JP2000082976A - Cdma system mobile communication system - Google Patents

Cdma system mobile communication system

Info

Publication number
JP2000082976A
JP2000082976A JP11185162A JP18516299A JP2000082976A JP 2000082976 A JP2000082976 A JP 2000082976A JP 11185162 A JP11185162 A JP 11185162A JP 18516299 A JP18516299 A JP 18516299A JP 2000082976 A JP2000082976 A JP 2000082976A
Authority
JP
Japan
Prior art keywords
signal
data
frequency
signals
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185162A
Other languages
Japanese (ja)
Inventor
Yasuo Ogoshi
康雄 大越
Takashi Yano
隆 矢野
Nobukazu Doi
信数 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11185162A priority Critical patent/JP2000082976A/en
Publication of JP2000082976A publication Critical patent/JP2000082976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize stable detection with less bit errors in a mobile terminal machine by detecting a frequency error through the use of a pilot signal obtained by inverse spread and controlling the frequency of a carrier so that error becomes zero. SOLUTION: A reception signal is supplied to a radio frequency orthogonal modulator 57 through a circular 59. A higher harmonic component in the output signal of the demodulator 57 is removed through a low-pass filter 56, and signals I' and Q' are obtained. A voltage controlled oscillator 63 is used as a circuit supplying a carrier CM given to the demodulator 57. A frequency control part 70 outputting a control signal AFC detects that a phase shift ϕ is deviated by Δϕ as phase change before and after the period of one symbol by the frequency error of the oscillator 63, supplies the ain component to an integrator and outputs the control signal from the integrator. At that time, the controller 70, the oscillator 63, the radio frequency orthogonal demodulator 57, an inverse spread part and an accumulator forms a circulating control loop, the integrator integrates a signal SINΔϕ and it operates to make the signal approximately zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、CDMA(Code Divis
ion Multiple Access:符号分割多元接続)方式を用い
た移動通信システムに関する。
BACKGROUND OF THE INVENTION The present invention relates to a CDMA (Code Divis
The present invention relates to a mobile communication system using an ion multiple access (code division multiple access) system.

【0002】[0002]

【従来の技術】CDMA方式は、スペクトル拡散符号を
用いて複数の通信チャネルを多重化する方式である。各
通信チャネルにそれぞれ異なる拡散符号が割り当てられ
る。送信する信号は、自チャネルの拡散符号で乗算(拡
散)され、他のチャネルの拡散された信号と混合されて
多重化され、伝送される。受信において、多重化信号が
同じ拡散符号で乗算(逆拡散)され、相関がとれた自チ
ャネルの信号のみが取り出される。このとき、他チャネ
ルの信号は、拡散符号が異なるので相関がとれずに雑音
になるだけである。雑音のレベルは、妨害にならないよ
うに低くすることができる。CDMA方式は、周波数利
用を飛躍的に向上させる方式として注目され、一部で実
用に供されている。
2. Description of the Related Art The CDMA system is a system for multiplexing a plurality of communication channels using spread spectrum codes. A different spreading code is assigned to each communication channel. The signal to be transmitted is multiplied (spread) by the spreading code of the own channel, mixed with the spread signal of another channel, multiplexed and transmitted. In reception, the multiplexed signal is multiplied (despread) by the same spreading code, and only the signal of the own channel having a correlation is extracted. At this time, since signals of other channels have different spreading codes, they are not correlated and merely become noise. The noise level can be reduced so as not to disturb. The CDMA scheme has attracted attention as a scheme for dramatically improving frequency utilization, and is partly put to practical use.

【0003】このような拡散符号を用いてCDMA方式
の通信を行なう場合、送信の拡散に先立って何らかの変
調、例えばQPSK(Quadrature Phase Shift Keyin
g)変調が行なわれ、受信の際、逆拡散のあと復調が行
なわれる。逆拡散と復調の過程が検波であり、送られた
信号が検波後に復元される。一般的な検波方式として、
PLL(Phase Locked Loop)回路を用いた同期検波方
式と、遅延検波方式がある。更に最近、パイロット信号
を利用した別の同期検波方式が提案された。
When performing CDMA communication using such a spreading code, some kind of modulation, for example, QPSK (Quadrature Phase Shift Keying) is performed prior to transmission spreading.
g) Modulation is performed, and upon reception, demodulation is performed after despreading. The process of despreading and demodulation is detection, and the transmitted signal is restored after detection. As a general detection method,
There are a synchronous detection method using a PLL (Phase Locked Loop) circuit and a delay detection method. More recently, another synchronous detection scheme using a pilot signal has been proposed.

【0004】CDMA方式を移動通信システムに適用す
る場合、一般的な同期検波方式においては、移動端末機
が移動しているときに揺らぎの大きいフェージングが発
生するとビット誤り率が劣化する。また、遅延検波方式
においては、移動端末機が静止しているときにも無線伝
送路の回線雑音によってビット誤り率が低下する。パイ
ロット信号利用の同期検波方式は、移動中及び静止時の
いずれにおいてもビット誤り率の劣化を少なくする方式
として提案されたもので、1994年電子情報通信学会
秋季大会論文集B−5無線通信システムA、Bの第30
6頁(大越康雄他:CDMA移動通信における同期検波
方式の検討)で開示されている。
When the CDMA system is applied to a mobile communication system, in a general synchronous detection system, if fading with large fluctuations occurs while the mobile terminal is moving, the bit error rate deteriorates. Also, in the delay detection method, even when the mobile terminal is stationary, the bit error rate decreases due to the line noise of the wireless transmission path. The synchronous detection method using a pilot signal has been proposed as a method for reducing the degradation of the bit error rate both during moving and at rest, and it is proposed that the Institute of Electronics, Information and Communication Engineers Autumn Meeting 1994 B-5 radio communication system be used. 30th of A and B
This is disclosed on page 6 (Yasuo Ogoshi et al .: Study of synchronous detection method in CDMA mobile communication).

【0005】以下に同文献を参照し、これに若干の説明
を付加して、パイロット信号利用方式を用いた従来の移
動通信システムについて下り回線(基地局から移動端末
機への回線)を対象に説明する。図13は、データ(情
報)を送信する基地局1の変調回路51と移動端末機2
における検波回路の前半部52を示したものである。な
お基地局1は、複数の移動端末機2へ送信を行なうが、
同図では、一つの端末機を対象にした構成を代表例とし
て示す。
[0005] The following reference is made to the above-mentioned document, and a little explanation is added to the document, and a conventional mobile communication system using a pilot signal utilization method is applied to a downlink (a line from a base station to a mobile terminal). explain. FIG. 13 shows a modulation circuit 51 of the base station 1 transmitting data (information) and the mobile terminal 2.
5 shows the first half 52 of the detection circuit. The base station 1 transmits to a plurality of mobile terminals 2,
In the figure, a configuration for one terminal is shown as a representative example.

【0006】変調回路51(図13左半分)において、
データは、まずQPSK変調(図示せず)を受け、同相
成分信号I(In-Phase)と、直交成分信号Q(Quadratu
re)に分けられる。信号I,Qは、それぞれ信号I用の
拡散符号信号PN-ID及び信号Q用の拡散符号信号PN
-QDで拡散(乗算)される。両拡散符号信号は、拡散符
号発生部91から供給される。拡散符号信号PN-ID
PN-QDのレート(以下チップレートという)によっ
て、信号I,Qのレートは、拡散後に、拡散される前の
レート(以下シンボルレートという)のk倍(k:拡散
比)になり、チップレートになる。拡散された信号は、
無線周波直交変調器54を経て相互に直交する無線周波
数帯域の信号となり、アンテナから送信される。温度補
償型水晶発信器61は、変調器54に搬送波CBを供給
するためのものである。
In the modulation circuit 51 (left half in FIG. 13),
The data is first subjected to QPSK modulation (not shown), and an in-phase component signal I (In-Phase) and a quadrature component signal Q (Quadragtu
re). The signals I and Q are the spread code signal PN- ID for the signal I and the spread code signal PN for the signal Q, respectively.
-Spread (multiplied) by QD . Both spread code signals are supplied from a spread code generating section 91. Spreading code signal PN- ID ,
Depending on the PN- QD rate (hereinafter referred to as chip rate), the rate of the signals I and Q becomes k times (k: spreading ratio) after spreading, the rate before spreading (hereinafter referred to as symbol rate), and the chip rate become. The spread signal is
The signals pass through a radio frequency quadrature modulator 54 and become signals in radio frequency bands orthogonal to each other, and are transmitted from an antenna. Temperature compensated crystal oscillator 61 is for supplying a carrier C B to the modulator 54.

【0007】次に、パイロット信号を説明する。送信の
回路は、図13の左半分とほぼ同じであるので図示を省
略したが、パイロット信号は、データの場合と同じチッ
プレートの拡散符号信号PN-IPからなる信号IPと、拡
散符号信号PN-QPからなる信号QPで構成される。両者
は、データの場合と同一の搬送波CBによって無線周波
直交変調を受け、相互に直交する信号となってデータと
同じ無線周波数帯域で送信される。パイロット信号は、
復調のための基準信号となるもので、全チャネルで共通
に用いられる。
Next, the pilot signal will be described. The transmission circuit is substantially the same as the left half of FIG. 13 and is not shown. However, the pilot signal is composed of a signal I P consisting of a spread code signal PN- IP having the same chip rate as that of the data, and a spread code signal. composed of a signal Q P consisting of a PN -QP. Both are subjected to radio-frequency quadrature-modulated by the same carrier C B in the case of data, are transmitted at the same radio frequency band as the data become signals mutually orthogonal. The pilot signal is
This is a reference signal for demodulation, and is used in common for all channels.

【0008】移動端末機2の検波回路の前半部52(図
13右半分)において、アンテナからの受信信号(デー
タ及びパイロット信号)は、無線周波直交復調器57を
経たあと、低域瀘波器56により高調波成分が除去さ
れ、信号I’,Q’となる。水晶発信器60は、復調器
57に搬送波CMを供給するものである。信号I’,
Q’は、拡散された信号I,Q(自チャネル宛てのほ
か、他チャネル宛の全てを含む)とパイロット信号
P,QPからなる。同信号は、フェージングによる位相
誤差と発振器60の精度に基づく周波数誤差を含んでい
る。
In the first half 52 (the right half in FIG. 13) of the detection circuit of the mobile terminal 2, the signals received from the antenna (data and pilot signals) pass through a radio frequency quadrature demodulator 57 and then pass through a low-pass filter. The harmonic components are removed by 56 to produce signals I ′ and Q ′. Crystal oscillator 60 is for supplying a carrier C M to the demodulator 57. The signal I ',
Q ′ is composed of spread signals I and Q (including all signals addressed to the own channel and other channels) and pilot signals I P and Q P. The signal includes a phase error due to fading and a frequency error based on the accuracy of the oscillator 60.

【0009】このような誤差を含むと、信号I’,Q’
に位相のずれが生じる。互いに直交しているパイロット
信号を直交座標で示した場合、受信したパイロット信号
は、座標上で位相のずれだけ回転する。その様子を図1
4に示した。ずれをφとし、直交復調後の直交座標を座
標軸X’,Y’で表わすと、受信信号の座標軸X,Yが
φだけ回転してパイロット信号の位置がずれる。その結
果、ずれがない場合の信号iがi’に、ずれがない場合
の信号qがq’になる。このような変化は、互いに直交
している信号に相手の信号が混入して起こる。このこと
を数式を使って示すと i’=icosφ−qsinφ q’=qcosφ+isinφ である。
When such an error is included, the signals I 'and Q'
Causes a phase shift. When pilot signals that are orthogonal to each other are indicated by orthogonal coordinates, the received pilot signals rotate by a phase shift on the coordinates. Figure 1 shows the situation
The results are shown in FIG. If the deviation is φ and the orthogonal coordinates after orthogonal demodulation are represented by coordinate axes X ′ and Y ′, the coordinate axes X and Y of the received signal are rotated by φ and the position of the pilot signal is shifted. As a result, the signal i when there is no shift becomes i ′, and the signal q when there is no shift becomes q ′. Such a change is caused by mixing signals orthogonal to each other with signals of the other party. If this is shown using a mathematical expression, i ′ = icosφ−qsinφ q ′ = qcosφ + isinφ.

【0010】パイロット信号は、逆拡散後に常に一定に
なる信号であり、通常、i=1,q=1である。これが
i’,q’になることから、cosφの値を表わす信号C
OSφ、sinφ値を表わす信号SINφを求めることが
できる。この二者があれば、データの位相回転を補正す
ることができる。データも同じ位相のずれを起こしてい
るので、逆拡散後のデータ信号をこのCOSφ,SIN
φを使ってφだけ逆回転させれば、元の信号I,Qが正
しく復元される。このように、信号COSφ,SINφ
は、位相補正信号となるものである。
[0010] The pilot signal is a signal that is always constant after despreading, and usually i = 1 and q = 1. Since this becomes i ′, q ′, a signal C representing the value of cos φ
A signal SINφ representing the values of OSφ and sinφ can be obtained. With these two, the phase rotation of the data can be corrected. Since the data also has the same phase shift, the data signal after despreading is transmitted to COSφ, SIN
If the rotation is reversed by φ using φ, the original signals I and Q are correctly restored. Thus, the signals COSφ, SINφ
Is a phase correction signal.

【0011】検波回路の前半部52の出力の信号I’,
Q’は、続いて検波回路の後半部において逆拡散と位相
補正を受ける。その回路を図15に示す。同図左上のパ
イロット信号逆拡散部21において、信号I’,Q’
は、両者とも拡散符号発生部25の拡散符号信号PN
-IP及び拡散符号信号PN-QPで逆拡散され、パイロット
信号が抽出される。抽出されたパイロット信号は、続い
て加算、減算されて、チップレートのcosφの信号CO
Sφ1及びsinφの信号SINφ1になる。両信号は、ア
キュムレータ41でシンボルレートに変換されて、それ
ぞれ前段階の位相補正信号COSφ2,SINφ2とな
る。同補正信号は、平均化部43で平均化され、雑音が
軽減された最終段階の位相補正信号COSφ,SINφ
となる。
The signals I ', output from the first half 52 of the detection circuit,
Q 'is subsequently subjected to despreading and phase correction in the latter half of the detection circuit. The circuit is shown in FIG. In the pilot signal despreading unit 21 at the upper left of FIG.
Are the spread code signals PN of the spread code generator 25.
The pilot signal is extracted by despreading with -IP and the spreading code signal PN- QP . The extracted pilot signal is subsequently added and subtracted to obtain a signal CO of the chip rate cos φ.
Sφ becomes 1 and sinφ signal sin [phi 1. Both signals are converted to a symbol rate by the accumulator 41, and become phase correction signals COSφ 2 and SINφ 2 at the previous stage, respectively. The correction signals are averaged by the averaging unit 43, and the phase correction signals COSφ and SINφ at the final stage in which noise has been reduced.
Becomes

【0012】平均化部43の回路構成の例を図16に示
す。430〜433は、信号を1シンボルの期間だけ遅
延させる遅延ゲート(Ds)で、この例では連続する3
シンボルの値が加算器235,236で加算されて平均
化される。これによって雑音が軽減されて位相補正信号
COSφ,SINφが得られる。なお、平均化部43の
平均化に要する遅延時間(平均化遅延時間)Tは、平均
化に用いるシンボルの数をNとして T=Ds×(N−1)/2 で示される。
FIG. 16 shows an example of the circuit configuration of the averaging section 43. Reference numerals 430 to 433 denote delay gates (Ds) for delaying the signal by a period of one symbol.
The values of the symbols are added by adders 235 and 236 and averaged. As a result, noise is reduced and phase correction signals COSφ and SINφ are obtained. Note that the delay time (average delay time) T required for averaging by the averaging unit 43 is represented by T = Ds × (N−1) / 2, where N is the number of symbols used for averaging.

【0013】次に、データについては、図15の左下の
データ逆拡散部42において、信号I’,Q’が共にI
信号用の拡散符号信号PN-ID、Q信号用の拡散符号信
号PN-QDで逆拡散され、四つの信号が抽出される。チ
ップレートの四信号は、次にアキュムレータ44でシン
ボルレートに変換され、信号D1〜D4になる。続いて信
号D1〜D4は、図17に示したデータ遅延部48で各々
平均化部43の平均遅延時間Tだけ遅延され、信号
1’〜D4’となる。なお、データ遅延部48を各信号
毎に遅延時間が1シンボルの期間の遅延ゲート(Ds)
の従属接続で構成する場合、その接続段数Mは M=(N−1)/2 になる。上記例では、N=3であるからM=1であり、
データ遅延部48の遅延ゲート480〜483は、各々
1シンボル遅延ゲート(Ds)1段で構成される。
Next, as for the data, in the data despreading unit 42 at the lower left of FIG.
Spread code signal PN -ID for signals are despread with a spreading code signal PN-QD for Q signals, four signals are extracted. The four signals of the chip rate are then converted into the symbol rates by the accumulator 44 to become signals D 1 to D 4 . Subsequently, the signals D 1 to D 4 are each delayed by the average delay time T of the averaging unit 43 in the data delay unit 48 shown in FIG. 17 to become signals D 1 ′ to D 4 ′. The data delay unit 48 is provided with a delay gate (Ds) having a delay time of one symbol for each signal.
, The number of connection stages M is M = (N−1) / 2. In the above example, since N = 3, M = 1,
Each of the delay gates 480 to 483 of the data delay unit 48 is constituted by one stage of one symbol delay gate (Ds).

【0014】信号D1’〜D4’は、位相補正部49に供
給され、補正信号COSφ,SINφによって位相回転
が補正される。位相補正部49の回路構成の例を図18
に示す。同部は、信号D1’,D4’を補正信号COSφ
で,信号D2’,D3’を補正信号SINφで乗算し、更
に加算、減算することにより受信データの直交軸を−φ
だけ位相回転させる。これによって補正が行なわれる
(図14において、φを零にする)。このようにして、
元の信号I,Qが復元され、QPSK復調(図示せず)
を経てデータが復元される。
The signals D 1 ′ to D 4 ′ are supplied to a phase correction unit 49, and the phase rotation is corrected by the correction signals COSφ and SINφ. FIG. 18 shows an example of the circuit configuration of the phase correction unit 49.
Shown in The same part converts the signals D 1 ′ and D 4 ′ to the correction signal COSφ
Then, the signals D 2 ′ and D 3 ′ are multiplied by the correction signal SINφ, and further added and subtracted, so that the orthogonal axis of the received data is −φ
Only rotate the phase. Thereby, correction is performed (in FIG. 14, φ is set to zero). In this way,
The original signals I and Q are restored and QPSK demodulation (not shown)
The data is restored via.

【0015】しかし、従来の検波回路においては、復元
された信号I,Qに対して水晶発信器60(図13右側
参照)の周波数精度の影響が避けられないという問題点
があった。移動端末機で使用する発信器60は、同端末
機が主に一般利用者用であるために実用上ある程度周波
数誤差を含んだものとせざるを得ない。周波数誤差を含
んだままのデータ復調において、平均遅延時間Tに亘っ
て位相が一定であると見なされないほど周波数誤差があ
る場合は、正しい補正信号を得ることができなくなり、
検波後のデータのビット誤り率が劣化する。一方、それ
を避けて平均遅延時間Tを短くすると、周波数誤差の影
響は減少するが回線雑音の影響を受けやすくなるという
問題点が生じる。
However, the conventional detection circuit has a problem that the influence of the frequency accuracy of the crystal oscillator 60 (see the right side of FIG. 13) on the restored signals I and Q cannot be avoided. Since the transmitter 60 used in the mobile terminal is mainly for general users, the transmitter 60 must include a certain frequency error in practical use. In the data demodulation including the frequency error, if there is such a frequency error that the phase is not considered to be constant over the average delay time T, a correct correction signal cannot be obtained,
The bit error rate of the detected data deteriorates. On the other hand, if the average delay time T is shortened to avoid this, the effect of the frequency error is reduced, but there is a problem that the influence of the line noise is increased.

【0016】次に、上り回線(移動端末機から基地局へ
の回線)において、前記した水晶発振器60出力の搬送
波CMは、移動端末機の変調回路における無線周波直交
変調用と併用して用いられる場合が多い。その場合に、
移動端末機が送信し基地局で受信する信号に、フェージ
ング等による位相誤差のほか、同発振器による周波数誤
差が含まれることになる。そのため、基地局の検波で周
波数誤差に基づくビット誤り率の劣化が避けられない問
題があった。
Next, in the uplink (link from the mobile station to base station), the carrier C M of the crystal oscillator 60 output which is above, used in combination with the radio-frequency quadrature modulation in the modulation circuit of the mobile terminal Often. In that case,
The signal transmitted by the mobile terminal and received by the base station includes not only a phase error due to fading or the like but also a frequency error due to the same oscillator. For this reason, there has been a problem that the detection of the base station inevitably deteriorates the bit error rate based on the frequency error.

【0017】更に、そのような問題点があるために、標
準よりもビットレートの低いデータを送信する場合、従
来は、米国のディジタル無線通信の標準規格IS(Inter
im Standard)−95にみられるように、拡散比を変更せ
ずにデータをバースト的に伝送する方法が採用されてい
た。同方法において、標準のビットレートの1/rのビ
ットレートのデータを送る場合、データは時間的に1/
rに圧縮される。圧縮された信号は、一定の期間毎に区
切られてバースト信号になり、バースト信号がが間歇的
に送られる。
Further, due to such a problem, when transmitting data having a lower bit rate than the standard, conventionally, the standard IS (International Standard) of digital radio communication in the United States has been used.
im Standard) -95, a method of transmitting data in bursts without changing the spreading ratio has been adopted. In the same method, when transmitting data at a bit rate of 1 / r of the standard bit rate, the data is temporally 1 / r.
r. The compressed signal is divided at regular intervals into a burst signal, and the burst signal is transmitted intermittently.

【0018】その例を図19に示した。同図において、
横軸が時間、縦軸が送信電力を表わし、140は、標準
のビットレートのデータの無線信号波形、141,14
2,143は、それぞれビットレートがその1/2,1
/4,1/8のデータの無線信号波形である。バースト
信号の配列数がビットレートに応じて変化している。そ
して、どのバースト信号もそのビットレートは前記時間
圧縮により標準のビットレートで一定になっている。従
って、どのバースト信号もシンボルレートは一定であ
り、その結果、拡散比は変更されない。
An example is shown in FIG. In the figure,
The horizontal axis represents time, the vertical axis represents transmission power, and 140 is a radio signal waveform of standard bit rate data.
2, 143 have bit rates of 1/2, 1 respectively.
6 shows a wireless signal waveform of / 4, 1/8 data. The number of arranged burst signals changes according to the bit rate. The bit rate of each burst signal is constant at a standard bit rate due to the time compression. Therefore, the symbol rate of all burst signals is constant, and consequently the spreading ratio is not changed.

【0019】このようにするのは、次の理由による。も
し、圧縮が行なわれないと、1シンボルの期間はデータ
レートが低くなるに従って長くなる。一方、復調の平均
化部43(図15参照)で用いるシンボル数Nは、雑音
低減の観点から、ビットレートの高、低に拘らず概ね同
一数である。従って平均化遅延時間Tは、データレート
が低くなるに従って長くなる。遅延時間Tが長くなる
と、上述したように周波数誤差によるビット誤り率が劣
化し、低ビットレートほどその度合いが高まる。このよ
うな不都合を避けるために、前記したシンボルレートを
一定にする方法の採用が必須となる。そのために移動端
末機の回路が複雑になり、回路の簡略化が特に要請され
る移動端末機にとって問題が大きい。
This is done for the following reason. If compression is not performed, the period of one symbol becomes longer as the data rate becomes lower. On the other hand, the number N of symbols used in the demodulation averaging unit 43 (see FIG. 15) is substantially the same regardless of whether the bit rate is high or low from the viewpoint of noise reduction. Therefore, the averaging delay time T becomes longer as the data rate becomes lower. As described above, when the delay time T becomes longer, the bit error rate due to the frequency error deteriorates, and the degree increases as the bit rate becomes lower. In order to avoid such inconveniences, it is essential to adopt a method for keeping the symbol rate constant. For this reason, the circuit of the mobile terminal becomes complicated, and there is a great problem for a mobile terminal that requires simplification of the circuit.

【0020】[0020]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前記問題点を解決し、ビット誤りが少ない安定し
た受信を可能にする改良されたCDMA方式移動通信シ
ステムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an improved CDMA mobile communication system capable of performing stable reception with few bit errors. .

【0021】[0021]

【課題を解決するための手段】本発明の前記課題は、無
線周波直交復調器に搬送波を供給する回路として電圧制
御発振器を採用し、かつ、前段階位相補正信号から周波
数誤差を検出して同発振器への制御信号を同誤差から生
成する周波数制御部を設けることによって効果的に解決
することができる。周波数制御部は、前段階位相補正信
号と同信号の所定の遅延時間前の信号とから周波数誤差
に基づく位相変化分を抽出する回路と同位相変化分を積
分して結果を前記制御信号として出力する積分回路とで
実現することができる。
SUMMARY OF THE INVENTION It is an object of the present invention to employ a voltage controlled oscillator as a circuit for supplying a carrier wave to a radio frequency quadrature demodulator and detect a frequency error from a pre-stage phase correction signal. The problem can be solved effectively by providing a frequency control unit that generates a control signal to the oscillator from the same error. A frequency control unit that extracts a phase change based on a frequency error from a pre-phase correction signal and a signal before a predetermined delay time of the signal, integrates the phase change, and outputs a result as the control signal And an integrating circuit that performs the operation.

【0022】前記電圧制御発振器と周波数制御部の動作
により、位相変化分を零に近づける制御ループが検波回
路の中に形成されるので、周波数誤差が抑圧される。発
振器の周波数が基地局の発振器と同等に高精度化され、
周波数誤差による位相のずれが著しく低減されるので、
ビット誤りが少ない安定した検波方式を実現することが
できる。
By the operation of the voltage controlled oscillator and the frequency control unit, a control loop for making the phase change close to zero is formed in the detection circuit, so that the frequency error is suppressed. The frequency of the oscillator is as high as that of the base station,
Since the phase shift due to the frequency error is significantly reduced,
A stable detection method with few bit errors can be realized.

【0023】なお、前記所定の遅延時間は、前段階位相
補正信号を入力して位相補正信号を出力する平均化部の
平均化に要する遅延時間を越えない範囲に設定されてい
ることが望ましい。
It is preferable that the predetermined delay time is set within a range not exceeding a delay time required for averaging by an averaging unit that inputs a pre-stage phase correction signal and outputs a phase correction signal.

【0024】また、移動端末機の無線周波直交変調器に
与える搬送波を前記電圧制御発振器から供給することが
望ましい。基地局に送られる無線信号の周波数が高精度
化されるので、基地局においてビット誤りが少ない安定
したパイロット信号利用同期検波を実現することができ
る。更に、移動端末機がビットレートの低いデータを送
信する場合に、拡散符号のチップレートを一定にし、デ
ータを時間的に圧縮することなく拡散比を変えて送信す
ることが可能となる。このようなデータの伝送は、回路
構成を変更することなく回路定数をデータのシンボルレ
ートに応じて変更することによって容易に実現すること
ができる。
It is preferable that a carrier wave to be supplied to a radio frequency quadrature modulator of a mobile terminal is supplied from the voltage controlled oscillator. Since the frequency of the radio signal transmitted to the base station is improved in accuracy, the base station can realize stable synchronous detection using a pilot signal with few bit errors. Further, when the mobile terminal transmits data having a low bit rate, the chip rate of the spreading code can be kept constant, and the data can be transmitted while changing the spreading ratio without temporally compressing the data. Such data transmission can be easily realized by changing the circuit constant according to the data symbol rate without changing the circuit configuration.

【0025】[0025]

【実施例】以下、本発明に係るCDMA方式移動通信シ
ステム及び検波方式を図面に示した幾つかの実施例を参
照して更に詳細に説明する。なお、図1〜図12及び先
に示した図13〜図18における同一の記号は、同一物
又は類似物を表示するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a CDMA mobile communication system and a detection system according to the present invention will be described in more detail with reference to several embodiments shown in the drawings. The same symbols in FIGS. 1 to 12 and FIGS. 13 to 18 described above indicate the same or similar objects.

【0026】<実施例1>本発明に係るCDMA方式移
動通信システムの全体構成を図1に示す。基地局は、複
数の移動端末機へ送信を行なうものであるが、同図で
は、一つの移動端末機を対象にした構成を示した。図1
の左半分において、1は基地局、51は変調回路、91
は拡散符号発生部、54は無線周波直交変調器、61は
温度補償型水晶発信器、58は、無線送信信号と無線受
信信号を分離するサーキュレータ、12は検波回路の前
半部、62は無線周波直交復調器、64は低域瀘波器、
I,Qは、送信するデータのそれぞれ同相成分信号及び
直交成分信号、PN-ID,PN- QDは、発生部91出力の
それぞれ信号I用の拡散符号信号及び信号Q用の拡散符
号信号、I1',Q1’は、検波回路前半部12出力の拡
散を受けているそれぞれ同相成分信号及び逆相成分信
号、CBは発振器61出力の搬送波を示し、55は無線
伝送路を示す。
Embodiment 1 FIG. 1 shows the overall configuration of a CDMA mobile communication system according to the present invention. Although the base station transmits to a plurality of mobile terminals, FIG. 1 shows a configuration for one mobile terminal. FIG.
In the left half, 1 is a base station, 51 is a modulation circuit, 91
Is a spread code generator, 54 is a radio frequency quadrature modulator, 61 is a temperature-compensated crystal oscillator, 58 is a circulator for separating a radio transmission signal and a radio reception signal, 12 is the first half of a detection circuit, and 62 is a radio frequency Quadrature demodulator, 64 is a low-pass filter,
I and Q are the in-phase component signal and the quadrature component signal of the data to be transmitted, respectively, and PN- ID and PN - QD are the spread code signal for the signal I and the spread code signal for the signal Q output from the generator 91, respectively. 1 ', Q 1' are each-phase component signal and the reverse-phase component signal undergoing diffusion of the detection circuit first half 12 output, C B represents the carrier wave of the oscillator 61 output, 55 denotes a radio transmission path.

【0027】更に、同図の右半分において、2は移動端
末機、52は検波回路の前半部、59は、無線受信信号
と無線送信信号を分離するサーキュレタ、57は無線周
波直交復調器、56は低域瀘波器、63は電圧制御発振
器、CMは発振器63出力の搬送波、AFCは、発振器63
の周波数を制御するための制御信号、70は、制御信号
AFCを生成する周波数制御部、COSφ2,SINφ
2は、後述する前段階の位相補正信号、I’,Q’は、
検波回路前半部52出力の拡散を受けているそれぞれ同
相成分信号及び逆相成分信号、11は変調回路、25は
拡散符号発生部、66は無線周波直交変調器、I1,Q1
は、移動端末機が基地局へ送信するデータのそれぞれ同
相成分信号及び直交成分信号、PN-ID,PN-QDは、発
生部25出力のそれぞれ信号I1用の拡散符号信号及び
信号Q1用の拡散符号信号を示す。
Further, in the right half of the figure, 2 is a mobile terminal, 52 is a first half of a detection circuit, 59 is a circulator for separating a radio reception signal and a radio transmission signal, 57 is a radio frequency quadrature demodulator, 56 the low-pass瀘波unit, 63 a voltage controlled oscillator, C M is the oscillator 63 outputs a carrier wave, AFC is the oscillator 63
A control signal for controlling the frequency of the control signal;
Frequency control unit for generating AFC, COSφ 2 , SINφ
2 is a phase correction signal of a preceding stage described later, and I ′ and Q ′ are
The in-phase component signal and the anti-phase component signal which are spread from the output of the first half 52 of the detection circuit, respectively, 11 is a modulation circuit, 25 is a spreading code generation unit, 66 is a radio frequency quadrature modulator, I 1 , Q 1
Are each-phase component signal and quadrature component signal of the data which the mobile terminal is transmitted to the base station, PN -ID, PN-QD is the spreading code signal and the signal to Q 1 for each signal I 1 of the generator 25 output Is shown.

【0028】はじめに、基地局1がデータ及びパイロッ
ト信号を移動端末機2に送信して下り回線を形成する場
合を説明する。変調回路51は、図13に示した従来回
路とほぼ同じ構成である。送信するデータは、QPSK
変調器(図示せず)を経て信号I,Qとなる。同信号
は、拡散符号信号PN-ID,PN-QDで拡散を受ける。拡
散された信号は、無線周波直交変調器54を経て相互に
直交する無線周波数帯域の信号となり、サーキュレータ
58を経てアンテナから送信される。変調器54に温度
補償型水晶発信器61から搬送波CBが供給される。
First, the case where the base station 1 transmits data and pilot signals to the mobile terminal 2 to form a downlink will be described. The modulation circuit 51 has substantially the same configuration as the conventional circuit shown in FIG. The data to be transmitted is QPSK
Signals I and Q pass through a modulator (not shown). The signal is a spread code signal PN -ID, undergo diffusion in PN-QD. The spread signal becomes a signal in a mutually orthogonal radio frequency band via a radio frequency quadrature modulator 54, and is transmitted from an antenna via a circulator 58. Carrier wave C B supplied from the temperature compensated crystal oscillator 61 to the modulator 54.

【0029】また、図示を省略したが、パイロット信号
は、データの場合と同じチップレートの拡散符号信号P
-IPからなる信号IPと、拡散符号信号PN-QPからな
る信号QPで構成される。両者は、データの場合と同じ
搬送波CBによって無線周波直交変調を受け、相互に直
交する信号となってデータと同じ無線周波数帯域で送信
される。
Although not shown, the pilot signal is a spread code signal P having the same chip rate as that of data.
A signal I P consisting of N -IP, composed of the signal Q P consisting of a spreading code signal PN-QP. Both are subjected to radio-frequency quadrature-modulated by the same carrier C B in the case of the data are transmitted in the same radio frequency band as the data become signals mutually orthogonal.

【0030】図2に基地局1が送信する無線周波数帯域
の信号を示す。同図において、92は、パイロット信号
の無線周波数帯域信号、93は、データの無線周波数帯
域信号を示す。信号93の移動端末機52向けにデータ
2を付し、その他の移動局向けの信号をデータ1,pで
示した。データ1,pの信号は、それぞれ別の拡散符号
信号で拡散される。
FIG. 2 shows a radio frequency band signal transmitted by the base station 1. In the figure, 92 indicates a radio frequency band signal of a pilot signal, and 93 indicates a radio frequency band signal of data. The data 93 of the signal 93 for the mobile terminal 52 is attached, and the other signals for the mobile station are indicated by data 1 and p. The data 1 and p signals are spread with different spreading code signals.

【0031】このようにして、データおよびパイロット
信号が同一の無線周波数帯域で送信され、移動端末機2
で受信される(図1の右半分参照)。受信信号は、サー
キュレータ59を経て無線周波直交復調器57に供給さ
れる。復調器57の出力信号は、低域瀘波器56により
高調波成分が除去され、信号I’,Q’となる。復調器
57に与える搬送波CMを供給する回路として電圧制御
発振器63を用いた。
Thus, the data and pilot signals are transmitted in the same radio frequency band,
(See the right half of FIG. 1). The received signal is supplied to a radio frequency quadrature demodulator 57 via a circulator 59. The output signal of the demodulator 57 has its harmonic components removed by the low-pass filter 56 to become signals I 'and Q'. Using a voltage controlled oscillator 63 as a circuit for supplying a carrier C M given to the demodulator 57.

【0032】信号I’,Q’は、検波回路後半部で逆拡
散と位相補正を受け、元の信号I,Qが復元される。検
波回路後半部を図3に示した。アキュムレータ41の出
力端子に周波数制御部70の入力端子が接続され、前段
階位相補正信号COSφ2,SINφ2が制御部70に供
給される。図3のこの接続以外は、図15に示した従来
回路と同一である。従来回路と同一の部分は、説明を省
略する。
The signals I 'and Q' undergo despreading and phase correction in the latter half of the detection circuit, and the original signals I and Q are restored. FIG. 3 shows the latter half of the detection circuit. Input terminal of the frequency control unit 70 to the output terminal of the accumulator 41 is connected, before stage phase correction signals cos [phi 2, sin [phi 2 is supplied to the control unit 70. Except for this connection in FIG. 3, it is the same as the conventional circuit shown in FIG. The description of the same parts as those of the conventional circuit is omitted.

【0033】発振器63(図1の右半分参照)は、発振
周波数を決定する素子に可変容量ダイオードを用いる一
般的な回路で構成した(図示せず)。同ダイオードに制
御信号AFCが供給されてその容量値が変わり、発振周波
数が制御される。
The oscillator 63 (see the right half of FIG. 1) is constituted by a general circuit using a variable capacitance diode as an element for determining the oscillation frequency (not shown). The control signal AFC is supplied to the diode to change its capacitance value, and the oscillation frequency is controlled.

【0034】制御信号AFCを出力する周波数制御部70
は、発振器63の周波数誤差によって、位相ずれφが1
シンボルの期間前後の位相変化分としてΔφだけずれる
のを検出し、そのsin成分を積分器に供給し、積分器か
ら制御信号を出力するものである。図4にその回路構成
を示す。図4において、701,702は、遅延量が1
シンボルの期間の遅延ゲート(Ds)、705,706
は乗算器、707は減算器、708は逓倍器、709は
積分器を示す。
Frequency control section 70 for outputting control signal AFC
Is that the phase shift φ is 1 due to the frequency error of the oscillator 63.
It detects a shift of Δφ as the phase change before and after the symbol period, supplies the sin component to an integrator, and outputs a control signal from the integrator. FIG. 4 shows the circuit configuration. In FIG. 4, 701 and 702 indicate that the delay amount is 1
Delay gate (Ds) for the period of the symbol, 705, 706
Denotes a multiplier, 707 denotes a subtractor, 708 denotes a multiplier, and 709 denotes an integrator.

【0035】信号COSφ2,SINφ2がそれぞれ遅延
ゲート700,701で遅延され、1シンボル遅延した
信号COS(φ+Δφ)2と信号SINφ2が乗算器70
6により乗算される。また、1シンボル遅延したSIN
(φ+Δφ)2と信号COSφ2が乗算器705により乗
算される。減算器707により乗算結果の後者から前者
が減算されて、誤差sinΔφを表わす信号SINΔφが
得られる。なお、Δφ≪π/4のときに、sinΔφはほ
ぼΔφと等しくなる。信号SINΔφは、逓倍器708
で所定のループゲインが得られるように逓倍され、積分
器709で積分されて制御信号AFCになる。
The signal cos [phi 2, sin [phi 2 is delayed by the delay gates 700 and 701, one-symbol delay signal COS (φ + Δφ) 2 and the signal sin [phi 2 is the multiplier 70
Multiplied by six. SIN delayed by one symbol
(Φ + Δφ) 2 and the signal COSφ 2 are multiplied by the multiplier 705. The former is subtracted from the latter by the subtractor 707 to obtain a signal SINΔφ representing an error sinΔφ. Note that when Δφ≪π / 4, sinΔφ becomes substantially equal to Δφ. The signal SINΔφ is output to the multiplier 708
Are multiplied so as to obtain a predetermined loop gain, and are integrated by an integrator 709 to become a control signal AFC.

【0036】図1に示した制御部70、発振器63、無
線周波直交復調器57及び図3に示した逆拡散部21と
アキュムレータ41は、一巡する制御ループを形成し、
積分器709が信号SINΔφを積分して、同信号が零
に近づくように動作する。従って、周波数誤差が抑圧さ
れ、発振器の周波数が基地局の発振器と同等に高精度化
される。
The control unit 70, the oscillator 63, the radio frequency quadrature demodulator 57 shown in FIG. 1 and the despreading unit 21 and the accumulator 41 shown in FIG.
The integrator 709 integrates the signal SINΔφ, and operates so that the signal approaches zero. Therefore, the frequency error is suppressed, and the frequency of the oscillator is made as accurate as the oscillator of the base station.

【0037】なお、位相変化分Δφは、フェージングに
よる位相誤差によっても発生する。しかし、フェージン
グによる変化は、周波数誤差によるものに比べて一般に
極めて遅く従って極めて僅かで、1シンボルの期間前後
では、Δφは周波数誤差によってのみ生じるとして差し
支えない。
The phase change Δφ also occurs due to a phase error due to fading. However, the change due to fading is generally very slow compared to that due to the frequency error and therefore very small, and around the period of one symbol, Δφ may be caused only by the frequency error.

【0038】ここでは制御部70の処理を1シンボルの
期間で行なう例を説明したが、周波数誤差が同期間の範
囲では非常に小さい場合は、連続した複数シンボルの期
間の範囲を使った処理が適用可能である。この場合の期
間は、平均化部43(図16参照)における平均化遅延
時間Tを越えないようにする必要がある。
Here, an example has been described in which the processing of the control unit 70 is performed in the period of one symbol. However, if the frequency error is very small in the range between the synchronization periods, the processing using the range of the period of a plurality of consecutive symbols is performed. Applicable. In this case, it is necessary that the period does not exceed the averaging delay time T in the averaging unit 43 (see FIG. 16).

【0039】また逆に、周波数誤差が1シンボルの期間
の範囲で大きくなる場合は、シンボルレートよりも速い
処理が必要となる。図5にシンボルレートより速い処理
を実行する周波数制御部70の例を示す。図5におい
て、710,711は符号抽出部、712,713は、
遅延時間が1シンボルの期間よりも短い遅延ゲート、7
14,715は排他的論理和ゲート、718は差動積分
器を示す。符号抽出部710,711は、それぞれ信号
COSφ2,SINφ2のプラスか、マイナスかの符号
(サイン)を抽出する。同符号は、ずれφによって図1
4に示したパイロット信号が座標の象限を移動するのを
示すものとなる。例えばφが180度から270度の範
囲になると受信点は第3象限に移り、信号COSφ2
SINφ2はマイナスになる。符号抽出部710,71
1は、同信号がプラスなら周波数誤差が無"0”、マイ
ナスなら周波数誤差が有り"1”と判断して、その"0”
及び"1”をそれぞれ符号信号cos-flag,sin-flagとし
て出力する。
On the other hand, when the frequency error becomes large within the period of one symbol, processing faster than the symbol rate is required. FIG. 5 shows an example of the frequency control unit 70 that executes processing faster than the symbol rate. In FIG. 5, 710 and 711 are code extraction units, and 712 and 713 are
A delay gate whose delay time is shorter than one symbol period, 7
14, 715 are exclusive OR gates, and 718 is a differential integrator. Code extraction unit 710 and 711, respectively signals cos [phi 2, or positive sin [phi 2, extracts the negative or sign (sign). The same sign is shown in FIG.
4 indicates that the pilot signal moves in the quadrant of coordinates. For example, when φ is in the range from 180 degrees to 270 degrees, the receiving point shifts to the third quadrant and the signals COSφ 2 ,
SINφ 2 becomes negative. Code extraction units 710, 71
1 indicates that if the signal is positive, there is no frequency error “0”, and if the signal is negative, it is determined that there is a frequency error “1”, and “0” is determined.
And "1" are output as code signals cos-flag and sin-flag, respectively.

【0040】次に、符号信号cos-flagと遅延ゲート71
3を通った符号信号sin-flagをゲート714に供給し、
符号信号sin-flagと遅延ゲート712を通った符号信号
cos-flagをゲート715に供給する。ゲート714,7
15の出力信号を差動積分器718に供給する。積分器
718は、ゲート714の出力が"1”のときに発振器
63の周波数を上げるように制御する電圧を、ゲート7
15の出力が"1”のときに基準周波数を下げるように
制御する電圧を制御信号AFCとして出力する。この例の
ように、シンボルレートよりも速い処理が必要な場合
に、演算に時間がかかる乗算器を使用しない高速の周波
数制御部を実現することが可能になる。
Next, the code signal cos-flag and the delay gate 71
The code signal sin-flag that has passed through 3 is supplied to the gate 714,
Code signal sin-flag and code signal passed through delay gate 712
The cos-flag is supplied to the gate 715. Gates 714, 7
The 15 output signals are provided to a differential integrator 718. The integrator 718 outputs a voltage that controls the frequency of the oscillator 63 to increase when the output of the gate 714 is “1”.
When the output of No. 15 is "1", a voltage for controlling the reference frequency to be lowered is output as a control signal AFC. As in this example, when processing faster than the symbol rate is required, it is possible to realize a high-speed frequency control unit that does not use a multiplier that takes a long time to calculate.

【0041】以上の電圧制御発振器63、二種の周波数
制御部70は、いずれも一般的な半導体集積化回路で構
成することが可能であり、主に一般利用者用である移動
端末機への使用に好適である。
The above-described voltage controlled oscillator 63 and the two types of frequency control units 70 can both be constituted by general semiconductor integrated circuits, and are mainly used for mobile terminals for general users. Suitable for use.

【0042】次に、図1に戻り、移動端末機2がデータ
及びパイロット信号を基地局1に送信して上り回線を形
成する場合を説明する。送信するデータは、QPSK変
調(図示せず)を経て信号I1,Q1となる(図1右下参
照)。同信号は、それぞれ拡散符号発生部25の拡散符
号信号PN-ID,PN-QDで拡散を受ける。拡散された信
号は、無線周波直交変調器66を経て相互に直交する無
線周波数帯域の信号となり、サーキュレータ59を経て
アンテナから送信される。変調器66に電圧制御発信器
61から搬送波CMを供給した。
Next, returning to FIG. 1, a case where the mobile terminal 2 transmits data and pilot signals to the base station 1 to form an uplink will be described. The data to be transmitted becomes signals I 1 and Q 1 through QPSK modulation (not shown) (see the lower right of FIG. 1). The signal is a spread code signal PN -ID of each spreading code generation section 25 receives the spread with PN-QD. The spread signal becomes a signal of a radio frequency band mutually orthogonal via a radio frequency quadrature modulator 66 and transmitted from an antenna via a circulator 59. The carrier wave CM was supplied from the voltage control transmitter 61 to the modulator 66.

【0043】また、パイロット信号の送信については、
同信号をデータと時分割で多重化する方法を採用した。
本方法では、信号I1,Q1がデータとパイロット信号が
多重化された信号となり、データ及びパイロット信号が
共に拡散符号信号PN-ID,PN-QDで拡散される。図6
にそのよう多重化信号の無線周波数帯域信号を示した。
94はパイロット信号の部分、95はデータの部分であ
る。
For transmission of the pilot signal,
A method of multiplexing the same signal with data in a time-division manner was adopted.
In this way, signals I 1, Q 1 becomes the signal data and the pilot signals are multiplexed, the data and pilot signals are spread both the spreading code signal PN -ID, in PN-QD. FIG.
FIG. 1 shows a radio frequency band signal of such a multiplexed signal.
94 is a pilot signal portion, and 95 is a data portion.

【0044】基地局1のアンテナで受信された信号は、
検波回路前半部51(図1左下)において、サーキュレ
ータ58を経て無線周波直交復調器62に供給される。
復調器62の出力信号は、低域瀘波器64により高調波
成分が除去され信号I1’,Q1’となる。復調器62に
発振器61から搬送波CBを供給した。信号I1’,
1’は、次に説明する検波回路の後半部において逆拡
散と位相補正を受けて信号I1,Q1に復元される。
The signal received by the antenna of the base station 1 is
In the first half 51 of the detection circuit (lower left in FIG. 1), the signal is supplied to a radio frequency quadrature demodulator 62 via a circulator 58.
The output signal of the demodulator 62 has its harmonic components removed by the low-pass filter 64 to become signals I 1 ′ and Q 1 ′. It was supplied carrier C B from the oscillator 61 to the demodulator 62. The signal I 1 ′,
Q 1 ′ undergoes despreading and phase correction in the latter half of the detection circuit described below, and is restored to signals I 1 and Q 1 .

【0045】図7に基地局1の検波回路後半部を示す。
図7において、80は、受信信号逆拡散部、91は拡散
符号発生部、82はアキュムレータ、83は、前段階位
相補正信号COSφ2,SINφ2を抽出する位相補正信
号抽出部、84は、抽出部83の信号COSφ2,SI
Nφ2を受けて位相補正信号COSφ、SINφを出力
する平均化部、85は、シンボルレートに変換された信
号からデータ部分の信号を抽出するデータ抽出部、10
3は抽出されたデータを平均化部84の平均化遅延時間
だけ遅延させるデータ遅延部、88は、遅延部103出
力のデータの位相回転を行ない、信号I1,Q1を出力す
る位相補正部を示す。
FIG. 7 shows the latter half of the detection circuit of the base station 1.
7, reference numeral 80 denotes a received signal despreading unit, 91 denotes a spreading code generating unit, 82 denotes an accumulator, 83 denotes a phase correction signal extracting unit that extracts pre-stage phase correction signals COSφ 2 and SINφ 2 , and 84 denotes an extraction. Signal COS φ 2 , SI
An averaging unit 85 that receives Nφ 2 and outputs phase correction signals COSφ and SINφ, a data extraction unit 85 that extracts a data portion signal from the signal converted to the symbol rate,
3 is a data delay unit that delays the extracted data by the averaging delay time of the averaging unit 84, and 88 is a phase correction unit that rotates the phase of the data output from the delay unit 103 and outputs signals I 1 and Q 1. Is shown.

【0046】受信信号逆拡散部80は、受信信号
1’,Q1’の各々を拡散符号発生部91出力の拡散符
号信号PN-ID,PN-QDの双方で逆拡散する。得られた
チップレートの四信号は、アキュムレータ82でシンボ
ルレートに変換され、信号A1〜信号A4となる。信号A
1に信号A4を加算した信号(パイロット信号のcos成分
が含まれる)及び信号A3に信号A2を減算した信号(パ
イロット信号のsin成分が含まれる)が位相補正信号抽
出部83に供給される。抽出部83は、時分割多重化さ
れている同信号からパイロット信号部分のみの信号を抽
出し、前段階の位相補正信号COSφ2、SINφ2を出
力する。平均化部84は、同信号の複数シンボルを平均
化し、データの位相回転に用いる位相補正信号COS
φ,SINφを出力する。
The received signal despread unit 80, the reception signal I 1 ', Q 1' spreading code signal PN -ID of each spreading code generation section 91 outputs the despread with both PN-QD. Four signals resulting chip rate is converted to the symbol rate in the accumulator 82, the signal A 1 ~ signal A 4. Signal A
A signal obtained by adding the signal A 4 to 1 (including the cos component of the pilot signal) and a signal obtained by subtracting the signal A 2 from the signal A 3 (including the sine component of the pilot signal) are supplied to the phase correction signal extraction unit 83. Is done. The extraction unit 83 extracts only the pilot signal portion from the time-division multiplexed signal, and outputs the phase correction signals COSφ 2 and SINφ 2 of the previous stage. The averaging unit 84 averages a plurality of symbols of the same signal and outputs a phase correction signal COS used for data phase rotation.
φ and SINφ are output.

【0047】前記信号A1〜A4は、更にデータ抽出部8
5に送られる。抽出部85は、時分割多重化されている
同信号からデータ部分のみの信号を抽出する。得られた
四信号からなるデータは、データ遅延部103に送られ
る。遅延部103は、供給された四信号の各々を遅延さ
せ、データD1’〜D4’を出力する。位相補正部88の
回路構成は、図17に示したものと同一である。
The signals A 1 to A 4 are further supplied to a data extraction unit 8.
Sent to 5. The extracting unit 85 extracts only a data portion signal from the time-division multiplexed signal. The data composed of the obtained four signals is sent to the data delay section 103. The delay unit 103 delays each of the supplied four signals and outputs data D 1 ′ to D 4 ′. The circuit configuration of the phase correction unit 88 is the same as that shown in FIG.

【0048】本実施例において、補正信号SINφ,C
OSφによる位相回転の値を次のように設定した。図8
にシンボル単位で表した受信信号の構成を示す。hシン
ボルのパイロット信号とjシンボルのデータを交互に配
列している。まず平均化部84においてパイロット信号
98のhシンボルの平均化とパイロット信号100のh
シンボルの平均化をそれぞれ行う。それらの値からそれ
ぞれφh1,φh2の位相回転量が求まる。そして、データ
99のシンボル毎の位相回転量として、s番目(s=1
〜j)のシンボルに対し φh1(1−s/h)+φh2(s/h) とした。このように、データの前後のパイロット信号を
反映させて位相回転させた。このため、データを後のパ
イロット信号が受信されるまで遅延させる必要がある。
従って、平均化遅延時間、即ち遅延部103の遅延時間
は、データ99のjシンボル分の期間にパイロット信号
100のhシンボル分の期間を加えた時間とした。
In this embodiment, the correction signals SINφ, C
The value of the phase rotation by OSφ was set as follows. FIG.
Shows the configuration of the received signal expressed in symbol units. The pilot signals of h symbols and the data of j symbols are alternately arranged. First, averaging section 84 averages h symbols of pilot signal 98 and h of pilot signal 100.
Averaging is performed for each symbol. From these values, the phase rotation amounts of φ h1 and φ h2 are obtained. Then, as the phase rotation amount for each symbol of the data 99, the sth (s = 1)
To the symbol of ~j) was φ h1 (1-s / h ) + φ h2 (s / h). As described above, the phase is rotated by reflecting the pilot signals before and after the data. Therefore, it is necessary to delay the data until a later pilot signal is received.
Accordingly, the averaging delay time, that is, the delay time of the delay unit 103 is a time obtained by adding a period of h symbols of the pilot signal 100 to a period of j symbols of the data 99.

【0049】以上に説明した上り回線において、移動端
末機2の無線周波直交変調器66(図1右下)に電圧制
御発振器63出力の高精度化した搬送波CMを供給して
いるので、基地局1において周波数誤差の問題が回避さ
れ、安定した検波を実現することができた。そのことか
ら更に、移動端末機2が標準よりもビットレートの低い
データを送信する場合に、拡散符号のチップレートを変
えずに一定とする拡散方式を採用することが可能となっ
た。データのビットレートが標準の場合の拡散比をkと
して、ビットレートがその1/b(b≧1)の場合の拡
散比をbkに変化させる。
[0049] In the uplink described above, since the radio-frequency quadrature modulator 66 of the mobile terminal 2 is supplied to the carrier C M that accuracy of the voltage controlled oscillator 63 output (Fig. 1 lower right), base In the station 1, the problem of the frequency error was avoided, and stable detection was realized. Therefore, when the mobile terminal 2 transmits data having a lower bit rate than the standard, it is possible to adopt a spreading method for keeping the chip rate of the spreading code constant without changing it. The diffusion ratio when the data bit rate is standard is k, and the diffusion ratio when the bit rate is 1 / b (b ≧ 1) is changed to bk.

【0050】図9に、ビットレートが異なる場合の送信
信号を示す。図9の横方向に時間、縦方向に送信電力を
とり、160は、標準ビットレートを拡散比kで伝送す
る場合、161は、その1/2のビットレートのデータ
を拡散比2kで伝送し、電力を標準ビットレートの場合
の1/2で送信する場合、162は、1/4のビットレ
ートを拡散比4k、電力1/4で送信する場合、163
は、1/8のビットレートを拡散比8k、電力1/8で
送信する場合をそれぞれ示した。このようにビットレー
トの異なるデータを伝送する場合、回路構成を変更する
ことなく回路定数をデータのビットレートに応じて変更
してCDMA通信を実施した。
FIG. 9 shows transmission signals when the bit rates are different. In FIG. 9, the time is taken in the horizontal direction and the transmission power is taken in the vertical direction. 160 transmits the standard bit rate with the spreading factor k, and 161 transmits the data of 1/2 bit rate with the spreading factor 2k. 162 when transmitting the power at 1/2 of the standard bit rate, and 163 when transmitting the 1/4 bit rate with the spreading ratio of 4k and the power of 1/4.
Shows a case where a bit rate of 1/8 is transmitted with a spreading ratio of 8k and a power of 1/8, respectively. When transmitting data having different bit rates as described above, CDMA communication was performed by changing circuit constants according to the data bit rate without changing the circuit configuration.

【0051】<実施例2>上り回線において、パイロッ
ト信号用の拡散符号を移動端末機の個々に別に割り当
て、同符号を使ってパイロット信号を送信する例を実施
した。データの送信は、図1の右半分に示した変調回路
11を用いて行なった。パイロット信号は、図示してい
ないが、チップレートがデータの場合と同じ拡散符号信
号PN-IPからなる信号IPと拡散符号信号PN-QPから
なる信号QPをもって構成される。両者は、データの無
線周波直交変調に用いるのと同じ搬送波CMによって無
線周波直交変調を受け、相互に直交する信号となってデ
ータと同じ無線周波数帯域で送信される。
<Second Embodiment> In the uplink, an example in which a spreading code for a pilot signal is individually assigned to each mobile terminal and a pilot signal is transmitted using the same code has been implemented. Data transmission was performed using the modulation circuit 11 shown in the right half of FIG. Although not shown, the pilot signal is composed of a signal I P consisting of a spread code signal PN- IP and a signal Q P consisting of a spread code signal PN- QP having the same chip rate as that of data. Both are subjected to radio-frequency quadrature-modulated by the same carrier C M as used in the radio-frequency quadrature modulation of the data are transmitted in the same radio frequency band as the data become signals mutually orthogonal.

【0052】図10に移動端末機2が送信する無線周波
数帯域の信号を示した。同図において、96はパイロッ
ト信号、97はデータのそれぞれ無線周波数帯域信号を
示した。パイロット信号は、データに比べて小さい電力
で送信した。この送信信号を受信する基地局1を図1の
左下に示した検波回路前半部及び図3に示した検波回路
後半部を用いて構成した。
FIG. 10 shows a signal in the radio frequency band transmitted by the mobile terminal 2. In the figure, reference numeral 96 denotes a pilot signal, and 97 denotes a radio frequency band signal of data. The pilot signal was transmitted with lower power than the data. The base station 1 that receives the transmission signal is configured using the first half of the detection circuit shown in the lower left of FIG. 1 and the second half of the detection circuit shown in FIG.

【0053】移動端末機2の変調回路11において、無
線周波直交変調に高精度化した搬送波CMを用いている
ので、基地局1において、周波数誤差の問題が回避さ
れ、安定した検波を実現することができる。
[0053] In the modulation circuit 11 of the mobile terminal 2, because of the use of carrier C M was higher precision to a radio-frequency quadrature modulation, the base station 1, is avoided in the frequency error problems, to realize stable detection be able to.

【0054】<実施例3>前段階の位相補正信号をデー
タの位相回転変動から求め、パイロット信号を用いずに
周波数制御を行なうCDMA方式移動通信システムの例
を実施した。本実施例では、基地局1において送信する
データに対してBPSK(Binary Phase Shift Keyin
g)変調を施した。同変調を経て信号IB,QBを得た。
同信号に対する基地局1の変調回路及び移動端末機2の
検波回路前半部は、図1に示したものと同一である。移
動端末機2の検波回路後半部を図11に示す。同図にお
いて、45は仮判定部、COSφ’,SINφ’は、デ
ータから抽出した仮判定部45への入力信号、COS
φ”,SINφ”は、仮判定部45出力の前段階位相補
正信号を示す。
<Third Embodiment> An example of a CDMA mobile communication system in which a phase correction signal in a previous stage is obtained from a phase rotation fluctuation of data and frequency control is performed without using a pilot signal is performed. In the present embodiment, BPSK (Binary Phase Shift Keyin) is applied to data transmitted in the base station 1.
g) Modulation was applied. Signals I B and Q B were obtained through the same modulation.
The modulation circuit of the base station 1 and the first half of the detection circuit of the mobile terminal 2 for the same signal are the same as those shown in FIG. The latter half of the detection circuit of the mobile terminal 2 is shown in FIG. In the figure, 45 is a provisional judgment unit, COSφ ′ and SINφ ′ are input signals to the provisional judgment unit 45 extracted from data, and COS
φ ″ and SINφ ″ indicate a pre-stage phase correction signal output from the temporary determination unit 45.

【0055】同図のデータ逆拡散部42、拡散符号発生
部25、アキュムレータ44、平均化部43、データ遅
延部48、位相補正部49、周波数制御部70は、実施
例1の図3及び図4で用いたのと機能が同一のものであ
る。信号COSφ”,SINφ”は、電圧制御発振器6
3(図1参照)の制御信号AFCを生成する周波数制御部
70に供給され、同時に位相補正信号COSφ,SIN
φを生成する平均化部43に供給される。
The data despreading unit 42, spreading code generation unit 25, accumulator 44, averaging unit 43, data delay unit 48, phase correction unit 49, and frequency control unit 70 shown in FIG. 4 has the same function as that used in FIG. The signals COSφ ″ and SINφ ″ are supplied to the voltage controlled oscillator 6
3 (see FIG. 1) is supplied to the frequency control unit 70 for generating the control signal AFC, and at the same time, the phase correction signals COSφ, SIN
is supplied to an averaging unit 43 that generates φ.

【0056】図11に示した移動端末機2の検波回路後
半部において、検波回路前半部52(図1右半分)出力
の信号IB’,QB’は、データ逆拡散部42においてそ
れぞれ信号IB用拡散符号信号PN-ID及び信号QB用拡
散符号信号PN-QDで逆拡散された後キュムレータ44
でチップレートからシンボルレートに変換され、信号D
1〜D4となる。信号D1に信号D4が加算されてデータの
cos成分信号COSφ’が取り出され、信号D3に信号D
2が減算されてデータのsin成分信号SINφ’が取り出
される。信号COSφ’,SINφ’は、仮判定部45
に供給される。
In the second half of the detection circuit of the mobile terminal 2 shown in FIG. 11, the signals I B ′ and Q B ′ output from the first half of the detection circuit 52 (the right half in FIG. 1) accumulator after being despread in I B spread code signal PN -ID and signal Q B spread code signal PN-QD 44
Is converted from the chip rate to the symbol rate by the signal D
A 1 ~D 4. Signals D 4 to the signal D 1 is added to the data
The cos component signal COSφ ′ is extracted, and the signal D 3
2 is subtracted, and the sin component signal SINφ ′ of the data is extracted. The signals COSφ ′ and SINφ ′ are output to the tentative determination unit 45.
Supplied to

【0057】データは、シンボル毎に"1”,"0”の変
化又は無変化を繰り返すものであるから(なお、パイロ
ット信号は変化せず常に一定である)、信号COS
φ’,SINφ’がデータの変化によって1シンボルで
位相が共に同時に反転している場合に、同位相反転をも
とに戻し、同入力信号をあたかも位相が変化せず一定で
あるような信号をつくると、パイロット信号を用いて得
たのと同等の前段階の位相補正信号を得ることができ
る。仮判定部45は、そのような信号生成の機能を持た
せたものである。
Since the data repeats a change of "1" or "0" or no change for each symbol (the pilot signal does not change and is always constant), the signal COS
When φ ′ and SINφ ′ are both inverted at the same time for one symbol due to a change in data, the same phase inversion is restored, and the same input signal is converted into a signal as if the phase did not change. This makes it possible to obtain a pre-phase correction signal equivalent to that obtained using the pilot signal. The tentative determination unit 45 has such a signal generation function.

【0058】図12に仮判定部45の回路構成を示す。
同図において、182,183,189は、遅延時間が
1シンボルの期間の遅延ゲート(Ds)、184,18
5は乗算器、180は加算器、186は符号(サイン)
抽出部、181は排他的論理和ゲート、187,188
は符号反転部を示す。
FIG. 12 shows a circuit configuration of the provisional determination section 45.
In the figure, 182, 183 and 189 are delay gates (Ds) having a delay time of one symbol,
5 is a multiplier, 180 is an adder, 186 is a sign
Extraction unit, 181 is exclusive OR gate, 187, 188
Indicates a sign inversion unit.

【0059】信号COSφ’とその1シンボル前のCO
Sφ’との積が加算器180に供給され、同時に信号S
INφ’とその1シンボル前のSINφ’との積が加算
器180に供給される。続いて、加算結果が符号(サイ
ン)抽出部186に供給される。同部から信号COS
φ,’SINφ’の同時位相反転の有無が出力される。
The signal COSφ ′ and the CO one symbol before
Sφ ′ is supplied to the adder 180, and at the same time, the signal S
The product of INφ ′ and SINφ ′ one symbol before is supplied to adder 180. Subsequently, the addition result is supplied to a sign (sign) extracting unit 186. Signal from the same part
The presence or absence of simultaneous phase inversion of φ and 'SINφ' is output.

【0060】抽出部186の出力信号は、排他的論理和
ゲート181に供給され、また同ゲートには1シンボル
前の同ゲート出力信号が入力される。同ゲートは、1シ
ンボルの前後で、同時位相反転が無から有に又はその逆
の場合に"1”を出力し、位相反転が前後でいずれも無
又は有(1シンボルの前後で連続して有であればもとに
戻ったことになる)の場合に"0”を出力する。符号反転
部187,188は、排他的論理和ゲート181の出力
が"1”のときに、入力信号COS’φ,SIN’φを
共に同時に反転して出力し、"0”のときには反転せ
ず、そのまま出力する。以上の結果、信号COSφ’,
SINφ’がそれぞれ前段階位相補正信号COSφ”,
SINφ”になる。
The output signal of the extracting section 186 is supplied to an exclusive OR gate 181. The same gate output signal one symbol before is input to the exclusive OR gate 181. The gate outputs "1" before and after one symbol when simultaneous phase inversion is from no to yes or vice versa, and there is no or no phase inversion before and after (continuously before and after one symbol). If it is, it returns to the original state), and outputs "0". The sign inverting units 187 and 188 simultaneously invert and output the input signals COS'φ and SIN'φ when the output of the exclusive OR gate 181 is “1”, and do not invert when the output is “0”. And output as it is. As a result, the signals COSφ ′,
SINφ ′ are the pre-stage phase correction signals COSφ ″,
SINφ ”.

【0061】周波数制御部70の構成及び動作は、実施
例1,2の場合と同じであり、補正信号COSφ”,S
INφ”から電圧制御発信器63を制御する制御信号AF
Cを出力することができる。本実施例によって、逆拡散
後のデータの位相回転の補正と周波数制御発振器63の
精度確保をパイロット信号を用いた場合と同様とするこ
とができ、基地局1及び端末移動端末機2における安定
な検波と、移動端末機2における拡散比選択のデータ送
信を実現することができた。
The configuration and operation of the frequency control unit 70 are the same as those in the first and second embodiments, and the correction signals COSφ ″, S
Control signal AF for controlling voltage control transmitter 63 from INφ ″
C can be output. According to this embodiment, it is possible to correct the phase rotation of the despread data and ensure the accuracy of the frequency control oscillator 63 in the same manner as the case where the pilot signal is used. The detection and the data transmission with the selection of the spreading ratio in the mobile terminal 2 could be realized.

【0062】なお、実施例1〜実施例3において、拡散
前の変調にQPSK変調方式又はBPSK変調方式を採
用したが、本発明は、無線周波変復調に用いる搬送波を
高精度化するものであるから、拡散前の変調方式に依存
せずに用いることが可能である。従って、拡散前にどの
ような変調方式が採用されても差し支えなく、同期検波
及び遅延検波のいずれにおいても安定な検波を実現する
ことができる。
In the first to third embodiments, the QPSK modulation method or the BPSK modulation method is used for the modulation before spreading. However, the present invention is to improve the precision of the carrier used for the radio frequency modulation and demodulation. , Can be used without depending on the modulation method before spreading. Therefore, any modulation method may be adopted before spreading, and stable detection can be realized in both synchronous detection and delay detection.

【0063】[0063]

【発明の効果】本発明によれば、逆拡散して得られるパ
イロット信号を用いて周波数誤差を検出し、同誤差が零
になるように搬送波の周波数が制御されるので、移動端
末機においてビット誤りが少ない安定した検波を実現す
ることができる。また、同じ搬送波を用いて無線直交変
調が行なわれるので、基地局においても、ビット誤りが
少ない安定した検波を実現することができる。更に、移
動端末機からビットレートが低いデータを送信する場合
に、拡散比をビットレートに応じて選択することが可能
となる。これによって、回路を複雑にする拡散比一定化
の処理を回避することができる。以上により、実用性を
高めた高性能のCDMA方式移動通信システムの構築が
可能となる。
According to the present invention, a frequency error is detected using a pilot signal obtained by despreading, and the frequency of a carrier wave is controlled so that the error becomes zero. Stable detection with few errors can be realized. Also, since radio quadrature modulation is performed using the same carrier, stable detection with few bit errors can be realized even at the base station. Further, when data with a low bit rate is transmitted from the mobile terminal, the spreading ratio can be selected according to the bit rate. As a result, it is possible to avoid the process of making the diffusion ratio constant, which complicates the circuit. As described above, a high-performance CDMA mobile communication system with improved practicality can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るCDMA方式検波回路及びそれを
用いた移動通信システムの第1の実施例を説明するため
の回路構成図。
FIG. 1 is a circuit diagram illustrating a CDMA detection circuit according to a first embodiment of the present invention and a mobile communication system using the same.

【図2】第1の実施例の基地局における送信信号のパイ
ロット信号とデータの関係を示す図。
FIG. 2 is a diagram illustrating a relationship between a pilot signal of a transmission signal and data in the base station according to the first embodiment.

【図3】第1の実施例に用いる検波回路後半部を説明す
るための回路構成図。
FIG. 3 is a circuit configuration diagram for explaining the latter half of the detection circuit used in the first embodiment.

【図4】第1の実施例に用いる周波数制御部を説明する
ための回路構成図。
FIG. 4 is a circuit configuration diagram for explaining a frequency control unit used in the first embodiment.

【図5】第1の実施例に用いる周波数制御部を説明する
ための回路構成図。
FIG. 5 is a circuit configuration diagram for explaining a frequency control unit used in the first embodiment.

【図6】第1の実施例の移動端末機における送信信号の
パイロット信号とデータの関係を示す図。
FIG. 6 is a diagram illustrating a relationship between a pilot signal of a transmission signal and data in the mobile terminal according to the first embodiment.

【図7】第1の実施例の基地局の検波回路後半部を説明
するための回路構成図。
FIG. 7 is a circuit configuration diagram for explaining the latter half of the detection circuit of the base station according to the first embodiment.

【図8】第1の実施例の移動端末機における送信信号の
パイロット信号とデータの関係を示す図。
FIG. 8 is a diagram illustrating a relationship between a pilot signal of a transmission signal and data in the mobile terminal according to the first embodiment.

【図9】第1の実施例の移動端末機のデータの伝送を説
明するための図。
FIG. 9 is a diagram illustrating data transmission of the mobile terminal according to the first embodiment.

【図10】本発明の第2の実施例の移動端末機における
送信信号のパイロット信号とデータの関係を示す図。
FIG. 10 is a diagram illustrating a relationship between a pilot signal of a transmission signal and data in the mobile terminal according to the second embodiment of the present invention.

【図11】本発明の第3の実施例の基地局に用いる検波
回路後半部を説明するための回路構成図。
FIG. 11 is a circuit configuration diagram for explaining a latter half of a detection circuit used in a base station according to a third embodiment of the present invention.

【図12】図11に示した検波回路後半部に使用する仮
判定部を説明するための回路構成図。
FIG. 12 is a circuit configuration diagram for explaining a temporary determination unit used in the latter half of the detection circuit shown in FIG. 11;

【図13】従来の基地局の変調回路及び移動局の検波回
路前半部を説明するための回路構成図。
FIG. 13 is a circuit diagram illustrating a conventional modulation circuit of a base station and a first half of a detection circuit of a mobile station.

【図14】受信点の位相回転を示す図。FIG. 14 is a diagram illustrating phase rotation of a reception point.

【図15】従来の移動端末機の検波回路後半部を説明す
るための回路構成図。
FIG. 15 is a circuit diagram illustrating a latter half of a detection circuit of a conventional mobile terminal.

【図16】検波回路後半部に用いる平均化部を説明する
ため回路構成図。
FIG. 16 is a circuit diagram illustrating an averaging unit used in the latter half of the detection circuit.

【図17】検波回路後半部に用いるデータ遅延部を説明
するため回路構成図。
FIG. 17 is a circuit diagram illustrating a data delay unit used in the latter half of the detection circuit.

【図18】検波回路後半部に用いる位相補正部を説明す
るため回路構成図。
FIG. 18 is a circuit configuration diagram for explaining a phase correction unit used in the latter half of the detection circuit.

【図19】従来の移動端末機のデータの伝送を説明する
ための図。
FIG. 19 is a diagram illustrating data transmission of a conventional mobile terminal.

【符号の説明】[Explanation of symbols]

1…基地局 2…移動端末機 11,51…変調回路 12,52…検波回路前半部 21…パイロット信号逆拡散部 25,91…拡散符号発生部 42…データ逆拡散部 43,84…平均化部 45…仮判定部 49,88…位相補正部 54,66…無線周波直交変調器 57,62…無線周波直交復調器 60…水晶発振器 61…温度補償型水晶発振器 63…電圧制御発振器 70…周波数制御部 80…受信信号逆拡散部 83…位相補正信号抽出部 85…データ抽出部 186,710,711…符号抽出部 187,188…符号反転部 709,718…積分器 PN-ID,PN-QD…データ用拡散符号信号 PN-IP,PN-QP…パイロット信号用拡散符号信号 CB,CM…搬送波 AFC…制御信号 I…同相成分信号 Q…直交成分信号 I’…検波回路前半部出力の同相成分信号 Q’…検波回路前半部出力の直交成分信号 COSφ,SINφ…位相補正信号DESCRIPTION OF SYMBOLS 1 ... Base station 2 ... Mobile terminal 11, 51 ... Modulation circuit 12, 52 ... Detection circuit first half 21 ... Pilot signal despreading part 25, 91 ... Spreading code generation part 42 ... Data despreading part 43, 84 ... Averaging Part 45: Temporary determination part 49, 88 ... Phase correction part 54, 66 ... Radio frequency quadrature modulator 57, 62 ... Radio frequency quadrature demodulator 60 ... Crystal oscillator 61 ... Temperature compensated crystal oscillator 63 ... Voltage controlled oscillator 70 ... Frequency controller 80 ... received signal despreader 83 ... phase correction signal extractor 85 ... data extraction unit 186,710,711 ... sign extracting unit 187, 188 ... the sign inversion unit 709,718 ... integrator PN -ID, PN-QD ... data spread code signal PN -IP, PN-QP ... pilot signal spreading code signal C B, C M ... carrier AFC ... control signal I ... phase component signal Q ... quadrature component signal I '... detection circuit before In-phase component signal of half output Q ': quadrature component signal of first half output of detection circuit COSφ, SINφ: phase correction signal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】データとともにパイロット信号が送信さ
れ、受信したパイロット信号の逆拡散後の信号から位相
補正信号を抽出し、受信データの位相誤差を同補正信号
により補正して検波を行なうCDMA(Code Division
Multiple Access:符号分割多元接続)方式の通信シス
テムにおいて、無線周波帯域の受信信号を復調する無線
周波直交復調器に搬送波を供給する電圧制御発振器と、
前記位相補正信号を出力する平均化部に供給される前段
階位相補正信号から周波数誤差を検出して前記発振器の
周波数を制御するための制御信号を同誤差から生成する
周波数制御部とを備えた検波方式を有する移動端末機
と、複数の当該移動端末機と共に上り回線及び下り回線
を形成する基地局とをもって構成されることを特徴とす
るCDMA方式移動通信システム。
A pilot signal is transmitted together with data, a phase correction signal is extracted from a despread signal of the received pilot signal, and a phase error of the received data is corrected by the correction signal to perform a CDMA (Code). Division
A voltage controlled oscillator for supplying a carrier to a radio frequency quadrature demodulator for demodulating a radio frequency band received signal in a multiple access (code division multiple access) communication system;
A frequency control unit that detects a frequency error from a pre-stage phase correction signal supplied to an averaging unit that outputs the phase correction signal and generates a control signal for controlling the frequency of the oscillator from the error. A CDMA mobile communication system, comprising: a mobile terminal having a detection system; and a plurality of base stations forming uplink and downlink together with the mobile terminals.
【請求項2】前記周波数制御部は、前段階位相補正信号
と同信号の所定の遅延時間前の信号とから周波数誤差に
基づく位相変化分を抽出する回路と、同位相変化分を積
分して結果を前記制御信号として出力する積分回路とで
構成されていることを特徴とする請求項1に記載のCD
MA方式移動通信システム。
2. A circuit for extracting a phase change based on a frequency error from a pre-stage phase correction signal and a signal before a predetermined delay time of the same signal, and a circuit for integrating the same phase change. 2. The CD according to claim 1, further comprising an integrating circuit for outputting a result as the control signal.
MA type mobile communication system.
【請求項3】前記所定の遅延時間は、前記平均化部の平
均化に要する遅延時間を越えない範囲に設定されている
ことを特徴とする請求項2に記載のCDMA方式移動通
信システム。
3. The CDMA mobile communication system according to claim 2, wherein said predetermined delay time is set so as not to exceed a delay time required for averaging by said averaging unit.
【請求項4】前記移動端末機は、前記電圧制御発振器か
ら搬送波を供給される無線周波直交変調器(無線周波数
帯域の送信信号を出力する変調器)を備えていることを
特徴とする請求項1〜請求項3のいずれか一に記載のC
DMA方式移動通信システム。
4. The mobile terminal according to claim 1, further comprising a radio frequency quadrature modulator (a modulator for outputting a radio frequency band transmission signal) supplied with a carrier from the voltage controlled oscillator. C according to any one of claims 1 to 3
DMA type mobile communication system.
【請求項5】前記移動端末機は、拡散比をデータのビッ
トレートに応じて変化して設定し、チップレートが一定
である送信信号を生成するものであることを特徴とする
請求項4に記載のCDMA方式移動通信システム。
5. The mobile terminal according to claim 4, wherein said mobile terminal sets a spreading ratio by changing according to a data bit rate, and generates a transmission signal having a constant chip rate. The CDMA mobile communication system according to claim 1.
【請求項6】無線周波数帯域の受信信号を復調する無線
周波直交復調器に搬送波を供給する電圧制御発振器と、
同発振器の周波数を制御するための制御信号を生成する
周波数制御部と、同制御部に供給する入力信号を生成す
る仮判定部とを備え、同仮判定部に供給される入力信号
は、逆拡散後のデータのcos成分とsin成分からなり、仮
判定部は、同成分の符号が1シンボル後に反転している
場合に同成分の符号を個別に反転して出力し、反転がな
い場合には同成分を個別にそのまま出力するものであ
り、周波数制御部は、仮判定部出力の信号と同信号の所
定の遅延時間前の信号とから周波数誤差に基づく位相変
化分を抽出し、同位相変化分の積分結果を前記制御信号
として出力するものである検波方式を有する移動端末機
と、複数の当該移動端末機と共に上り回線及び下り回線
を形成する基地局とをもって構成されることを特徴とす
るCDMA(Code Division Multiple Access:符号分
割多元接続)方式移動通信システム。
6. A voltage controlled oscillator for supplying a carrier to a radio frequency quadrature demodulator for demodulating a received signal in a radio frequency band,
A frequency control unit that generates a control signal for controlling the frequency of the oscillator, and a tentative determination unit that generates an input signal to be supplied to the control unit, the input signal supplied to the tentative determination unit is inverse It consists of the cos component and the sine component of the spread data, and the provisional judgment unit outputs the inverted sign of the same component individually when the sign of the same component is inverted after one symbol. Is to output the same components individually as they are, and the frequency control unit extracts a phase change based on the frequency error from the signal output from the tentative determination unit and the signal before a predetermined delay time of the same signal, and A mobile terminal having a detection method for outputting the integration result of the change as the control signal, and a base station forming an uplink and a downlink together with a plurality of the mobile terminals. CDMA (Code Division Multiple Access (code division multiple access) type mobile communication system.
JP11185162A 1999-06-30 1999-06-30 Cdma system mobile communication system Pending JP2000082976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185162A JP2000082976A (en) 1999-06-30 1999-06-30 Cdma system mobile communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185162A JP2000082976A (en) 1999-06-30 1999-06-30 Cdma system mobile communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23222795A Division JP3200547B2 (en) 1995-09-11 1995-09-11 CDMA mobile communication system

Publications (1)

Publication Number Publication Date
JP2000082976A true JP2000082976A (en) 2000-03-21

Family

ID=16165925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185162A Pending JP2000082976A (en) 1999-06-30 1999-06-30 Cdma system mobile communication system

Country Status (1)

Country Link
JP (1) JP2000082976A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217788A (en) * 2000-09-20 2002-08-02 Nec Corp Method and apparatus for correcting frequency offset
US7088974B2 (en) 2000-12-20 2006-08-08 Nec Corporation Mobile station capable of performing automatic frequency control based on correspondence of frequency error and TCXO control voltage to base station
JP2007535844A (en) * 2004-04-12 2007-12-06 ザ・ディレクティービー・グループ・インコーポレイテッド Method and apparatus for minimizing co-channel interference
US7457619B2 (en) * 2005-02-14 2008-11-25 Honeywell International Inc. Method for optimizing wireless data link capacity between mobile vehicles
US7961880B2 (en) 2005-08-26 2011-06-14 The Directv Group, Inc. Methods and apparatuses for determining scrambling codes for signal transmission
US8213553B2 (en) 2004-04-12 2012-07-03 The Directv Group, Inc. Method and apparatus for identifying co-channel interference
US8325699B2 (en) 2004-06-28 2012-12-04 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference by scrambling
US8571480B2 (en) 2004-04-12 2013-10-29 The Directv Group, Inc. Methods and apparatuses for minimizing co-channel interference

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217788A (en) * 2000-09-20 2002-08-02 Nec Corp Method and apparatus for correcting frequency offset
JP4710210B2 (en) * 2000-09-20 2011-06-29 日本電気株式会社 Offset correction method and apparatus
US7088974B2 (en) 2000-12-20 2006-08-08 Nec Corporation Mobile station capable of performing automatic frequency control based on correspondence of frequency error and TCXO control voltage to base station
JP2007535844A (en) * 2004-04-12 2007-12-06 ザ・ディレクティービー・グループ・インコーポレイテッド Method and apparatus for minimizing co-channel interference
JP2011229154A (en) * 2004-04-12 2011-11-10 Dtvg Licensing Inc Method and apparatus for minimizing co-channel interference
US8213553B2 (en) 2004-04-12 2012-07-03 The Directv Group, Inc. Method and apparatus for identifying co-channel interference
US8406425B2 (en) 2004-04-12 2013-03-26 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference
US8571480B2 (en) 2004-04-12 2013-10-29 The Directv Group, Inc. Methods and apparatuses for minimizing co-channel interference
US8594575B2 (en) 2004-04-12 2013-11-26 The Directv Group, Inc. Shifted channel characteristics for mitigating co-channel interference
US8325699B2 (en) 2004-06-28 2012-12-04 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference by scrambling
US7457619B2 (en) * 2005-02-14 2008-11-25 Honeywell International Inc. Method for optimizing wireless data link capacity between mobile vehicles
US7961880B2 (en) 2005-08-26 2011-06-14 The Directv Group, Inc. Methods and apparatuses for determining scrambling codes for signal transmission

Similar Documents

Publication Publication Date Title
JP3200547B2 (en) CDMA mobile communication system
US6363102B1 (en) Method and apparatus for frequency offset correction
KR0159829B1 (en) Mobile station and detection method for cdma mobile communication system
US20070036248A1 (en) Frequency offset estimator
CN103181137B (en) Pll circuit
JP2728034B2 (en) Spread spectrum signal receiver
JP2011223606A (en) Frequency tracking using pilot symbol and non-pilot symbol
US7315590B1 (en) Reverse spreading device, timing detecting device, channel estimating device, frequency error measurement method and automatic frequency control method
US8526540B2 (en) Method and receiving unit for the detection of data symbols
EP1040593A1 (en) Method and apparatus for frequency acquisition and tracking for ds-ss cdma receivers
JP2000082976A (en) Cdma system mobile communication system
WO2000048346A2 (en) A non-coherent, non-data-aided pseudo-noise synchronization and carrier synchronization for qpsk or oqpsk modulated cdma system
JP3307217B2 (en) Receiver for spread spectrum communication system
US20060093070A1 (en) Method and system for reuse of CORDIC in an RF transceiver by reconfiguration in real time
EP0252500A2 (en) 8-Phase phase-shift keying demodulator
JPH10294719A (en) Method and system for differential psk(phase shift keying) signaling in coma (code division multiplex access) network
KR100210537B1 (en) Telecommunication method
JP3323698B2 (en) Mobile station and detection method for CDMA mobile communication system
JP2001024528A (en) Cdma radio receiver and its receiving method
US7006584B1 (en) Demodulator and demodulating method for mobile phone
US6813482B1 (en) Radio communication apparatus and method
JP4150345B2 (en) Frequency error correction system with initial frequency estimation and feedback tracking
JPH0832487A (en) Spread spectrum communication system
JPH08181730A (en) Digital automatic gain control circuit
JP2002111541A (en) Afc system