JP2000090971A - Secondary power source - Google Patents

Secondary power source

Info

Publication number
JP2000090971A
JP2000090971A JP10260453A JP26045398A JP2000090971A JP 2000090971 A JP2000090971 A JP 2000090971A JP 10260453 A JP10260453 A JP 10260453A JP 26045398 A JP26045398 A JP 26045398A JP 2000090971 A JP2000090971 A JP 2000090971A
Authority
JP
Japan
Prior art keywords
lithium
secondary power
carbon material
formula
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260453A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10260453A priority Critical patent/JP2000090971A/en
Publication of JP2000090971A publication Critical patent/JP2000090971A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power source capable of quickly charging and discharging and having high breakdown voltage, high capacity, high energy density and high charge and discharge cycle reliability by having a positive electrode including the activated carbon and the lithium contained transition metal oxide, a negative electrode including a carbon material for storing and releasing the lithium ion, and the organic electrolyte containing the lithium salt and a specified compound. SOLUTION: A compound expressed with the formula is used in this secondary power source. (In the formula, R1, R2 are each hydrogen atom or straight chain or branch alkyl group having 1-10 carbons). Desirably, concentration of the compound expressed with the formula is set at 0.1-15 wt.%, and the solvent of the organic electrolyte contains propylene carbonate at 70 wt.% or more, and as the carbon material, a graphite carbon material having 0.335-0.338 nm of spacing of a [002] plane is used, and as the lithium transition metal oxide, a composite oxide of one kind or more to be selected from among a group of V, Mn, Fe, Co, Ni, Zn, W and lithium is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が提案され
ている。特開平8−107048には、リチウムイオン
を吸蔵、脱離しうる炭素材料にあらかじめ化学的方法又
は電気化学的方法でリチウムイオンを吸蔵させた炭素材
料を負極に用いる電池が提案されている。特開平9−5
5342には、リチウムイオンを吸蔵、脱離しうる炭素
材料をリチウムと合金を形成しない多孔質集電体に担持
させる負極を有する、上限電圧4Vの二次電源が提案さ
れている。しかし、これらの二次電源にはあらかじめ負
極炭素材料にリチウムイオンを吸蔵させるという製造工
程上の問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.356 nm.
There has been proposed a secondary power supply having an upper limit voltage of 3 V using an electrode in which lithium ions are previously stored in a carbon material as a negative electrode. Japanese Patent Application Laid-Open No. 8-107048 proposes a battery in which a carbon material which can occlude and desorb lithium ions by absorbing lithium ions by a chemical method or an electrochemical method in advance is used as a negative electrode. JP-A-9-5
No. 5342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector which does not form an alloy with lithium. However, these secondary power supplies have a problem in the manufacturing process that occlude lithium ions in the negative electrode carbon material in advance.

【0004】正極に活性炭を用い、負極にリチウムイオ
ンを吸蔵、脱離しうる炭素材料を用いた二次電源は、従
来の正極、負極ともに活性炭を用いた電気二重層キャパ
シタより高電圧かつ高容量とすることができる。特に、
この二次電源において負極にリチウムイオン吸蔵脱離電
位の卑な黒鉛系炭素材料を用いると、より高容量にでき
る。ところが、黒鉛系炭素材料はエチレンカーボネート
を主溶媒とする電解液でなければリチウムイオンを吸
蔵、脱離できないのに対し、この電解液は活性炭を用い
た正極に対しては高温における安定性が不充分である問
題がある。
A secondary power supply using activated carbon for the positive electrode and a carbon material capable of absorbing and desorbing lithium ions for the negative electrode has a higher voltage and higher capacity than conventional electric double layer capacitors using activated carbon for both the positive electrode and the negative electrode. can do. In particular,
In this secondary power supply, a higher capacity can be achieved by using a graphite-based carbon material having a low lithium ion occlusion / desorption potential for the negative electrode. However, graphite-based carbon materials cannot occlude and desorb lithium ions unless they are electrolytes containing ethylene carbonate as the main solvent, whereas this electrolyte has a low stability at high temperatures with respect to the positive electrode using activated carbon. There is a problem that is enough.

【0005】また、電気二重層キャパシタ、上記二次電
源以外に、大電流充放電可能な二次電源にはリチウムイ
オン二次電池がある。リチウムイオン二次電池は電気二
重層キャパシタに比べて高電圧かつ高容量という性質を
有するが、抵抗が高く、急速充放電サイクルによる寿命
が電気二重層キャパシタに比べ著しく短い問題があっ
た。
[0005] In addition to the electric double layer capacitor and the secondary power supply, a secondary power supply capable of charging and discharging a large current is a lithium ion secondary battery. Lithium-ion secondary batteries have higher voltage and higher capacity than electric double-layer capacitors, but have the problems of high resistance and a significantly shorter life due to rapid charge / discharge cycles than electric double-layer capacitors.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能で高耐電圧かつ高容量でエネルギ密度が高
く、充放電サイクル信頼性の高い二次電源を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a secondary power supply capable of rapid charge / discharge, high withstand voltage, high capacity, high energy density, and high charge / discharge cycle reliability. .

【0007】[0007]

【課題を解決するための手段】本発明は、活性炭とリチ
ウム含有遷移金属酸化物とを含む正極と、リチウムイオ
ンを吸蔵、脱離しうる炭素材料を含む負極と、リチウム
塩と式1で表される化合物を含む有機電解液と、を有す
ることを特徴とする二次電源を提供する。ただし、式1
においてR1 、R2 はそれぞれ独立に水素原子又は炭素
数1〜10の直鎖状もしくは分岐状のアルキル基を表
す。
According to the present invention, there is provided a positive electrode containing activated carbon and a lithium-containing transition metal oxide, a negative electrode containing a carbon material capable of occluding and releasing lithium ions, a lithium salt and a formula (1). And an organic electrolyte containing a compound. Where Equation 1
In the above, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.

【0008】[0008]

【化2】 Embedded image

【0009】本明細書において、リチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする負極と集電体とを
接合して一体化させたものを負極体という。正極体につ
いても同様の定義とする。また、二次電池も電気二重層
キャパシタも二次電源の1種であるが、本明細書では、
正極に活性炭を含み、負極にリチウムイオンを吸蔵、脱
離しうる炭素材料を含む特定の構成の二次電源を単に二
次電源という。
In the present specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions with a current collector. The same definition applies to the positive electrode body. Further, both the secondary battery and the electric double layer capacitor are one type of secondary power supply, but in this specification,
A secondary power supply having a specific configuration in which a positive electrode contains activated carbon and a negative electrode contains a carbon material capable of inserting and extracting lithium ions is simply referred to as a secondary power supply.

【0010】本発明における電解液の溶媒としては、エ
チレンカーボネート、プロピレンカーボネート、ブチレ
ンカーボネート、ジメチルカーボネート、エチルメチル
カーボネート、ジエチルカーボネート、スルホラン、
1,2−ジメトキシエタン等が挙げられ、これらを単独
で、又は2種以上の混合溶媒として使用できる。なかで
も、正極の活性炭が電圧印加に対して安定である点で、
プロピレンカーボネートを含む溶媒であることが好まし
く、特にプロピレンカーボネートが70重量%以上含ま
れる溶媒であることが好ましい。
In the present invention, the solvent of the electrolytic solution includes ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane,
1,2-dimethoxyethane and the like can be mentioned, and these can be used alone or as a mixed solvent of two or more. Above all, in that the activated carbon of the positive electrode is stable against voltage application,
A solvent containing propylene carbonate is preferable, and a solvent containing propylene carbonate in an amount of 70% by weight or more is particularly preferable.

【0011】本発明における負極のリチウムイオンを吸
蔵、脱離しうる炭素材料としては、黒鉛系炭素材料、低
温焼成炭素材料、ハードカーボン等が挙げられるが、特
に電位を卑にできる黒鉛系炭素材料が好ましい。ところ
が、プロピレンカーボネートを含む溶媒にリチウム塩を
溶解した溶液中で、電気化学的方法で黒鉛系材料にリチ
ウムイオンを吸蔵させようとしても、また前記溶液を電
解液として充電してリチウムイオンを吸蔵させようとし
ても、リチウム参照極に対する電位が約0.8Vの付近
でプロピレンカーボネートの電気分解が起こり、リチウ
ムイオンを吸蔵できない。
The carbon material capable of occluding and releasing lithium ions of the negative electrode in the present invention includes a graphite-based carbon material, a low-temperature fired carbon material, a hard carbon, and the like. In particular, a graphite-based carbon material capable of lowering the potential is used. preferable. However, in a solution in which a lithium salt is dissolved in a solvent containing propylene carbonate, even if an attempt is made to occlude lithium ions in a graphite-based material by an electrochemical method, the solution is charged as an electrolyte to occlude lithium ions. Even in such a case, propylene carbonate is electrolyzed when the potential with respect to the lithium reference electrode is about 0.8 V, and lithium ions cannot be occluded.

【0012】ところが、プロピレンカーボネートを含む
溶媒にリチウム塩を溶解した溶液に式1で表される化合
物(以下、化合物1と略記する)を添加すると、プロピ
レンカーボネートの分解が抑えられ、黒鉛系炭素材料に
もリチウムイオンを吸蔵できる。
However, when a compound represented by Formula 1 (hereinafter abbreviated as Compound 1) is added to a solution in which a lithium salt is dissolved in a solvent containing propylene carbonate, the decomposition of propylene carbonate is suppressed, and the graphite-based carbon material is removed. Can also store lithium ions.

【0013】化合物1において、R1 及びR2 は、それ
ぞれ独立に水素原子又は炭素数1〜10の直鎖状もしく
は分岐状のアルキル基である。R1 及びR2 の炭素数が
多くなると、電解液に溶解しにくくなる。化合物1とし
ては、具体的には式2で表されるカテコールカーボネー
ト、式3で表される3−メチルカテコールカーボネー
ト、式4で表される4−メチルカテコールカーボネート
等が好ましい。
In compound 1, R 1 and R 2 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms of R 1 and R 2 increases, it becomes difficult to dissolve in the electrolytic solution. As compound 1, specifically, catechol carbonate represented by formula 2, 3-methyl catechol carbonate represented by formula 3, 4-methyl catechol carbonate represented by formula 4, and the like are preferable.

【0014】[0014]

【化3】 Embedded image

【0015】化合物1を加えることによるプロピレンカ
ーボネートの分解抑制のメカニズムの詳細は明らかでは
ないが、プロピレンカーボネート溶液中の化合物1は、
黒鉛系材料のリチウムイオン吸蔵時のプロピレンカーボ
ネートの電気分解過程において、プロピレンカーボネー
ト分子から生成した中間体ラジカルの捕捉剤として働
き、黒鉛系材料表面にリチウムイオン導電性を有する表
面皮膜を形成するものと思われる。その結果、さらなる
プロピレンカーボネートの分解が防がれると思われる。
The details of the mechanism of suppressing the decomposition of propylene carbonate by adding compound 1 are not clear, but compound 1 in the propylene carbonate solution is
In the process of electrolyzing propylene carbonate during lithium ion occlusion of graphite-based material, it acts as a scavenger for intermediate radicals generated from propylene carbonate molecules, and forms a surface film having lithium ion conductivity on the surface of graphite-based material. Seem. As a result, it is believed that further decomposition of propylene carbonate is prevented.

【0016】化合物1の電解液中の濃度は、0.1〜1
5重量%であることが好ましい。0.1重量%未満で
は、化合物1を添加する効果が小さく、リチウムイオン
を含むプロピレンカーボネート溶液中で黒鉛系材料にリ
チウムイオンを吸蔵できない。15重量%を超えると、
二次電源の容量が小さくなり、充放電サイクルによる容
量の低化が大きくなる。特に0.5〜5重量%であるこ
とが好ましい。
The concentration of compound 1 in the electrolyte is 0.1 to 1
Preferably it is 5% by weight. If the amount is less than 0.1% by weight, the effect of adding Compound 1 is small, and lithium ions cannot be occluded in the graphite-based material in a propylene carbonate solution containing lithium ions. If it exceeds 15% by weight,
The capacity of the secondary power supply is reduced, and the capacity reduction due to charge / discharge cycles is increased. In particular, the content is preferably 0.5 to 5% by weight.

【0017】本発明では、正極は活性炭とリチウム含有
遷移金属酸化物とを主体とする電極であるが、この場
合、充電したときに正極ではリチウム塩のアニオンの活
性炭への吸着に加えリチウム含有遷移金属酸化物からの
リチウムイオンの脱離が起こり、負極ではリチウムイオ
ンが吸蔵される。ここで負極に吸蔵されるリチウムイオ
ンは、電解液中のリチウム塩によるものとリチウム含有
遷移金属酸化物からの脱離によるものの両方がある。
In the present invention, the positive electrode is an electrode mainly composed of activated carbon and a lithium-containing transition metal oxide. In this case, when the positive electrode is charged, the positive electrode adsorbs lithium salt anions onto the activated carbon and adds a lithium-containing transition metal. Desorption of lithium ions from the metal oxide occurs, and the negative ions occlude lithium ions. Here, the lithium ions occluded in the negative electrode include both those due to lithium salts in the electrolytic solution and those due to desorption from the lithium-containing transition metal oxide.

【0018】したがって、リチウム含有遷移金属酸化物
を含まない活性炭を主体とする正極を有する従来の二次
電源に比べ、本発明の二次電源では負極の炭素材料に充
分にリチウムイオンを吸蔵させることができる。そのた
め、前記従来の二次電源のように負極にあらかじめリチ
ウムイオンを吸蔵させておかなくても、充電により負極
の電位は卑になり、二次電源の電圧を高くできる。
Therefore, compared with the conventional secondary power supply having a positive electrode mainly composed of activated carbon not containing a lithium-containing transition metal oxide, the secondary power supply of the present invention allows the carbon material of the negative electrode to occlude lithium ions sufficiently. Can be. Therefore, even if the negative electrode does not previously store lithium ions as in the conventional secondary power supply, the potential of the negative electrode becomes low by charging, and the voltage of the secondary power supply can be increased.

【0019】また、正極をリチウム含有遷移金属酸化物
を主体とする電極、負極をリチウムイオンを吸蔵、脱離
しうる炭素材料を主体とする電極とするリチウムイオン
二次電池では、急速充放電サイクルを行うと、緩やかな
充放電サイクルを行った場合に比べて劣化が著しい。こ
の主な原因は、正極活物質であるリチウム含有遷移金属
酸化物の充放電による酸化還元反応にともなう劣化であ
る。
In a lithium ion secondary battery in which the positive electrode is mainly composed of a lithium-containing transition metal oxide and the negative electrode is mainly composed of a carbon material capable of absorbing and releasing lithium ions, a rapid charge / discharge cycle is performed. When it is performed, deterioration is remarkable as compared with a case where a gentle charge / discharge cycle is performed. This is mainly due to deterioration accompanying the oxidation-reduction reaction of the lithium-containing transition metal oxide as the positive electrode active material due to charge and discharge.

【0020】一方、本発明の二次電源では、大電流での
急速充放電の場合は活性炭が関与し、比較的小さい電流
の充放電の場合はリチウム含有遷移金属酸化物が関与す
る。そのため、正極のリチウム含有遷移金属酸化物の負
担が小さくなり、充放電サイクルによる劣化を少なく抑
えることができ、高電圧、高容量かつ充放電サイクルの
寿命が長い二次電源が得られる。
On the other hand, in the secondary power supply of the present invention, activated carbon is involved in rapid charging and discharging at a large current, and a lithium-containing transition metal oxide is involved in charging and discharging at a relatively small current. Therefore, the burden of the lithium-containing transition metal oxide on the positive electrode is reduced, deterioration due to charge / discharge cycles can be reduced, and a secondary power supply having a high voltage, a high capacity, and a long charge / discharge cycle life can be obtained.

【0021】正極に含まれるリチウム含有遷移金属酸化
物としては、V、Mn、Fe、Co、Ni、Zn及びW
からなる群から選ばれる1種以上の遷移金属とリチウム
との複合酸化物が好ましい。特に好ましいのは、Co、
Mn及びNiからなる群から選ばれる1種以上とリチウ
ムとの複合酸化物であり、さらにはLix Coy Ni
(1-y)2 又はLiz Mn24 (ただし、0<x<
2、0≦y≦1、0<z<2。)が好ましい。
The lithium-containing transition metal oxide contained in the positive electrode includes V, Mn, Fe, Co, Ni, Zn and W.
Preferred is a composite oxide of one or more transition metals selected from the group consisting of and lithium. Particularly preferred are Co,
A composite oxide of lithium and at least one selected from the group consisting of Mn and Ni, and Li x Co y Ni
(1-y) O 2 or Li z Mn 2 O 4 (provided that 0 <x <
2, 0 ≦ y ≦ 1, 0 <z <2. Is preferred.

【0022】正極中のリチウム含有遷移金属酸化物の量
は5〜80重量%が好ましい。5重量%未満であると、
初めの充電において脱離されるリチウムイオンの量が負
極が吸蔵できるリチウムイオンの量に対して充分ではな
く、二次電源の電圧を高くできない。80重量%を超え
ると、相対的に正極中の活性炭量が少なくなるため、充
放電サイクルにおける容量減少が大きくなる。より好ま
しくは20〜70重量%である。
The amount of the lithium-containing transition metal oxide in the positive electrode is preferably 5 to 80% by weight. If it is less than 5% by weight,
The amount of lithium ions desorbed in the first charge is not enough for the amount of lithium ions that the negative electrode can store, and the voltage of the secondary power supply cannot be increased. If it exceeds 80% by weight, the amount of activated carbon in the positive electrode becomes relatively small, so that the capacity decrease in the charge / discharge cycle becomes large. More preferably, it is 20 to 70% by weight.

【0023】正極に含まれる活性炭は、比表面積が80
0〜3000m2 /gであることが好ましい。活性炭の
原料、賦活条件は限定されないが、例えば原料としては
やしがら、フェノール樹脂、石油コークス等が挙げら
れ、賦活方法としては水蒸気賦活法、溶融アルカリ賦活
法等が挙げられる。特にやしがら又はフェノール樹脂を
原料として水蒸気賦活して得られる活性炭が好ましい。
正極の抵抗を低くするために、正極中に導電材として導
電性のカーボンブラック又は黒鉛を含ませておくのも好
ましく、このとき導電材は正極中に0.1〜20重量%
含まれることが好ましい。
The activated carbon contained in the positive electrode has a specific surface area of 80.
It is preferably from 0 to 3000 m 2 / g. The raw material and activation conditions of the activated carbon are not limited. For example, the raw material includes bean, phenol resin, petroleum coke and the like, and the activation method includes a steam activation method and a molten alkali activation method. Activated carbon obtained by activating steam from coconut or phenolic resin is particularly preferred.
In order to reduce the resistance of the positive electrode, it is also preferable to include conductive carbon black or graphite as a conductive material in the positive electrode.
Preferably, it is included.

【0024】正極体の作製方法としては、例えば活性炭
粉末とリチウム含有遷移金属酸化物粉末との混合物にバ
インダとしてポリテトラフルオロエチレンを混合し、混
練した後シート状に成形して正極とし、これを集電体に
導電性接着剤を用いて固定する方法がある。また、バイ
ンダとしてポリフッ化ビニリデン、ポリアミドイミド、
ポリイミド等を溶解したワニスに活性炭粉末とリチウム
含有遷移金属酸化物粉末とを分散させ、この液をドクタ
ーブレード法等によって集電体上に塗工し、乾燥して得
てもよい。正極中に含まれるバインダの量は、正極体の
強度と容量等の特性とのバランスから1〜20重量%で
あることが好ましい。
As a method of manufacturing a positive electrode body, for example, a mixture of activated carbon powder and lithium-containing transition metal oxide powder is mixed with polytetrafluoroethylene as a binder, kneaded, and then formed into a sheet to form a positive electrode. There is a method of fixing to a current collector using a conductive adhesive. Further, as a binder, polyvinylidene fluoride, polyamide imide,
The activated carbon powder and the lithium-containing transition metal oxide powder may be dispersed in a varnish in which polyimide or the like is dissolved, and the resulting liquid may be applied on a current collector by a doctor blade method or the like, and dried to obtain the powder. The amount of the binder contained in the positive electrode is preferably 1 to 20% by weight in view of the balance between the strength of the positive electrode body and characteristics such as capacity.

【0025】本発明において、リチウムイオンを吸蔵、
脱離しうる炭素材料はX線回折による[002]面の面
間隔が0.335〜0.410nmであることが好まし
い。リチウムイオンを吸蔵、脱離しうる炭素材料には天
然黒鉛、人造黒鉛、石油コークス、メソフェーズピッチ
系炭素材料又は気相成長炭素繊維の熱処理温度を800
〜3000℃の間で変えた材料、難黒鉛性炭素材料など
があるがいずれも使用できる。なかでも、特に抵抗が低
い点から、[002]面の面間隔が0.335〜0.3
38nmである黒鉛系炭素材料が好ましい。
In the present invention, lithium ions are occluded,
The desorbable carbon material preferably has a [002] plane spacing of 0.335 to 0.410 nm as determined by X-ray diffraction. The carbon materials capable of absorbing and desorbing lithium ions include natural graphite, artificial graphite, petroleum coke, mesophase pitch-based carbon materials or vapor-grown carbon fibers with a heat treatment temperature of 800.
There are materials changed between -3000 ° C., non-graphitizable carbon materials, etc., and any of them can be used. Above all, from the point of particularly low resistance, the [002] plane spacing is 0.335 to 0.3.
A graphite-based carbon material having a thickness of 38 nm is preferable.

【0026】上記黒鉛系炭素材料としては、具体的には
メソフェーズピッチ系炭素繊維、メソカーボンマイクロ
ビーズ、気相成長炭素材料を2800℃以上で熱処理し
た炭素材料、及び天然黒鉛等が挙げられる。
Specific examples of the graphite-based carbon material include mesophase pitch-based carbon fibers, mesocarbon microbeads, carbon materials obtained by heat-treating a vapor-grown carbon material at 2800 ° C. or higher, and natural graphite.

【0027】本発明における負極体は、正極同様ポリテ
トラフルオロエチレンをバインダとして混練してシート
状に成形して負極を形成し、導電性接着剤を用いて集電
体に接着させて得ることができる。また、ポリフッ化ビ
ニリデン、ポリアミドイミド又はポリイミドをバインダ
とし、バインダとなる樹脂又はその前駆体を有機溶媒に
溶解させた溶液に前記炭素材料を分散させ、集電体に塗
工し、乾燥させて得る方法もある。これらの方法はいず
れも好ましい。
The negative electrode body of the present invention can be obtained by kneading polytetrafluoroethylene as a binder, forming the same into a sheet, forming a negative electrode in the same manner as the positive electrode, and bonding the negative electrode to a current collector using a conductive adhesive. it can. Further, polyvinylidene fluoride, polyamideimide or polyimide as a binder, the carbon material is dispersed in a solution in which a resin serving as a binder or a precursor thereof is dissolved in an organic solvent, applied to a current collector, and dried. There are ways. All of these methods are preferred.

【0028】集電体に前記溶液を塗工して負極体を得る
方法において、バインダとなる樹脂又はその前駆体を溶
解させる溶媒は限定されないが、バインダを構成する樹
脂又はその前駆体を容易に溶解でき、入手も容易である
ことからN−メチル−2−ピロリドン(以下、NMPと
いう)が好ましい。ここで、ポリフッ化ビニリデンの前
駆体、ポリアミドイミドの前駆体又はポリイミドの前駆
体とは、加熱することにより重合してそれぞれポリフッ
化ビニリデン、ポリアミドイミド又はポリイミドとなる
ものをいう。
In the method of obtaining the negative electrode body by applying the solution to the current collector, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof can be easily prepared. N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) is preferable because it can be dissolved and is easily available. Here, the precursor of polyvinylidene fluoride, the precursor of polyamideimide, or the precursor of polyimide refers to those which are polymerized by heating to be polyvinylidene fluoride, polyamideimide, or polyimide, respectively.

【0029】上記のようにして得られるバインダは、加
熱することにより硬化し、耐薬品性、機械的性質、寸法
安定性に優れる。熱処理の温度は200℃以上であるこ
とが好ましい。200℃以上であれば、ポリアミドイミ
ドの前駆体又はポリイミドの前駆体であっても通常重合
して、それぞれポリアミドイミド又はポリイミドとな
る。また、熱処理する雰囲気は窒素、アルゴン等の不活
性雰囲気又は1torr以下の減圧下が好ましい。ポリ
アミドイミド又はポリイミドは、本発明で使用される有
機電解液に対する耐性があり、また負極から水分を除去
するために300℃程度の高温加熱又は減圧下の加熱を
しても充分耐性がある。
The binder obtained as described above is cured by heating and has excellent chemical resistance, mechanical properties and dimensional stability. The temperature of the heat treatment is preferably 200 ° C. or higher. If the temperature is 200 ° C. or higher, even if it is a polyamideimide precursor or a polyimide precursor, it is usually polymerized to be a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon, or a reduced pressure of 1 torr or less. Polyamide imide or polyimide has resistance to the organic electrolyte used in the present invention, and is sufficiently resistant to high temperature heating of about 300 ° C. or heating under reduced pressure to remove water from the negative electrode.

【0030】本発明において、負極と集電体の間にポリ
アミドイミド又はポリイミドからなる接着層を介在させ
ると、負極と集電体の接着力はより強固になる。この場
合、あらかじめ集電体にポリアミドイミド、ポリイミド
又はこれらの前駆体を溶剤に溶解させたワニスを、ドク
ターブレード法等の塗工法で塗工し、乾燥して接着層を
形成し、この上に負極を形成する。また、接着層を形成
するワニスに銅、黒鉛等の導電材を分散させておくと、
負極と集電体との接触抵抗を低減できるので好ましい。
この導電材を含むワニスは、活性炭を含む層をシート状
に成形した場合における該層と集電体との間にも導電性
接着剤として介在させることもできる。
In the present invention, if an adhesive layer made of polyamideimide or polyimide is interposed between the negative electrode and the current collector, the adhesive force between the negative electrode and the current collector becomes stronger. In this case, a varnish obtained by previously dissolving polyamideimide, polyimide or their precursors in a solvent on a current collector is applied by a coating method such as a doctor blade method, and dried to form an adhesive layer. A negative electrode is formed. Also, if a conductive material such as copper and graphite is dispersed in a varnish forming an adhesive layer,
This is preferable because the contact resistance between the negative electrode and the current collector can be reduced.
The varnish containing the conductive material can also be interposed as a conductive adhesive between the layer containing the activated carbon and the current collector when the layer containing the activated carbon is formed into a sheet.

【0031】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6 、LiBF4、LiClO4 、L
iN(SO2 CF32 、CF3 SO3 Li、LiC
(SO2 CF33 、LiAsF6 及びLiSbF6
らなる群から選ばれる1種以上が好ましい。電解液中の
リチウム塩の濃度は0.1〜2.5mol/L、さらに
は0.5〜2mol/Lが好ましい。
The lithium salt contained in the organic electrolyte according to the present invention includes LiPF 6 , LiBF 4 , LiClO 4 , L
iN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC
(SO 2 CF 3) 3, LiAsF 6 and one or more selected from the group consisting of LiSbF 6 are preferred. The concentration of the lithium salt in the electrolyte is preferably 0.1 to 2.5 mol / L, more preferably 0.5 to 2 mol / L.

【0032】[0032]

【実施例】次に、実施例(例1〜8)及び比較例(例
9)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜9における
セルの作製及び測定はすべて露点が−60℃以下のアル
ゴングローブボックス中で行った。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 8) and Comparative Examples (Example 9), but the present invention is not limited thereto. The production and measurement of the cells in Examples 1 to 9 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0033】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2 /gの
活性炭40重量%、LiCoO2 40重量%、導電性カ
ーボンブラック10重量%、及びバインダとしてポリテ
トラフルオロエチレン10重量%からなる混合物をエタ
ノールを加えて混練し、圧延した後、200℃で2時間
真空乾燥して電極シートを得た。このシートをポリアミ
ドイミドをバインダとする導電性接着剤を用いてアルミ
ニウム箔に接合し、減圧下で300℃で2時間熱処理
し、正極体とした。電極面は6cm×4cm、電極シー
トの厚さは150μmであった。
Example 1 40% by weight of activated carbon having a specific surface area of 2000 m 2 / g, 40% by weight of LiCoO 2, 10% by weight of conductive carbon black and 10% by weight of polytetrafluoroethylene as a binder obtained by a steam activation method using a phenol resin as a raw material A mixture consisting of 10% by weight of fluoroethylene was kneaded by adding ethanol, rolled, and then vacuum dried at 200 ° C. for 2 hours to obtain an electrode sheet. This sheet was bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body. The electrode surface was 6 cm × 4 cm, and the thickness of the electrode sheet was 150 μm.

【0034】次に、リチウムイオンを吸蔵、脱離しうる
炭素材料として[002]面の面間隔が0.338nm
の黒鉛系炭素材料を、ポリアミドイミドをNMPに溶解
した溶液に分散させ、銅からなる集電体に塗布し、乾燥
して電極を得た。負極中の上記炭素材料とポリアミドイ
ミドとは重量比で9:1であった。これをさらにロール
プレス機でプレスした。得られた負極は、面積が6cm
×4cm、厚さが40μmであった。この成形体を減圧
下で260℃で10時間熱処理し、負極体とした。
Next, as a carbon material capable of inserting and extracting lithium ions, the [002] plane has a plane spacing of 0.338 nm.
Was dispersed in a solution of polyamideimide dissolved in NMP, applied to a current collector made of copper, and dried to obtain an electrode. The weight ratio of the carbon material and the polyamideimide in the negative electrode was 9: 1. This was further pressed by a roll press. The obtained negative electrode had an area of 6 cm.
× 4 cm, and the thickness was 40 µm. This molded body was heat-treated under reduced pressure at 260 ° C. for 10 hours to obtain a negative electrode body.

【0035】上記正極体と上記負極体とを、ポリプロピ
レン製セパレータを介してそれぞれの電極面を対向さ
せ、挟持板で挟持して素子を作製した。プロピレンカー
ボネートにカテコールカーボネート(式2)を2重量
%、及びLiBF4 を1mol/Lの濃度で溶解した溶
液を電解液とし、前記素子を充分に含浸させて、4.2
Vから3Vまでの範囲で初期容量を測定した。その後、
充放電電流10mA/cm2 で、4.2Vから3Vまで
の範囲で充放電サイクルを行い、2000サイクル後の
容量を測定し、容量の変化率を算出した。結果を表1に
示す。
The above-mentioned positive electrode body and the above-mentioned negative electrode body were sandwiched by a sandwiching plate with their respective electrode surfaces facing each other via a polypropylene separator to produce an element. A solution obtained by dissolving catechol carbonate (formula 2) in propylene carbonate at a concentration of 2% by weight and LiBF 4 at a concentration of 1 mol / L was used as an electrolytic solution, and the element was sufficiently impregnated.
The initial capacity was measured in the range from V to 3V. afterwards,
A charge / discharge cycle was performed at a charge / discharge current of 10 mA / cm 2 in a range from 4.2 V to 3 V, the capacity after 2000 cycles was measured, and the rate of change of the capacity was calculated. Table 1 shows the results.

【0036】[例2]カテコールカーボネート(式2)
のかわりに3−メチルカテコールカーボネート(式3)
を用いた以外は例1と同様にして二次電源を得て、例1
と同様に評価した。結果を表1に示す。
[Example 2] Catechol carbonate (Formula 2)
Instead of 3-methylcatechol carbonate (Formula 3)
A secondary power source was obtained in the same manner as in Example 1 except that
Was evaluated in the same way as Table 1 shows the results.

【0037】[例3]カテコールカーボネート(式2)
のかわりに4−メチルカテコールカーボネート(式4)
を用いた以外は例1と同様にして二次電源を得て、例1
と同様に評価した。結果を表1に示す。
Example 3 Catechol Carbonate (Formula 2)
Instead of 4-methylcatechol carbonate (Formula 4)
A secondary power source was obtained in the same manner as in Example 1 except that
Was evaluated in the same way as Table 1 shows the results.

【0038】[例4]LiCoO2 のかわりにLiMn
24 を用いた以外は例1と同様にして正極体を得た。
この正極体を用いた以外は例1と同様に評価した。結果
を表1に示す。
[Example 4] LiMn instead of LiCoO 2
A positive electrode body was obtained in the same manner as in Example 1 except that 2 O 4 was used.
Evaluation was performed in the same manner as in Example 1 except that this positive electrode body was used. Table 1 shows the results.

【0039】[例5]LiCoO2 のかわりにLiNi
2 を用いた以外は例1と同様にして正極体を得た。こ
の正極体を用いた以外は例1と同様に評価した。結果を
表1に示す。
Example 5 LiNi was used instead of LiCoO 2
A positive electrode body was obtained in the same manner as in Example 1 except that O 2 was used. Evaluation was performed in the same manner as in Example 1 except that this positive electrode body was used. Table 1 shows the results.

【0040】[例6]LiCoO2 のかわりにLiCo
0.2 Ni0.82 を用いた以外は例1と同様にして正極
体を得た。この正極体を用いた以外は例1と同様にして
容量を測定した。結果を表1に示す。
Example 6 LiCoO 2 was replaced with LiCo
A positive electrode body was obtained in the same manner as in Example 1 except that 0.2 Ni 0.8 O 2 was used. The capacity was measured in the same manner as in Example 1 except that this positive electrode body was used. Table 1 shows the results.

【0041】[例7]カテコールカーボネート(式2)
の添加量を0.05重量%に変更した以外は例1と同様
にして二次電源を得て、例1と同様に評価した。結果を
表1に示す。
Example 7 Catechol Carbonate (Formula 2)
A secondary power source was obtained in the same manner as in Example 1 except that the addition amount of was changed to 0.05% by weight, and was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0042】[例8]カテコールカーボネート(式2)
の添加量を20重量%に変更した以外は例1と同様にし
て二次電源を得て、例1と同様に評価した。結果を表1
に示す。
Example 8 Catechol Carbonate (Formula 2)
A secondary power source was obtained in the same manner as in Example 1 except that the addition amount of was changed to 20% by weight, and evaluated in the same manner as in Example 1. Table 1 shows the results
Shown in

【0043】[例9]電解液として、カテコールカーボ
ネート(式2)を添加しない1mol/LのLiBF4
を含むプロピレンカーボネート溶液を用いた以外は例1
と同様にして二次電源を得て、例1と同様に評価した。
結果を表1に示す。
Example 9 1 mol / L LiBF 4 without adding catechol carbonate (formula 2) as an electrolyte
Example 1 except that a propylene carbonate solution containing
A secondary power source was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1.
Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明の二次電源は、正極では急速充放
電には活性炭が関与し、リチウム含有遷移金属酸化物は
基本的に低電流による充放電に関与するのみであり、さ
らに電解液は正極に対しても負極に対しても安定である
ため、充放電サイクル耐久性に優れており、耐電圧が高
く容量が大きい。
According to the secondary power supply of the present invention, activated carbon is involved in rapid charging and discharging at the positive electrode, and lithium-containing transition metal oxides are basically involved only in charging and discharging at a low current. Is stable to both the positive electrode and the negative electrode, has excellent charge / discharge cycle durability, has a high withstand voltage, and has a large capacity.

【0046】また、二次電源の作製時の負極炭素材料へ
のリチウムイオンの吸蔵も、あらかじめ化学的方法又は
電気化学的方法により行う必要がなく、二次電源として
作製した後に充電により行うことができるため、二次電
源の作製が容易である。
In addition, the occlusion of lithium ions in the negative electrode carbon material at the time of producing the secondary power supply does not need to be performed in advance by a chemical method or an electrochemical method. Therefore, it is easy to manufacture a secondary power supply.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 AA02 AA04 BB01 BB05 BB12 BC06 BD00 BD02 BD04 BD06 5H014 AA02 EE01 EE08 EE10 HH01 HH06 HH08 5H029 AJ02 AJ03 AJ05 AK03 AK08 AK18 AL06 AL07 AM02 AM03 AM04 AM05 AM07 HJ01 HJ10 HJ13  ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活性炭とリチウム含有遷移金属酸化物とを
含む正極と、リチウムイオンを吸蔵、脱離しうる炭素材
料を含む負極と、リチウム塩と式1で表される化合物を
含む有機電解液と、を有することを特徴とする二次電
源。ただし、式1においてR1 、R2 はそれぞれ独立に
水素原子又は炭素数1〜10の直鎖状もしくは分岐状の
アルキル基を表す。 【化1】
1. A positive electrode containing activated carbon and a lithium-containing transition metal oxide, a negative electrode containing a carbon material capable of occluding and releasing lithium ions, an organic electrolyte containing a lithium salt and a compound represented by the formula (1). And a secondary power supply. However, in the formula 1, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms. Embedded image
【請求項2】電解液中の式1で表される化合物の濃度が
0.1〜15重量%である請求項1に記載の二次電源。
2. The secondary power source according to claim 1, wherein the concentration of the compound represented by the formula 1 in the electrolyte is 0.1 to 15% by weight.
【請求項3】有機電解液の溶媒は、プロピレンカーボネ
ートを70重量%以上含む請求項1又は2に記載の二次
電源。
3. The secondary power source according to claim 1, wherein the solvent of the organic electrolyte contains propylene carbonate in an amount of 70% by weight or more.
【請求項4】前記炭素材料は、[002]面の面間隔が
0.335〜0.338nmの黒鉛系炭素材料である請
求項1、2又は3に記載の二次電源。
4. The secondary power source according to claim 1, wherein the carbon material is a graphite-based carbon material having a [002] plane spacing of 0.335 to 0.338 nm.
【請求項5】リチウム含有遷移金属酸化物が、V、M
n、Fe、Co、Ni、Zn及びWからなる群から選ば
れる1種以上とリチウムとの複合酸化物である請求項
1、2、3又は4に記載の二次電源。
5. The method according to claim 1, wherein the lithium-containing transition metal oxide is V, M
5. The secondary power supply according to claim 1, wherein the secondary power supply is a composite oxide of lithium and at least one selected from the group consisting of n, Fe, Co, Ni, Zn and W.
【請求項6】リチウム含有遷移金属酸化物が正極中に5
〜80重量%含まれる請求項1、2、3、4又は5に記
載の二次電源。
6. The lithium-containing transition metal oxide contains 5
The secondary power source according to claim 1, 2, 3, 4, or 5, which is contained in an amount of about 80% by weight.
JP10260453A 1998-09-14 1998-09-14 Secondary power source Pending JP2000090971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260453A JP2000090971A (en) 1998-09-14 1998-09-14 Secondary power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260453A JP2000090971A (en) 1998-09-14 1998-09-14 Secondary power source

Publications (1)

Publication Number Publication Date
JP2000090971A true JP2000090971A (en) 2000-03-31

Family

ID=17348165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260453A Pending JP2000090971A (en) 1998-09-14 1998-09-14 Secondary power source

Country Status (1)

Country Link
JP (1) JP2000090971A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003077458A (en) * 2001-09-06 2003-03-14 Denso Corp Lithium secondary battery electrode and lithium secondary battery
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP2005243458A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP2005347164A (en) * 2004-06-04 2005-12-15 Toyota Motor Corp Lithium secondary battery and positive electrode for lithium secondary battery
US7041412B2 (en) 2001-07-23 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
CN100433428C (en) * 2003-01-20 2008-11-12 索尼株式会社 Nonaqueous electrolyte battery
JP2013051226A (en) * 2011-08-30 2013-03-14 Sumitomo Heavy Ind Ltd Capacitor and manufacturing method thereof
CN109256524A (en) * 2017-07-15 2019-01-22 深圳格林德能源有限公司 A kind of fast charging type high multiplying power lithium ion battery and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
US7041412B2 (en) 2001-07-23 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US7077877B2 (en) 2001-07-23 2006-07-18 Matsushita Electric Industrial Co., Ltd. Method of manufacturing non-aqueous electrolyte secondary battery
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003077458A (en) * 2001-09-06 2003-03-14 Denso Corp Lithium secondary battery electrode and lithium secondary battery
CN100433428C (en) * 2003-01-20 2008-11-12 索尼株式会社 Nonaqueous electrolyte battery
JP2005243458A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP4649848B2 (en) * 2004-02-26 2011-03-16 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP2005347164A (en) * 2004-06-04 2005-12-15 Toyota Motor Corp Lithium secondary battery and positive electrode for lithium secondary battery
JP2013051226A (en) * 2011-08-30 2013-03-14 Sumitomo Heavy Ind Ltd Capacitor and manufacturing method thereof
CN109256524A (en) * 2017-07-15 2019-01-22 深圳格林德能源有限公司 A kind of fast charging type high multiplying power lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US6294292B1 (en) Secondary power source
JP4843832B2 (en) Non-aqueous electrolyte and secondary battery using the same
US6558846B1 (en) Secondary power source
JP4096438B2 (en) Secondary power supply
JP5358905B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
JP4852700B2 (en) Lithium ion secondary battery
JP6728134B2 (en) Non-aqueous electrolyte secondary battery
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP6848330B2 (en) Non-aqueous electrolyte power storage element
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2005093414A (en) Lithium cell
JP2000090971A (en) Secondary power source
WO2021132208A1 (en) Electricity storage element
JP4083040B2 (en) Lithium battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JP7409132B2 (en) Nonaqueous electrolyte storage element
JP2000223368A (en) Secondary power source
JP3825571B2 (en) Non-aqueous electrolyte battery
JP2021190184A (en) Non-aqueous electrolyte power storage element
JP2009130066A (en) Lithium ion capacitor
JP2001052749A (en) Manufacture of lithium secondary battery
JP4352532B2 (en) Secondary power supply