝導型の
p層で挟んだ構造を有するIII−V族化合物半導体を用
いた発光素子において、前記n層と接合してn電極層が
形成されており、前記p層と接合してp電極層が形成さ
れた、n型電極層とp型電極層が対極に配置された構造
を有し、かつn層のn型電極に接している部分にSiがド
ープされていることを特徴とする発光素子。
10. A light-emitting element using a III-V compound semiconductor having a structure in which a light-emitting layer is sandwiched between an n-type n-type layer and a p-type p-type layer, wherein the n-type electrode layer is bonded to the n-type layer. Is formed, and has a structure in which an n-type electrode layer and a p-type electrode layer are arranged at a counter electrode, in which a p-electrode layer is formed by being joined to the p-layer, and is in contact with an n-layer n-type electrode. A light-emitting element characterized in that a portion where Si is doped is doped with Si.
【請求項11】 前記Siがドープされているn層が、Ga
N層であることを特徴とする請求項10記載の発光素
子。
11. The method according to claim 11, wherein the n-layer doped with Si is Ga
The light emitting device according to claim 10, wherein the light emitting device is an N layer.
JP25266498A 1998-09-07 1998-09-07 Method for producing nitride III-V compound semiconductor Expired - Lifetime JP3279528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25266498A JP3279528B2 (en) 1998-09-07 1998-09-07 Method for producing nitride III-V compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25266498A JP3279528B2 (en) 1998-09-07 1998-09-07 Method for producing nitride III-V compound semiconductor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000376182A Division JP2001203388A (en) 2000-12-11 2000-12-11 Light-emitting element

Publications (2)

Publication Number Publication Date
JP2000091234A true JP2000091234A (en) 2000-03-31
JP3279528B2 JP3279528B2 (en) 2002-04-30

Family

ID=17240520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25266498A Expired - Lifetime JP3279528B2 (en) 1998-09-07 1998-09-07 Method for producing nitride III-V compound semiconductor

Country Status (1)

Country Link
JP (1) JP3279528B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071098A (en) * 2002-02-27 2003-09-03 주식회사 엘지이아이 Apparatus for manufacturing GaN substrate
JP2004502298A (en) * 2000-06-28 2004-01-22 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Method for improving epitaxy quality (surface irregularities and defect density) of aluminum nitride, indium, gallium ((Al, In, Ga) N) freestanding substrates for optoelectronic devices and electronic devices
JP2006024597A (en) * 2004-07-06 2006-01-26 Furukawa Co Ltd Vapor phase growth apparatus and method for forming group iii nitride semiconductor film
WO2007011193A1 (en) * 2005-07-21 2007-01-25 Theleds Co., Ltd. Method for manufacturing compliant substrate, compliant substrate manufactured thereby, gallium nitride based compound semiconductor device having the compliant substrate and manufacturing method thereof
WO2008096884A1 (en) 2007-02-07 2008-08-14 National University Corporation Tokyo University Of Agriculture And Technology N-type conductive aluminum nitride semiconductor crystal and method for producing the same
EP2063458A2 (en) 2007-11-20 2009-05-27 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal growing method, group III nitride semiconductor crystal substrate fabrication method, and group III nitride semiconductor crystal substrate
EP2063457A2 (en) 2007-11-20 2009-05-27 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal growing method, group III nitride semiconductor crystal substrate fabrication method, and group III nitride semiconductor crystal substrate
US7585772B2 (en) 2006-07-26 2009-09-08 Freiberger Compound Materials Gmbh Process for smoothening III-N substrates
US7645340B2 (en) 2002-04-09 2010-01-12 Tokyo University Agriculture And Technology Tlo Co., Ltd. Vapor phase growth method for A1-containing III-V group compound semiconductor, and method and device for producing A1-containing III-V group compound semiconductor
US20110175200A1 (en) * 2010-01-21 2011-07-21 Hitachi Cable, Ltd. Manufacturing method of conductive group iii nitride crystal, manufacturing method of conductive group iii nitride substrate and conductive group iii nitride substrate
US20110244761A1 (en) * 2010-04-01 2011-10-06 Hitachi Cable, Ltd. Method of making conductive Group lll Nitride single crystal substrate
US8102026B2 (en) 2009-04-13 2012-01-24 Hitachi Cable, Ltd. Group-III nitride semiconductor freestanding substrate and manufacturing method of the same
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
JP2014055103A (en) * 2005-12-28 2014-03-27 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal
US8698282B2 (en) 2007-11-20 2014-04-15 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal substrate and semiconductor device
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method
KR20160070743A (en) 2013-10-15 2016-06-20 가부시키가이샤 도쿠야마 N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
KR20170038801A (en) 2014-08-01 2017-04-07 가부시키가이샤 도쿠야마 N-type aluminum nitride monocrystalline substrate
CN109360786A (en) * 2018-09-29 2019-02-19 扬州乾照光电有限公司 A kind of method and semiconductor structure of laterally overgrown

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502298A (en) * 2000-06-28 2004-01-22 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Method for improving epitaxy quality (surface irregularities and defect density) of aluminum nitride, indium, gallium ((Al, In, Ga) N) freestanding substrates for optoelectronic devices and electronic devices
KR20030071098A (en) * 2002-02-27 2003-09-03 주식회사 엘지이아이 Apparatus for manufacturing GaN substrate
US7645340B2 (en) 2002-04-09 2010-01-12 Tokyo University Agriculture And Technology Tlo Co., Ltd. Vapor phase growth method for A1-containing III-V group compound semiconductor, and method and device for producing A1-containing III-V group compound semiconductor
JP2006024597A (en) * 2004-07-06 2006-01-26 Furukawa Co Ltd Vapor phase growth apparatus and method for forming group iii nitride semiconductor film
JP4544923B2 (en) * 2004-07-06 2010-09-15 古河機械金属株式会社 Vapor growth equipment
WO2007011193A1 (en) * 2005-07-21 2007-01-25 Theleds Co., Ltd. Method for manufacturing compliant substrate, compliant substrate manufactured thereby, gallium nitride based compound semiconductor device having the compliant substrate and manufacturing method thereof
JP2014055103A (en) * 2005-12-28 2014-03-27 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal
US7585772B2 (en) 2006-07-26 2009-09-08 Freiberger Compound Materials Gmbh Process for smoothening III-N substrates
US8415766B2 (en) 2006-07-26 2013-04-09 Freiberger Compound Materials Gmbh Process for smoothening III-N substrates
US9461121B2 (en) 2006-08-09 2016-10-04 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
US8129208B2 (en) 2007-02-07 2012-03-06 Tokuyama Corporation n-Type conductive aluminum nitride semiconductor crystal and manufacturing method thereof
WO2008096884A1 (en) 2007-02-07 2008-08-14 National University Corporation Tokyo University Of Agriculture And Technology N-type conductive aluminum nitride semiconductor crystal and method for producing the same
EP2725124A1 (en) 2007-02-07 2014-04-30 National University Corporation Tokyo University of Agriculture and Technology N-type conductive aluminum nitride semiconductor crystal and manufacturing method thereof
US8698282B2 (en) 2007-11-20 2014-04-15 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal substrate and semiconductor device
EP2063458A2 (en) 2007-11-20 2009-05-27 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal growing method, group III nitride semiconductor crystal substrate fabrication method, and group III nitride semiconductor crystal substrate
EP2063457A2 (en) 2007-11-20 2009-05-27 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor crystal growing method, group III nitride semiconductor crystal substrate fabrication method, and group III nitride semiconductor crystal substrate
US8102026B2 (en) 2009-04-13 2012-01-24 Hitachi Cable, Ltd. Group-III nitride semiconductor freestanding substrate and manufacturing method of the same
US20110175200A1 (en) * 2010-01-21 2011-07-21 Hitachi Cable, Ltd. Manufacturing method of conductive group iii nitride crystal, manufacturing method of conductive group iii nitride substrate and conductive group iii nitride substrate
CN102134742A (en) * 2010-01-21 2011-07-27 日立电线株式会社 Manufacturing method of conductive group III nitride crystal, manufacturing method of conductive group III nitride substrate and conductive group III nitride substrate
US20110244761A1 (en) * 2010-04-01 2011-10-06 Hitachi Cable, Ltd. Method of making conductive Group lll Nitride single crystal substrate
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
KR20160070743A (en) 2013-10-15 2016-06-20 가부시키가이샤 도쿠야마 N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
US9748410B2 (en) 2013-10-15 2017-08-29 Tokuyama Corporation N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
DE112014004744B4 (en) 2013-10-15 2020-05-07 Tokuyama Corporation Vertical nitride semiconductor device and laminated body
KR20170038801A (en) 2014-08-01 2017-04-07 가부시키가이샤 도쿠야마 N-type aluminum nitride monocrystalline substrate
US9806205B2 (en) 2014-08-01 2017-10-31 Tokuyama Corporation N-type aluminum nitride monocrystalline substrate
DE112015003542B4 (en) 2014-08-01 2022-09-15 Tokuyama Corporation N-type aluminum nitride single crystal substrate and its use for vertical nitride semiconductor devices
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method
CN109360786A (en) * 2018-09-29 2019-02-19 扬州乾照光电有限公司 A kind of method and semiconductor structure of laterally overgrown
CN109360786B (en) * 2018-09-29 2021-08-10 扬州乾照光电有限公司 Lateral epitaxial growth method and semiconductor structure

Also Published As

Publication number Publication date
JP3279528B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
JP3139445B2 (en) GaN-based semiconductor growth method and GaN-based semiconductor film
US7998773B2 (en) Method of growing semiconductor heterostructures based on gallium nitride
US8664687B2 (en) Nitride semiconductor light-emitting device and process for producing the same
JP2623466B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2003229645A (en) Quantum well structure, semiconductor element employing it and its fabricating method
JP2003037289A (en) Group iii nitride light-emitting element with low-drive voltage
JPH11135832A (en) Gallium nitride group compound semiconductor and manufacture therefor
JP4554803B2 (en) Low dislocation buffer, method for producing the same, and device having low dislocation buffer
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
JP4131618B2 (en) Manufacturing method of substrate for photonic device
KR100571225B1 (en) Method for growing nitride compound semiconductor
JP3626423B2 (en) Photonic device manufacturing method
JP2005064204A (en) Group iii nitride compound semiconductor light emitting device, and method for manufacturing gallium nitride (gan) substrate for use in device
JPH11103133A (en) Semiconductor layer using selective growth method and its growth method, nitride-based semiconductor layer using selective growth method and its growth method as well as nitride-based semiconductor light-emitting element and its manufacture
JP2004356522A (en) Group 3-5 compound semiconductor, its manufacturing method, and its use
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
KR100935974B1 (en) Manufacturing method of Nitride semiconductor light emitting devide
JPH08255929A (en) Fabrication of semiconductor light emitting element
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
JP3875298B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH05243613A (en) Light-emitting device and its manufacture
JP2002299252A (en) Production method for group iii nitride compound semiconductor and group iii nitride compound semiconductor device
JP4698053B2 (en) Method for producing group III nitride compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term