JP2000086570A - Production of aromatic acyl compound - Google Patents

Production of aromatic acyl compound

Info

Publication number
JP2000086570A
JP2000086570A JP25693598A JP25693598A JP2000086570A JP 2000086570 A JP2000086570 A JP 2000086570A JP 25693598 A JP25693598 A JP 25693598A JP 25693598 A JP25693598 A JP 25693598A JP 2000086570 A JP2000086570 A JP 2000086570A
Authority
JP
Japan
Prior art keywords
aromatic
compound
complex
acylated
acyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25693598A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shoji
靖宏 東海林
Masatoshi Yoshimura
昌寿 吉村
Yukio Sakai
幸男 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25693598A priority Critical patent/JP2000086570A/en
Publication of JP2000086570A publication Critical patent/JP2000086570A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing an aromatic acyl compound in a high yield while cutting down the byproduction of aromatic carboxylic acids when using HF-BF3 in the acylation reaction of an aromatic compound. SOLUTION: When producing an aromatic acyl compound by reacting an acyl fluoride (where the carbon at the α position does not branch) with an aromatic compound in the presence of HF and BF3 and then by decomposing the resultant an aromatic acyl compound . HF-BF3 complex, the method of this invention is to dilute the aromatic acyl compound . HF-BF3 complex with >=15 times molar quantity of hydrocarbon to decompose the complex.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、香料、医薬、農薬
などの原料として有用な芳香族アシル化物を製造する方
法に関する。
[0001] The present invention relates to a method for producing an aromatic acylated compound useful as a raw material for a fragrance, a medicine, a pesticide and the like.

【0002】[0002]

【従来の技術】芳香族アシル化物の製造方法として、芳
香族化合物に対し、塩化アルミニウム等のルイス酸触媒
の存在下、無水酢酸や塩化アセチル等のアシル化剤を反
応させる方法がフリーデル・クラフツ型アシル化反応と
して広く知られている。このルイス酸触媒は、一般的に
化学量論以上必要とされ、反応終了後に生成物とルイス
酸触媒を分離するために、通常、反応混合物を水で処理
するので、触媒の再生が非常に困難であり、廃棄する場
合にも処理コストが嵩むことと、加水分解により塩酸等
の多量の廃棄物が発生するという課題がある。また芳香
族化合物と、カルボン酸またはその誘導体を反応させる
際にペンタシル型ゼオライトを含有する触媒の存在下で
反応させて、芳香族化合物をアシル化する方法が特開平
10−120613号に開示されているが、触媒活性が
工業的に十分満足できるものとは言い難い。
2. Description of the Related Art As a method for producing an aromatic acylated product, a method of reacting an aromatic compound with an acylating agent such as acetic anhydride or acetyl chloride in the presence of a Lewis acid catalyst such as aluminum chloride is known. It is widely known as a type acylation reaction. This Lewis acid catalyst is generally required to have a stoichiometry or more, and since the reaction mixture is usually treated with water to separate the product and the Lewis acid catalyst after the reaction, it is very difficult to regenerate the catalyst. However, there is a problem that the disposal cost is increased even when discarded, and a large amount of waste such as hydrochloric acid is generated by hydrolysis. Further, a method of acylating an aromatic compound by reacting an aromatic compound with a carboxylic acid or a derivative thereof in the presence of a catalyst containing a pentasil-type zeolite is disclosed in JP-A-10-120613. However, it is hard to say that the catalytic activity is industrially satisfactory.

【0003】特開昭60−188343号には、HFお
よびBF3 存在下、芳香族化合物を単離されたフッ化ア
シルと反応させて高収率で目的物の芳香族ケトンが得ら
れることが開示されている。また、特開平2−9654
6号には、芳香族化合物をHF−BF3 存在下、アシル
化剤と反応させて芳香族アシル化物を製造するに際し、
HF−BF3 に不活性な分解助剤(ベンゼン、トルエ
ン、クロロベンゼン等の芳香族炭化水素類とペンタン、
ヘキサン、シクロヘキサン等の飽和炭化水素類)の還流
下で芳香族アシル化物・HF−BF3 錯体を芳香族アシ
ル化物とHF、BF3 に加熱分解して、触媒のHF、B
3 を循環使用することが開示されている。このよう
に、HF、BF3 を触媒に用いるアシル化反応は、単純
な操作、低い圧力で芳香族化合物を容易にアシル化で
き、HF、BF3 を触媒として循環使用できること等の
利点がある。
JP-A-60-188343 discloses that an aromatic compound can be obtained in high yield by reacting an aromatic compound with an isolated acyl fluoride in the presence of HF and BF 3. It has been disclosed. Also, Japanese Patent Application Laid-Open No. 2-9654
No. 6, when an aromatic compound is produced by reacting an aromatic compound with an acylating agent in the presence of HF-BF 3 ,
The HF-BF 3 inert decomposing aid (benzene, toluene, aromatic hydrocarbons such as chlorobenzene and pentane,
Under reflux of saturated hydrocarbons such as hexane and cyclohexane), the aromatic acylated product / HF-BF 3 complex is thermally decomposed into an aromatic acylated product and HF and BF 3 , and the catalyst HF, B
It is disclosed that recycling the F 3. Thus, HF, acylation reaction using BF 3 in the catalyst, a simple operation, can be easily acylated aromatic compounds at low pressures, HF, there are advantages such that the BF 3 can be circulated and used as a catalyst.

【0004】[0004]

【発明が解決しようとする課題】上記の如くHF−BF
3 を触媒に用いるアシル化反応は工業的に有利な方法で
あるが、α位の炭素が分岐していないフッ化アシルと芳
香族化合物を反応させ、得られた芳香族アシル化物・H
F−BF3 錯体を還流下加熱分解を行う場合は、多量の
芳香族カルボン酸が生成して芳香族アシル化物の収率が
低下する。BF3 存在下で、アルキルフェニルケトンか
ら安息香酸を生成すること、トルエンからパラメチル安
息香酸を生成することは工業化学雑誌〔73巻、1993〜19
96頁 (1970年)〕に記載されている。芳香族カルボン酸
の生成は、芳香族アシル化物の生産性を低下させるばか
りでなく、芳香族カルボン酸の分解助剤への溶解性が悪
いので、装置配管で析出して閉塞する危険性がある。本
発明の目的は、HF−BF3 を用いる芳香族化合物のア
シル化反応において、芳香族カルボン酸の副生を削減
し、芳香族アシル化物を高収率で工業的に有利に製造す
る方法を提供することにある。
SUMMARY OF THE INVENTION As described above, HF-BF
The acylation reaction using 3 as a catalyst is an industrially advantageous method. An acylated product obtained by reacting an aromatic compound with an acyl compound in which the α-position carbon is not branched is obtained.
When performing heated under reflux degrade F-BF 3 complex, the yield of aromatic acyl halide is reduced to generate a large amount of aromatic carboxylic acid. The production of benzoic acid from alkyl phenyl ketone and the production of paramethyl benzoic acid from toluene in the presence of BF 3 are described in Industrial Chemistry Magazine [73, 1993-19].
96 (1970)]. The generation of the aromatic carboxylic acid not only reduces the productivity of the acylated aromatic compound, but also has a poor solubility of the aromatic carboxylic acid in the decomposition aid, so that there is a risk that the aromatic carboxylic acid precipitates and clogs in the piping of the device. . An object of the present invention is to provide a method for industrially advantageously producing an aromatic acylated product in a high yield by reducing the by-product of an aromatic carboxylic acid in an acylation reaction of an aromatic compound using HF-BF 3. To provide.

【0005】[0005]

【課題を解決するための手段】発明者等はHF−BF3
を用いて芳香族化合物のアシル化反応を行うに際しての
上記の如き問題について鋭意検討した結果、芳香族アシ
ル化物・HF−BF3錯体を分解する際、芳香族アシル
化物・HF−BF3 錯体を大量の炭化水素類で希釈して
分解することにより、芳香族カルボン酸の生成を低減で
き、これによって装置配管における加熱保温等が不要と
なり、芳香族アシル化合物の製造装置が簡略化されて、
閉塞の危険の可能性も無くなることから、芳香族アシル
化物を工業的に有利に製造できることを見い出し、本発
明に到達した。
Means for Solving the Problems The present inventors have proposed HF-BF 3
Result of intensive studies for the above-mentioned problems in performing the acylation reaction of aromatic compounds with, when decomposing an aromatic acylated compound · HF-BF 3 complex, the aromatic acyl halides · HF-BF 3 complex By diluting and decomposing with a large amount of hydrocarbons, the generation of aromatic carboxylic acids can be reduced, thereby eliminating the need for heating and keeping the equipment piping, and simplifying the production apparatus of the aromatic acyl compound,
Since the possibility of clogging is eliminated, it has been found that an aromatic acylated product can be produced industrially advantageously, and the present invention has been achieved.

【0006】即ち本発明は、HFおよびBF3 存在下、
α位の炭素が分岐していないフッ化アシルと芳香族化合
物を反応させ、得られた芳香族アシル化物・HF−BF
3 錯体を分解して芳香族アシル化物を製造する方法にお
いて、芳香族アシル化物・HF−BF3 錯体を15モル
倍以上の炭化水素類で希釈して分解することを特徴とす
る芳香族アシル化物の製造方法である。
That is, the present invention relates to a method for producing HF and BF 3 ,
reacting an acyl compound having an unbranched carbon at the α-position with an aromatic compound to obtain an aromatic acylated product HF-BF
A method for producing an aromatic acylated product by decomposing a 3 complex, characterized in that the aromatic acylated product / HF-BF 3 complex is decomposed by diluting the complex with 15 or more moles of hydrocarbons. It is a manufacturing method of.

【0007】[0007]

【発明の実施の形態】本発明で原料として用いられる芳
香族化合物としては、トルエン、エチルベンゼン、プロ
ピルベンゼン、ブチルベンゼン、アミルベンゼン、キシ
レン、トリメチルベンゼン、クメン、ジフェニルメタ
ン、ジフェニルエタン、ジフェニルプロパン、ナフタレ
ン、メチルナフタレン、ビフェニル、メチルビフェニ
ル、エチルビフェニル、プロピルビフェニル、ブチルビ
フェニル、ペンチルビフェニル等が挙げられる。この中
で特にパラ位または4−位が空位の化合物が工業的に好
適に用いられる。
DETAILED DESCRIPTION OF THE INVENTION The aromatic compounds used as raw materials in the present invention include toluene, ethylbenzene, propylbenzene, butylbenzene, amylbenzene, xylene, trimethylbenzene, cumene, diphenylmethane, diphenylethane, diphenylpropane, naphthalene, Examples include methylnaphthalene, biphenyl, methylbiphenyl, ethylbiphenyl, propylbiphenyl, butylbiphenyl, pentylbiphenyl and the like. Among them, compounds in which the para-position or the 4-position is empty are particularly preferably used industrially.

【0008】本発明でアシル化剤として用いられるα位
の炭素が分岐していないフッ化アシルとしては、フッ化
アセチル、フッ化プロピニオル、フッ化ブチリルなどが
挙げられる。これらの中、特にフッ化アセチルが好適に
用いられる。これらのフッ化アシルは、公知の方法で製
造される。例えば、特開昭60−188343で開示さ
れているように、無水酢酸とフッ化水素とを混合し、フ
ッ化アセチルを発生させて、同時に生成する遊離酸を分
離したフッ化アセチルが用いられる。フッ化アシルの使
用量は、原料の芳香族化合物に対するモル比で 1.0以
下、好ましくは 0.5〜1.0 である。フッ化アシルを過剰
にすると、反応生成液中にフッ化アシルが残存して、触
媒分離時に好ましくない。
The acyl fluoride having no branched carbon at the α-position used as an acylating agent in the present invention includes acetyl fluoride, propinyl fluoride, butyryl fluoride and the like. Of these, acetyl fluoride is particularly preferably used. These acyl fluorides are produced by a known method. For example, as disclosed in JP-A-60-188343, acetyl fluoride is used in which acetic anhydride and hydrogen fluoride are mixed to generate acetyl fluoride, and the generated free acid is separated at the same time. The amount of the acyl fluoride used is 1.0 or less, preferably 0.5 to 1.0, in a molar ratio to the aromatic compound as the raw material. When the acyl fluoride is excessive, the acyl fluoride remains in the reaction product solution, which is not preferable at the time of separating the catalyst.

【0009】本発明において芳香族化合物とフッ化アシ
ルを反応させる際のHFの使用量はフッ化アシルに対し
て、5モル以上、好ましくは8〜15モルの範囲である。
15モルより多くのHFを用いても効果が少なく、経済性
の点で好ましくない。BF3 の使用量は、フッ化アシル
に対して等量か、僅かに過剰に用いられる。余り過剰に
用いると反応の選択性に対して好ましくない影響を与え
る。アシル化反応温度は -20〜30℃、好ましくは -10〜
20℃である。温度を上げると反応速度は増加するが、副
反応速度も増加する。また原料の融点等も考慮して反応
温度を決定することが必要である。反応圧力は通常の条
件下では常圧から5kg/cm2 Gの範囲である。
In the present invention, the amount of HF used in reacting the aromatic compound with the acyl fluoride is 5 mol or more, preferably 8 to 15 mol, based on the acyl fluoride.
The use of more than 15 moles of HF has little effect and is not preferable in terms of economy. BF 3 is used in an equivalent amount or a slight excess with respect to the acyl fluoride. If used in excess, it has an undesirable effect on the selectivity of the reaction. The acylation reaction temperature is -20 to 30 ° C, preferably -10 to
20 ° C. Increasing the temperature increases the reaction rate, but also increases the side reaction rate. Further, it is necessary to determine the reaction temperature in consideration of the melting point of the raw material and the like. The reaction pressure ranges from normal pressure to 5 kg / cm 2 G under normal conditions.

【0010】HFおよびBF3 存在下、芳香族化合物と
フッ化アシルを反応させた生成液(以下、単に反応生成
液という)は、芳香族アシル化物・HF−BF3 錯体を
含む液となる。このような反応生成液を加熱することに
より芳香族アシル化物・HF−BF3錯体における芳香
族アシル化物とHF、BF3 の結合が分解され、HF、
BF3を気化分離することができる。この触媒分離操作
はできるだけ迅速に進めて、生成物の加熱変質を避ける
必要がある。そのためには、例えば、多段の気液接触装
置(蒸留装置)を使用した流通操作で実施するのが好ま
しい。触媒の回収のためには、HFについては温度40〜
100 ℃、BF3 については温度 100〜180 ℃に加熱する
必要がある。触媒回収操作の圧力は常圧ないし加圧で実
施するのがプロセス上有利である。
A liquid obtained by reacting an aromatic compound with an acyl fluoride in the presence of HF and BF 3 (hereinafter simply referred to as a reaction liquid) is a liquid containing an aromatic acylated product / HF-BF 3 complex. By heating such a reaction product liquid, the bond between the aromatic acylated product and HF and BF 3 in the aromatic acylated product / HF-BF 3 complex is decomposed, and HF,
BF 3 can be vaporized and separated. It is necessary to proceed this catalyst separation operation as quickly as possible to avoid heat deterioration of the product. For that purpose, for example, it is preferable to carry out by a circulation operation using a multistage gas-liquid contact device (distillation device). For the recovery of the catalyst, the temperature of HF
100 ° C., it is necessary to heat to a temperature 100 to 180 ° C. for BF 3. It is advantageous from the viewpoint of the process that the catalyst recovery operation is carried out at normal pressure or pressure.

【0011】本発明は芳香族アシル化物・HF−BF3
錯体を大過剰の炭化水素類で希釈して分解するものであ
り、これにより芳香族アシル化物・HF−BF3 錯体の
熱分解において芳香族カルボン酸の生成が抑制される。
本発明で使用される炭化水素類としては、ベンゼン、ト
ルエン及びクロロベンゼン等の芳香族炭化水素類や、ペ
ンタン、ヘキサン及びシクロヘキサン等の脂肪族炭化水
素類が挙げられる。これらの芳香族炭化水素類と脂肪族
炭化水素類の混合物を用いることもできる。
The present invention relates to an aromatic acylated product, HF-BF 3
The complex is decomposed by diluting the complex with a large excess of hydrocarbons, whereby the generation of aromatic carboxylic acid in the thermal decomposition of the aromatic acylated product / HF-BF 3 complex is suppressed.
Examples of the hydrocarbons used in the present invention include aromatic hydrocarbons such as benzene, toluene, and chlorobenzene, and aliphatic hydrocarbons such as pentane, hexane, and cyclohexane. A mixture of these aromatic hydrocarbons and aliphatic hydrocarbons can also be used.

【0012】反応生成液中の芳香族アシル化物に対する
炭化水素類の使用量は、15モル倍以上、好ましくは20〜
100 モル倍、更に好ましくは30〜70モル倍に希釈する。
希釈に用いる炭化水素類量が少ない場合には芳香族カル
ボン酸の生成が多くなり、目的の芳香族アシル化物の収
率が低下するだけでなく、芳香族カルボン酸が装置配管
で析出して閉塞の危険性がある。希釈に用いる炭化水素
類量が多すぎる場合には、加熱に要するエネルギー消費
量が増加することになる。炭化水素類で希釈する方法は
芳香族アシル化物・HF−BF3 錯体の熱分解時に炭化
水素類が芳香族アシル化物に対して15モル倍以上共存し
ていれば本質的に良く、同じ供給口から蒸留装置に反応
生成液と炭化水素類を同時供給する方法、反応生成液と
炭化水素類を別々に供給する方法のいずれの方法でも良
い。
The amount of the hydrocarbons to be used for the aromatic acylated product in the reaction product solution is at least 15 times the molar amount, preferably 20 to 20 times.
It is diluted 100 times, more preferably 30 to 70 times.
When the amount of hydrocarbons used for dilution is small, the generation of aromatic carboxylic acid increases, not only the yield of the target aromatic acylated product decreases, but also the aromatic carboxylic acid is deposited and clogged in the piping of the device. There is a danger. If the amount of hydrocarbons used for dilution is too large, the energy consumption required for heating will increase. The method of diluting with the hydrocarbons is essentially good if the hydrocarbons coexist at least 15 mol times with respect to the aromatic acylated compound during the thermal decomposition of the aromatic acylated product / HF-BF 3 complex. , The reaction product liquid and the hydrocarbons may be supplied simultaneously to the distillation apparatus, or the reaction product liquid and the hydrocarbons may be supplied separately.

【0013】なお本発明は、芳香族アシル化物・HF−
BF3 錯体の熱分解を順調に進めるために、蒸留装置に
予めHF、BF3 に不活性な分解助剤 (芳香族炭化水素
等)を入れ、加熱して蒸留操作が開始された後、芳香族
アシル化物・HF−BF3 錯体を導入することが好まし
い。分解助剤としては、ベンゼン、トルエン及びクロロ
ベンゼン等の芳香族炭化水素類が用いられ、ペンタン、
ヘキサン及びシクロヘキサン等の脂肪族炭化水素類を含
んでいても良いが、特に、希釈に用いる炭化水素類と同
じものを用いることがプロセス上有利である。
The present invention relates to an aromatic acylated product, HF-
In order to promote the thermal decomposition of the BF 3 complex smoothly, HF is added to the distillation apparatus in advance, and an inert decomposition aid (such as aromatic hydrocarbon) is added to BF 3 , and after heating, the distillation operation is started. It is preferable to introduce an acylated group / HF-BF 3 complex. As the decomposition aid, aromatic hydrocarbons such as benzene, toluene and chlorobenzene are used, and pentane,
Although aliphatic hydrocarbons such as hexane and cyclohexane may be contained, it is particularly advantageous in terms of process to use the same hydrocarbons used for dilution.

【0014】本発明において芳香族アシル化物・HF−
BF3 錯体を大量の炭化水素類で希釈することにより芳
香族カルボン酸の生成が抑制される理由は明らかでない
が、芳香族アシル化物の縮合によりジプノンが生成し、
その加水分解過程で芳香族カルボン酸が生成すると見な
されていることから、大量の炭化水素類で希釈すること
によりジプノンの生成が抑制されるためと推定される。
In the present invention, the aromatic acylated product HF-
It is not clear why the production of aromatic carboxylic acid is suppressed by diluting the BF 3 complex with a large amount of hydrocarbons, but dipnone is produced by condensation of the acylated aromatic compound,
Since it is considered that an aromatic carboxylic acid is generated in the hydrolysis process, it is presumed that dilution with a large amount of hydrocarbons suppresses the generation of dipnone.

【0015】なお特開平2−96546号には、本発明
と同様の炭化水素類を用いて芳香族アシル化物・HF−
BF3 錯体の分解を行うことが記載されているが、その
実施例は2-イソブチリル-6- メチルナフタレン(BMN) お
よびジメチルブチロフェノン(DMBP)のみであり、このよ
うな化合物を得るために用いられるアシル化剤はフッ化
イソブチリルおよびエチルメチルフッ化アセチルであっ
て、何れもα位の炭素が分岐しているフッ化アシルであ
り、このようにα位の炭素が分岐しているフッ化アシル
の場合は芳香族カルボン酸が生成しない。従って本発明
は特開平2−96546号とは課題が異なり、別個の発
明である。
JP-A-2-96546 discloses that an aromatic acylated product, HF-
It is described that the decomposition of the BF 3 complex is performed, but the examples are only 2-isobutyryl-6-methylnaphthalene (BMN) and dimethylbutyrophenone (DMBP), which are used to obtain such compounds. The acylating agents are isobutyryl fluoride and ethylmethyl acetyl fluoride, all of which are acyl fluorides in which the carbon at the α-position is branched. In this case, no aromatic carboxylic acid is produced. Therefore, the present invention has a different problem from that of JP-A-2-96546 and is a separate invention.

【0016】[0016]

【実施例】以下に実施例を用いて本発明を更に具体的に
説明するが、本発明はこれらの実施例によりその範囲を
限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited by these examples.

【0017】製造例 内容積2000mlのジャッケト付きステンレス製オートクレ
ーブをアシル化反応器として用いた。ジャケットに冷媒
を通じて0℃以下にオートクレーブを冷却し、HF700g
(35モル)、フッ化アセチル200g(3.2モル)、BF3 22
0g(3.2モル)、トルエン322g(3.5モル)をゆっくり攪拌
しながら、反応温度が5℃を超えないように入れた。続
いて温度5℃で約1時間反応を行った。反応生成液の一
部(100g)を氷水中に取り出しベンゼン100gで希釈後、油
層をアルカリ水と水で洗浄し、蒸留によりベンゼンを除
き、さらに蒸留によりトルエン2.6gと93〜99℃(10mmH
g)の留分としてトルエンのアセチル化物28.3gを得た。
ガスクロ分析によるアセチル化物の異性体組成は、パラ
メチルアセトフェノン95%、オルトメチルアセトフェノ
ン 4%、メタメチルアセトフェノン 1%であり、パラト
ルイル酸は検出されなかった。
Production Example A stainless steel autoclave with a jacket volume of 2000 ml was used as an acylation reactor. Cool the autoclave to 0 ° C or less through a jacket with a refrigerant,
(35 mol), 200 g (3.2 mol) of acetyl fluoride, BF 3 22
While slowly stirring 0 g (3.2 mol) and 322 g (3.5 mol) of toluene, the reaction temperature was not higher than 5 ° C. Subsequently, the reaction was carried out at a temperature of 5 ° C. for about 1 hour. A part (100 g) of the reaction product liquid was taken out into ice water and diluted with 100 g of benzene.The oil layer was washed with alkaline water and water, benzene was removed by distillation, and 2.6 g of toluene was further distilled and 93 to 99 ° C. (10 mmH
As a fraction of g), 28.3 g of an acetylated product of toluene was obtained.
The isomeric composition of the acetylated product by gas chromatography analysis was 95% paramethylacetophenone, 4% orthomethylacetophenone, and 1% metamethylacetophenone, and no paratoluic acid was detected.

【0018】比較例 製造例の反応生成液を蒸留装置中段から 600g/hrで供給
し、蒸留装置の同じ供給口からベンゼンを 960g/hrで供
給した。蒸留装置の操作条件、及び蒸留装置の塔底から
抜き出した反応生成液のうちベンゼンを除いた組成(=塔
底液組成) を表1に示す。この結果、塔底液組成のパラ
メチルアセトフェノンが 60.9wt%、パラトルイル酸が 1
2.4wt%であることから、希釈に用いる炭化水素類量が少
ない場合には芳香族カルボン酸の生成が多く、芳香族ア
セチル化物の収率が低下することが分かる。
Comparative Example The reaction product liquid of the production example was supplied at 600 g / hr from the middle stage of the distillation apparatus, and benzene was supplied at 960 g / hr from the same supply port of the distillation apparatus. Table 1 shows the operating conditions of the distillation apparatus and the composition of the reaction product extracted from the bottom of the distillation apparatus excluding benzene (= column bottom liquid composition). As a result, 60.9% by weight of paramethylacetophenone and 1% of paratoluic acid
From 2.4 wt%, it can be seen that when the amount of hydrocarbons used for dilution is small, the generation of aromatic carboxylic acid is large and the yield of aromatic acetylated compound is reduced.

【0019】実施例1 製造例の反応生成液を蒸留装置中段から 148g/hrで供給
し、蒸留装置の同じ供給口からベンゼンを1560g/hrで供
給することにより、反応生成液をベンゼンで希釈して蒸
留装置に供給した。蒸留装置の操作条件、及び蒸留装置
の塔底から抜き出した反応生成液のうちベンゼンを除い
た組成(=塔底液組成) を表1に示す。この結果、塔底液
組成のパラメチルアセトフェノンが88.1wt% であり、パ
ラトルイル酸が2.0wt%であることから、希釈に用いる炭
化水素類量を多くすることにより芳香族カルボン酸の生
成が減少し、芳香族アセチル化物の収率が向上すること
が分かる。
Example 1 The reaction product liquid of the production example was supplied from the middle stage of the distillation apparatus at 148 g / hr, and benzene was supplied at 1560 g / hr from the same supply port of the distillation apparatus to dilute the reaction product liquid with benzene. And supplied to the distillation apparatus. Table 1 shows the operating conditions of the distillation apparatus and the composition of the reaction product extracted from the bottom of the distillation apparatus excluding benzene (= column bottom liquid composition). As a result, since the bottom liquid composition of paramethylacetophenone was 88.1 wt% and paratoluic acid was 2.0 wt%, the production of aromatic carboxylic acids was reduced by increasing the amount of hydrocarbons used for dilution. It can be seen that the yield of the aromatic acetylated compound is improved.

【0020】実施例2 製造例の反応生成液を蒸留装置中段から 120g/hrで供給
し、蒸留装置の同じ供給口からベンゼンを1260g/hrで供
給することにより、反応生成液をベンゼンで希釈して蒸
留装置に供給した。蒸留装置の操作条件、及び蒸留装置
の塔低から抜き出した反応生成液のうちベンゼンを除い
た組成(=塔底液組成) を表1に示す。この結果、塔底液
組成のパラメチルアセトフェノンが86.9wt% であり、パ
ラトルイル酸が1.4wt%であった。
Example 2 The reaction product liquid of the production example was supplied at 120 g / hr from the middle stage of the distillation apparatus, and benzene was supplied at 1260 g / hr from the same supply port of the distillation apparatus to dilute the reaction product liquid with benzene. And supplied to the distillation apparatus. Table 1 shows the operating conditions of the distillation apparatus and the composition of the reaction product liquid extracted from the bottom of the distillation apparatus excluding benzene (= column bottom liquid composition). As a result, paramethylacetophenone in the bottom liquid composition was 86.9% by weight, and paratoluic acid was 1.4% by weight.

【0021】[0021]

【表1】 比較例 実施例1 実施例2 蒸留装置操作圧 0.39MPa 0.39MPa 0.20MPa蒸留装置塔底温度 143℃ 143℃ 121℃ 反応生成液供給量 600g/hr 148g/hr 120g/hr 該液中のアシル化物(A) 1.21mol/hr 0.31mol/hr 0.27mol/hr ベンゼン供給量(B) 960g/hr 1560g/hr 1260g/hr (12.29mol/hr) (19.97mol/hr) (16.13mol/hr) B/A (mol/mol) 10.2 64.4 59.7 塔底液組成(=塔底から抜き出した反応生成液のうちベンゼンを除いた組成) 未反応原料(トルエン) 2.5wt% 2.4wt% 2.2wt% アシル化物 60.9 88.1 86.9 パラトルイル酸 12.4 2.0 1.5その他 24.2 7.5 9.4 TABLE 1 Comparative Example Example 1 Example 2 distillation apparatus operating pressure 0.39 MPa 0.39 MPa 0.20 MPa distillation column bottom temperature 143 ° C. 143 ° C. 121 ° C. The reaction product liquid supply amount 600g / hr 148g / hr 120g / hr liquid in Acylate (A) 1.21 mol / hr 0.31 mol / hr 0.27 mol / hr Benzene supply (B) 960 g / hr 1560 g / hr 1260 g / hr (12.29 mol / hr) (19.97 mol / hr) (16.13 mol / hr ) B / A (mol / mol) 10.2 64.4 59.7 Bottom liquid composition (= composition excluding benzene in the reaction product extracted from the bottom) Unreacted raw material (toluene) 2.5 wt% 2.4 wt% 2.2 wt% acyl 60.9 88.1 86.9 Paratoluic acid 12.4 2.0 1.5 Other 24.2 7.5 9.4

【0022】[0022]

【発明の効果】HF−BF3 を触媒に用いるアシル化反
応は、単純な操作、低い圧力で芳香族化合物を容易にア
シル化でき、HF−BF3 を触媒として循環使用できる
こと等の利点がある。本発明により、α位の炭素が分岐
していないフッ化アシルを用いる場合の芳香族カルボン
酸の副生が低減され、目的の芳香族アシル化物の収率が
向上する。また、これによって装置配管における加熱保
温等が不要となり、芳香族アシル化合物の製造装置が簡
略化されて、閉塞の危険の可能性も無くなることから、
芳香族アシル化物を工業的に有利に製造できる。
The acylation reaction using an HF-BF 3, according to the present invention the catalyst is a simple operation, can be easily acylated aromatic compounds at low pressures, there are advantages such as being able to circulate using the HF-BF 3 as a catalyst . According to the present invention, when an acyl fluoride in which the carbon at the α-position is not branched is used, the by-product of the aromatic carboxylic acid is reduced, and the yield of the target acylated aromatic compound is improved. In addition, this eliminates the need for heat insulation and the like in the apparatus piping, simplifies the production apparatus of the aromatic acyl compound, and eliminates the possibility of clogging.
Aromatic acylated compounds can be produced industrially advantageously.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】HFおよびBF3 存在下、α位の炭素が分
岐していないフッ化アシルと芳香族化合物を反応させ、
得られた芳香族アシル化物・HF−BF3 錯体を分解し
て芳香族アシル化物を製造する方法において、芳香族ア
シル化物・HF−BF3 錯体を15モル倍以上の炭化水
素類で希釈して分解することを特徴とする芳香族アシル
化物の製造方法。
(1) reacting an acyl compound having an unbranched carbon at the α-position with an aromatic compound in the presence of HF and BF 3 ,
In a method for producing an aromatic acylated product by decomposing the obtained aromatic acylated product / HF-BF 3 complex, the aromatic acylated product / HF-BF 3 complex is diluted with a hydrocarbon of 15 mole times or more. A method for producing an acylated aromatic compound, which comprises decomposing.
【請求項2】α位の炭素が分岐していないフッ化アシル
がフッ化アセチルである請求項1に記載の芳香族アシル
化物の製造方法。
2. The process for producing an aromatic acylated product according to claim 1, wherein the acyl fluoride in which the carbon at the α-position is not branched is acetyl fluoride.
【請求項3】芳香族化合物が芳香族炭化水素である請求
項1に記載の芳香族アシル化物の製造方法。
3. The method according to claim 1, wherein the aromatic compound is an aromatic hydrocarbon.
【請求項4】炭化水素類がベンゼン、トルエン、クロロ
ベンゼン、ペンタン、ヘキサン及びシクロヘキサンの中
から選ばれた1種以上の化合物である請求項1に記載の
芳香族アシル化物の製造方法。
4. The method for producing an aromatic acylated product according to claim 1, wherein the hydrocarbon is at least one compound selected from benzene, toluene, chlorobenzene, pentane, hexane and cyclohexane.
JP25693598A 1998-09-10 1998-09-10 Production of aromatic acyl compound Pending JP2000086570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25693598A JP2000086570A (en) 1998-09-10 1998-09-10 Production of aromatic acyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25693598A JP2000086570A (en) 1998-09-10 1998-09-10 Production of aromatic acyl compound

Publications (1)

Publication Number Publication Date
JP2000086570A true JP2000086570A (en) 2000-03-28

Family

ID=17299422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25693598A Pending JP2000086570A (en) 1998-09-10 1998-09-10 Production of aromatic acyl compound

Country Status (1)

Country Link
JP (1) JP2000086570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828463B2 (en) 2003-03-26 2004-12-07 Council Of Scientific And Industrial Research Process for the preparation of carbonyl compounds with a carbonyl group attached to the aromatic ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828463B2 (en) 2003-03-26 2004-12-07 Council Of Scientific And Industrial Research Process for the preparation of carbonyl compounds with a carbonyl group attached to the aromatic ring

Similar Documents

Publication Publication Date Title
Earle et al. Metal bis {(trifluoromethyl) sulfonyl} amide complexes: highly efficient Friedel–Crafts acylation catalysts
Amandi et al. Continuous reactions in supercritical fluids; a cleaner, more selective synthesis of thymol in supercritical CO 2
JP2000086570A (en) Production of aromatic acyl compound
JPS6234024B2 (en)
EP1036782B1 (en) Method of producing dialkyl- and trialkyl-substituted benzaldehydes
JP2782363B2 (en) Method for producing α- (4-isobutylphenyl) propionic acid or its ester
US5763718A (en) Process for producing octadienes
EP0475687B1 (en) Catalytic process for production of sec-butylbenzene
US20050085670A1 (en) Production method of alkylbenzaldehydes
EP2692717B1 (en) Method for producing 4,4'-diformyldiphenylalkane
US4967011A (en) Process for decomposing aromatic acylated compound.HF-BF3 complex
JP2756828B2 (en) Method for producing p-isobutylethylbenzene
JP2526637B2 (en) Process for producing dialkylbenzene having high p-form content
US5550284A (en) Production method for alkoxynaphthalenecarboxylic acid
WO2009044210A1 (en) Process for the co- production of fatty alcohols showing different carbon chain lengths
JP3042366B2 (en) Method for producing metadiisopropylbenzene
JPS621937B2 (en)
US5208383A (en) Process for producing aromatic acylation product
JP4059531B2 (en) Process for producing alkoxynaphthalenecarboxylic acid
WO2001021565A2 (en) Process for producing 3-bromobenzoyl halides
RU2575126C2 (en) Method for obtaining 4,4'-diformyldiphenylalkane
EP0326456B1 (en) Process for the preparation of chloranile
JP4471081B2 (en) Method for producing p-fluorobenzaldehyde
US3487119A (en) Production of 3,4,5-trimethyl-1-secondary alkyl benzenes
JPH0585957A (en) Process for preparing 2,2-bis(3,4-dimethylphenyl)propane