JP2000081607A - Matrix type liquid crystal display device - Google Patents

Matrix type liquid crystal display device

Info

Publication number
JP2000081607A
JP2000081607A JP10251398A JP25139898A JP2000081607A JP 2000081607 A JP2000081607 A JP 2000081607A JP 10251398 A JP10251398 A JP 10251398A JP 25139898 A JP25139898 A JP 25139898A JP 2000081607 A JP2000081607 A JP 2000081607A
Authority
JP
Japan
Prior art keywords
temperature
liquid crystal
signal
crystal panel
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10251398A
Other languages
Japanese (ja)
Inventor
Koji Ogusu
幸治 小楠
Takashi Hanaki
孝史 花木
Naoki Matsumoto
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10251398A priority Critical patent/JP2000081607A/en
Publication of JP2000081607A publication Critical patent/JP2000081607A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To meticulously suppress the luminance unevenness based on the temp. unevenness within the liquid crystal panel of a matrix type liquid crystal display device. SOLUTION: A microcomputer 70 estimates the temps. by every pixel of the liquid crystal panel 10 in accordance with the temps. detected by respective temp. sensors 60a to 60e, calculates the inclination and segments of the gradient linear equation by every pixel stored in a ROM 80 in accordance with the estimated temp. based on the inclination and segments and stores the same in a RAM 90. A microcomputer 110 of a control circuit 100 corrects the actual intensity of image data signals so as to attain the target intensity at the average temp. value of the temps. detected by the respective temp. sensors 60a to 60e, by every pixel in accordance with the temps. detected by respective temp. sensors 60a to 60e and the estimated temps. of very pixel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反誘電性液晶等の
スメクチック液晶やこのスメクチック液晶に類似した温
度依存性を有する液晶を用いた液晶パネルを採用してな
るマトリクス型液晶表示装置に関する。
The present invention relates to a matrix type liquid crystal display device employing a smectic liquid crystal such as an anti-dielectric liquid crystal or a liquid crystal panel using a liquid crystal having a temperature dependency similar to the smectic liquid crystal.

【0002】[0002]

【従来の技術】従来、この種のマトリクス型液晶表示装
置としては、特開平5−119746号公報にて示すよ
うに、反強誘電性液晶を用いた液晶パネルを有するもの
がある。ここで、当該液晶パネルは、複数条の走査電
極、複数条の信号電極及び反強誘電性液晶により構成す
る複数のマトリクス状画素を有する。
2. Description of the Related Art Conventionally, as this type of matrix type liquid crystal display device, there is a type having a liquid crystal panel using an antiferroelectric liquid crystal as disclosed in Japanese Patent Application Laid-Open No. 5-119746. Here, the liquid crystal panel has a plurality of scanning electrodes, a plurality of signal electrodes, and a plurality of matrix-like pixels formed of antiferroelectric liquid crystals.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記液晶表示
装置において、液晶パネル内の温度は、当該液晶パネル
の表示動作途中にてばらつくため、反強誘電性液晶の応
答特性が、液晶パネル内の反強誘電性液晶の液晶部分の
位置によって異なる。このため、液晶パネルの表示輝度
が当該液晶パネルの表示面内の位置によってばらつくこ
ととなる。このことは液晶パネルの表示に輝度むらを生
ずることを意味する。
However, in the above liquid crystal display device, since the temperature in the liquid crystal panel varies during the display operation of the liquid crystal panel, the response characteristics of the antiferroelectric liquid crystal are reduced. It depends on the position of the liquid crystal portion of the antiferroelectric liquid crystal. For this reason, the display luminance of the liquid crystal panel varies depending on the position in the display surface of the liquid crystal panel. This means that the display of the liquid crystal panel has uneven brightness.

【0004】これに対しては、特公平6−1310号公
報や特公平6−1311号公報にて示すような液晶表示
装置がある。この液晶表示装置では、温度センサを液晶
パネルに取り付けて、この液晶パネルの温度を温度セン
サにより計測し、この計測温度に基づき反強誘電性液晶
への印加電圧を変化させることで、温度による液晶パネ
ルの全体の輝度変動を補正するようにしている。
On the other hand, there is a liquid crystal display device as disclosed in Japanese Patent Publication No. 6-1310 and Japanese Patent Publication No. 6-1311. In this liquid crystal display device, a temperature sensor is attached to a liquid crystal panel, the temperature of the liquid crystal panel is measured by the temperature sensor, and the voltage applied to the antiferroelectric liquid crystal is changed based on the measured temperature, so that the temperature of the liquid crystal is changed. The brightness fluctuation of the entire panel is corrected.

【0005】しかし、この液晶パネルでは、反強誘電性
液晶全体が同じ温度であると仮定しているため、液晶パ
ネル内の温度むらに起因する輝度むらの発生を解消する
ことができない。これに対しては、第2507713号
特許公報に示すような液晶表示装置が提案されている。
この液晶表示装置では、液晶パネル内の温度むらを補正
する手段として、液晶パネルの複数箇所の温度を計測す
ることで液晶パネルの複数の領域の温度分布を推定し、
推定した各温度に基づき上記領域毎に走査電圧と信号電
圧の各パルス幅を変更することで、温度むらに起因する
輝度むらの発生を抑制するようにしている。
However, in this liquid crystal panel, since it is assumed that the entire antiferroelectric liquid crystal is at the same temperature, it is not possible to eliminate the occurrence of uneven brightness due to uneven temperature in the liquid crystal panel. For this purpose, a liquid crystal display device as disclosed in Japanese Patent No. 2507713 has been proposed.
In this liquid crystal display device, as a means for correcting the temperature unevenness in the liquid crystal panel, the temperature distribution of a plurality of regions of the liquid crystal panel is estimated by measuring the temperature of a plurality of portions of the liquid crystal panel,
By changing the pulse width of the scanning voltage and the pulse width of the signal voltage for each region based on the estimated temperatures, the occurrence of uneven brightness due to uneven temperature is suppressed.

【0006】しかし、この液晶表示装置では、上記複数
の領域は、液晶パネルの表示面を4分割してなる4領域
にすぎない。このため、上記パルス幅の変更は、当該4
領域の各々に対応してなされ、その結果、温度むらに起
因する輝度補正を大雑把に行うことなる。従って、上記
4領域毎の輝度むら補正よりもさらにきめ細かな輝度む
ら補正を行うことができないという不具合が生ずる。
However, in this liquid crystal display device, the plurality of regions are only four regions obtained by dividing the display surface of the liquid crystal panel into four. For this reason, the change of the pulse width
This is performed for each of the regions, and as a result, luminance correction due to uneven temperature is roughly performed. Therefore, there is a problem that the luminance unevenness correction cannot be performed more finely than the luminance unevenness correction for each of the four regions.

【0007】そこで、本発明は、以上のようなことに対
処するため、マトリクス型液晶表示装置において、その
液晶パネル内の温度むらに基づく輝度むらの発生をきめ
細かく抑制することを目的とする。
In view of the above, it is an object of the present invention to provide a matrix type liquid crystal display device in which the occurrence of uneven brightness due to uneven temperature in a liquid crystal panel is finely suppressed.

【0008】[0008]

【課題を解決するための手段】上記課題の解決にあた
り、請求項1に記載の発明によれば、マトリクス型液晶
表示装置は、複数条の走査電極(Y1乃至Yn)と、複
数条の信号電極(X1乃至Xm)と、これら複数条の走
査電極と複数条の信号電極との間に設けられて当該各複
数条の走査電極及び信号電極と共に複数のマトリクス状
画素(G11乃至Gmn)を構成する液晶(10c)と
を備える液晶パネル(10)と、画像データ信号に基づ
き信号電圧を発生する信号電圧発生手段(100)と、
複数条の走査電極を走査電圧の印加により駆動制御する
走査電極駆動制御手段(20、40)と、複数条の信号
電極を前記信号電圧の印加により駆動制御する信号電極
駆動制御手段(30、50)とを備え、走査電極駆動制
御手段及び信号電極駆動制御手段の両駆動制御に応じて
液晶パネルに表示させる。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, a matrix type liquid crystal display device comprises a plurality of scanning electrodes (Y1 to Yn) and a plurality of signal electrodes. (X1 to Xm), and the plurality of scanning electrodes and the plurality of signal electrodes are provided between the plurality of scanning electrodes and the plurality of signal electrodes to form a plurality of matrix pixels (G11 to Gmn) together with the plurality of scanning electrodes and the signal electrodes. A liquid crystal panel (10) including a liquid crystal (10c); a signal voltage generating means (100) for generating a signal voltage based on an image data signal;
Scan electrode drive control means (20, 40) for driving and controlling a plurality of scan electrodes by applying a scan voltage, and signal electrode drive control means (30, 50) for drive controlling a plurality of signal electrodes by applying the signal voltage. ), And display is performed on the liquid crystal panel in accordance with both drive control of the scan electrode drive control means and the signal electrode drive control means.

【0009】そして、当該液晶表示装置は、液晶パネル
の少なくとも一つの位置の温度を検出する温度検出手段
(60a乃至60e)と、この温度検出手段の検出温度
に基づき液晶パネルの所定画素領域毎の温度を推定する
温度推定手段(210)とを備え、信号電圧発生手段
が、温度検出手段の検出温度及び温度推定手段による上
記所定画素領域毎の推定温度に基づき画像データ信号の
実際の強度を上記所定画素領域毎に液晶パネルの所定温
度における目標強度となるように補正する補正手段(8
0、90、240、250、320、330)を具備
し、この補正手段による補正画像データ信号に基づき信
号電圧を発生する。
The liquid crystal display device has a temperature detecting means (60a to 60e) for detecting a temperature at at least one position of the liquid crystal panel, and for each predetermined pixel area of the liquid crystal panel based on the temperature detected by the temperature detecting means. Temperature estimating means (210) for estimating a temperature, wherein the signal voltage generating means determines the actual intensity of the image data signal based on the temperature detected by the temperature detecting means and the estimated temperature for each of the predetermined pixel regions by the temperature estimating means. Correction means (8) for correcting the target intensity at a predetermined temperature of the liquid crystal panel for each predetermined pixel area.
0, 90, 240, 250, 320, 330), and generates a signal voltage based on the image data signal corrected by the correction means.

【0010】このように、補正手段が、温度検出手段の
検出温度及び温度推定手段による上記所定画素領域毎の
推定温度に基づき画像データ信号の実際の強度を上記所
定画素領域毎に液晶パネルの所定温度における目標強度
となるように補正する。このことは、液晶パネルの輝度
が所定画素領域毎にきめ細かく補正されることを意味す
る。
As described above, the correcting means determines the actual intensity of the image data signal on the basis of the detected temperature of the temperature detecting means and the estimated temperature of each of the predetermined pixel areas by the temperature estimating means. Correction is made so that the target intensity at the temperature is obtained. This means that the brightness of the liquid crystal panel is finely corrected for each predetermined pixel area.

【0011】従って、液晶パネルの温度分布にバラツキ
があっても、これに影響されることなく、液晶パネルの
表示面はその全面に亘り上記所定温度における輝度に常
に良好に維持される。その結果、液晶パネルの表示面に
おける温度むらに影響されることなく、液晶パネルの輝
度むらを良好になくすることができる。
Therefore, even if there is a variation in the temperature distribution of the liquid crystal panel, the display surface of the liquid crystal panel is always satisfactorily maintained at the predetermined temperature over the entire surface without being affected by the variation. As a result, luminance unevenness of the liquid crystal panel can be favorably eliminated without being affected by temperature unevenness on the display surface of the liquid crystal panel.

【0012】なお、上記所定画素領域を画素毎とすれ
ば、上記作用効果はより一層きめ細かく達成され得る。
また、請求項2に記載の発明によれば、マトリクス型液
晶表示装置は、複数条の走査電極(Y1乃至Yn)と、
複数条の信号電極(X1乃至Xm)と、これら複数条の
走査電極と複数条の信号電極との間に設けられて当該各
複数条の走査電極及び信号電極と共に複数のマトリクス
状画素(G11乃至Gmn)を構成する温度依存性の高
い特性の液晶(10c)とを備える液晶パネル(10)
と、画像データ信号に基づき信号電圧を発生する信号電
圧発生手段(100)と、複数条の走査電極を走査電圧
の印加により駆動制御する走査電極駆動制御手段(2
0、40)と、複数条の信号電極を信号電圧の印加によ
り駆動制御する信号電極駆動制御手段(30、50)と
を備え、走査電極駆動制御手段及び信号電極駆動制御手
段の両駆動制御に応じて液晶パネルに表示させる。
[0012] If the predetermined pixel region is set for each pixel, the above-described operation and effect can be more finely achieved.
According to the invention described in claim 2, the matrix type liquid crystal display device includes a plurality of scanning electrodes (Y1 to Yn),
A plurality of matrix-shaped pixels (G11 to Xm) are provided between the plurality of signal electrodes (X1 to Xm) and the plurality of scanning electrodes and the plurality of signal electrodes, and together with the plurality of scanning electrodes and the signal electrodes. Gmn) and a liquid crystal panel (10) comprising a liquid crystal (10c) having high temperature-dependent characteristics.
A signal voltage generating means (100) for generating a signal voltage based on an image data signal; and a scan electrode drive control means (2) for driving and controlling a plurality of scan electrodes by applying a scan voltage.
0, 40), and signal electrode drive control means (30, 50) for driving and controlling a plurality of signal electrodes by applying a signal voltage, for controlling both scan electrode drive control means and signal electrode drive control means. It is displayed on the liquid crystal panel accordingly.

【0013】そして、当該液晶表示装置は、液晶パネル
の少なくとも一つの位置の温度を検出する温度検出手段
(60a乃至60e)と、この温度検出手段の検出温度
に基づき走査電圧及び信号電圧の各振幅を変更する変更
手段(230)と、温度検出手段の検出温度に基づき液
晶パネルの所定画素領域毎の温度を推定する温度推定手
段(210)とを備え、走査電極駆動制御手段及び信号
電極駆動制御手段が走査電圧及び信号電圧を変更手段に
よる変更振幅でもって印加し、信号電圧発生手段が、温
度検出手段の検出温度及び温度推定手段による上記所定
画素領域毎の推定温度に基づき画像データ信号の実際の
強度を上記所定画素領域毎に液晶パネルの所定温度にお
ける目標強度となるように補正する補正手段(80、9
0、240、250、320、330)を具備し、この
補正手段による補正画像データ信号に基づき信号電圧を
発生する。
The liquid crystal display device has temperature detecting means (60a to 60e) for detecting the temperature of at least one position of the liquid crystal panel, and the amplitudes of the scanning voltage and the signal voltage based on the detected temperatures of the temperature detecting means. (230), and temperature estimating means (210) for estimating the temperature of each predetermined pixel area of the liquid crystal panel based on the temperature detected by the temperature detecting means. The scanning electrode drive control means and the signal electrode drive control Means for applying a scanning voltage and a signal voltage with a changed amplitude by the changing means, and a signal voltage generating means for applying an actual image data signal based on the temperature detected by the temperature detecting means and the estimated temperature for each of the predetermined pixel regions by the temperature estimating means. Correcting means (80, 9) for correcting the intensity of the liquid crystal panel to a target intensity at a predetermined temperature of the liquid crystal panel for each of the predetermined pixel regions.
0, 240, 250, 320, 330), and generates a signal voltage based on the image data signal corrected by the correction means.

【0014】これによれば、上記変更手段の採用のも
と、補正手段が、温度検出手段の検出温度及び温度推定
手段による上記所定画素領域毎の推定温度に基づき画像
データ信号の実際の強度を上記所定画素領域毎に液晶パ
ネルの所定温度における目標強度となるように補正す
る。これにより、液晶が温度依存性の高いものであって
も、請求項1に記載の発明と同様の作用効果を達成でき
る。
According to this, with the adoption of the changing means, the correcting means determines the actual intensity of the image data signal based on the temperature detected by the temperature detecting means and the estimated temperature for each of the predetermined pixel regions by the temperature estimating means. Correction is performed so that the target intensity at a predetermined temperature of the liquid crystal panel is obtained for each of the predetermined pixel regions. Thereby, even if the liquid crystal has a high temperature dependency, the same operation and effect as the first aspect can be achieved.

【0015】また、請求項3に記載の発明によれば、請
求項1又は2に記載の発明において、補正手段は、画像
データ信号の実際の強度と目標強度との関係を表す直線
式の傾き及び切片を上記所定画素領域毎の推定温度と液
晶パネルの所定温度との温度差に応じてデータとして予
め記憶する第1記憶手段(80)と、この第1記憶手段
の記憶データに基づき上記所定画素領域毎の推定温度に
応じて上記傾き及び切片を算出して補正データとして記
憶する第2記憶手段(240、250、90)とを備え
て、この第2記憶手段の補正データに基づき画像データ
信号の実際の強度を上記所定画素領域毎に目標強度に補
正する。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the correcting means comprises a linear gradient representing the relationship between the actual intensity of the image data signal and the target intensity. A first storage unit (80) for storing in advance the data as data in accordance with a temperature difference between the estimated temperature of each of the predetermined pixel regions and the predetermined temperature of the liquid crystal panel; and the predetermined storage unit based on the storage data of the first storage unit. A second storage unit (240, 250, 90) for calculating the inclination and intercept according to the estimated temperature for each pixel region and storing the calculated inclination and intercept as correction data, based on the correction data of the second storage unit. The actual intensity of the signal is corrected to the target intensity for each of the predetermined pixel regions.

【0016】これにより、請求項1又は2に記載の発明
の作用効果をより一層確実に達成できる。
Thus, the operation and effect of the invention described in claim 1 or 2 can be more reliably achieved.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1は、本発明に係るマトリクス
型液晶表示装置の一実施形態を示すブロック図である。
当該液晶表示装置は液晶パネル10を備えており、この
液晶パネル10は、図2にて示すごとく、両電極基板1
0a、10bの間に反強誘電性液晶10cを封入すると
ともに、両電極基板10a、10bの各外表面に各偏光
板10d、10eを貼り付けて構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of a matrix type liquid crystal display device according to the present invention.
The liquid crystal display device includes a liquid crystal panel 10, and the liquid crystal panel 10, as shown in FIG.
An anti-ferroelectric liquid crystal 10c is sealed between Oa and 10b, and polarizers 10d and 10e are attached to outer surfaces of both electrode substrates 10a and 10b.

【0018】電極基板10aは、透明なガラス基板11
を有しており、このガラス基板11の内表面には、m条
のカラーフィルタ層12(R、G、Bの各層からな
る)、m条の透明電極13及び配向膜14が順次形成さ
れている。一方、電極基板10bは、透明なガラス基板
15を有しており、このガラス基板15の内表面には、
n条の透明電極16及び配向膜17が順次形成されてい
る。
The electrode substrate 10a is a transparent glass substrate 11
On the inner surface of the glass substrate 11, m color filter layers 12 (consisting of R, G, and B layers), m transparent electrodes 13, and an alignment film 14 are sequentially formed. I have. On the other hand, the electrode substrate 10b has a transparent glass substrate 15, and the inner surface of the glass substrate 15 has
The n transparent electrodes 16 and the alignment film 17 are sequentially formed.

【0019】ここで、m条の透明電極13及びn条の透
明電極16は、反強誘電性液晶10cと共に、図3にて
例示するようなm×n個の画素G11、G12、…、G
mnを形成するように、互いに交差して配置されてい
る。なお、各カラーフィルタ層12は各ブラックマスク
層(図示しない)と交互に設けられている。また、m条
の透明電極13は、図1にて示すm条の信号電極X1乃
至Xmに相当し、一方、n条の透明電極16は、図1に
て示すn条の走査電極Y1乃至Ynに相当する。
Here, the m transparent electrodes 13 and the n transparent electrodes 16 are provided together with the antiferroelectric liquid crystal 10c together with m × n pixels G11, G12,.
mn are arranged so as to intersect with each other. Each color filter layer 12 is provided alternately with each black mask layer (not shown). The m transparent electrodes 13 correspond to the m signal electrodes X1 to Xm shown in FIG. 1, while the n transparent electrodes 16 correspond to the n scanning electrodes Y1 to Yn shown in FIG. Is equivalent to

【0020】なお、両偏光板10d、10eは、その各
光軸をクロスニコルの位置に設定するように、貼り付け
られている。これにより、反強誘電性液晶10cは、そ
の反強誘電状態にて消光する。なお、両電極基板10
a、10bの間隔は、図示しないスペーサにより、例え
ば、2μmに均一に保持されている。また、反強誘電性
液晶10cとしては、例えば、特開平5−119746
号公報に記載されているような4−(1−トリフルオル
メチルヘプトキシカルボルフェニル)−4’−オクチル
オキシカルベニルフェニル−4−カルボキシレートとい
った液晶組成物を用いる。なお、この種の反強誘電性液
晶としては、反強誘電性液晶を複数混合した混合液晶、
或いは少なくとも1種類の反強誘電性液晶を含む混合液
晶を用いてもよい。
The two polarizing plates 10d and 10e are attached so that their optical axes are set at the positions of crossed Nicols. Thereby, the antiferroelectric liquid crystal 10c is extinguished in its antiferroelectric state. The two electrode substrates 10
The distance between a and 10b is uniformly maintained at, for example, 2 μm by a spacer (not shown). Examples of the antiferroelectric liquid crystal 10c include, for example, Japanese Patent Application Laid-Open No. 5-119746.
A liquid crystal composition such as 4- (1-trifluoromethylheptoxycarbolphenyl) -4′-octyloxycarbenylphenyl-4-carboxylate as described in Japanese Patent Application Laid-Open Publication No. H10-209,036 is used. In addition, as this kind of antiferroelectric liquid crystal, a mixed liquid crystal in which a plurality of antiferroelectric liquid crystals are mixed,
Alternatively, a mixed liquid crystal containing at least one kind of antiferroelectric liquid crystal may be used.

【0021】また、液晶表示装置は、走査電極駆動回路
20及び信号電極駆動回路30を備えている。走査電極
駆動回路20は、電源回路40から書き込み電圧、保持
電圧或いは消去電圧を走査電圧として入力される。そし
て、この走査電極駆動回路20は、コントロール回路1
00からの同期信号に基づき各走査電極Y1乃至Ynを
線順次走査し、この走査に伴い、走査電極駆動回路20
からの走査電圧を各走査電極Y1乃至Ynに順次印加す
る。
The liquid crystal display device has a scanning electrode driving circuit 20 and a signal electrode driving circuit 30. The scan electrode drive circuit 20 receives a write voltage, a hold voltage or an erase voltage from the power supply circuit 40 as a scan voltage. The scan electrode drive circuit 20 is connected to the control circuit 1
The scanning electrodes Y1 to Yn are line-sequentially scanned based on the synchronization signal from 00, and the scanning electrode driving circuit 20
Are sequentially applied to the scanning electrodes Y1 to Yn.

【0022】電源回路40は、後述するマイクロコンピ
ュータ70により、走査電極駆動回路20へ付与すべき
各電圧の最大値及び最小値を変更制御されて、このよう
に変更制御した各電圧を走査電圧として走査電極駆動回
路20に付与する。信号電極駆動回路30は、上記走査
電圧のうちの書き込み電圧に同期してコントロール回路
100からの補正画像データ信号(後述する)を電源回
路50からの各電圧に応じて信号電圧として各信号電極
X1乃至Xmに印加する。
The power supply circuit 40 is controlled to change the maximum value and the minimum value of each voltage to be applied to the scan electrode drive circuit 20 by a microcomputer 70, which will be described later. This is applied to the scan electrode drive circuit 20. The signal electrode driving circuit 30 converts the corrected image data signal (described later) from the control circuit 100 into a signal voltage in accordance with each voltage from the power supply circuit 50 in synchronization with the writing voltage of the scanning voltages. To Xm.

【0023】電源回路50は、後述するマイクロコンピ
ュータ70により、信号電極駆動回路30へ付与すべき
各電圧の最大値及び最小値を変更制御されて、このよう
に変更制御した各電圧を信号電極駆動回路30に付与す
る。温度センサ60a乃至60eは、液晶パネル10の
温度を測定するためのもので、温度センサ60aは、液
晶パネル10の電極基板10aの図1にて図示上縁左側
隅角部に設けられて、当該上縁左側隅角部の温度を検出
する。
The power supply circuit 50 is controlled to change the maximum value and the minimum value of each voltage to be applied to the signal electrode drive circuit 30 by a microcomputer 70, which will be described later. Applied to the circuit 30. The temperature sensors 60a to 60e are for measuring the temperature of the liquid crystal panel 10. The temperature sensor 60a is provided at the upper left corner of the electrode substrate 10a of the liquid crystal panel 10 in FIG. The temperature at the upper left corner is detected.

【0024】温度センサ60bは、液晶パネル10の電
極基板10aの図1にて図示上縁右側隅角部に設けられ
て、当該上縁右側隅角部の温度を検出する。温度センサ
60cは、電極基板10aの図1にて図示下縁右側隅角
部に設けられて、当該下縁右側隅角部の温度を検出す
る。温度センサ60dは、電極基板10aの図1にて図
示下縁左側隅角部に設けられて、当該下縁左側隅角部の
温度を検出する。また、温度センサ60eは、電極基板
10aの図1にて図示中央部に設けられて、当該中央部
の温度を検出する。なお、各温度センサ60a乃至60
dは液晶パネル10の表示領域の外側に位置している。
The temperature sensor 60b is provided at the upper right corner of the electrode substrate 10a of the liquid crystal panel 10 shown in FIG. 1, and detects the temperature of the upper right corner. The temperature sensor 60c is provided at the lower right corner of the electrode substrate 10a in FIG. 1 and detects the temperature of the lower right corner. The temperature sensor 60d is provided at the lower left corner of the electrode substrate 10a in FIG. 1 to detect the temperature of the lower left corner. The temperature sensor 60e is provided at the center of the electrode substrate 10a in FIG. 1 and detects the temperature of the center. The temperature sensors 60a to 60a
d is located outside the display area of the liquid crystal panel 10.

【0025】マイクロコンピュータ70は、第1コンピ
ュータプログラムを図4にて示すフローチャートに従い
実行し、この実行中において、各温度センサ60a乃至
60eの検出温度及び後述するROM80の記憶データ
に応じて両電源回路40、50の駆動に必要な演算処理
及び補正データ(後述する)の書き込みに必要な処理を
する。なお、上記第1コンピュータプログラムは、マイ
クロコンピュータ70のROMに予め記憶されている。
The microcomputer 70 executes the first computer program in accordance with the flowchart shown in FIG. 4. During this execution, the microcomputer 70 executes the dual power supply circuit in accordance with the temperatures detected by the temperature sensors 60a to 60e and the data stored in the ROM 80 described later. The arithmetic processing necessary for driving the driving units 40 and 50 and the processing necessary for writing correction data (described later) are performed. The first computer program is stored in the ROM of the microcomputer 70 in advance.

【0026】ROM80には、走査電圧と平均温度(後
述する)との関係を表す走査電圧−温度特性(図6にて
符号P1参照)及び信号電圧と上記平均温度との関係を
表す信号電圧−温度特性(図6にて符号P2参照)がデ
ータとして予め記憶されている。また、ROM80に
は、画像データ信号の実際の階調度と目標階調度との関
係を表す直線式(以下、階調度直線式という)の傾きと
温度差(以下、温度差ΔTという)との関係を表す傾き
−温度差特性(図7にて符号q参照)及び上記階調度直
線式の切片と温度差ΔTとの関係を表す切片−温度差特
性(図8にて符号Q参照)が予め記憶されている。
The ROM 80 has a scanning voltage-temperature characteristic (refer to a symbol P1 in FIG. 6) representing the relationship between the scanning voltage and the average temperature (described later), and a signal voltage representing the relationship between the signal voltage and the average temperature. A temperature characteristic (see reference numeral P2 in FIG. 6) is stored in advance as data. The ROM 80 also stores a relationship between a gradient of a linear equation (hereinafter, referred to as a gradient linear equation) representing a relationship between an actual gradient of an image data signal and a target gradient and a temperature difference (hereinafter, referred to as a temperature difference ΔT). And the intercept-temperature difference characteristic (see reference symbol Q in FIG. 8) indicating the relationship between the intercept of the above-mentioned gradation linear expression and the temperature difference ΔT. Have been.

【0027】ここで、本実施形態において上述のように
階調度直線式の傾き及び切片、傾き−温度差特性及び切
片−温度差特性を導入した根拠について説明する。画像
データ信号の階調度と液晶パネル10の表示面の輝度と
の関係を調べたところ、図9にて示すようなデータが得
られた。ここで、液晶パネル10の温度が上記平均温度
にあるときの階調度と輝度との関係は直線L1により表
される。また、液晶パネル10の温度が上記平均温度よ
りも高いときの階調度と輝度との関係は直線L2により
表される。一方、液晶パネル10の温度が上記平均温度
よりも低いときの階調度と輝度との関係は直線L3によ
り表される。
Here, the grounds for introducing the gradient and intercept, the gradient-temperature difference characteristic, and the intercept-temperature difference characteristic of the gradient linear expression as described above in this embodiment will be described. When the relationship between the gradation of the image data signal and the luminance of the display surface of the liquid crystal panel 10 was examined, data as shown in FIG. 9 was obtained. Here, the relationship between the gradient and the luminance when the temperature of the liquid crystal panel 10 is at the above average temperature is represented by a straight line L1. The relationship between the gradation and the luminance when the temperature of the liquid crystal panel 10 is higher than the average temperature is represented by a straight line L2. On the other hand, the relationship between the gradient and the luminance when the temperature of the liquid crystal panel 10 is lower than the average temperature is represented by a straight line L3.

【0028】これによれば、液晶パネル10の温度が上
記平均温度よりも高いとき液晶パネル10の表示面の輝
度は全体的に高くなることが分かる。一方、液晶パネル
10の温度が上記平均温度よりも低いとき液晶パネル1
0の表示面の輝度は全体的に低くなることが分かる。従
って、液晶パネル10の表示面の輝度を、温度の変化と
はかかわりなく、維持するようにするには、液晶パネル
10の温度が上記平均温度にあるときの画像データ信号
の実際の階調度と目標階調度との関係を図10にて示す
直線Nにより特定する場合、液晶パネル10の温度が上
記平均温度よりも高いときの階調度と輝度との関係が図
10にて示す直線N1でもって特定され、一方、液晶パ
ネル10の温度が上記平均温度よりも低いときの階調度
と輝度との関係が図10にて示す直線N2でもって特定
されるようにすればよいことが分かる。
According to this, when the temperature of the liquid crystal panel 10 is higher than the average temperature, the luminance of the display surface of the liquid crystal panel 10 is generally increased. On the other hand, when the temperature of the liquid crystal panel 10 is lower than the average temperature, the liquid crystal panel 1
It can be seen that the luminance of the display surface of 0 is reduced as a whole. Therefore, in order to maintain the brightness of the display surface of the liquid crystal panel 10 irrespective of the temperature change, the actual gradation of the image data signal when the temperature of the liquid crystal panel 10 is at the above-mentioned average temperature is determined. When the relationship with the target gradient is specified by the straight line N shown in FIG. 10, the relationship between the gradient and the luminance when the temperature of the liquid crystal panel 10 is higher than the average temperature is represented by a straight line N1 shown in FIG. On the other hand, it can be seen that the relationship between the gradation and the luminance when the temperature of the liquid crystal panel 10 is lower than the average temperature may be specified by the straight line N2 shown in FIG.

【0029】ここで、上記目標階調度とは、画像データ
信号の実際の階調度を、液晶パネル10の実際の温度と
上記平均温度との間の温度差分だけ相殺するように補正
した値を表す。また、各直線N、N1、N2は、液晶パ
ネル10の温度をパラメータとする階調度直線式を特定
する。即ち、この階調度直線式によれば、その傾き及び
切片並びに画像データ信号の実際の階調度との関係で、
液晶パネル10の実際の温度と上記平均温度との間の温
度差ΔTに応じた画像データ信号の目標階調度を特定で
きることが分かる。
Here, the target gradation indicates a value obtained by correcting the actual gradation of the image data signal so as to cancel out the temperature difference between the actual temperature of the liquid crystal panel 10 and the average temperature. . Each of the straight lines N, N1, and N2 specifies a gradient linear expression using the temperature of the liquid crystal panel 10 as a parameter. That is, according to the gradient linear expression, the relationship between the gradient and the intercept and the actual gradient of the image data signal is as follows:
It can be seen that the target gradation of the image data signal can be specified according to the temperature difference ΔT between the actual temperature of the liquid crystal panel 10 and the average temperature.

【0030】よって、上述した傾き−温度差特性q及び
切片−温度差特性Qを予め求めてデータとしてROM8
0に記憶してある。RAM90には、一画面分の傾きと
切片がデータとして繰り返し更新記憶されるようになっ
ている。コントロール回路100は、マイクロコンピュ
ータ110を備えており、このマイクロコンピュータ1
10は、第1コンピュータプログラムを図5にて示すフ
ローチャートに従い実行し、この実行中において、同期
信号(垂直同期信号VSYNC及び水平同期信号HSY
NC)、画像データ信号及びRAM90の記憶データに
基づき信号電極駆動回路30の駆動に要する画像データ
信号の補正処理を行う。
Therefore, the above-described slope-temperature difference characteristic q and intercept-temperature difference characteristic Q are obtained in advance and stored in the ROM 8 as data.
0 is stored. In the RAM 90, the inclination and intercept for one screen are repeatedly updated and stored as data. The control circuit 100 includes a microcomputer 110, and the microcomputer 1
10 executes the first computer program according to the flowchart shown in FIG. 5, and during this execution, the synchronization signals (vertical synchronization signal VSYNC and horizontal synchronization signal HSY) are executed.
NC), a correction process of an image data signal required for driving the signal electrode drive circuit 30 is performed based on the image data signal and the data stored in the RAM 90.

【0031】このように構成した本実施形態において、
マイクロコンピュータ70が図4のフローチャートに従
い第1コンピュータプログラムの実行を開始すれば、ス
テップ200において、各温度センサ60a乃至60e
の検出温度がディジタル変換されて入力される。する
と、ステップ210にて、液晶パネル10の表示面全体
の温度分布が各温度センサ60a乃至60eの検出温度
に基づき次のようにして推定される。
In this embodiment configured as above,
If the microcomputer 70 starts executing the first computer program according to the flowchart of FIG. 4, in step 200, each of the temperature sensors 60a to 60e
Is digitally converted and input. Then, in step 210, the temperature distribution of the entire display surface of the liquid crystal panel 10 is estimated as follows based on the detected temperatures of the temperature sensors 60a to 60e.

【0032】まず、図11にて示すごとく、温度センサ
60aの配置位置をXY直交座標面の原点(0、0)と
する。ここで、液晶パネル10の電極基板10aの上縁
及び左縁をそれぞれX軸及びY軸とする。なお、原点
(0、0)は、画素G11(図3参照)の位置に対応す
る。これを前提に、温度センサ60bの配置位置を
(X、Y)=(Xp、0)とし、温度センサ60cの配
置位置を(X、Y)=(Xp、Yp)とし、温度センサ
60dの配置位置を(X、Y)=(0、Yp)とし、温
度センサ60eの配置位置を(X、Y)=(Xp/2、
Yp/2)とする。
First, as shown in FIG. 11, the arrangement position of the temperature sensor 60a is set as the origin (0, 0) on the XY orthogonal coordinate plane. Here, an upper edge and a left edge of the electrode substrate 10a of the liquid crystal panel 10 are defined as an X axis and a Y axis, respectively. Note that the origin (0, 0) corresponds to the position of the pixel G11 (see FIG. 3). Based on this, the position of the temperature sensor 60b is (X, Y) = (Xp, 0), the position of the temperature sensor 60c is (X, Y) = (Xp, Yp), and the position of the temperature sensor 60d is The position is (X, Y) = (0, Yp), and the arrangement position of the temperature sensor 60e is (X, Y) = (Xp / 2,
Yp / 2).

【0033】ここで、(X、Y)を液晶パネル10の表
示面上の任意の位置の座標とする。また、(Xp、
0)、(Xp、Yp)及び(0、Yp)は、画素Gm
1、Gmn及びG1nの各位置に対応する。以上のよう
なXY座標系のもと、液晶パネル10の表示面全体の温
度分布を各温度センサ60a乃至60eの検出温度を用
いて補間方法により推定する。
Here, (X, Y) is the coordinates of an arbitrary position on the display surface of the liquid crystal panel 10. Also, (Xp,
0), (Xp, Yp) and (0, Yp) are pixels Gm
1, Gmn and G1n. Based on the XY coordinate system as described above, the temperature distribution of the entire display surface of the liquid crystal panel 10 is estimated by an interpolation method using the detected temperatures of the temperature sensors 60a to 60e.

【0034】具体的には、各温度センサ60a乃至60
eの検出温度をTa乃至Teで表すものとすると、各座
標(0、0)、(Xp、0)及び(Xp/2、Yp/
2)を結ぶ三角領域1(図11参照)内の座標(X、
Y)における温度T(X、Y)は、次の数1の式により
与えられる。
More specifically, each of the temperature sensors 60a to 60a
Assuming that the detected temperature of e is represented by Ta to Te, the coordinates (0, 0), (Xp, 0) and (Xp / 2, Yp /
2) coordinates (X,
The temperature T (X, Y) in Y) is given by the following equation (1).

【0035】[0035]

【数1】 また、各座標(0、0)、(0、Yp)及び(Xp/
2、Yp/2)を結ぶ三角領域2(図11参照)内の座
標(X、Y)における温度T(X、Y)は、次の数2の
式により与えられる。
(Equation 1) Also, the coordinates (0, 0), (0, Yp) and (Xp /
The temperature T (X, Y) at the coordinates (X, Y) in the triangular area 2 (see FIG. 11) connecting the (2, Yp / 2) is given by the following equation (2).

【0036】[0036]

【数2】 また、各座標(Xp、0)、(Xp、Yp)及び(Xp
/2、Yp/2)を結ぶ三角領域3(図11参照)内の
座標(X、Y)における温度T(X、Y)は、次の数3
の式により与えられる。
(Equation 2) Also, the coordinates (Xp, 0), (Xp, Yp) and (Xp,
/ 2, Yp / 2), the temperature T (X, Y) at the coordinates (X, Y) in the triangular area 3 (see FIG. 11) is
Given by

【0037】[0037]

【数3】 また、各座標(Xp、Yp)、(0、Yp)及び(Xp
/2、Yp/2)を結ぶ三角形域4(図11参照)内の
座標(X、Y)における温度T(X、Y)は、次の数4
の式により与えられる。
(Equation 3) Also, the coordinates (Xp, Yp), (0, Yp) and (Xp
/ 2, Yp / 2), the temperature T (X, Y) at the coordinates (X, Y) within the triangular area 4 (see FIG. 11) is
Given by

【0038】[0038]

【数4】 以上述べた数1乃至数4の各式を用いて算出すれば、各
温度センサ60a乃至60eの検出温度に応じて補間法
により各三角領域における温度T(X、Y)を推定でき
る。
(Equation 4) If the calculation is performed using the above-described equations 1 to 4, the temperature T (X, Y) in each triangular area can be estimated by an interpolation method according to the detected temperatures of the temperature sensors 60a to 60e.

【0039】このようにして温度分布が推定された後
は、ステップ220において、各温度センサ60a乃至
60eの検出温度の加算平均が上記平均温度に相当する
温度平均値Taveとして算出される。ついで、ステッ
プ230において、走査電圧及び信号電圧が、図6の走
査電圧−温度特性及び信号電圧−温度特性に基づき上記
平均温度に相当する温度平均値Taveに応じて決定さ
れる。そして、走査電圧が電源回路40に出力されると
ともに信号電圧が電源回路50に出力される。
After the temperature distribution is estimated in this way, in step 220, the average of the detected temperatures of the temperature sensors 60a to 60e is calculated as a temperature average value Tave corresponding to the average temperature. Next, in step 230, the scanning voltage and the signal voltage are determined according to the temperature average value Tave corresponding to the average temperature based on the scanning voltage-temperature characteristics and the signal voltage-temperature characteristics of FIG. Then, the scanning voltage is output to the power supply circuit 40 and the signal voltage is output to the power supply circuit 50.

【0040】これに伴い、電源回路40が走査電圧を複
数の走査電極Y1乃至Ynに出力するとともに、電源回
路50が信号電圧を複数の信号電圧X1乃至Xmに出力
する。その後、ステップ240において、上記階調度直
線式の傾き及び切片が、傾き−温度差特性q(図7参
照)及び切片−温度差特性Q(図8参照)に基づき液晶
パネル10の表示面上の各座標位置の温度に応じて一画
面分決定されて、ステップ250において、補正データ
としてRAM90に記憶される。
Accordingly, the power supply circuit 40 outputs the scan voltage to the plurality of scan electrodes Y1 to Yn, and the power supply circuit 50 outputs the signal voltage to the plurality of signal voltages X1 to Xm. Thereafter, in step 240, the slope and intercept of the gradient linear equation are displayed on the display surface of the liquid crystal panel 10 based on the slope-temperature difference characteristic q (see FIG. 7) and the intercept-temperature difference characteristic Q (see FIG. 8). One screen is determined according to the temperature at each coordinate position, and stored in the RAM 90 as correction data in step 250.

【0041】また、コントロール回路100において、
マイクロコンピュータ110が同期信号に基づき図5の
フローチャートに従い第2コンピュータプログラムの実
行を開始すると、ステップ300にて画像データ信号が
マイクロコンピュータ110に入力され。すると、マイ
クロコンピュータ110は、ステップ310にて、同期
信号に同期してRAM90内の一画面分の補正データを
順次入力される。
In the control circuit 100,
When the microcomputer 110 starts executing the second computer program according to the flowchart of FIG. 5 based on the synchronization signal, an image data signal is input to the microcomputer 110 in step 300. Then, in step 310, the microcomputer 110 sequentially inputs correction data for one screen in the RAM 90 in synchronization with the synchronization signal.

【0042】ここで、当該補正データは、液晶パネル1
0の表示面における各座標(X、Y)での傾き及び切片
からなる。また、画像データ信号の各階調度0乃至25
5は、各画素G11乃至Gmnの輝度に対応する。その
後、ステップ320において、画像データ信号の目標階
調度が、次の数5の階調度直線式に基づき、上記補正デ
ータに応じて算出される。
Here, the correction data is stored in the liquid crystal panel 1
It consists of the slope and intercept at each coordinate (X, Y) on the display surface of 0. Further, each gradation of the image data signal is 0 to 25.
5 corresponds to the luminance of each of the pixels G11 to Gmn. Then, in step 320, the target gradient of the image data signal is calculated according to the above-mentioned correction data based on the following gradient linear equation of Expression 5.

【0043】[0043]

【数5】mxy =Pxy・Mxy + Qxy ここで、数5の階調度直線式において、mxyは上記目標
階調度を(X、Y)における値として表し、Mxyは
(X、Y)における画像データ信号の実際の階調度を表
す。また、Pxyは(X、Y)における傾きを表し、Q
xyは(X、Y)における切片を表す。
M xy = Pxy · Mxy + Qxy Here, in the gradient linear expression of Expression 5, m xy represents the target gradient as a value at (X, Y), and Mxy is a value at (X, Y). Represents the actual gradient of the image data signal. Pxy represents a slope at (X, Y), and Qxy
xy represents the intercept at (X, Y).

【0044】従って、液晶パネル10の表示面の一画面
分の各(X、Y)における目標階調度mxyが、各座標
(X、Y)での傾き及び切片に応じて数5の階調度直線
式に基づき順次算出される。すると、ステップ330に
おいて、各(X、Y)に対応する画像データ信号の階調
度が、上記各目標階調度mxyに応じて順次補正される。
Accordingly, the target gradation mxy in each (X, Y) of one screen of the display surface of the liquid crystal panel 10 is expressed by the following expression (5) according to the inclination and intercept at each coordinate (X, Y). It is calculated sequentially based on the linear equation. Then, in step 330, the gradient of the image data signal corresponding to each (X, Y) is sequentially corrected according to each of the target gradients mxy .

【0045】そして、ステップ340において、同期信
号が走査電極駆動回路20に出力されるとともに、目標
階調度mxyに補正された画像データ信号が信号電圧とし
て信号電圧駆動回路30に出力される。以上のような処
理に伴い、走査電極駆動回路20が、マイクロコンピュ
ータ110からの同期信号に基づき各走査電極Y1乃至
Ynを線順次走査し、この線順次走査に応じて電源回路
40からの走査電圧を線順次走査された走査電極に印加
する。一方、信号電極駆動回路30が、電源回路50の
電圧のもと、マイクロコンピュータ110からの信号電
圧を信号電極X1乃至Xmに印加する。
Then, in step 340, the synchronizing signal is output to the scan electrode drive circuit 20, and the image data signal corrected to the target gradation mxy is output to the signal voltage drive circuit 30 as a signal voltage. Along with the processing described above, the scan electrode drive circuit 20 scans each of the scan electrodes Y1 to Yn line-sequentially based on a synchronization signal from the microcomputer 110, and according to the line-sequential scan, the scan voltage from the power supply circuit 40. Is applied to the scanning electrodes scanned line-sequentially. On the other hand, the signal electrode drive circuit 30 applies a signal voltage from the microcomputer 110 to the signal electrodes X1 to Xm under the voltage of the power supply circuit 50.

【0046】これに伴い、液晶パネル10は、走査電極
駆動回路20からの走査電圧及び信号電極駆動回路30
からの信号電圧に応じてマトリクス駆動されて、画像デ
ータ信号の内容を表示する。この場合、画像データ信号
は、その階調度にて、(X、Y)毎、即ち、画素毎に、
液晶パネル10の温度分布推定値((X、Y)における
推定値)と平均温度値Taveとの差をなくするように
求めた各目標快調度mxyとなるように補正される。この
ことは、液晶パネル10の輝度が画素毎にきめ細かく補
正されることを意味する。
Accordingly, the liquid crystal panel 10 is driven by the scan voltage and signal electrode drive circuit 30 from the scan electrode drive circuit 20.
The matrix driving is performed in accordance with the signal voltage from the CPU, and the contents of the image data signal are displayed. In this case, the image data signal has a gradation of (X, Y), that is, for each pixel,
Correction is performed so that each target comfort degree m xy is determined so as to eliminate the difference between the temperature distribution estimated value (estimated value in (X, Y)) of the liquid crystal panel 10 and the average temperature value Tave. This means that the luminance of the liquid crystal panel 10 is finely corrected for each pixel.

【0047】従って、液晶パネル10の表示面において
温度分布のバラツキがあっても、これに影響されること
なく、反強誘電性液晶10cは上記平均温度値Tave
における動作状態に維持され、その結果、液晶パネル1
0の表示面はその全面に亘り上記平均温度値Taveに
おける輝度に常に良好に維持される。その結果、液晶パ
ネル10の表示面における温度むらに影響されることな
く、液晶パネル10の輝度むらを良好になくすることが
できる。
Therefore, even if there is a variation in the temperature distribution on the display surface of the liquid crystal panel 10, the antiferroelectric liquid crystal 10c is not affected by the variation and the average temperature Tave is not affected.
, And as a result, the liquid crystal panel 1
The display surface of “0” is always satisfactorily maintained at the brightness at the average temperature value Tave over the entire display surface. As a result, luminance unevenness of the liquid crystal panel 10 can be favorably eliminated without being affected by temperature unevenness on the display surface of the liquid crystal panel 10.

【0048】また、ステップ230での処理にて走査電
圧及び信号電圧の各振幅を上述のごとく算出変更してい
るから、反強誘電性液晶10cのように温度依存性の高
い液晶であっても、上記作用効果を良好に達成できる。
なお、本発明の実施にあたり、上記フローチャートに従
いマイクロコンピュータ70、110によりなされる処
理は、アナログ回路やディジタル回路により処理するよ
うにしてもよい。
Since the amplitude of the scanning voltage and the amplitude of the signal voltage are calculated and changed in the process of step 230 as described above, even if the liquid crystal has a high temperature dependency like the antiferroelectric liquid crystal 10c. Thus, the above effects can be favorably achieved.
In implementing the present invention, the processing performed by the microcomputers 70 and 110 according to the above flowchart may be performed by an analog circuit or a digital circuit.

【0049】また、本発明の実施にあたっては、液晶パ
ネル10の液晶としては、反強誘電性液晶に限らず、強
誘電性液晶等のスメクチック液晶を採用してもよく、ま
た、当該スメクチック液晶と同様に温度依存性の高い液
晶を採用してもよい。また、本発明の実施にあたり、上
記実施形態では上述のごとく配置した5個の温度センサ
60a乃至60eを採用した例について説明したが、こ
れに限ることなく、液晶パネル10の温度による輝度む
らは当該液晶パネルの背面に設ける回路基板の発熱によ
り生ずることを考慮して、当該回路基板のうち最も発熱
し易い部分に温度センサを配置すれば、より一層精度よ
く液晶パネル10の表示面の温度分布を推定できる。
In practicing the present invention, the liquid crystal of the liquid crystal panel 10 is not limited to an antiferroelectric liquid crystal, but may be a smectic liquid crystal such as a ferroelectric liquid crystal. Similarly, a liquid crystal having high temperature dependency may be employed. In the embodiment of the present invention, an example in which the five temperature sensors 60a to 60e arranged as described above is employed has been described. However, the present invention is not limited to this. In consideration of the heat generated by the circuit board provided on the back surface of the liquid crystal panel, if the temperature sensor is arranged in the portion of the circuit board where heat is most likely to be generated, the temperature distribution on the display surface of the liquid crystal panel 10 can be more accurately determined. Can be estimated.

【0050】また、本発明の実施にあたり、液晶パネル
10の定常状態における温度分布を予め測定してROM
80に記憶しておけば、5個の温度センサ60a乃至6
0eに代えて、単一の温度センサを採用するだけで、上
記記憶温度分布をもとに液晶パネル10の表示面におけ
る温度分布を推定できる。また、本発明の実施にあた
り、車両に限ることなく、各種の情報機器や家電機器に
採用されるマトリクス型液晶表示装置であって履歴特性
を有する液晶を用いるものに本発明を適用して実施して
もよい。
In implementing the present invention, the temperature distribution in the steady state of the liquid crystal panel 10 is measured in advance and the ROM
80, the five temperature sensors 60a through 60
By employing a single temperature sensor instead of 0e, the temperature distribution on the display surface of the liquid crystal panel 10 can be estimated based on the stored temperature distribution. Further, in practicing the present invention, the present invention is not limited to vehicles, but is applied to a matrix type liquid crystal display device used for various information devices and home electric appliances, which uses a liquid crystal having a hysteresis characteristic, and implements the present invention. You may.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の液晶パネルの模式的断面図である。FIG. 2 is a schematic sectional view of the liquid crystal panel of FIG.

【図3】図1の液晶パネルの走査電極及び信号電極と画
素との関係を示す模式的平面図である。
FIG. 3 is a schematic plan view showing a relationship between scanning electrodes and signal electrodes of the liquid crystal panel of FIG. 1 and pixels.

【図4】図1のマイクロコンピュータ70の作用を示す
フローチャートである。
FIG. 4 is a flowchart showing an operation of the microcomputer 70 of FIG.

【図5】図1のマイクロコンピュータ110の作用を示
すフローチャートである。
FIG. 5 is a flowchart showing an operation of the microcomputer 110 of FIG.

【図6】走査電圧及び信号電圧と平均温度との関係を示
すグラフである。
FIG. 6 is a graph showing a relationship between a scanning voltage and a signal voltage and an average temperature.

【図7】階調度直線式の傾きと温度差ΔTとの関係を示
すグラフである。
FIG. 7 is a graph showing a relationship between a gradient of a gradient linear expression and a temperature difference ΔT.

【図8】階調度直線式の切片と温度差ΔTとの関係を示
すグラフである。
FIG. 8 is a graph showing the relationship between the intercept of the gradient linear expression and the temperature difference ΔT.

【図9】液晶パネルの表示面における輝度と画像データ
信号の階調度との関係を温度とパラメータとして示すグ
ラフである。
FIG. 9 is a graph showing the relationship between the luminance on the display surface of the liquid crystal panel and the gradient of the image data signal as a temperature and a parameter.

【図10】画像データ信号の目標階調度と実際の階調度
との関係を温度をパラメータとして示すグラフである。
FIG. 10 is a graph showing a relationship between a target gradation of an image data signal and an actual gradation using temperature as a parameter.

【図11】液晶パネルにおける5個の温度センサの配置
位置を示す平面図である。
FIG. 11 is a plan view showing an arrangement position of five temperature sensors in a liquid crystal panel.

【符号の説明】[Explanation of symbols]

10…液晶パネル、10c…反強誘電性液晶、20…走
査電極駆動回路、30…信号電極駆動回路、40、50
…電源回路、60a乃至60e…温度センサ、70、1
10…マイクロコンピュータ、80…ROM、90…R
OM、100…コントロール回路、X1乃至Xm…信号
電極、Y1乃至Ym…走査電極。
DESCRIPTION OF SYMBOLS 10 ... Liquid crystal panel, 10c ... Anti-ferroelectric liquid crystal, 20 ... Scan electrode drive circuit, 30 ... Signal electrode drive circuit, 40, 50
... power supply circuits, 60a to 60e ... temperature sensors, 70, 1
10 microcomputer, 80 ROM, 90 R
OM, 100: control circuit, X1 to Xm: signal electrode, Y1 to Ym: scanning electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 直樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2H092 GA05 NA01 PA06 PA08 QA14 2H093 NA11 NA43 NA64 NC28 NC50 NC57 NC63 ND02 ND09 ND58 NE06 NF20 5C006 AA16 AA22 AF13 AF46 AF51 AF52 AF53 AF54 AF78 BA13 BB11 BC03 BC12 BF15 BF38 BF43 FA19 FA22  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Naoki Matsumoto 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (Reference) 2H092 GA05 NA01 PA06 PA08 QA14 2H093 NA11 NA43 NA64 NC28 NC50 NC57 NC63 ND02 ND09 ND58 NE06 NF20 5C006 AA16 AA22 AF13 AF46 AF51 AF52 AF53 AF54 AF78 BA13 BB11 BC03 BC12 BF15 BF38 BF43 FA19 FA22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数条の走査電極(Y1乃至Yn)と、
複数条の信号電極(X1乃至Xm)と、これら複数条の
走査電極と複数条の信号電極との間に設けられて当該各
複数条の走査電極及び信号電極と共に複数のマトリクス
状画素(G11乃至Gmn)を構成する液晶(10c)
とを備える液晶パネル(10)と、 画像データ信号に基づき信号電圧を発生する信号電圧発
生手段(100)と、 前記複数条の走査電極を走査電圧の印加により駆動制御
する走査電極駆動制御手段(20、40)と、 前記複数条の信号電極を前記信号電圧の印加により駆動
制御する信号電極駆動制御手段(30、50)とを備
え、 前記走査電極駆動制御手段及び信号電極駆動制御手段の
両駆動制御に応じて前記液晶パネルに表示させるように
したマトリクス型液晶表示装置であって、 前記液晶パネルの少なくとも一つの位置の温度を検出す
る温度検出手段(60a乃至60e)と、 この温度検出手段の検出温度に基づき前記液晶パネルの
所定画素領域毎の温度を推定する温度推定手段(21
0)とを備え、 前記信号電圧発生手段が、 前記温度検出手段の検出温度及び前記温度推定手段によ
る前記所定画素領域毎の推定温度に基づき前記画像デー
タ信号の実際の強度を前記所定画素領域毎に前記液晶パ
ネルの所定温度における目標強度となるように補正する
補正手段(80、90、240、250、320、33
0)を具備し、 この補正手段による補正画像データ信号に基づき前記信
号電圧を発生するマトリクス型液晶表示装置。
A plurality of scanning electrodes (Y1 to Yn);
A plurality of matrix-shaped pixels (G11 to Xm) are provided between the plurality of signal electrodes (X1 to Xm) and the plurality of scanning electrodes and the plurality of signal electrodes, and together with the plurality of scanning electrodes and the signal electrodes. Gmn) liquid crystal (10c)
A signal voltage generating means (100) for generating a signal voltage based on an image data signal; and a scan electrode drive control means (10) for driving and controlling the plurality of scan electrodes by applying a scan voltage. 20, 40), and signal electrode drive control means (30, 50) for driving and controlling the plurality of signal electrodes by applying the signal voltage, wherein both of the scan electrode drive control means and the signal electrode drive control means are provided. What is claimed is: 1. A matrix type liquid crystal display device adapted to display on said liquid crystal panel according to drive control, comprising: temperature detecting means (60a to 60e) for detecting a temperature at at least one position of said liquid crystal panel; Temperature estimating means (21) for estimating the temperature of each predetermined pixel area of the liquid crystal panel based on the detected temperature of
0), wherein the signal voltage generating means calculates an actual intensity of the image data signal for each of the predetermined pixel areas based on a temperature detected by the temperature detecting means and an estimated temperature for each of the predetermined pixel areas by the temperature estimating means. Correction means (80, 90, 240, 250, 320, 33) for correcting the target intensity of the liquid crystal panel at a predetermined temperature.
0), wherein the signal voltage is generated based on the image data signal corrected by the correction means.
【請求項2】 複数条の走査電極(Y1乃至Yn)と、
複数条の信号電極(X1乃至Xm)と、これら複数条の
走査電極と複数条の信号電極との間に設けられて当該各
複数条の走査電極及び信号電極と共に複数のマトリクス
状画素(G11乃至Gmn)を構成する温度依存性の高
い特性の液晶(10c)とを備える液晶パネル(10)
と、 画像データ信号に基づき信号電圧を発生する信号電圧発
生手段(100)と、 前記複数条の走査電極を走査電圧の印加により駆動制御
する走査電極駆動制御手段(20、40)と、 前記複数条の信号電極を前記信号電圧の印加により駆動
制御する信号電極駆動制御手段(30、50)とを備
え、 前記走査電極駆動制御手段及び信号電極駆動制御手段の
両駆動制御に応じて前記液晶パネルに表示させるように
したマトリクス型液晶表示装置であって、 前記液晶パネルの少なくとも一つの位置の温度を検出す
る温度検出手段(60a乃至60e)と、 この温度検出手段の検出温度に基づき前記走査電圧及び
信号電圧の各振幅を変更する変更手段(230)と、 前記温度検出手段の検出温度に基づき前記液晶パネルの
所定画素領域毎の温度を推定する温度推定手段(21
0)とを備え、 前記走査電極駆動制御手段及び信号電極駆動制御手段が
前記走査電圧及び信号電圧を前記変更手段による変更振
幅でもって印加し、 前記信号電圧発生手段が、 前記温度検出手段の検出温度及び前記温度推定手段によ
る前記所定画素領域毎の推定温度に基づき前記画像デー
タ信号の実際の強度を前記所定画素領域毎に前記液晶パ
ネルの所定温度における目標強度となるように補正する
補正手段(80、90、240、250、320、33
0)を具備し、 この補正手段による補正画像データ信号に基づき前記信
号電圧を発生するマトリクス型液晶表示装置。
2. A plurality of scanning electrodes (Y1 to Yn),
A plurality of matrix-shaped pixels (G11 to Xm) are provided between the plurality of signal electrodes (X1 to Xm) and the plurality of scanning electrodes and the plurality of signal electrodes, and together with the plurality of scanning electrodes and the signal electrodes. Gmn) and a liquid crystal panel (10) comprising a liquid crystal (10c) having high temperature-dependent characteristics.
A signal voltage generating means (100) for generating a signal voltage based on an image data signal; a scan electrode drive control means (20, 40) for driving and controlling the plurality of scan electrodes by applying a scan voltage; Signal electrode drive control means (30, 50) for driving and controlling the signal electrodes by applying the signal voltage; and the liquid crystal panel according to both drive control of the scan electrode drive control means and the signal electrode drive control means. A matrix type liquid crystal display device, wherein a temperature detecting means (60a to 60e) for detecting a temperature of at least one position of the liquid crystal panel; and the scanning voltage based on a temperature detected by the temperature detecting means. Changing means (230) for changing each amplitude of the signal voltage; and a temperature for each predetermined pixel area of the liquid crystal panel based on a temperature detected by the temperature detecting means. Temperature estimating means (21)
0), wherein the scan electrode drive control means and the signal electrode drive control means apply the scan voltage and the signal voltage with a change amplitude by the change means, and the signal voltage generation means detects the temperature detection means. Correction means for correcting the actual intensity of the image data signal to a target intensity at a predetermined temperature of the liquid crystal panel for each of the predetermined pixel regions based on a temperature and an estimated temperature for each of the predetermined pixel regions by the temperature estimating unit. 80, 90, 240, 250, 320, 33
0), wherein the signal voltage is generated based on the image data signal corrected by the correction means.
【請求項3】 前記補正手段は、 前記画像データ信号の実際の強度と目標強度との関係を
表す直線式の傾き及び切片を前記所定画素領域毎の推定
温度と前記液晶パネルの前記所定温度との温度差に応じ
てデータとして予め記憶する第1記憶手段(80)と、 この第1記憶手段の記憶データに基づき前記所定画素領
域毎の推定温度に応じて前記傾き及び切片を算出して補
正データとして記憶する第2記憶手段(240、25
0、90)とを備えて、 この第2記憶手段の補正データに基づき前記画像データ
信号の実際の強度を前記所定画素領域毎に前記目標強度
に補正することを特徴とする請求項1又は2に記載のマ
トリクス型液晶表示装置。
3. The liquid crystal panel according to claim 1, wherein the correction unit calculates a slope and an intercept of a linear expression representing a relationship between an actual intensity of the image data signal and a target intensity with the estimated temperature for each of the predetermined pixel regions and the predetermined temperature of the liquid crystal panel. A first storage means (80) for storing in advance as data in accordance with a temperature difference between the first and second pixels, and calculating and correcting the slope and intercept in accordance with the estimated temperature for each of the predetermined pixel regions based on the data stored in the first storage means. Second storage means (240, 25) for storing as data
0, 90), wherein the actual intensity of the image data signal is corrected to the target intensity for each of the predetermined pixel regions based on the correction data in the second storage means. 3. A matrix type liquid crystal display device according to item 1.
JP10251398A 1998-09-04 1998-09-04 Matrix type liquid crystal display device Pending JP2000081607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10251398A JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10251398A JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000081607A true JP2000081607A (en) 2000-03-21

Family

ID=17222259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10251398A Pending JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2000081607A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034135A1 (en) * 2002-10-10 2004-04-22 Sanyo Electric Co., Ltd. Liquid crystal panel drive device
WO2007074661A1 (en) * 2005-12-28 2007-07-05 Nec Display Solutions, Ltd. Image display device
JP2007298957A (en) * 2006-04-03 2007-11-15 Seiko Epson Corp Image display apparatus and image display method
JP2008046411A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Memory type liquid crystal panel and memory type liquid crystal driving device
JP2008170536A (en) * 2007-01-09 2008-07-24 Seiko Epson Corp Display driving device, display device and electronic equipment
US7420538B2 (en) 2003-12-03 2008-09-02 Sharp Kabushiki Kaisha Liquid crystal display device and driving device thereof, and method for driving liquid crystal display device
JP2008257010A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Display drive and electronic equipment
JP2008256821A (en) * 2007-04-03 2008-10-23 Sony Corp Display device, optical module and projection display device
CN102486912A (en) * 2010-12-02 2012-06-06 伊格尼斯创新公司 System and method for thermal compensation in amoled display
JP2012159633A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Active matrix substrate, electro-optical device and electronic apparatus
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10467982B2 (en) * 2017-03-31 2019-11-05 Apple Inc. Electronic devices with temperature-compensated displays
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
WO2021234948A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Video display device and brightness correction method

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034135A1 (en) * 2002-10-10 2004-04-22 Sanyo Electric Co., Ltd. Liquid crystal panel drive device
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US7420538B2 (en) 2003-12-03 2008-09-02 Sharp Kabushiki Kaisha Liquid crystal display device and driving device thereof, and method for driving liquid crystal display device
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
JP2007178709A (en) * 2005-12-28 2007-07-12 Nec Display Solutions Ltd Image display apparatus
US8368685B2 (en) 2005-12-28 2013-02-05 Nec Display Solutions, Ltd. Image display apparatus
WO2007074661A1 (en) * 2005-12-28 2007-07-05 Nec Display Solutions, Ltd. Image display device
CN101346753B (en) * 2005-12-28 2010-12-15 Nec显示器解决方案株式会社 Image display apparatus
JP2007298957A (en) * 2006-04-03 2007-11-15 Seiko Epson Corp Image display apparatus and image display method
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
JP2008046411A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Memory type liquid crystal panel and memory type liquid crystal driving device
JP2008170536A (en) * 2007-01-09 2008-07-24 Seiko Epson Corp Display driving device, display device and electronic equipment
JP2008256821A (en) * 2007-04-03 2008-10-23 Sony Corp Display device, optical module and projection display device
JP2008257010A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Display drive and electronic equipment
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US10679533B2 (en) 2009-11-30 2020-06-09 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US11200839B2 (en) 2010-02-04 2021-12-14 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10971043B2 (en) 2010-02-04 2021-04-06 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US10460669B2 (en) 2010-12-02 2019-10-29 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US20120139955A1 (en) * 2010-12-02 2012-06-07 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
CN102486912A (en) * 2010-12-02 2012-06-06 伊格尼斯创新公司 System and method for thermal compensation in amoled display
US8907991B2 (en) * 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US20140375623A1 (en) * 2010-12-02 2014-12-25 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
US20170025067A1 (en) * 2010-12-02 2017-01-26 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9489897B2 (en) * 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
CN105913803A (en) * 2010-12-02 2016-08-31 伊格尼斯创新公司 System and methods for thermal compensation in amoled displays
CN105913803B (en) * 2010-12-02 2021-07-06 伊格尼斯创新公司 System and method for thermal compensation in AMOLED displays
JP2012159633A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Active matrix substrate, electro-optical device and electronic apparatus
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10580337B2 (en) 2011-05-20 2020-03-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10706754B2 (en) 2011-05-26 2020-07-07 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US10453394B2 (en) 2012-02-03 2019-10-22 Ignis Innovation Inc. Driving system for active-matrix displays
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US11875744B2 (en) 2013-01-14 2024-01-16 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US10847087B2 (en) 2013-01-14 2020-11-24 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US10460660B2 (en) 2013-03-15 2019-10-29 Ingis Innovation Inc. AMOLED displays with multiple readout circuits
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US10600362B2 (en) 2013-08-12 2020-03-24 Ignis Innovation Inc. Compensation accuracy
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10467982B2 (en) * 2017-03-31 2019-11-05 Apple Inc. Electronic devices with temperature-compensated displays
WO2021234948A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Video display device and brightness correction method

Similar Documents

Publication Publication Date Title
JP2000081607A (en) Matrix type liquid crystal display device
KR101264718B1 (en) Method and Apparatus for Compensating Display Defect of Flat Display
US7688304B2 (en) Liquid crystal display device and method of modifying image signals for the same
US7990353B2 (en) Method and apparatus for reducing the visual effects of nonuniformities in display systems
US7420538B2 (en) Liquid crystal display device and driving device thereof, and method for driving liquid crystal display device
JP5570679B2 (en) Touch panel device
EP1507252B1 (en) Liquid crystal display device
EP0791848A2 (en) Display and method of operating a display
WO2009150889A1 (en) Liquid crystal temperature sensor, temperature sensing method by liquid crystal temperature sensor, liquid crystal device and liquid crystal device drive method
CN101042482B (en) Driving device for liquid crystal display panel and liquid crystal display device
KR20040091564A (en) Liquid crystal display
US20190066609A1 (en) Liquid crystal display device and method for displaying image of the same
US7119785B2 (en) Liquid crystal display apparatus and drive method thereof
JP2000089197A (en) Matrix type liquid crystal display device
JP2007178561A (en) Display apparatus and drive method thereof
KR101246786B1 (en) LCD panel driving mode control circuit and driving method thereof
TWI603314B (en) Control method for display
US11853507B2 (en) Display device with built-in touch panel, and method for controlling display device with built-in touch panel
JP2004029571A (en) Liquid crystal display device and device and method for adjusting vcom
JP4121352B2 (en) Liquid crystal display device and driving method thereof
JPH1114968A (en) Common electrode driving circuit for display device
JP2008257010A (en) Display drive and electronic equipment
JP4851782B2 (en) Liquid crystal display
JP2012014004A (en) Display device, characteristic value measurement method of display device and computer program
WO2018186323A1 (en) Touch panel-integrated display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Written amendment

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130831

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250