JP2000087453A - Joint structure of column or wall with beam or board and method for constructing the same - Google Patents

Joint structure of column or wall with beam or board and method for constructing the same

Info

Publication number
JP2000087453A
JP2000087453A JP25983498A JP25983498A JP2000087453A JP 2000087453 A JP2000087453 A JP 2000087453A JP 25983498 A JP25983498 A JP 25983498A JP 25983498 A JP25983498 A JP 25983498A JP 2000087453 A JP2000087453 A JP 2000087453A
Authority
JP
Japan
Prior art keywords
steel
joint
flange
square steel
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25983498A
Other languages
Japanese (ja)
Inventor
Noriyuki Hirozawa
規行 広沢
Kazuyuki Tazaki
和之 田崎
Munehiro Ishida
宗弘 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25983498A priority Critical patent/JP2000087453A/en
Publication of JP2000087453A publication Critical patent/JP2000087453A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joint structure of a steel plate with the reinforcement of reinforced concrete, excellent in constructibility and improved in strength, and a method for constructing the same. SOLUTION: At the joint between a steel underground continuous wall 25 using as a main element a steel member 23 having flanges 24a, 24b and a reinforced concrete floor board 26, internally threaded square steel 28 is placed in the position of the reinforced concrete floor board 26 corresponding to main reinforcement 7, bringing the square steel 28 into contact with the inside of the flange 24a. The square steel 28 and the inside of the double-side flange 24a opposite thereto are connected together by welding using flange-to-flange connecting steel 29 having strength equivalent to that of the main reinforcement. In the front flange 24a with which the square steel 28 is brought into contact, a flange hole 31 through which the threaded end of the reinforcement can be passed is bored in a position corresponding to each main reinforcement 7, and the internally threaded part 32 of the square steel 28 and the main reinforcement 7 are screwed together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、開削トンネル、下
水処理場、建築物などの土木建築構造物において、鋼製
地中連続壁用部材等が用いられた両フランジを有する鋼
構造あるいは鋼・コンクリート合成構造の壁あるいは、
H形鋼、角鋼管等が用いられた両フランジを有する鋼構
造あるいは鋼・コンクリート合成構造の柱と、鉄筋コン
クリート床版あるいは鉄筋コンクリート梁との接合部な
どに施工される、主鉄筋の軸力伝達あるいはせん断力伝
達のための接合構造とその施工方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel structure having a double flange using a steel underground continuous wall member or the like in a civil engineering building structure such as an open-cut tunnel, a sewage treatment plant, or a building. Concrete composite wall or
Axial force transmission of the main rebar, which is applied to the joint of a steel structure or a steel-concrete composite structure column with both flanges using H-section steel, square steel pipe, etc., and a reinforced concrete slab or a reinforced concrete beam The present invention relates to a joint structure for transmitting a shear force and a method for constructing the joint structure.

【0002】[0002]

【従来の技術】この種の従来技術を大別すると、(1)
主鉄筋の軸力伝達構造、(2)せん断力伝達構造があ
り、通常、(3)主鉄筋の軸力伝達構造およびせん断力
伝達構造を併用した接合構造が用いられる。
2. Description of the Related Art This type of conventional technology can be roughly classified into (1)
There are an axial force transmission structure of the main rebar and (2) a shear force transmission structure, and a joint structure combining (3) an axial force transmission structure and a shear force transmission structure of the main rebar is usually used.

【0003】前記(1)の接合構造の具体例として、
(a)特許第1495828号(発明の名称 柱と梁の
接合構造)、(b)鋼製地中連続壁の場合のねじ・スク
イズ式継手を介しての差し筋方式(図17〜図19に示
す)がある。
As a specific example of the joining structure (1),
(A) Patent No. 1495828 (Title of the invention: joint structure between column and beam), (b) Reinforcing method using screw-squeeze type joint for steel underground continuous wall (see FIGS. 17 to 19) Shown).

【0004】前記(a)の接合構造は、H形鋼のフラン
ジの外面のウエブ位置に雌ねじを加工した継手パイプを
突設して溶接し、当該継手パイプと複合梁の主鉄筋とを
ねじ・スクイズ式鉄筋継手によりねじ接合するものであ
る。
In the joint structure (a), a joint pipe having a female thread is projected and welded to a web position on the outer surface of an H-section steel flange, and the joint pipe and a main reinforcing bar of a composite beam are screwed. The squeeze-type rebar joint is used for screw connection.

【0005】前記接合構造の欠点として、当該継手
は、フランジ外面のウエブ位置にしか設けられない。
当該継手とフランジとの溶接部には引き抜き力が作用す
るので、その溶接部の品質管理が大変である。
[0005] A disadvantage of the joining structure is that the joint is provided only at the web position on the outer surface of the flange.
Since a pull-out force acts on a weld between the joint and the flange, quality control of the weld is difficult.

【0006】前記(b)のねじ・スクイズ式鉄筋継手
は、図19に示すように泥水掘削した溝1に鋼製地中連
続壁用のH形断面の鋼製部材2を建て込む際、泥水掘削
溝壁面3と、鋼製部材2の前面と背面のフランジ面4
a,4bの離間距離が50mm〜120mm以下(設計
離間距離:100〜150mm、鋼製部材建て込み誤差
30〜50mm)となる場合があるので、従来の鋼製地
中連続壁5と鉄筋コンクリート床版6との接合構造は、
次のようになされる。
The threaded squeeze-type rebar joint (b) shown in FIG. 19 is used for installing a steel member 2 having an H-shaped section for a steel ground wall in a trench 1 excavated as shown in FIG. Excavation groove wall surface 3 and front and back flange surfaces 4 of steel member 2
In some cases, the separation distance between a and 4b may be 50 mm to 120 mm or less (design separation distance: 100 to 150 mm, error in embedding steel members 30 to 50 mm), so that the conventional steel underground continuous wall 5 and the reinforced concrete floor slab may be used. The joint structure with 6 is
This is done as follows.

【0007】まず、図17,図18に示すように、床版
主鉄筋と同じ仕様の棒鋼11を用いて、その掘削側の先
端にカプラー8を挿入圧着する。また、鋼製部材2の両
フランジ4a,4bに所要の孔10を空けて、その前面
フランジ4aの孔10に棒鋼11を固着した前記カプラ
ー8を挿通し、前面フランジ4aからカプラー8の突出
寸法を掘削溝壁面3と前面フランジ4aとの離間距離以
下とする。前記カプラー8を先端に圧着した棒鋼11の
後端ねじ部12を、背面フランジ4bの孔10に挿入
し、かつ背面フランジ4bから棒鋼11の突出寸法を掘
削溝壁面3と背面フランジ4bとの離間距離以下とし、
背面土側のフランジ4bに貫通した棒鋼雄ねじ部12に
ナット13をねじ締結し、掘削側のフランジ4aに貫通
したカプラー8の先端のねじ部14を鋼製あるいはプラ
スチック製の雄ねじを切った雌ねじ保護キャップ41等
で保護しておく。
First, as shown in FIG. 17 and FIG. 18, a coupler 8 is inserted and crimped to a tip on the excavation side using a bar steel 11 having the same specification as the main reinforcing bar of the floor slab. Also, a required hole 10 is made in both flanges 4a and 4b of the steel member 2, and the coupler 8 having the steel bar 11 fixed thereto is inserted into the hole 10 of the front flange 4a. Is not more than the separation distance between the excavation groove wall surface 3 and the front flange 4a. The rear end threaded portion 12 of the steel bar 11 with the coupler 8 crimped to the tip is inserted into the hole 10 of the rear flange 4b, and the projecting dimension of the steel bar 11 from the rear flange 4b is set to the distance between the digging groove wall surface 3 and the rear flange 4b. Less than or equal to the distance
A nut 13 is fastened with a nut 13 to the steel bar male threaded portion 12 penetrating the rear soil side flange 4b, and a female thread protection in which a threaded portion 14 of the coupler 8 penetrating the excavation side flange 4a is cut with a steel or plastic male thread. It is protected by a cap 41 or the like.

【0008】次に図18に示すように、前記仕様の鋼製
部材2を泥水掘削溝1中に建て込み、泥水掘削溝1にコ
ンクリート15を打設する。
[0008] Next, as shown in FIG. 18, a steel member 2 having the above specification is erected in the muddy water digging groove 1, and concrete 15 is poured into the muddy water digging groove 1.

【0009】その後図19に示すように、鋼製地中連続
壁5が完成してから土砂掘削し、コンクリートを斫って
鋼製部材2のカプラー8を露出させ、ねじ部保護キャッ
プ41をはずし、その後に鉄筋コンクリート床版6の築
造の際に、床版主鉄筋7の先端に圧着した内面に雌ねじ
加工したカプラー18の当該雌ねじに、雄ねじ加工した
中継ボルト16を螺合し、中継ボルト16をカプラー8
のねじ部14に螺合して、主鉄筋7と棒鋼11を接合し
ていた。
Then, as shown in FIG. 19, after the steel underground continuous wall 5 is completed, earth and sand excavation is performed, concrete is cut off, the coupler 8 of the steel member 2 is exposed, and the screw portion protection cap 41 is removed. After that, when the reinforced concrete floor slab 6 is built, the relay bolt 16 which is externally threaded is screwed into the female screw of the coupler 18 which is internally threaded on the inner surface which is crimped to the tip of the main slab 7 of the floor slab, and the relay bolt 16 is connected. Coupler 8
And the main rebar 7 and the steel bar 11 were joined.

【0010】前記ねじ、スクイズ式鉄筋継手の欠点は、
鋼製部材2の掘削側のフランジ4aには、ねじ式カプ
ラー8を通す必要があるため、カプラー径寸法の孔10
の開孔による断面欠損が大きく、補強板17による断面
補強が不可欠であった。また、主鉄筋7と棒鋼11と
の接合に、カプラー8およびカプラー18および中継ボ
ルト16を用いているため、接合部品コストが高くつい
た。
The disadvantages of the above screw and squeeze type rebar joints are as follows.
Since it is necessary to pass the threaded coupler 8 through the flange 4a on the digging side of the steel member 2, a hole 10 having a diameter of the coupler is required.
The cross-sectional loss due to the opening was large, and the cross-sectional reinforcement by the reinforcing plate 17 was indispensable. Further, since the coupler 8, the coupler 18, and the relay bolt 16 are used for joining the main reinforcing bar 7 and the steel bar 11, the cost of joining parts is high.

【0011】前記(2)のせん断力伝達構造の具体例と
して、(a)従来の鉄筋スタッド方式(図20に示
す)、(a−1)差し筋方式(図21に示す)、(b)
鋼製地中連続壁の場合のねじ・スクイズ式継手を介して
の差し筋方式(前述の図17,図18,図19に示す)
がある。
As specific examples of the shear force transmission structure (2), (a) a conventional reinforcing bar stud system (shown in FIG. 20), (a-1) a reinforcing bar system (shown in FIG. 21), and (b)
Reinforcing method via screw-squeeze type joint in case of steel ground wall (shown in FIGS. 17, 18 and 19 described above)
There is.

【0012】前記(a),(a−1)の両方式とも、図
20,図21に示すように、異形鉄筋19のコンクリー
ト15中への定着により、引き抜き抵抗力も有するの
で、鋼板20とコンクリート15との離間を抑制し、ず
れが大きくなってもせん断強度を維持できる。
As shown in FIGS. 20 and 21, both types (a) and (a-1) have the pull-out resistance due to the fixation of the deformed reinforcing bar 19 in the concrete 15, so that the steel plate 20 and the concrete 15 can be suppressed, and the shear strength can be maintained even if the displacement increases.

【0013】しかし、前記(a)の欠点は、 スタッド溶接21する鋼板20がずれ止めとして機
能するときに、この鋼板20に局所的に応力および変形
が集中する傾向があり、鋼板20の厚みが薄い場合に
は、補強が必要となることがある。 スタッド溶接21には、溶接アークの均一性および
溶着金属のたれ防止が要求されるため、その鉄筋スタッ
ド径に上限(横向きD22まで)があり、要求ずれ止め
耐力が大きい場合には、スタッド鉄筋の本数を増大する
ことが必要になる。 鉄筋スタッドの溶接には、スタッド溶接機器が必要
であり、特に横向きスタッド溶接の場合には、品質管理
のための特別の機器システムが必要であるため、現場で
スタッド溶接する際には、作業スペース等の制約を受
け、建設コストも上がる。
However, the disadvantage of the above (a) is that when the steel plate 20 to be stud welded 21 functions as a slip stopper, stress and deformation tend to be locally concentrated on the steel plate 20, and the thickness of the steel plate 20 is reduced. If thin, reinforcement may be required. The stud welding 21 is required to have uniformity of the welding arc and to prevent the deposited metal from sagging. Therefore, there is an upper limit to the rebar stud diameter (up to the lateral direction D22). It is necessary to increase the number. Welding of reinforced studs requires stud welding equipment, especially in the case of sideways stud welding, which requires a special equipment system for quality control. And construction costs rise.

【0014】前記(a−1)の欠点は、 異形鉄筋19を差し筋する鋼板20位置に孔22を
空けるため、鋼板20の断面欠損に対する補強が必要に
なる場合がある。 背面側への鉄筋の定着長が、鋼製部材の桁高より長
い場合には、鋼製部材の背面側フランジにねじ継手ある
いは溶接で接合定着の必要がある場合がある。
A disadvantage of the above (a-1) is that a hole 22 is formed at the position of the steel plate 20 where the deformed reinforcing bar 19 is to be reinforced, so that it may be necessary to reinforce the steel plate 20 against a sectional defect. If the fixing length of the reinforcing steel on the back side is longer than the girder height of the steel member, it may be necessary to join and fix to the rear side flange of the steel member by a screw joint or welding.

【0015】前記(a),(a−1)に共通の欠点は、 いずれも、曲げ剛性が小さいため、コンクリート1
5からの支圧が鉄筋スタッドの根元に集中し、かつずれ
止め剛性が小さい。 ずれ直角方向の鉄筋の見付け幅が狭く、且つコンク
リート15からの支圧が根元に集中することから、コン
クリート15との支圧面積が小さくなるため、コンクリ
ート15の支圧破壊耐力が低下する。 予め、工場や現場作業ヤードで、スタッド溶接ある
いは差し筋をセットした部材は、組立等の作業性を低下
させあるいは不能にさせる。 特に、鋼製地中連続壁の場合には、掘削溝壁面と鋼
製部材2のフランジ面との離間距離が50mm〜120
mm以下となる場合があり、前記の適用はできない。
The disadvantages common to the above (a) and (a-1) are that the rigidity of the concrete 1
The bearing pressure from 5 is concentrated on the base of the rebar stud, and the rigidity for preventing slippage is small. Since the finding width of the reinforcing bar in the direction perpendicular to the displacement is narrow and the bearing pressure from the concrete 15 is concentrated at the root, the bearing area with the concrete 15 is reduced, so that the bearing breakdown strength of the concrete 15 is reduced. A member in which stud welding or a streak is set in advance in a factory or on-site work yard reduces or disables workability such as assembly. In particular, in the case of a steel underground continuous wall, the separation distance between the excavation groove wall surface and the flange surface of the steel member 2 is 50 mm to 120 mm.
mm or less, and the above-mentioned application is not possible.

【0016】前記(b)のねじ・スクイズ式継手を介し
ての差し筋方式は、図17〜図19に示したように、鋼
製地中連続壁5の場合、泥水掘削した溝1に鋼製地中連
続壁用鋼製部材2を建て込む際、掘削溝壁面3と鋼製部
材2フランジ4a,4bとの離間距離が50mm〜12
0mm以下となる場合がある。このため従来は、内面に
雌ねじ加工した鋼製カプラー8aを先端に圧着した鋼棒
11aを、予め鋼製部材フランジ孔10に通してセット
した状態で建て込み、カプラーねじ部を保護キャップ4
1を用いて保護しながら泥水掘削溝1に建て込み、その
後コンクリート15を打設していた。そして、鋼製地中
連続壁5が完成してから土砂掘削した後、コンクリート
を斫ってカプラー8aを露出させ、床版6の鉄筋コンク
リート躯体工事において、ずれ止め鉄筋9の先端に圧着
した雌ねじ加工した鋼製カプラー18aの当該雌ねじに
中継ボルト16を螺合し、中継ボルト16をカプラー8
aのねじ部に螺合して、ずれ止め鉄筋9と棒鋼11aを
接合していた。
As shown in FIG. 17 to FIG. 19, in the case of the steel underground continuous wall 5, as shown in FIGS. When the steel member 2 for a continuous wall is erected during the production, the separation distance between the wall surface 3 of the excavation groove and the flanges 4a and 4b of the steel member 2 is 50 mm to 12 mm.
It may be 0 mm or less. For this reason, conventionally, a steel rod 11a having a female threaded inner surface processed with a female coupler 8a crimped on the tip is built in a state where the steel rod 11a is set in advance through the steel member flange hole 10, and the coupler screw portion is protected by the protective cap 4a.
While being protected by the use of the concrete 1, the concrete was built in the muddy excavation trench 1, and then concrete 15 was cast. Then, after the steel underground continuous wall 5 is completed, after excavating earth and sand, concrete is cut off to expose the coupler 8a, and in the reinforced concrete skeleton construction of the floor slab 6, the female screw processing crimped to the tip of the non-slip reinforcing bar 9 is performed. The relay bolt 16 is screwed into the female screw of the steel coupler 18a thus formed, and the relay bolt 16 is connected to the coupler 8.
The screw bar was screwed into the threaded portion a, and the non-slip reinforcing bar 9 and the steel bar 11a were joined.

【0017】前記(b)の欠点は、 継手用の鋼製カプラー8aを通すため、前記(aー
1)の欠点以上に鋼製部材フランジ4aの孔10によ
る断面欠損が大きく、断面補強が不可欠になる。 前記(aー1)の欠点と同様に、背面側への鉄筋
の定着長が、鋼製部材2の桁高より長い場合には、鋼製
部材2の背面側フランジ4bにねじ継手あるいは溶接で
接合定着する必要がある。 ずれ止め鉄筋9と棒鋼11aとの接合に、カプラー
8aおよびカプラー18aおよび中継ボルト16aを用
いているため、接合部品コストが高くついた。
The disadvantage of the above (b) is that since the steel coupler 8a for the joint is passed through, the sectional loss due to the hole 10 of the steel member flange 4a is larger than the disadvantage of the above (a-1), and cross-sectional reinforcement is indispensable. become. Similarly to the defect (a-1), when the fixing length of the reinforcing steel on the back side is longer than the girder height of the steel member 2, the rear side flange 4b of the steel member 2 is screwed or welded. It is necessary to fix the joint. Since the coupler 8a, the coupler 18a, and the relay bolt 16a are used for joining the rebar 9 and the steel bar 11a, the cost of joining parts is high.

【0018】前記(3)の従来の主鉄筋の軸力伝達構造
および、せん断力伝達構造を併用した接合構造の具体例
として、図19に示されるように、鋼製地中連続壁と鉄
筋コンクリート床版との接合構造の例がある。
[0018] As a specific example of the joint structure using the conventional axial force transmission structure and the shear force transmission structure of the conventional main rebar of (3), as shown in Fig. 19, a steel underground continuous wall and a reinforced concrete floor are used. There is an example of a joint structure with a plate.

【0019】前記(3)の欠点は、主鉄筋7の接合構造
と、ずれ止め鉄筋9の接合構造のそれぞれのせん断剛性
が同等であるため、鋼板、つまり前面フランジ4aとコ
ンクリート15との境界面に作用するせん断力のかなり
の割合を主鉄筋7が負担してしまうので、主鉄筋の本来
の機能である引張耐力を低下させる傾向があった。
The disadvantage of the above (3) is that the joint structure of the main reinforcing bar 7 and the joint structure of the non-slip reinforcing bar 9 have the same shear stiffness, so that the interface between the steel plate, that is, the front flange 4 a and the concrete 15. Since the main reinforcing bar 7 bears a considerable proportion of the shearing force acting on the main reinforcing bar, the tensile strength, which is the primary function of the main reinforcing bar, tends to decrease.

【0020】[0020]

【発明が解決しようとする課題】鋼板と鉄筋コンクリー
ト主鉄筋との接合構造において、両部材のずれ止めのた
めの従来の接合構造である、(1)主鉄筋の軸力伝達構
造、(2)せん断力伝達構造、(3)主鉄筋の軸力伝達
構造およびせん断力伝達構造を併用した接合構造のいず
れも、その施工性,強度等の面で改良すべき点が残され
ていた。
SUMMARY OF THE INVENTION In a joint structure between a steel plate and a reinforced concrete main reinforcing bar, a conventional connecting structure for preventing displacement of both members, (1) an axial force transmitting structure of the main reinforcing bar, and (2) shearing. Both the force transmission structure and (3) the joint structure using the axial force transmission structure and the shear force transmission structure of the main rebar still have points to be improved in terms of workability, strength, and the like.

【0021】本発明は、前記の欠点を改良した主鉄筋の
軸力伝達あるいはせん断力伝達のための接合構造と、そ
の施工方法を提供することを目的とする。
An object of the present invention is to provide a joint structure for transmitting an axial force or a shear force of a main reinforcing bar in which the above-mentioned disadvantages are improved, and a method of constructing the joint structure.

【0022】[0022]

【課題を解決するための手段】第1の発明に係る主鉄筋
の軸力伝達構造を有する柱あるいは壁あるいは版の接合
構造は、両フランジを有する鋼構造あるいは鋼とコンク
リートとの合成構造の柱あるいは壁と、鉄筋コンクリー
ト構造の梁あるいは版との接合部において、前記鉄筋コ
ンクリート構造部材の主鉄筋に対応する位置に雌ねじ加
工をした角形鋼材をフランジ内側に連接配置し、その角
形鋼材と対向するもう一方のフランジ内側とを(主鉄筋
相当の強度を有する)鋼材を用いて溶接により連結し、
前記角形鋼材を配設したフランジにおいて、前記主鉄筋
と前記角形鋼材とを各主鉄筋に対応する雌ねじ部を介し
てねじ接合させてなることを特徴とする。第2の発明に
係る接合構造は、両フランジを有する鋼構造あるいは鋼
とコンクリートとの合成構造の柱あるいは壁と、鉄筋コ
ンクリート構造の梁あるいは版との接合部において、各
ずれ止め鉄筋に対応する位置に、雌ねじを加工した角形
鋼材をフランジ外面に接触させて溶接し、所要の引抜き
抵抗力を有するずれ止め鉄筋と角形鋼材とを前記雌ねじ
部を介してねじ接合させることを特徴とする。第3の発
明は、両フランジを有する鋼構造あるいは鋼とコンクリ
ートとの合成構造の柱あるいは壁と、鉄筋コンクリート
構造の梁あるいは版との接合部において、第1発明の主
鉄筋の軸力伝達構造と、第2発明のせん断力伝達構造と
を併用してなることを特徴とする。第4の発明は、第
1,第2,第3のいずれかの発明において、建て込み施
工前に、雌ねじ加工した角形鋼材、あるいは前記角形鋼
材および該角形鋼材と対向するもう一方のフランジ内側
とを連結する鋼材を、柱あるいは壁を構成する鋼板に接
合しておき、建て込み施工後、前記角形鋼材と鉄筋コン
クリート主鉄筋およびずれ止め鉄筋のいずれか一方ある
いは両方をねじ接合することを特徴とする。第5の発明
は、第1発明の主鉄筋の軸力伝達構造と、第2発明のせ
ん断力伝達構造のいずれか一方あるいは両方を用いたこ
とを特徴とする。第6の発明は、第1〜第5の発明にお
いて、鋼製地中連続壁と、鉄筋コンクリート床版との接
合部において、ずれ止め鉄筋を用いる場合は、当該継手
用角形鋼材のフランジ法線方向の寸法を掘削溝壁面とフ
ランジ外面との離間距離以下とし、鋼製地中連続壁用鋼
製部材に、継手用角形鋼材および補強鋼材を建て込み施
工前に接合しておくことを特徴とする。
According to a first aspect of the present invention, there is provided a column, wall or plate joining structure having an axial force transmitting structure of a main reinforcing bar, a column having a steel structure having both flanges or a column having a composite structure of steel and concrete. Alternatively, at the joint between the wall and the beam or plate of the reinforced concrete structure, a square steel material with an internal thread is connected to the inside of the flange at a position corresponding to the main reinforcing bar of the reinforced concrete structural member, and the other steel material facing the square steel material The inner side of the flange is connected by welding using a steel material (having strength equivalent to the main rebar),
In the flange on which the square steel members are provided, the main reinforcing bar and the square steel members are screwed together via female screw portions corresponding to the respective main reinforcing bars. The joint structure according to the second aspect of the present invention is a joint structure between a pillar or a wall of a steel structure or a composite structure of steel and concrete having both flanges and a beam or a plate of a reinforced concrete structure, at a position corresponding to each slip-preventing reinforcing bar. In addition, a square steel material with a female screw is brought into contact with the outer surface of the flange and welded, and a non-slip bar having a required pull-out resistance and the square steel material are screw-connected via the female screw portion. According to a third aspect of the present invention, an axial force transmitting structure of a main reinforcing bar according to the first aspect of the present invention is provided at a joint between a steel structure or a composite structure of steel and concrete having both flanges or a wall and a beam or a slab of a reinforced concrete structure. And the shear force transmission structure of the second invention. According to a fourth aspect of the present invention, in any one of the first, second, and third inventions, before the embedding work, the square steel material is internally threaded, or the square steel material and the inside of the other flange facing the square steel material. Is connected to the steel plate constituting the column or the wall, and after the installation work, the square steel member and one or both of the reinforced concrete main reinforcement and the non-slip reinforcement are screwed together. . A fifth invention is characterized in that one or both of the axial force transmission structure of the main reinforcing bar of the first invention and the shear force transmission structure of the second invention are used. According to a sixth aspect of the present invention, in the first to fifth aspects, in a case where a slip-preventing reinforcing bar is used at a joint between the steel underground continuous wall and the reinforced concrete floor slab, a flange normal direction of the square steel material for the joint is used. The feature is to make the dimension of the excavation groove wall and the outer surface of the flange less than or equal to the distance, and to join the square steel for the joint and the reinforcing steel to the steel member for the steel underground continuous wall before the construction work .

【0023】本発明によると、角形鋼材を鉄筋とのね
じ接合機能として利用することに加えて、主鉄筋の軸
力伝達補材機能、せん断力伝達構造のコンクリートへ
のせん断力伝達の際の応力緩和機能、鋼製部材フラン
ジへのせん断力伝達の際の応力緩和機能として利用する
ので、前記接合部の力学性能が著しく向上し、経済的で
ある。
According to the present invention, in addition to utilizing the square steel material as a screw joint function with the reinforcing bar, the auxiliary force transmitting function of the main reinforcing bar, and the stress at the time of transmitting the shearing force to the concrete of the shearing force transmitting structure. Since it is used as a relieving function and a stress relieving function when transmitting a shear force to a steel member flange, the mechanical performance of the joint is remarkably improved, which is economical.

【0024】また、フランジの断面欠損の補強不要,鉄
筋のねじ式接合作業化による省力化施工および、急速施
工の実現(特に鋼製地中連続壁の場合に効果的)、泥水
掘削溝への鋼製部材の建て込み可能化、早期のコンクリ
ート圧壊抑制による、高いずれ止め剛性による鋼とコン
クリートとの一体化向上等の作用が達せられる。
In addition, there is no need to reinforce the sectional loss of the flange, it is possible to realize labor-saving construction and rapid construction by using screw type joining work of rebar (effective especially in the case of steel underground continuous wall), It is possible to achieve effects such as enabling steel members to be built in, suppressing concrete crushing at an early stage, and improving the integration between steel and concrete due to high rigidity.

【0025】[0025]

【発明の実施の形態】以下本発明の実施形態を図を参照
して説明する。図1,図2は第1実施形態として、主鉄
筋の軸力伝達構造の第1例を示す横断平面図と縦断側面
図である。この例では、1段配筋,補強鋼板鉛直向き、
ねじ加工継手の例が示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 are a cross-sectional plan view and a longitudinal side view showing a first example of an axial force transmission structure of a main reinforcing bar as a first embodiment. In this example, one-step reinforcement, vertical direction of reinforcing steel plate,
An example of a threaded joint is shown.

【0026】図3,図4は第2実施形態として、主鉄筋
の軸力伝達構造の第2例を示す横断平面図と縦断側面図
である。この例では、2段配筋,補強鋼板鉛直向き、ね
じ節鉄筋継手の例が示されている。
FIGS. 3 and 4 are a cross-sectional plan view and a longitudinal side view showing a second example of the axial force transmission structure of the main reinforcing bar as a second embodiment. In this example, there is shown an example of a two-stage reinforcing arrangement, a reinforcing steel plate in a vertical direction, and a threaded joint.

【0027】図5,図6は第3実施形態として、主鉄筋
の軸力伝達構造の第3例を示す横断平面図と縦断側面図
である。この例では、2段配筋,補強鋼板水平向き、ね
じ・スクイズ式継手の例が示されている。
FIGS. 5 and 6 are a cross-sectional plan view and a longitudinal sectional side view showing a third example of an axial force transmission structure of a main reinforcing bar as a third embodiment. In this example, an example of a two-stage reinforcing arrangement, a reinforcing steel plate horizontal orientation, and a screw / squeeze type joint is shown.

【0028】図7,図8は第4実施形態として、せん断
力伝達構造の第1例を示す横断平面図と縦断側面図であ
る。この例では、ねじ加工継手が示されている。
FIGS. 7 and 8 are a cross-sectional plan view and a longitudinal side view showing a first example of a shear force transmitting structure as a fourth embodiment. In this example, a threaded joint is shown.

【0029】図9,図10は第5実施形態として、せん
断力伝達構造の第2例を示す横断平面図と縦断側面図で
ある。この例では、ねじ節鉄筋継手が示されている。
FIGS. 9 and 10 are a cross-sectional plan view and a longitudinal side view showing a second example of a shear force transmitting structure as a fifth embodiment. In this example, a threaded joint is shown.

【0030】図11,図12,図13は第6実施形態と
して、せん断力伝達構造の第3例を示す横断平面図と縦
断側面図と分解図である。この例では、ねじ・スクイズ
式継手が示されている。
FIGS. 11, 12, and 13 are a cross-sectional plan view, a longitudinal sectional side view, and an exploded view showing a third example of a shear force transmitting structure as a sixth embodiment. In this example, a threaded squeeze joint is shown.

【0031】図14,図15,図16は第7実施形態と
して、鋼製地中連続壁と床版との接合部構造の例であ
り、主鉄筋の軸力伝達構造とせん断力伝達構造とを併用
した接合構造の例が示されている。また、この例では、
1段配筋,補強鋼板鉛直向き、ねじ・スクイズ式継手が
示されている。
FIGS. 14, 15 and 16 show, as a seventh embodiment, an example of a joint structure between a steel underground continuous wall and a floor slab. 2 shows an example of a joint structure. Also, in this example,
One-stage rebar, vertical reinforcing steel plate, screw / squeeze type joint is shown.

【0032】図1,図2の第1実施形態を説明すると、
前後の両フランジ24a,24bを有する鋼製部材23
を主要素とする鋼・コンクリート合成構造の柱あるいは
壁(図では鋼製地中連続壁25を示す)と、鉄筋コンク
リート構造の梁あるいは版(図では床版26を示す)と
の接合部27に位置して、前記鉄筋コンクリート構造の
各部材の床版主鉄筋7に対応する位置に雌ねじ加工した
角形鋼材(以下角鋼という)28を前面フランジ24a
の内側に接触させて配置し、その角鋼28と対向する背
面フランジ24b内側とを、対応する主鉄筋群に相当す
る強度を有するフランジ間連結用鋼材29を用いて溶接
により連結し、前記角鋼28を接触させた前面フランジ
24aには、各床版主鉄筋7に対応する位置に、主鉄筋
7のねじ付き端部30が挿通可能なフランジ孔31を開
設しておき、角鋼28の雌ねじ部32と、前記床版主鉄
筋7とをねじ接合させている。
The first embodiment of FIGS. 1 and 2 will be described.
Steel member 23 having front and rear flanges 24a, 24b
At the joint 27 between the column or wall of the steel-concrete composite structure whose main element is a steel underground continuous wall 25 in the figure and the beam or plate of the reinforced concrete structure (the floor slab 26 is shown in the figure) A square steel member (hereinafter referred to as square steel) 28 having a female screw is provided at a position corresponding to the main reinforcing bar 7 of the slab of each member of the reinforced concrete structure.
The square steel 28 and the inside of the opposite rear flange 24b are connected by welding using a flange-to-flange connecting steel material 29 having a strength corresponding to the corresponding main rebar group. A flange hole 31 through which the threaded end 30 of the main reinforcing bar 7 can be inserted is provided at a position corresponding to each main reinforcing bar 7 on the front flange 24a where And the floor slab main reinforcing bar 7 are screwed together.

【0033】前記において、床版主鉄筋7は、鋼製部材
23の前面フランジ24aを貫通して、雌ねじ32が加
工された角鋼28とねじ式機能継手により所要の軸力
(引張・圧縮)強度および、軸方向剛性を確保して連結
される。また、角鋼28とフランジ間連結用鋼材29と
の溶接により、角鋼28の強度および剛性を利用するこ
とにより、所要の軸力(引張・圧縮)強度および軸方向
剛性を確保して、床版主鉄筋7は分散配置してフランジ
間連結用鋼材29に連結される。
In the above, the main reinforcing bar 7 of the floor slab penetrates the front flange 24a of the steel member 23, and has a required axial force (tensile / compressive) strength by the square steel 28 on which the female screw 32 is machined and the screw-type functional joint. And it connects, ensuring the rigidity of an axial direction. Further, by using the strength and rigidity of the square steel 28 by welding the square steel 28 and the steel material 29 for connecting the flanges, required axial force (tensile / compressive) strength and axial rigidity are secured, and The reinforcing bars 7 are dispersed and connected to the inter-flange connecting steel material 29.

【0034】前記フランジ間連結用鋼材29は、反対側
の背面フランジ29に溶接33で固着されている。これ
らの構造により、床版主鉄筋7を貫通させるため前面フ
ランジ24aにフランジ孔31を空けるが、この断面欠
損は、角鋼28の前面フランジ24aへの溶接により補
強されるので、他の補強は不要である。角鋼28と前面
フランジ24aとの溶接は、当該フランジ24aの断面
欠損を補強するに必要な溶接量で十分である。
The inter-flange connecting steel material 29 is fixed to the opposite rear flange 29 by welding 33. With these structures, a flange hole 31 is formed in the front flange 24a to penetrate the main reinforcing bar 7 of the slab. However, since this cross-sectional defect is reinforced by welding the square steel 28 to the front flange 24a, other reinforcement is unnecessary. It is. The welding between the square steel 28 and the front flange 24a is sufficient with the amount of welding necessary to reinforce the sectional defect of the flange 24a.

【0035】図1,図2は床版主鉄筋7と角鋼28との
ねじ式の接合として、ねじ加工継手の例であり、主鉄筋
端部を熱間アップセット鍜造して膨径し、この膨径部を
ねじ加工した例を示す。なお、主鉄筋端部を膨径せずに
ねじ加工してもよく、その場合は、ねじ部の断面欠損を
考慮して設計する。ゆるみ止めナットを用いてそれを前
面フランジ24aの前面に接触させて締め付けることも
可能である。
FIGS. 1 and 2 show an example of a threaded joint as a threaded joint between the main reinforcing bar 7 of the floor slab and the square steel 28. The end of the main reinforcing bar is hot-upset forged and expanded. An example in which this enlarged diameter portion is threaded is shown. Note that the end of the main reinforcing bar may be threaded without expanding, and in that case, the design is made in consideration of the cross-sectional defect of the threaded portion. It is also possible to use a locking nut to tighten it by contacting it with the front surface of the front flange 24a.

【0036】図3,図4は、第2実施形態としてねじ節
鉄筋継手の例を示す。この例では、角鋼28には、ねじ
節鉄筋7aのねじ節に適合した雌ねじ32を加工してお
き、前面フランジ24aを介してナット34で締め付け
て締結する。他の構成は第1実施形態と同じである。
FIGS. 3 and 4 show an example of a threaded steel bar joint as a second embodiment. In this example, the square steel 28 is machined with a female screw 32 suitable for the screw joint of the screw joint reinforcing bar 7a, and tightened with a nut 34 via the front flange 24a. Other configurations are the same as those of the first embodiment.

【0037】図5,図6は、第3実施形態としてねじ・
スクイズ式継手の例を示し、床版主鉄筋7の端部に、予
め雌ねじ加工したカプラー35を圧着し、対向する角鋼
28の雌ねじ32との間を雄ねじ加工した中継ボルト3
6で接合する。
FIGS. 5 and 6 show a third embodiment of the present invention.
An example of a squeeze-type joint is shown, in which a coupler 35 that has been internally threaded in advance is crimped to the end of the main slab 7 of the floor slab, and a relay bolt 3 that is externally threaded between the female screw 32 of the opposed square steel 28.
Join at 6.

【0038】床版主鉄筋7が複数段配筋の場合には、図
3〜図6に示すように、上段・下段の床版主鉄筋7に対
し共通の角鋼28を用いた方が経済的である。
In the case where the main reinforcing bar 7 of the floor slab has a plurality of reinforcing bars, as shown in FIGS. 3 to 6, it is more economical to use the common square steel 28 for the upper reinforcing bar 7 and the lower reinforcing bar 7 of the lower slab. It is.

【0039】フランジ間連結用鋼材29には、鋼板を使
用すればよく、図1〜図2,図3〜図4のように柱軸方
向に平行(鉛直)に配置しても、図5〜図6のように柱
軸方向に直行する(水平)ように配置してもよい。水平
配置の方が角鋼28に作用する曲げが小さくなる。しか
し、鋼製部材23内のコンクリート充填の状況によって
は、充填性の観点から鉛直配置の方が好ましい場合があ
る。
A steel plate may be used as the steel material 29 for connecting the flanges. Even if the steel material 29 is arranged parallel (vertically) to the column axis direction as shown in FIGS. 1 to 2 and FIGS. As shown in FIG. 6, they may be arranged so as to be perpendicular (horizontal) in the column axis direction. The horizontal arrangement reduces the bending acting on the square steel 28. However, depending on the state of the concrete filling in the steel member 23, the vertical arrangement may be preferable from the viewpoint of the filling property.

【0040】建て込み施工後に、予め鋼製部材23に取
付けた角鋼28に床版主鉄筋7をねじ接合すれば、鋼製
部材23の建て込み時の当該鋼製部材23の前面フラン
ジ24a外側には、何ら突出物がないので、泥水掘削溝
への建て込み作業が容易である。
After the installation work, if the main slab 7 is screwed to the square steel 28 previously attached to the steel member 23, the steel plate 23 can be mounted on the outside of the front flange 24a of the steel member 23 when the steel member 23 is installed. Since there is no protruding material, it is easy to build it into a muddy digging trench.

【0041】次に、図7,図8は第4実施形態を示す。
この実施形態では、両フランジ24a,24bを有する
鋼製部材23を主要素とする鋼・コンクリート合成構造
の鋼製地中連続壁25と、鉄筋コンクリート床版26の
接合部において、各ずれ止め鉄筋39に対応する位置
に、雌ねじ32を加工した角鋼28を前面フランジ24
a外側に接触させて溶接し、所要の引抜き抵抗力を有す
るずれ止め鉄筋39のねじ付き先端部30と角鋼28の
雌ねじ部32とをねじ接合させる例が示されている。
Next, FIGS. 7 and 8 show a fourth embodiment.
In this embodiment, at the joint between the steel underground continuous wall 25 having a steel-concrete composite structure having the steel member 23 having both flanges 24a and 24b as a main element and the reinforced concrete floor slab 26, each of the non-slip reinforcing bars 39 is provided. At the position corresponding to the above, the square steel 28 machined with the female screw 32 is
1A shows an example in which welding is performed by contacting the outer side, and the threaded tip portion 30 of the non-slip reinforcing bar 39 having the required pull-out resistance and the female screw portion 32 of the square steel 28 are screw-connected.

【0042】前記のとおり第4実施形態では、雌ねじ加
工した角鋼28を鋼製部材23の前面フランジ24aに
溶接33で固着し、ずれ止め鉄筋39とをねじ式の機械
締結により連結する構造である。その溶接33は、所要
のせん断力を有する隅肉溶接仕様で十分なので、角鋼2
8の大きさの制約は設けずに、また建設現場でも適用容
易である。
As described above, the fourth embodiment has a structure in which the square steel 28 having the female thread is fixed to the front flange 24a of the steel member 23 by welding 33, and the non-slip reinforcing bar 39 is connected by screw-type mechanical fastening. . For the welding 33, a fillet welding specification having a required shearing force is sufficient, so that the square steel 2
The size 8 is not limited, and can be easily applied to construction sites.

【0043】とくに、コンクリート15からの支圧が集
中するせん断力伝達構造28および39の根元が角鋼2
8になっている。したがって、根元の曲げ剛性が高く、
かつ、ずれ直角方向のずれ止め材の見付け幅が広いため
に、せん断力伝達構造28および39のコンクリート1
5との支圧面積が拡大し、コンクリート15の支圧破壊
耐力が増加するので、ずれ止め耐力が増加する。さら
に、コンクリート15の局所的に支圧破壊の遅れ、およ
び角鋼28の曲げ剛性が高いことから、ずれ止め剛性が
高くなる。
In particular, the roots of the shear force transmitting structures 28 and 39 where the bearing pressure from the concrete 15 is concentrated are square steel 2
It is eight. Therefore, the bending rigidity at the root is high,
In addition, since the width of the slip stopper in the direction perpendicular to the slip direction is wide, the concrete 1 of the shear force transmitting structures 28 and 39 is required.
5, the bearing area of the concrete 15 is increased, and the bearing strength of the concrete 15 is increased. Further, since the bearing 15 is locally delayed in the bearing failure and the bending rigidity of the square steel 28 is high, the slip prevention rigidity is increased.

【0044】角鋼28と前面フランジ24aとの溶接部
33が角鋼28の周囲に分布し、かつ角鋼28と前面フ
ランジ24aとの接触面が広いので、角鋼28とフラン
ジ24aとの連結部の応力集中が緩和される。さらに、
せん断力に伴う角鋼28周辺の前面フランジ24aの鋼
板の曲げに対し、周囲の比較的広い範囲のコンクリート
15が支圧により抵抗してくれるので、角鋼28位置の
前面フランジ(鋼板)24aの内面の補強は不要とな
る。
Since the welded portions 33 between the square steel 28 and the front flange 24a are distributed around the square steel 28 and the contact surface between the square steel 28 and the front flange 24a is wide, stress concentration at the joint between the square steel 28 and the flange 24a is performed. Is alleviated. further,
Since the concrete 15 in a relatively wide range around the steel plate resists bending of the steel plate of the front flange 24a around the square steel 28 due to shearing force, the inner surface of the front flange (steel plate) 24a at the position of the square steel 28 resists. No reinforcement is required.

【0045】角鋼28にねじ接合したずれ止め鉄筋39
には、せん断力は殆ど作用せず、ずれ止め変形が大きく
なった時の引張力が主たる作用力となって、鋼製部材2
3の前面フランジ24a外面とコンクリート15との離
間を抑制する。したがって、従来のスタッド鉄筋方式の
鉄筋または差し筋方式の鉄筋に比べて径を小さく、定着
長を短くできる。
Non-slip bar 39 screwed to square steel 28
, The shearing force hardly acts on the steel member 2, and the pulling force when the slip-preventing deformation becomes large becomes the main acting force.
3 suppresses the separation between the outer surface of the front flange 24a and the concrete 15. Therefore, the diameter can be reduced and the fixing length can be shortened as compared with a conventional stud reinforcing bar type reinforcing bar or a reinforcing bar type reinforcing bar.

【0046】建て込み施工後に、予め鋼製部材23に取
付けた角鋼28にずれ止め鉄筋39をねじ接合すれば、
鋼製部材23の建て込み時の当該鋼製部材23の前面フ
ランジ24aの外側には、突出物として角鋼28がある
だけなので、前面フランジからの突出量を50mm〜1
20mm以下にすることは容易であり、泥水掘削溝への
建て込み作業が容易である。
After the erection work, if the non-slip bar 39 is screwed to the square steel 28 previously attached to the steel member 23,
When the steel member 23 is installed, only the square steel 28 is provided outside the front flange 24a of the steel member 23, so that the protrusion amount from the front flange is 50 mm to 1 mm.
It is easy to reduce the thickness to 20 mm or less, and the work of setting up in a muddy excavation groove is easy.

【0047】ずれ止め鉄筋39と角鋼28とのねじ止め
式の接合として、図7,図8はねじ加工継手の例であ
り、ずれ止め鉄筋端部を熱間アップセット鍜造して膨径
し、これをねじ加工した例を示す。なお、ずれ止め鉄筋
端部を膨径せずにねじ加工しても良く、その場合は、ね
じ部の断面欠損を考慮して設計する。
FIGS. 7 and 8 show an example of a threaded joint between the non-slip reinforcing bar 39 and the square steel 28. FIG. 7 and FIG. 8 show an example of a threaded joint. This shows an example in which this is threaded. It is to be noted that the end portion of the slip preventing rebar may be threaded without expanding, and in that case, the design is made in consideration of the cross-sectional defect of the threaded portion.

【0048】図9,図10には、第5実施形態としてね
じ節鉄筋継手の例が示されており、角鋼28の雌ねじ3
2と、ねじ節鉄筋を用いたずれ止め鉄筋39とをナット
34で締め付けて締結している。
FIGS. 9 and 10 show an example of a thread-joint rebar joint as a fifth embodiment.
2 and a non-slip reinforcing bar 39 using a threaded bar are fastened and fastened by a nut 34.

【0049】図11,図12,図13には、第6形態と
して、ねじ・スクイズ式継手の例が示されており、ねじ
節鉄筋を用いたずれ止め鉄筋39の端部に予め雌ねじ加
工したカプラー35を圧着し、対向する角鋼28の雌ね
じ32間を雄ねじ加工した中継ボルト36で接合した例
が示されている。
FIGS. 11, 12 and 13 show an example of a screw-squeeze type joint as a sixth embodiment, in which an end of a non-slip reinforcing bar 39 using a threaded bar is internally threaded in advance. An example is shown in which the coupler 35 is crimped and joined between the opposed female screws 32 of the square steel 28 with the relay bolts 36 which are externally threaded.

【0050】図14〜図16には第7実施形態として、
鋼製地中連続壁25と鉄筋コンクリート床版26との接
合部の例が示されている。
FIGS. 14 to 16 show a seventh embodiment.
An example of a joint between the steel underground continuous wall 25 and the reinforced concrete floor slab 26 is shown.

【0051】図14に示されるように、鋼製部材23
は、鋼板からなるウエブ37と、前後両側のフランジ2
4a,24bと、このフランジ24a,24bの両端の
継手間隙38を有する鋼管形状継手40とから構成さ
れ、長手方向と直交する横断面が略H形に形成されてい
る。
As shown in FIG. 14, the steel member 23
Is a web 37 made of a steel plate and flanges 2 on both front and rear sides.
4a, 24b and a steel pipe-shaped joint 40 having a joint gap 38 at both ends of the flanges 24a, 24b, and a cross section orthogonal to the longitudinal direction is formed in a substantially H shape.

【0052】鋼板部材23は、工場で鉄骨加工して建設
現場に納入され、泥水掘削溝1に沿って建て込み、隣り
合う鋼製部材23の鋼管形状継手40同士を継手間隙3
8を介して接合することで、掘削溝内に鋼製地中連続壁
25が構成される。
The steel plate member 23 is steel-processed in a factory and delivered to a construction site, built along the muddy water excavation groove 1, and the steel pipe-shaped joints 40 of the adjacent steel members 23 are joined together at the joint gap 3.
By joining through the 8, the steel underground continuous wall 25 is formed in the excavation trench.

【0053】前記鋼製部材23において、前面フランジ
24aには、前側からみて、上下方向に4段に角鋼28
(28a,28bとに分けて説明する)が設けられてお
り、中2段の角鋼28aは前面フランジ24aの外面に
溶接33で固着され、上下2段の角鋼28bは前面フラ
ンジ24の内面に横方向に伸長し、かつウエブ37の部
分は切離して、角鋼28bと前面フランジ24とは簡易
な溶接により固定されている。各角鋼28a,28bに
は雌ねじ32が刻設されており、上下2段の角鋼28b
にあっては、前面フランジ24aの内面に設けられてい
ることから、この角鋼28bの雌ねじ32に連通するフ
ランジ孔31が前面フランジ24aに開設されている。
In the steel member 23, the front flange 24a is provided with four square bars 28 in the vertical direction as viewed from the front side.
(Described separately with 28a and 28b), the middle two-stage square steel 28a is fixed to the outer surface of the front flange 24a by welding 33, and the upper and lower two-stage square steel 28b is laterally attached to the inner surface of the front flange 24. And the web 37 is cut off, and the square steel 28b and the front flange 24 are fixed by simple welding. A female screw 32 is engraved on each of the square steels 28a and 28b.
In this case, since the flange hole 31 is provided on the inner surface of the front flange 24a, a flange hole 31 communicating with the female screw 32 of the square steel 28b is formed in the front flange 24a.

【0054】また、前面フランジ24aの内側に溶接し
た角鋼28bと、背面フランジ24bとの間にフランジ
間連結用鋼材29が架設され、その両端溶接部が各部材
に溶接33で固着されている。
An inter-flange connecting steel material 29 is bridged between the square steel 28b welded inside the front flange 24a and the rear flange 24b, and welded portions at both ends thereof are fixed to the members by welding 33.

【0055】前記鋼製部材23は、角鋼28の雌ねじ3
2を鋼製あるいはプラスチック製の雄ねじを切った保護
キャップ41を用いて保護して、泥水掘削溝1内に建て
込まれ、複数の鋼製部材23が鋼管形状継手40を介し
て接合されることで、鋼製地中連続壁25が構築され
る。鋼製部材23を泥水掘削溝1内に建て込む際、前記
前面フランジ24aから突出する角鋼28aの突出量は
50mm〜120mmの範囲に納められているので、図
15に示すように、泥水掘削面の掘削誤差や建て込み誤
差を考慮しても干渉せずに建て込み可能である。
The steel member 23 is provided with a female screw 3 of a square steel 28.
2 is protected using a steel or plastic externally threaded protective cap 41 and is built in the muddy water digging groove 1, and the plurality of steel members 23 are joined via the steel pipe shaped joint 40. Thus, the steel underground continuous wall 25 is constructed. When the steel member 23 is erected in the muddy water digging groove 1, the protrusion of the square steel 28a protruding from the front flange 24a is set in a range of 50 mm to 120 mm. It can be built without interference even if the excavation error and the installation error are considered.

【0056】前記のようにして、鋼製部材23を泥水掘
削溝1に建て込んだ後、泥水掘削溝1の中にコンクリー
ト15を打設する。その後、鋼製地中連続壁25を土留
め壁として、床版側の土砂を掘削し、床版築造位置のフ
ランジ24a外側のコンクリートを斫り、角鋼28の雌
ねじ32の保護キャップ41をはずして、雌ねじ32を
露出させる。鋼製部材23の前面フランジ24aに鉄筋
コンクリート床版26の、主鉄筋7とずれ止め鉄筋39
を、それぞれの先端に圧着したカプラー35を介して連
結する。つまり、床版主鉄筋7の先端に圧着したカプラ
ー35の雌ねじに中継ボルト36の一端部を螺合したう
え、この中継ボルト36の先端部を前面フランジ24a
のフランジ孔31を介して角鋼28bの雌ねじ32に螺
合し、これにより、コンクリート床版26の主鉄筋7が
鋼製部材23に連結される。
After the steel member 23 is built in the muddy water digging groove 1 as described above, concrete 15 is poured into the muddy water digging groove 1. Thereafter, using the steel underground continuous wall 25 as a retaining wall, soil on the floor slab is excavated, concrete on the outside of the flange 24a at the floor slab construction position is cut off, and the protective cap 41 of the female screw 32 of the square steel 28 is removed. Then, the female screw 32 is exposed. The main reinforcing bar 7 and the reinforcing bar 39 of the reinforced concrete floor slab 26 are fixed to the front flange 24a of the steel member 23.
Are connected via couplers 35 crimped to the respective ends. That is, one end of the relay bolt 36 is screwed into the female screw of the coupler 35 crimped to the tip of the floor slab main reinforcing bar 7, and the tip of the relay bolt 36 is connected to the front flange 24a.
The main reinforcing bar 7 of the concrete floor slab 26 is connected to the steel member 23 through the flange hole 31 of the square bar 28 and the female screw 32 of the square steel 28b.

【0057】また、上下の床版主鉄筋7の間に位置する
ずれ止め鉄筋39にあっては、その先端に圧着したカプ
ラー35の雌ねじに中継ボルト36の一端部を螺合した
うえ、この中継ボルト36の先端部を前面フランジ24
aの角鋼28aの雌ねじ32に螺合し、これにより、コ
ンクリート床版26のずれ止め鉄筋39が鋼製部材23
に連結される。
Further, with respect to the displacement preventing reinforcing bar 39 located between the upper and lower floor slab main reinforcing bars 7, one end of the relay bolt 36 is screwed into the female screw of the coupler 35 crimped to the tip thereof, Connect the tip of the bolt 36 to the front flange 24.
a into the female screw 32 of the square steel 28a.
Linked to

【0058】前記の実施形態において、主鉄筋7とずれ
止め鉄筋39とがそれぞれカプラー35、中継ボルト3
6、角鋼28、フランジ間連結用鋼材29を介して鋼製
部材32の前面フランジ24aと背面フランジ24bに
接合された後、床版26にコンクリートが打設される。
In the above-described embodiment, the main reinforcing bar 7 and the non-slip reinforcing bar 39 are respectively connected to the coupler 35 and the relay bolt 3.
6. After being joined to the front flange 24a and the rear flange 24b of the steel member 32 via the square steel 28 and the steel material 29 for connecting the flanges, concrete is cast on the floor slab 26.

【0059】図16の鋼製地中連続壁25と鉄筋コンク
リート床版26との接合部を例として、主鉄筋の軸力伝
達構造とせん断力伝達構造との併用構造の作用を説明す
る。この併用構造は、主鉄筋軸力伝達構造のずれ止め剛
性に比較して、せん断力伝達構造28aおよび39の剛
性は格段に高いので、鋼板とコンクリートとの境界面に
作用するせん断力の殆どをせん断力伝達構造28aおよ
び39が負担してくれるので、床版主鉄筋7にはせん断
力が殆ど作用せず、主鉄筋本来の機能である軸方向耐力
を十分発揮できる。
The operation of the combined structure using the axial force transmitting structure and the shear force transmitting structure of the main reinforcing bar will be described with reference to the joint between the steel underground continuous wall 25 and the reinforced concrete floor slab 26 shown in FIG. 16 as an example. Since the rigidity of the shear force transmitting structures 28a and 39 is much higher than the shear resistance of the axial force transmitting structure of the main reinforcing bar, the combined structure can reduce most of the shearing force acting on the interface between the steel plate and the concrete. Since the shear force transmitting structures 28a and 39 bear the burden, the shear force hardly acts on the main slab 7 of the slab, and the axial strength, which is the original function of the main stiffener, can be sufficiently exhibited.

【0060】[0060]

【発明の効果】本発明の効果を従来例と比較して説明す
ると、次のとおりである。 角形鋼材を鉄筋とのねじ接合としてのみならず、主
鉄筋の軸力伝達補強材機能として、および、せん断力伝
達構造のコンクリートへのせん断力伝達の際の応力緩和
機能として、および、鋼製部材フランジへのせん断力伝
達の際の応力緩和機能として利用するので、前記接合部
の力学的性能が著しく向上し、かつ経済的である。 フランジの断面欠損に対する補強は不要である。 鉄筋以外の接合部品を、予め工場や現場作業ヤード
で鋼製部材に溶接しておけば、建設現場では、他の作業
に影響を与えずに、接合部の施工を鉄筋のねじ式接合作
業のみで済ませることになり、省力化施工およびき急速
施工を実現できる。 せん断力伝達構造用角形鋼材のフランジからの突出
寸法は小さいので、建て込み作業が容易である。特に、
鋼製地中連続壁の場合、その突出寸法を50mm〜12
0mm以内に収めることができるので、泥水掘削溝への
鋼製部材の建て込みが可能である。 せん断力伝達構造は、スタッド鉄筋方式および、差
し筋方式のずれ止めに比較して、早期のコンクリート圧
壊を抑制し、高いずれ止め剛性により鋼とコンクリート
との一体性を向上させる。
The effect of the present invention will be described below in comparison with the conventional example. Not only the square steel material as a screw connection with the reinforcing bar, but also as an axial force transmitting reinforcement of the main reinforcing bar, and as a stress relieving function when transmitting the shearing force to the concrete of the shearing force transmitting structure, and steel members Since it is used as a stress relieving function at the time of transmitting a shearing force to the flange, the mechanical performance of the joint is remarkably improved and economical. No reinforcement is required for the section loss of the flange. If welding parts other than rebar are pre-welded to steel members in factories and on-site work yards, construction can be performed at the construction site only with screw joints of rebar without affecting other work And labor-saving construction and rapid construction can be realized. The projecting size of the rectangular steel material for the shear force transmitting structure from the flange is small, so that the work of erection is easy. In particular,
In the case of a steel underground continuous wall, the projecting dimension is 50 mm to 12 mm.
Since it can be accommodated within 0 mm, it is possible to lay a steel member in a muddy excavation trench. The shear force transmission structure suppresses the early concrete crushing as compared with the stud reinforcement type and the streak type slip prevention, and improves the integrity of the steel and the concrete by high rigidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態として、主鉄筋の接合構造の第1
例を示す横断平面図である。
FIG. 1 shows a first embodiment of a joint structure of a main reinforcing bar as a first embodiment.
It is a cross-sectional plan view showing an example.

【図2】図1の縦断側面図である。FIG. 2 is a vertical sectional side view of FIG.

【図3】第2実施形態として、主鉄筋の接合構造の第2
例を示す横断平面図である。
FIG. 3 shows a second embodiment of the joint structure of the main reinforcing bar.
It is a cross-sectional plan view showing an example.

【図4】図3の縦断側面図である。FIG. 4 is a vertical sectional side view of FIG. 3;

【図5】第3実施形態として、主鉄筋の接合構造の第3
例を示す横断平面図である。
FIG. 5 shows a third embodiment of the joint structure of the main rebar as a third embodiment.
It is a cross-sectional plan view showing an example.

【図6】図5の縦断側面図である。FIG. 6 is a vertical sectional side view of FIG. 5;

【図7】第4実施形態として、せん断(ずれ止め)抵抗
部材接合構造の第1例を示す横断平面図である。
FIG. 7 is a cross-sectional plan view showing a first example of a shear (slipping) resistance member joining structure as a fourth embodiment.

【図8】図7の縦断側面図である。8 is a vertical sectional side view of FIG. 7;

【図9】第5実施形態として、せん断(ずれ止め)抵抗
部材接合構造の第2例を示す横断平面図である。
FIG. 9 is a cross-sectional plan view showing a second example of a shear (stoppage) resistance member joining structure as a fifth embodiment.

【図10】図9の縦断側面図である。FIG. 10 is a vertical sectional side view of FIG. 9;

【図11】第6実施形態として、せん断(ずれ止め)抵
抗部材接合構造の第3例を示す横断平面図である。
FIG. 11 is a cross-sectional plan view showing a third example of a shear (slipping) resistance member joining structure as a sixth embodiment.

【図12】図11の縦断側面図である。FIG. 12 is a vertical sectional side view of FIG. 11;

【図13】図11の各部品の分解図である。FIG. 13 is an exploded view of each part of FIG. 11;

【図14】第7実施形態として、鋼製地中連続壁と床版
との接合構造に用いる鋼製部材の斜視図である。
FIG. 14 is a perspective view of a steel member used for a joint structure between a steel underground continuous wall and a floor slab as a seventh embodiment.

【図15】図14の鋼製部材を用いた鋼製地中連続壁と
床版との横断面図である。
FIG. 15 is a cross-sectional view of a steel underground continuous wall and a floor slab using the steel member of FIG. 14;

【図16】図15の縦断側面図である。16 is a vertical sectional side view of FIG.

【図17】第1従来例として、鋼製地中連続壁と床版と
の接合構造に用いる鋼製部材の斜視図である。
FIG. 17 is a perspective view of a steel member used for a joint structure between a steel underground continuous wall and a floor slab as a first conventional example.

【図18】図17の鋼製部材を用いた鋼製地中連続壁と
床版との横断面図である。
18 is a cross-sectional view of a steel underground continuous wall using the steel member of FIG. 17 and a floor slab.

【図19】図18の縦断側面図である。FIG. 19 is a vertical sectional side view of FIG. 18;

【図20】第2従来例の縦断面図である。FIG. 20 is a longitudinal sectional view of a second conventional example.

【図21】第3従来例の縦断面図である。FIG. 21 is a longitudinal sectional view of a third conventional example.

【符号の説明】[Explanation of symbols]

1 泥水掘削溝 2 鋼製部材 3 溝壁面 4a,4b フランジ 5 鋼製地中連続壁 6 鉄筋コンクリート床版 7 床版主鉄筋 8 カプラー 9 せん断鉄筋 10 孔 11 棒鋼 12 雄ねじ部 13 ナット 14 ねじ部 15 コンクリート 16 中継ボルト 17 補強板 18 カプラー 19 異形鉄筋 20 鋼板 21 スタッド溶接 22 孔 23 鋼製部材 24a,24b 前面と背面のフランジ 25 鋼製地中連続壁 26 床版 27 接合部 28 角鋼 29 フランジ間連結用鋼材 30 ねじ付き端部 31 フランジ孔 32 雌ねじ 33 溶接 34 ナット 35 カプラー 36 中継ボルト 37 ウエブ 38 継手間隙 39 ずれ止め鉄筋 40 鋼管形状継手 DESCRIPTION OF SYMBOLS 1 Mud drilling groove 2 Steel member 3 Groove wall surface 4a, 4b Flange 5 Steel underground continuous wall 6 Reinforced concrete floor slab 7 Floor slab main reinforcing bar 8 Coupler 9 Shearing bar 10 Hole 11 Steel bar 12 Male thread 13 Nut 14 Screw 15 Concrete DESCRIPTION OF SYMBOLS 16 Relay bolt 17 Reinforcement plate 18 Coupler 19 Deformed bar 20 Steel plate 21 Stud welding 22 Hole 23 Steel member 24a, 24b Front and back flange 25 Steel underground continuous wall 26 Floor slab 27 Joint 28 Square steel 29 Flange connection Steel material 30 Threaded end 31 Flange hole 32 Female screw 33 Welding 34 Nut 35 Coupler 36 Relay bolt 37 Web 38 Joint gap 39 Non-slip bar 40 Steel pipe shape joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 宗弘 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 Fターム(参考) 2E125 AA01 AA03 AA13 AA53 AA57 AB01 AB13 AE04 AG16 AG57 BA02 BA23 BA24 BB01 BB08 BD01 BE08 CA03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Munehiro Ishida 2-6-3 Otemachi, Chiyoda-ku, Tokyo New Nippon Steel Corporation F-term (reference) 2E125 AA01 AA03 AA13 AA53 AA57 AB01 AB13 AE04 AG16 AG57 BA02 BA23 BA24 BB01 BB08 BD01 BE08 CA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 両フランジを有する鋼構造あるいは鋼と
コンクリートとの合成構造の柱あるいは壁と、鉄筋コン
クリート構造の梁あるいは版との接合部において、前記
鉄筋コンクリート構造部材の主鉄筋に対応する位置に雌
ねじ加工をした角形鋼材をフランジ内側に連接配置し、
その角形鋼材と対向するもう一方のフランジ内側とを
(主鉄筋相当の強度を有する)鋼材を用いて溶接により
連結し、前記角形鋼材を配設したフランジにおいて、前
記主鉄筋と前記角形鋼材とを各主鉄筋に対応する雌ねじ
部を介してねじ接合させてなる主鉄筋の軸力伝達構造を
有する柱あるいは壁と梁あるいは版の接合構造。
1. A female screw at a position corresponding to a main reinforcing bar of a reinforced concrete structural member at a joint between a pillar or a wall of a steel structure or a composite structure of steel and concrete having both flanges and a beam or a slab of a reinforced concrete structure. The processed square steel material is connected and arranged inside the flange,
The square steel material and the inside of the other flange facing the other are connected by welding using a steel material (having a strength equivalent to that of the main rebar), and in the flange provided with the square steel material, the main rebar and the square steel material are connected to each other. A joint structure of a column or a wall and a beam or a plate having an axial force transmission structure of a main reinforcing bar, which is screw-connected via a female screw portion corresponding to each main reinforcing bar.
【請求項2】 両フランジを有する鋼構造あるいは鋼と
コンクリートとの合成構造の柱あるいは壁と、鉄筋コン
クリート構造の梁あるいは版との接合部において、各ず
れ止め鉄筋に対応する位置に、雌ねじ加工をした角形鋼
材をフランジ外面に溶接し、所要の引抜き抵抗力を有す
るずれ止め鉄筋と角形鋼材とを前記雌ねじ部を介してね
じ接合させてなるせん断力伝達構造を有する柱あるいは
壁と梁あるいは版の接合構造。
2. A female screw is formed at a position corresponding to each of the non-slip bars at the joint between a steel structure having both flanges or a column or wall of a composite structure of steel and concrete and a beam or plate of a reinforced concrete structure. Of the column or wall and the beam or plate having a shear force transmission structure in which the square steel material is welded to the outer surface of the flange, and the non-slip bar having the required pull-out resistance and the square steel material are screwed through the female screw portion. Joint structure.
【請求項3】 両フランジを有する鋼構造あるいは鋼と
コンクリートとの合成構造の柱あるいは壁と、鉄筋コン
クリート構造の梁あるいは版との接合部において、請求
項1記載の主鉄筋の軸力伝達構造と、請求項2記載のせ
ん断力伝達構造とを併用してなる柱あるいは壁と梁ある
いは版の接合構造。
3. An axial force transmission structure for a main reinforcing bar according to claim 1, wherein at a joint between a steel structure having both flanges or a column or a wall of a composite structure of steel and concrete and a beam or a slab of a reinforced concrete structure. A joint structure of a column or a wall and a beam or a plate, which is used in combination with the shear force transmitting structure according to claim 2.
【請求項4】 建て込み施工前に、雌ねじ加工した角形
鋼材、あるいは前記角形鋼材および該角形鋼材と対向す
るもう一方のフランジ内側とを連結する鋼材を、柱ある
いは壁を構成する鋼板に接合しておき、建て込み施工
後、前記角形鋼材と鉄筋コンクリート主鉄筋およびずれ
止め鉄筋のいずれか一方あるいは両方をねじ接合するこ
とを特徴とする請求項1ないし3のいずれかに記載の接
合構造の施工方法。
4. Prior to the construction work, a square steel material having a female thread or a steel material connecting the square steel material and the inside of the other flange facing the square steel material is joined to a steel plate forming a column or a wall. 4. The method according to claim 1, wherein, after the erection work, the square steel material and one or both of the reinforced concrete main reinforcement and the non-slip reinforcement are screwed together. 5. .
【請求項5】 請求項1記載の主鉄筋の軸力伝達構造
と、請求項2記載のせん断力伝達構造のいずれか一方あ
るいは両方を用いた鋼製地中連続壁と梁あるいは版の接
合構造。
5. A joint structure between a steel underground continuous wall and a beam or plate using one or both of the axial force transmission structure of the main reinforcing bar according to claim 1 and the shear force transmission structure according to claim 2. .
【請求項6】 鋼製地中連続壁と、鉄筋コンクリート床
版との接合部をずれ止め鉄筋を用いて構成する際に、連
続壁用鋼製部材のフランジ外面に溶接する角形鋼材のフ
ランジ面からの高さを掘削溝壁面とフランジ外面との離
間距離以下とし、該鋼製部材の建て込み施工前に、予め
該鋼製部材に溶接しておくことを特徴とする請求項5に
記載の接合構造の施工方法。
6. When a joint between a steel underground continuous wall and a reinforced concrete floor slab is formed using a non-shifting reinforcing bar, a square steel material to be welded to a flange outer surface of a continuous wall steel member is used. 6. The joint according to claim 5, wherein the height of the steel member is set to be equal to or less than the separation distance between the wall surface of the excavation groove and the outer surface of the flange, and the steel member is welded to the steel member before embedding. Construction method of the structure.
JP25983498A 1998-09-14 1998-09-14 Joint structure of column or wall with beam or board and method for constructing the same Withdrawn JP2000087453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25983498A JP2000087453A (en) 1998-09-14 1998-09-14 Joint structure of column or wall with beam or board and method for constructing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25983498A JP2000087453A (en) 1998-09-14 1998-09-14 Joint structure of column or wall with beam or board and method for constructing the same

Publications (1)

Publication Number Publication Date
JP2000087453A true JP2000087453A (en) 2000-03-28

Family

ID=17339646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25983498A Withdrawn JP2000087453A (en) 1998-09-14 1998-09-14 Joint structure of column or wall with beam or board and method for constructing the same

Country Status (1)

Country Link
JP (1) JP2000087453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494188A (en) * 2011-12-06 2012-06-13 上海广联建设发展有限公司 Pre-stressing device for rectangular pipe jacking pipe joints and construction method thereof
CN103924687A (en) * 2013-01-14 2014-07-16 上海核工程研究设计院 Connection method of steel plate-concrete composite shear wall and concrete shear wall
CN107607578A (en) * 2017-08-29 2018-01-19 南京大学(苏州)高新技术研究院 A kind of large scale energy wall model test apparatus and method
CN111502029A (en) * 2020-04-24 2020-08-07 上海核工程研究设计院有限公司 Steel plate concrete structure splicing node with adjustable precision and construction method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494188A (en) * 2011-12-06 2012-06-13 上海广联建设发展有限公司 Pre-stressing device for rectangular pipe jacking pipe joints and construction method thereof
CN102494188B (en) * 2011-12-06 2015-08-12 上海广联建设发展有限公司 The prestressing apparatus of rectangular top pipe tube coupling and method of construction thereof
CN103924687A (en) * 2013-01-14 2014-07-16 上海核工程研究设计院 Connection method of steel plate-concrete composite shear wall and concrete shear wall
CN107607578A (en) * 2017-08-29 2018-01-19 南京大学(苏州)高新技术研究院 A kind of large scale energy wall model test apparatus and method
CN107607578B (en) * 2017-08-29 2019-09-20 南京大学(苏州)高新技术研究院 A kind of large scale energy wall model test apparatus and method
CN111502029A (en) * 2020-04-24 2020-08-07 上海核工程研究设计院有限公司 Steel plate concrete structure splicing node with adjustable precision and construction method thereof

Similar Documents

Publication Publication Date Title
JP2005248623A (en) High tension bolt joint structure of column and beam having h-shaped cross section
KR101591480B1 (en) Steel Pipe Strut Connection Structure Bearing Composite Stress
KR100716453B1 (en) Reinforcement structure of CFT column and beam connection
JP3914640B2 (en) Connection structure of steel underground continuous wall and reinforced concrete slab
KR100660522B1 (en) Reinforcement structure of CFT column and beam setting flat bar in steel pipe
JP2000073363A (en) Structure of joining part of steel underground continuous wall with main reinforcement of reinforced concrete slab
JP2000087453A (en) Joint structure of column or wall with beam or board and method for constructing the same
JP2005171488A (en) Connection structure between steel wall and reinforced concrete plate
JP4844477B2 (en) Synthetic wall structure and its construction method
JP2002309591A (en) Structure for joining pile head to steel footing beam
JP2880027B2 (en) Joint structure between steel pipe column and reinforced concrete slab
JPH08109631A (en) Underground wall
JP3265167B2 (en) Column / beam joint structure
JP2010053556A (en) Reinforcing structure of steel column-beam joint portion
JP3449236B2 (en) Joint structure and joint method of steel segment
JPH08239902A (en) Structure for joining concrete-filled pipe column and girder
JPH1161995A (en) Connecting-section structure of column and beam
JP2713119B2 (en) Connection structure of precast coated steel tube concrete column and precast beam
JPH06248722A (en) Joining method for precast reinforcement concrete earthquake resisting wall and steel frame beam
JPH10110597A (en) Joint structue of steel segment
JP7217143B2 (en) Joint structure of column and foundation
JP2011106241A (en) Pile head joint structure
JP3350766B2 (en) Vertical penetration piping beam
JP6836853B2 (en) Brace joint structure
JPH0967861A (en) Joining structure between closed cross sectional square steel pipe column and beam material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110