JP2000086215A - Lithium vanadium phosphate composite compound and positive electrode material made of that composite compound for lithium ion secondary cell - Google Patents

Lithium vanadium phosphate composite compound and positive electrode material made of that composite compound for lithium ion secondary cell

Info

Publication number
JP2000086215A
JP2000086215A JP10261930A JP26193098A JP2000086215A JP 2000086215 A JP2000086215 A JP 2000086215A JP 10261930 A JP10261930 A JP 10261930A JP 26193098 A JP26193098 A JP 26193098A JP 2000086215 A JP2000086215 A JP 2000086215A
Authority
JP
Japan
Prior art keywords
composite compound
lithium
positive electrode
compound
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10261930A
Other languages
Japanese (ja)
Other versions
JP2949229B1 (en
Inventor
Mineo Sato
峰夫 佐藤
Kenji Toda
健司 戸田
Nobuhito Imanaka
信人 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP10261930A priority Critical patent/JP2949229B1/en
Application granted granted Critical
Publication of JP2949229B1 publication Critical patent/JP2949229B1/en
Publication of JP2000086215A publication Critical patent/JP2000086215A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain excellent charging and discharging characteristics by using a lithium vanadium phosphate composite compound as a positive electrode material. SOLUTION: A lithium vanadium composite compound Liy(V1-xMx)2(PO4)3 is used as the positive electrode material of a lithium ion secondary cell. In the formula, M is at least one kind of bi or more-valent cation selected from Al, Ti and Zr, x ranges 0<x<=0.2, y is 3 when M is Al and is 3-2x when M is Ti or Zr. The compound is prepared by mixing a Li compd., V compd., phosphate compd., Ti compd., Zr compd., and/or Al compound in a specified mixing ratio according to the chemical compsn. of the objective composite compound, thermally decomposing the mixture at 200 to 400 deg.C and 1 atmospheric pressure in air for 1 to 5 hours. Then the decomposed material is compacted into a circular pellet of 15 mm diameter under 30 MPa pressure, and fired at 700 to 1100 deg.C in an inert atmosphere such as argon to obtain the lithium vanadium phosphate composite compound as a sintered body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0002】本発明は、燐酸リチウム・バナジウム複合
化合物及び同複合化合物からなるリチウムイオン二次電
池用正極材料に関する。
The present invention relates to a lithium-vanadium phosphate composite compound and a positive electrode material for a lithium ion secondary battery comprising the composite compound.

【従来の技術】[Prior art]

【0003】従来、リチウムイオン二次電池用正極材料
としてバナジウムイオン含有リチウム燐酸化合物が検討
されている。正極特性は、充放電の際のLiイオンのイ
ンタカレーションが容易かどうか、即ち、電荷移動が容
易かどうかのみならず、正極材料中でLiイオンの拡散
が容易かどうかによって大きく影響を受けることが知ら
れている。Li3 2 (PO4 3 の理論容量は13
1.5mAh/gであるが、これまでせいぜい60%し
か利用できなかった。 また、β―Fe2(SO 4 3
構造を持つLi3 2 (PO4 )3は、温度によって3
つの相を呈し、高温相は高いイオン伝導性を示すことが
知られている。S.Okada,H.Asakura,
Y.Sakurai,J.Yamaki,K.S.Na
njundaswamy、A.K.Padhi,C.N
asqualier & J.B.Goodeneug
h,“Characteristics of 3D Framework Cathodes wit
h the (X04)n- Polyanions", The 37th Battery Sympos
ium in Japan, Abstract, 19(1996)参照。
Conventionally, cathode materials for lithium ion secondary batteries
Study of lithium phosphate compounds containing vanadium ions
Have been. Positive electrode characteristics are based on Li ion
Easy intercalation, i.e. charge transfer
Not only whether it is easy, but also diffusion of Li ions in the cathode material
Is known to be greatly affected by whether
Have been. LiThreeVTwo(POFour)ThreeTheoretical capacity of 13
1.5 mAh / g, but up to 60%
Or was not available. Also, β-Fe2 (SO Four)Three
Li with structureThreeVTwo(POFour3) is 3 depending on the temperature.
Phase and the high-temperature phase can exhibit high ionic conductivity.
Are known. S. Okada, H .; Asakura,
Y. Sakurai, J .; Yamaki, K .; S. Na
njundaswamy, A .; K. Padhi, C.I. N
asqualier & J.S. B. Goodeneg
h, “Characteristics of 3D Framework Cathodes wit
h the (X04) n- Polyanions ", The 37th Battery Sympos
See ium in Japan, Abstract, 19 (1996).

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0004】本発明者は、バナジウムイオンあるいは鉄
イオン含有リチウム燐酸化合物の正極特性の改良を試み
る中で、バナジウムイオンあるいは鉄イオン含有リチウ
ム燐酸化合物において室温で安定した高イオン伝導性を
達成できれば、優れた充放電特性を有する正極材料が得
られることを期待できることに着目した。
The inventor of the present invention has attempted to improve the positive electrode characteristics of a vanadium ion or iron ion-containing lithium phosphate compound. It is expected that a positive electrode material having good charge / discharge characteristics can be expected.

【0005】従って、本発明は優れた充放電特性を有す
る正極材料として用いることができるリチウムイオン二
次電池用正極材料としてのバナジウムイオン含有リチウ
ム燐酸化合物及び該バナジウムイオン含有リチウム燐酸
化合物からなるリチウムイオン二次電池用正極材料を提
供することを目的とする。
Accordingly, the present invention provides a vanadium ion-containing lithium phosphate compound and a lithium ion comprising the vanadium ion-containing lithium phosphate compound as a cathode material for a lithium ion secondary battery which can be used as a cathode material having excellent charge / discharge characteristics. An object is to provide a positive electrode material for a secondary battery.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】本発明の燐酸リチウム・バナジウム複合化
合物は、下記一般式(1)で表されることを特徴とす
る。 Liy (V1-x x 2 (PO4 3 ここに、Mはアルミニウム、チタニウム及びジルコニウ
ムから選ばれた2価以上の陽イオンのうち少なくとも1
種類であり、0<x≦0.2であり、yはMがアルミニ
ウムの場合はyは3、Mがチタニウムあるいはジルコニ
ウムの場合はyは3−2xである。
[0006] The lithium-vanadium phosphate composite compound of the present invention is characterized by being represented by the following general formula (1). Li y (V 1-x M x ) 2 (PO 4 ) 3 where M is at least one of divalent or higher cations selected from aluminum, titanium and zirconium.
0 <x ≦ 0.2, y is 3 when M is aluminum, and y is 3-2x when M is titanium or zirconium.

【0007】また、本発明のリチウム二次電池用正極材
料は、下記一般式(1)で表される燐酸リチウム・バナ
ジウム複合化合物からなることを特徴とする。 Liy (V1-x x 2 (PO4 3 ここに、Mはアルミニウム、チタニウム及びジルコニウ
ムから選ばれた2価以上の陽イオンのうち少なくとも1
種類であり、0<x≦0.2であり、yはMがアルミニ
ウムの場合はyは3、Mがチタニウムあるいはジルコニ
ウムの場合はyは3−2xである。
Further, the positive electrode material for a lithium secondary battery of the present invention is characterized by comprising a lithium-vanadium phosphate composite compound represented by the following general formula (1). Li y (V 1-x M x ) 2 (PO 4 ) 3 where M is at least one of divalent or higher cations selected from aluminum, titanium and zirconium.
0 <x ≦ 0.2, y is 3 when M is aluminum, and y is 3-2x when M is titanium or zirconium.

【0008】なお、上記式(1)はMがAl,Ti,Z
rの場合、即ちLiy (V1-x1-X2- X3Alx1TiX2Zr
X32 (PO4 3 の場合、yは(3−2X2 −2
3 )であることを示す場合も含むことは言うまでもな
い((X=X1 +X2 +X3 ))。
In the above equation (1), M is Al, Ti, Z
r, that is, Li y (V 1-x1- X2- X3 Al x1 Ti X2 Zr
X3) 2 (PO 4) For 3, y is (3-2x 2 -2
It goes without saying that includes also indicate that X 3) is a ((X = X 1 + X 2 + X 3)).

【0009】本発明の燐酸リチウム・バナジウム複合化
合物は、バナジウムの一部をZr,Ti及び/またはA
lで置換することにより、従来高温で安定な高温相が室
温においても安定化され、従って室温において安定化さ
れた高温相によりその正極特性が著しく向上する。即
ち、本願発明では、イオン伝導性及びイオン拡散性の高
い高温相を室温下で安定化することによってLi3 2
(PO4 3 及びLi3Fe2 (PO4 3 の欠点であ
る低充放電容量を向上させている。
In the lithium-vanadium phosphate composite compound of the present invention, a part of vanadium is converted to Zr, Ti and / or A
By substituting with l, the high-temperature phase, which is conventionally stable at a high temperature, is also stabilized at room temperature, and thus the positive-electrode properties are significantly improved by the high-temperature phase stabilized at room temperature. That is, in the present invention, Li 3 V 2 is stabilized by stabilizing a high-temperature phase having high ion conductivity and ion diffusion at room temperature.
The low charge / discharge capacity, which is a disadvantage of (PO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3 , is improved.

【0010】なお、本発明の燐酸リチウム・バナジウム
複合化合物は、連続固溶体を形成している。ここに、連
続固溶体とは、化合物の組成を連続的に変化させてもそ
の基本構造が全く変化しない一群の化合物のことを言う
が、その構造の最小単位である単位格子の大きさは, 組
成の変化に対応して連続的に変化するものを言う。ま
た、本発明の燐酸リチウム・バナジウム複合化合物はア
ルミニウム、チタニウム及びジルコニウム以外の元素を
全く含まないというのではなく、本願発明の所望の効果
が失われない限りにおいて不純物等の他の元素が含まれ
ていても構わない。
The lithium-vanadium phosphate composite compound of the present invention forms a continuous solid solution. Here, a continuous solid solution refers to a group of compounds whose basic structure does not change at all even when the composition of the compound is continuously changed, and the size of the unit cell, which is the minimum unit of the structure, is determined by the composition That changes continuously in response to changes in In addition, the lithium-vanadium phosphate composite compound of the present invention does not mean that it does not contain any element other than aluminum, titanium and zirconium, but contains other elements such as impurities as long as the desired effect of the present invention is not lost. It does not matter.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0011】本発明の燐酸リチウム・バナジウム複合化
合物及び同複合化合物からなるリチウムイオン二次電池
用正極材料は以下のようにして得られる。以下の方法は
例示であって、本発明の燐酸リチウム・バナジウム複合
化合物及び同複合化合物からなるリチウムイオン二次電
池用正極材料は以下の方法によって製造されたものに限
られないことは言うまでもない。
The lithium-vanadium phosphate composite compound of the present invention and the cathode material for a lithium ion secondary battery comprising the composite compound are obtained as follows. The following method is an exemplification, and it goes without saying that the lithium-vanadium phosphate composite compound of the present invention and the positive electrode material for a lithium ion secondary battery comprising the composite compound are not limited to those produced by the following method.

【0012】(1)燐酸リチウム・バナジウム複合化合
物 目的とする燐酸リチウム・バナジウム複合化合物の化学
組成に従って、リチウム化合物、バナジウム化合物、並
びに燐酸塩化合物、チタン化合物、ジルコニウム化合物
及び/またはアルミニウム化合物を所定の混合比で混合
し、200℃−400℃の温度範囲で空気雰囲気中で1
気圧の圧力の下1−5時間熱分解し、その後30Mpa
の圧力下で直径15mmの円形型ペレットを加圧成形し
加圧成形体をアルゴン等の不活性雰囲気中で700℃−
1100℃の温度範囲で焼成することによって燒結体と
しての燐酸リチウム・バナジウム複合化合物を得る。本
願の燐酸リチウム・バナジウム複合化合物は、燒結体で
も粉末でも良いが、本発明で最終的にリチウム二次電池
用正極材料として用いる場合には、粉末の形態で用い
る。従って、この場合最初から粉体の形態で複合化合物
が得られれば良いが、単一相の化合物を短時間で得るに
は、燒結体の形態とした方がより簡単に合成が可能であ
る。
(1) Lithium-vanadium complex compound According to the chemical composition of the target lithium-vanadium complex compound, a lithium compound, a vanadium compound, and a phosphate compound, a titanium compound, a zirconium compound and / or an aluminum compound are converted into a predetermined compound. Mix at a mixing ratio, and in a temperature range of 200 ° C
Pyrolyze for 1-5 hours under atmospheric pressure, then 30Mpa
A 15 mm-diameter circular pellet is pressure-formed under a pressure of 700 ° C. in an inert atmosphere such as argon at 700 ° C.
By firing in a temperature range of 1100 ° C, a lithium-vanadium phosphate composite compound as a sintered body is obtained. The lithium-vanadium phosphate composite compound of the present invention may be a sintered body or a powder, but when it is finally used as a positive electrode material for a lithium secondary battery in the present invention, it is used in the form of a powder. Therefore, in this case, it is sufficient that the composite compound is obtained in the form of a powder from the beginning, but in order to obtain a single-phase compound in a short time, it is easier to synthesize in the form of a sintered body.

【0013】燐酸リチウム・バナジウム複合化合物を得
る別の方法としては、出発原料にLi2 CO3 、VO
(O−iPr)3 、Ti(O−iPr)4 、Al(O−
iPr)3 、P(OCH3 3 、ZrO(CH3 CO
O)2 を所望の化学組成に得るべく所定の量で混合し、
得られた混合物にクエン酸とエチレングリコールとを混
合することによって目的とする化学組成を有する化合物
の沈殿物を得る錯体重合法がある。詳細は図4に示す。
As another method for obtaining a lithium-vanadium composite compound, Li 2 CO 3 , VO
(O-iPr) 3 , Ti (O-iPr) 4 , Al (O-
iPr) 3 , P (OCH 3 ) 3 , ZrO (CH 3 CO
O) 2 is mixed in a predetermined amount to obtain a desired chemical composition;
There is a complex polymerization method in which a precipitate of a compound having a desired chemical composition is obtained by mixing citric acid and ethylene glycol into the obtained mixture. Details are shown in FIG.

【0014】なお、上記各方法において出発原料は粒子
が小さい程反応面積が広く、また、粒形が整っている程
結晶骨格の並びが整うため、リチウムの出入りの際,骨
格が壊れにくい。即ち,出来るだけ粒子が小さく粒径が
整っている原料を使用することが放電容量及びサイクル
特性の向上という観点から好ましい。
In each of the above methods, the starting material has a larger reaction area as the particles are smaller, and the crystal skeleton is more aligned as the grain shape is more regular, so that the skeleton is less likely to break when lithium enters or leaves. That is, it is preferable to use a raw material having as small particles as possible and having a uniform particle size from the viewpoint of improving discharge capacity and cycle characteristics.

【0015】(2)燐酸リチウム・バナジウム複合化合
物からなるリチウムイオン二次電池用正極材料 燐酸リチウム・バナジウム複合化合物からなるリチウム
イオン二次電池用正極材料は、上記燐酸リチウム・バナ
ジウム複合化合物からなる燒結体を粉砕してペレット状
に加圧成形することによって加圧成形体として得られ
る。正極材料を加圧成形するにあったっては、正極材料
を得る場合に通常用いる導電助剤と結着剤とを混合す
る。より詳しく述べると、上記燐酸リチウム・バナジウ
ム複合化合物からなる燒結体を粉砕して粉末状とし(粒
度範囲は, 例えば粒径0.4−2.0ミクロン)、これ
に導電助剤と結着剤を混合し、30MPa等の圧力で加
圧成形することによってリチウムイオン二次電池用正極
材料を得る。この際、上記燐酸リチウム・バナジウム複
合化合物からなる燒結体の粉砕粉末、導電助剤及び結着
剤は重量比でそれぞれ70−80重量部、15−25重
量部及び2−10重量部の割合で混合することが好まし
い。例えば70:25:5の割合で混合し、30MPa
の圧力下で成形する。また、得られる正極材料の成形体
の形状としては,例えば断面積1cm2 の円形型ペレッ
トとすることができる。
(2) A positive electrode material for a lithium ion secondary battery comprising a lithium-vanadium phosphate composite compound A positive electrode material for a lithium ion secondary battery comprising a lithium-vanadium composite compound is a sintered material comprising the above-mentioned lithium-vanadium composite compound. The body is pulverized and pressure-formed into pellets to obtain a pressure-formed body. When the positive electrode material is subjected to pressure molding, a conductive auxiliary and a binder, which are usually used for obtaining a positive electrode material, are mixed. More specifically, the sintered body composed of the lithium-phosphate-vanadium composite compound is pulverized into a powder (for example, a particle size range of 0.4 to 2.0 microns), and a conductive additive and a binder are added thereto. Are mixed and pressed under a pressure of 30 MPa or the like to obtain a positive electrode material for a lithium ion secondary battery. At this time, the pulverized powder of the sintered body composed of the lithium-vanadium complex compound, the conductive additive and the binder were added in a weight ratio of 70-80 parts by weight, 15-25 parts by weight and 2-10 parts by weight, respectively. Mixing is preferred. For example, mixing at a ratio of 70: 25: 5, 30MPa
Molded under pressure. The shape of the obtained molded body of the positive electrode material may be, for example, a circular pellet having a cross-sectional area of 1 cm 2 .

【0016】正極電極中でリード線と正極材料(複合化
合物)との間で電子の授受をしなければならないが、本
発明の正極材料も含め一般に正極材料は元来電子伝導性
に乏しいので、軽量で導電性のあるアセチレンブラック
等の導電助剤を混合する。現在用いられているリチウム
イオン電池では、アセチレンブラックが主に使用されて
いる。
Electrons must be exchanged between the lead wire and the positive electrode material (composite compound) in the positive electrode. However, since the positive electrode material including the positive electrode material of the present invention generally has poor electron conductivity, A conductive additive such as acetylene black, which is lightweight and conductive, is mixed. Acetylene black is mainly used in currently used lithium ion batteries.

【0017】正極中では、正極材料と導電助剤とは常に
接触を保つ必要があり、それを可能とするためにポリテ
トラフルオロエチレン等の結着剤を添加して正極を形成
することが行われている。ポリテトラフルオロエチレン
の他にはポリ弗化ビニリデン、N−メチルー2−ピロリ
ドン、ブタジエン- スチレンゴム等を使用できる。
In the positive electrode, it is necessary to keep the positive electrode material and the conductive auxiliary in constant contact. To enable this, it is necessary to add a binder such as polytetrafluoroethylene to form the positive electrode. Have been done. In addition to polytetrafluoroethylene, polyvinylidene fluoride, N-methyl-2-pyrrolidone, butadiene-styrene rubber and the like can be used.

【0018】リチウム化合物としては、Li2 CO3
LiOH、LiHCO3 、Li2 CO3 、リチウム酢酸
塩を用いることができる。バナジウム化合物としてはV
2 3 、VO,VO2 、V2 4 を用いることができ
る。また、燐酸塩化合物としては、NH4 2 PO4
(NH4 2 HPO4 、(NH4 3 PO4 を用いるこ
とができる。チタン化合物としては、TiO2 、Ti
O、Ti2 3 、チタン酢酸塩を用いることができる。
また、ジルコニウム化合物としてはZrO2 、ジルコニ
ウム酢酸塩を用いることができ、アルミニウム化合物と
してはAl2 3 、Al(OH)3 を用いることができ
る。基本的には、Alは3価、Zr,Tiは4価の形で
置換させたいので、例えばTiOを出発材料に用いると
Tiは2価であるのでアルゴン雰囲気の代わりに酸素雰
囲気等を用いて酸化できる雰囲気を用いることが好まし
い。
As the lithium compound, LiTwoCOThree,
LiOH, LiHCOThree, LiTwoCOThree, Lithium acetic acid
Salts can be used. V as a vanadium compound
TwoO Three, VO, VOTwo, VTwoOFourCan be used
You. Further, as the phosphate compound, NH 3FourHTwoPOFour,
(NHFour)TwoHPOFour, (NHFour)ThreePOFourUsing
Can be. As the titanium compound, TiOTwo, Ti
O, TiTwoOThree, Titanium acetate can be used.
Zirconium compounds include ZrOTwo, Zirconi
Can be used, and aluminum compound and
AlTwoOThree, Al (OH)ThreeCan be used
You. Basically, Al is trivalent, and Zr and Ti are tetravalent.
For example, if TiO is used as a starting material,
Since Ti is divalent, an oxygen atmosphere is used instead of an argon atmosphere.
It is preferable to use an atmosphere that can be oxidized using an atmosphere or the like.
No.

【実施例】【Example】

【0019】以下に, 本発明について実施例に基づいて
詳細に述べるが、本発明はこれらの実施例によって何ら
限定されるものではない。。まず、粉末状で粒径が0.
4−2.0μmであるLi2 CO3 、V2 3 、NH4
2 PO4 、TiO2 、ZrO2 、Al2 3 を各サン
プルでチタニウム、ジルコニウム、アルミニウムのいず
れかをバナジウムに対する置換率が0mol%、5mo
l%,10mol%、15mol%,20mol%の割
合となるように混合し、200℃−400℃の温度範囲
で空気雰囲気中で1気圧の圧力下1−5時間熱分解し、
その後、30MPaの圧力下で直径15mm,厚さ約1
mmの円板状ペレットに加圧成形し、加圧成形体をアル
ゴン不活性雰囲気中で700℃−1100℃の温度で6
−12時間焼成した。得られた、サンプルの化学構造体
は、粉末X線回折の結果からLiy (V1-x x
2 (PO4 3 (MはZr,Al、Tiのいずれかであ
り、0<x≦0.2であり、yはMがアルミニウムの場
合はyは3、Mがチタニウムあるいはジルコニウムの場
合はyは3−2xである)の連続固溶体であることが分
かった。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples. . First, it is powdery and has a particle size of 0.1.
4-2.0 μm Li 2 CO 3 , V 2 O 3 , NH 4
H 2 PO 4 , TiO 2 , ZrO 2 , and Al 2 O 3 were replaced with titanium, zirconium, or aluminum in each sample with a substitution rate of 0 mol% for vanadium and 5 mol.
1%, 10 mol%, 15 mol%, and 20 mol%, and thermally decomposed under a pressure of 1 atm in an air atmosphere in a temperature range of 200 ° C to 400 ° C for 1 to 5 hours.
Then, under a pressure of 30 MPa, a diameter of 15 mm and a thickness of about 1
mm disc-shaped pellets, and press-formed at a temperature of 700 ° C. to 1100 ° C. in an argon inert atmosphere.
Fired for -12 hours. From the result of powder X-ray diffraction, the obtained chemical structure of the sample was obtained using Li y (V 1-x M x ).
2 (PO 4 ) 3 (M is any one of Zr, Al and Ti, 0 <x ≦ 0.2, y is 3 when M is aluminum, and y is 3 when M is titanium or zirconium. y is 3-2x).

【0020】また、正極材料は、上で得られたサンプル
を砕いて得た粉末の一部を用いた。このとき、この粉末
試料と、導電助剤のアセチレンブラック及び接着剤のポ
リテトラフルオロエチレンとを重量比で70:25:5
となるように混ぜ、30MPaで加圧し、円形ペレット
状にして使用した。
A part of the powder obtained by crushing the sample obtained above was used as the positive electrode material. At this time, this powder sample was mixed with acetylene black as a conductive additive and polytetrafluoroethylene as an adhesive in a weight ratio of 70: 25: 5.
And pressurized at 30 MPa to form a circular pellet.

【0021】なお、ジルコニウムイオン及びチタンイオ
ンの二種類のイオンで置換した化学式Li2.8 (V0.9
Zr0.05Ti0.052 (PO4 3 で表される化合物の
合成を行ったが,正極特性の振る舞いは一種類置換化合
物と比べ大差は無かった。
The chemical formula Li 2.8 (V 0.9) substituted with two kinds of ions, zirconium ion and titanium ion.
Was synthesized compound represented by Zr 0.05 Ti 0.05) 2 (PO 4) 3 , but much different than behavior one type substituted compound of positive electrode characteristics were not.

【0022】上で得た各サンプルについて, 以下の試験
を行った。正極特性の評価は,0.5mA/cm2の電
流密度での法充電特性の測定によって行った。 (1−1)イオン伝導度の測定 イオン伝導度の測定は以下のように行った。燒結体を粉
砕して粉末状し、0.1gを計り取り490Mpaで直
径9mmのペレットに加圧成形し、次に1000℃で6
時間不活性ガスであるアルゴンガス雰囲気中で燒結し、
ペレットの両面に白金をスパッタリングすることにより
電極を形成した。このペレットに対し5Hzから13H
zの周波数範囲で複素インピーダンス測定を行い試料の
全伝導度を求めた。同じペレットについて二端子直流法
を用いて試料の電子伝導度を求めた。試料のイオン伝導
度は、全伝導度から電子伝導度を差し引いて求めた。結
果を図1および下記表1に示す。
The following tests were performed on each of the samples obtained above. Evaluation of the positive electrode characteristics was performed by measuring normal charging characteristics at a current density of 0.5 mA / cm 2. (1-1) Measurement of ionic conductivity The measurement of ionic conductivity was performed as follows. The sintered body was pulverized to a powder, 0.1 g was weighed out, pressed at 490 Mpa into a pellet having a diameter of 9 mm, and then pressed at 1000 ° C. for 6 hours.
Sintering in an argon gas atmosphere, which is an inert gas for a time,
Electrodes were formed by sputtering platinum on both surfaces of the pellet. 5Hz to 13H for this pellet
Complex impedance was measured in the frequency range of z to determine the total conductivity of the sample. The electronic conductivity of the sample was determined for the same pellet using a two-terminal direct current method. The ionic conductivity of the sample was determined by subtracting the electronic conductivity from the total conductivity. The results are shown in FIG. 1 and Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】(1−2)充放電曲線の決定 充放電特性の測定は、コインタイプセル法を用いた。正
極材料は、放電特性を求める前に、電流密度が一定にな
るように断面積を加工した。ここに、断面積の加工と
は、通常のペレット成形機で成形後、円形の型抜きを使
用して所望の断面積を持つ円盤状に切り取ることを意味
する。次に、集電材としてこの正極材料と同じ面積に切
り取ったニッケルメッシュを正極材料と重ねて30MP
aで加圧し、正極材料と集電材とを完全に密着させた。
負極には正極材料と同じ面積に切り取った金属リチウム
箔を同様にして正極材料に密着させて形成した。電解液
は、炭酸プロピレン(PC)とジメトキシエタン(DM
E)を体積比で1:1となるように混合し、混合液に濃
度が1mol/lとなるようにLiClO4 を溶解し
た。充放電の測定は、二端子法にて、3.0−4.4V
の範囲で電流密度0.5mA/cm2 で行った。また、
放電容量は,電圧変化が4.4Vから3.0Vまで変化
するのに要する時間に電流をかけた結果から求めた。結
果を図2に示す。
(1-2) Determination of Charge / Discharge Curve The charge / discharge characteristics were measured by a coin type cell method. Before obtaining the discharge characteristics, the cross-sectional area of the positive electrode material was processed so that the current density became constant. Here, the processing of the cross-sectional area means that, after forming with a normal pellet forming machine, the disc is cut into a disk shape having a desired cross-sectional area using a circular die. Next, as a current collector, a nickel mesh cut to the same area as the positive electrode material was superimposed on the positive electrode material to form a 30 MP.
The pressure was applied by a to completely contact the positive electrode material and the current collector.
The negative electrode was formed by attaching a metallic lithium foil cut to the same area as the positive electrode material in close contact with the positive electrode material. The electrolyte is propylene carbonate (PC) and dimethoxyethane (DM
E) was mixed at a volume ratio of 1: 1 and LiClO 4 was dissolved in the mixture at a concentration of 1 mol / l. The charge / discharge measurement was performed by a two-terminal method at 3.0 to 4.4 V.
And the current density was 0.5 mA / cm 2 . Also,
The discharge capacity was determined from the result of applying a current to the time required for the voltage change to change from 4.4 V to 3.0 V. The results are shown in FIG.

【0025】(1−3)電流密度0.5mA/cm2
おける3.0と4.4Vの間での第1サイクルに対する
置換率と放電容量との関係 結果を図3に示す。
(1-3) Relationship between replacement rate and discharge capacity for the first cycle between 3.0 and 4.4 V at a current density of 0.5 mA / cm 2 The results are shown in FIG.

【0026】上記試験結果を図1乃至図3を参照しつつ
説明する。 (2−1)図1(置換率とイオン伝導度との関係) バナジウムイオンの一部をジルコニウムイオン、チタン
ニウムイオン, アルミニウムイオンでそれぞれ置換した
いずれのサンプルにおいても、無置換のものと比べてイ
オン伝導度が向上しているのが分かる。特に、5mol
%から13mol%位の間の置換率でイオン伝導度が大
きく向上しているのが分かる。これは、高温イオン伝導
相であるガンマ相がヒツオンで安定化しているためと考
えられる。特にZr4+の10mol%置換サンプルにお
いては約10-5Scm-1というこの系におけるイオン伝
導度の最高値を示した。これまで報告された空気中で安
定な化合物のうちでも、この数値は極めて良好なイオン
伝導性を示すものである。
The test results will be described with reference to FIGS. (2-1) FIG. 1 (Relationship between Substitution Rate and Ion Conductivity) In all samples in which a part of vanadium ions were replaced with zirconium ions, titanium ions, and aluminum ions, respectively, compared with the unsubstituted samples. It can be seen that the ionic conductivity has been improved. Especially 5mol
It can be seen that the ionic conductivity is greatly improved at a substitution rate between about 13% and about 13 mol%. This is considered to be because the gamma phase, which is a high-temperature ionic conductive phase, is stabilized by hitson. In particular, the 10 mol% substitution sample of Zr 4+ exhibited the highest value of ionic conductivity in this system of about 10 −5 Scm −1 . Among the air-stable compounds reported so far, this value indicates extremely good ionic conductivity.

【0027】(2−2)図2(電流密度0.5mA/c
2 におけるZr置換サンプルの充放電曲線) 上記得られたジルコニウム置換サンプルを正極材料とし
て用いた場合の電流密度0.5mA/cm2 で測定した
充放電曲線を示す。結果から、いずれの置換率において
も3.0−4.4Vの間の充放電容量が各段に向上する
ことが分かる。また、無置換体には、充電曲線と放電曲
線に2つのプラトーが現れるがジルコニウムで置換する
ことによって、このプラトーが消失する傾向が見られ
る。この傾向はサイクル特性の向上を促すものであり、
特にZr4+が5%の置換サンプルにおいては,放電容量
が最高の値を示した。この結果も、ジルコニウム置換に
よってLi3 2 (PO4 3 の高温相が室温でも安定
化されていることを示すものである。また、伝導性の向
上が充放電特性に大きく関与していることを示すもので
ある。
(2-2) FIG. 2 (current density 0.5 mA / c)
Charge / Discharge Curve of Zr-Substituted Sample at m 2 ) A charge / discharge curve measured at a current density of 0.5 mA / cm 2 when the zirconium-substituted sample obtained above was used as a positive electrode material. From the results, it can be seen that the charging / discharging capacity between 3.0 and 4.4 V is improved in each stage at any replacement ratio. In addition, in the unsubstituted product, two plateaus appear on the charge curve and the discharge curve, but there is a tendency that the plateau disappears by substitution with zirconium. This tendency promotes improvement of cycle characteristics.
In particular, in the substitution sample in which Zr 4+ was 5%, the discharge capacity showed the highest value. This result also indicates that the high-temperature phase of Li 3 V 2 (PO 4 ) 3 is stabilized at room temperature by zirconium substitution. It also shows that the improvement in conductivity greatly affects the charge / discharge characteristics.

【0028】(2−3)図3:電流密度0.5mA/c
2 における3.0と4.4Vの間での第1サイクルに
対する置換率と放電容量との関係 いずれの置換サンプルにおいても放電容量が各段に向上
しているのが分かる。特に各イオンの置換率が5mol
%のサンプルにおいては、この系の放電容量の最高値を
示した。これは、イオン伝導度と対応するものである。
即ち、イオン伝導度の向上はイオン拡散性と直接結びつ
くパラメータであることから、置換によりリチウムイオ
ンの拡散性が向上することによって放電容量が大きくな
ったものと考えられる。
(2-3) FIG. 3: Current density 0.5 mA / c
Relation between Displacement Rate and Discharge Capacity for First Cycle between 3.0 and 4.4 V at m 2 It can be seen that the discharge capacity is improved in each stage in each of the substituted samples. Especially the substitution rate of each ion is 5mol
% Sample showed the highest value of the discharge capacity of this system. This corresponds to the ionic conductivity.
That is, since the improvement of the ion conductivity is a parameter directly linked to the ion diffusivity, it is considered that the discharge capacity is increased by the improvement of the lithium ion diffusivity by the substitution.

【0029】[0029]

【発明の効果】本発明の燐酸リチウム・バナジウム複合
化合物及び同複合化合物からなるリチウムイオン二次電
池用正極材料によれば、バナジウムをアルミニウム、チ
タン及びジルコニウムから選ばれた2価以上の陽イオン
のうち少なくとも1種類の陽イオンを所定の量で置換す
ることによって、高温で安定であったイオン伝導相を室
温でも安定化し、それによってイオン導電度を向上し、
イオン拡散性を高め、充放電容量を向上させている。し
たがって、本発明の燐酸リチウム・バナジウム複合化合
物は、優れた正極特性を有するリチウムイオン二次電池
用正極材料として用いることができる。
According to the lithium-vanadium phosphate composite compound of the present invention and the positive electrode material for a lithium ion secondary battery comprising the composite compound, vanadium is converted to a divalent or higher cation selected from aluminum, titanium and zirconium. By replacing at least one of the cations with a predetermined amount, the ionic conductive phase, which was stable at a high temperature, is stabilized at room temperature, thereby improving the ionic conductivity.
The ion diffusivity is improved, and the charge / discharge capacity is improved. Therefore, the lithium-vanadium phosphate composite compound of the present invention can be used as a positive electrode material for a lithium ion secondary battery having excellent positive electrode characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】。ジルコニウム、チタニウムあるいはアルミニ
ウムのバナジウムの置換率とイオン伝導度との関係を示
す。
FIG. The relationship between the ion exchange rate and the vanadium substitution rate of zirconium, titanium or aluminum is shown.

【図2】電流密度0.5mA/cm2 におけるZr置換
サンプルの放電曲線を示す。
FIG. 2 shows a discharge curve of a Zr-substituted sample at a current density of 0.5 mA / cm 2 .

【図3】電流密度0.5mA/cm2 における3.0と
4.4Vの間での第1サイクルに対する置換率と放電容
量との関係を示す。
FIG. 3 shows the relationship between the replacement rate and the discharge capacity for the first cycle between 3.0 and 4.4 V at a current density of 0.5 mA / cm 2 .

【図4】Liy (V1-x x 2 (PO4 3 (M=Z
r,Ti,Al)作製のフローチャートを示す。
FIG. 4 Li y (V 1−x M x ) 2 (PO 4 ) 3 (M = Z
3 shows a flowchart of (r, Ti, Al) production.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表される燐酸リチウ
ム・バナジウム複合化合物。 Liy (V1-x x 2 (PO4 3 (1) ここに、Mはアルミニウム、チタニウム及びジルコニウ
ムから選ばれた2価以上の陽イオンのうち少なくとも1
種類であり、0<x≦0.2であり、yはMがアルミニ
ウムの場合はyは3、Mがチタニウムあるいはジルコニ
ウムの場合はyは3−2xである。
1. A lithium-vanadium phosphate composite compound represented by the following general formula (1). Li y (V 1-x M x ) 2 (PO 4 ) 3 (1) wherein M is at least one of divalent or higher cations selected from aluminum, titanium and zirconium.
0 <x ≦ 0.2, y is 3 when M is aluminum, and y is 3-2x when M is titanium or zirconium.
【請求項2】 下記一般式(1)で表される燐酸リチウ
ム・バナジウム複合化合物からなるリチウム二次電池用
正極材料。 Liy (V1-x x 2 (PO4 3 (1) ここに、Mはアルミニウム、チタニウム及びジルコニウ
ムから選ばれた2価以上の陽イオンのうち少なくとも1
種類であり、0<x≦0.2であり、yはMがアルミニ
ウムの場合はyは3、Mがチタニウムあるいはジルコニ
ウムの場合はyは3−2xである。
2. A positive electrode material for a lithium secondary battery comprising a lithium phosphate / vanadium composite compound represented by the following general formula (1). Li y (V 1-x M x ) 2 (PO 4 ) 3 (1) wherein M is at least one of divalent or higher cations selected from aluminum, titanium and zirconium.
0 <x ≦ 0.2, y is 3 when M is aluminum, and y is 3-2x when M is titanium or zirconium.
JP10261930A 1998-09-16 1998-09-16 Lithium-vanadium phosphate composite compound and cathode material for lithium ion secondary battery comprising the composite compound Expired - Lifetime JP2949229B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10261930A JP2949229B1 (en) 1998-09-16 1998-09-16 Lithium-vanadium phosphate composite compound and cathode material for lithium ion secondary battery comprising the composite compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10261930A JP2949229B1 (en) 1998-09-16 1998-09-16 Lithium-vanadium phosphate composite compound and cathode material for lithium ion secondary battery comprising the composite compound

Publications (2)

Publication Number Publication Date
JP2949229B1 JP2949229B1 (en) 1999-09-13
JP2000086215A true JP2000086215A (en) 2000-03-28

Family

ID=17368688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10261930A Expired - Lifetime JP2949229B1 (en) 1998-09-16 1998-09-16 Lithium-vanadium phosphate composite compound and cathode material for lithium ion secondary battery comprising the composite compound

Country Status (1)

Country Link
JP (1) JP2949229B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
JP2008052970A (en) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
JP2008262745A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Aqueous lithium secondary battery
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP2009522749A (en) * 2006-01-09 2009-06-11 コノコフィリップス・カンパニー Preparation of carbon-coated lithium metal polyanionic powder
JP2010540393A (en) * 2007-10-01 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing porous lithium-, vanadium-, and phosphate-containing materials
JP2010540394A (en) * 2007-10-01 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline lithium-, vanadium-, and phosphate-containing materials
EP2575199A1 (en) * 2011-09-30 2013-04-03 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
JP2013539167A (en) * 2010-08-12 2013-10-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing olivine-based positive electrode material for lithium secondary battery
EP3147975A4 (en) * 2014-05-23 2017-05-31 Nippon Chemi-Con Corporation Positive electrode material, secondary battery, method for manufacturing positive electrode material, and method for manufacturing secondary battery
US10270098B2 (en) * 2014-05-16 2019-04-23 Dongguk University Industry-Academic Cooperation Foundation Positive electrode active material for lithium ion battery, containing lithium vanadium zirconium phosphate, and lithium ion battery comprising same
WO2019167783A1 (en) * 2018-02-27 2019-09-06 Tdk株式会社 Active material and all-solid secondary battery
WO2020175632A1 (en) * 2019-02-27 2020-09-03 Tdk株式会社 All-solid-state battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194719B2 (en) * 2013-09-25 2017-09-13 株式会社村田製作所 All solid battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP2009522749A (en) * 2006-01-09 2009-06-11 コノコフィリップス・カンパニー Preparation of carbon-coated lithium metal polyanionic powder
JP2008052970A (en) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
JP2008262745A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Aqueous lithium secondary battery
JP2010540393A (en) * 2007-10-01 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing porous lithium-, vanadium-, and phosphate-containing materials
JP2010540394A (en) * 2007-10-01 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline lithium-, vanadium-, and phosphate-containing materials
JP2013539167A (en) * 2010-08-12 2013-10-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing olivine-based positive electrode material for lithium secondary battery
EP2575199A1 (en) * 2011-09-30 2013-04-03 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
US10270098B2 (en) * 2014-05-16 2019-04-23 Dongguk University Industry-Academic Cooperation Foundation Positive electrode active material for lithium ion battery, containing lithium vanadium zirconium phosphate, and lithium ion battery comprising same
EP3147975A4 (en) * 2014-05-23 2017-05-31 Nippon Chemi-Con Corporation Positive electrode material, secondary battery, method for manufacturing positive electrode material, and method for manufacturing secondary battery
WO2019167783A1 (en) * 2018-02-27 2019-09-06 Tdk株式会社 Active material and all-solid secondary battery
CN111742432A (en) * 2018-02-27 2020-10-02 Tdk株式会社 Active material and all-solid-state secondary battery
JPWO2019167783A1 (en) * 2018-02-27 2021-02-12 Tdk株式会社 Active material and all-solid-state secondary battery
JP7327380B2 (en) 2018-02-27 2023-08-16 Tdk株式会社 Active materials and all-solid secondary batteries
CN111742432B (en) * 2018-02-27 2024-04-16 Tdk株式会社 Active material and all-solid secondary battery
WO2020175632A1 (en) * 2019-02-27 2020-09-03 Tdk株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP2949229B1 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
US7211237B2 (en) Solid state synthesis of lithium ion battery cathode material
CN102010182B (en) Ceramic material and use thereof
US10218032B2 (en) Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
WO2019093403A1 (en) All-solid battery
CN102010183B (en) Ceramic material and preparation method therefor
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2949229B1 (en) Lithium-vanadium phosphate composite compound and cathode material for lithium ion secondary battery comprising the composite compound
US20230352676A1 (en) Zinc-containing cathode material for sodium ion battery and preparation method and application thereof
CN113707875B (en) Spinel type lithium nickel manganese oxide, preparation method thereof and lithium ion battery
EP4273102A2 (en) Cathode material for sodium ion battery and preparation method and application thereof
CN103765658A (en) Positive electrode material having a size dependent composition
JP2016169142A (en) Garnet-type lithium ion-conducting oxide and all solid lithium ion secondary battery
GB2617726A (en) Lithium transition metal oxide material coated with fast ion conductor and preparation method therefor
JPWO2020026508A1 (en) Positive electrode active material for all solid lithium ion battery, positive electrode for all solid lithium ion battery, all solid lithium ion battery
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
AU2001289681A1 (en) Electrochemical element and process for its production
EP1327280A2 (en) Lithium ion secondary battery and manufacturing method of the same
US20210119207A1 (en) Method of producing cathode active material, and method of producing lithium ion battery
WO2017141742A1 (en) Solid electrolyte and all-solid-state battery
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
CN112531154B (en) Preparation method of tungsten trioxide micro-nano particle gradient doped ternary material, prepared ternary material and application
CN109768248A (en) Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery
JPH02162605A (en) Lithium ion conductive solid electrolyte and manufacture thereof
CN114715957A (en) Niobium-coated nickel-cobalt-manganese ternary precursor, and preparation method and application thereof
CN117105197B (en) Mixed ion conductor material, preparation method and application

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term