JP2000079340A - Improved steam reforming catalyst for hydrocarbon - Google Patents

Improved steam reforming catalyst for hydrocarbon

Info

Publication number
JP2000079340A
JP2000079340A JP11081669A JP8166999A JP2000079340A JP 2000079340 A JP2000079340 A JP 2000079340A JP 11081669 A JP11081669 A JP 11081669A JP 8166999 A JP8166999 A JP 8166999A JP 2000079340 A JP2000079340 A JP 2000079340A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
lattice constant
increase
nial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11081669A
Other languages
Japanese (ja)
Other versions
JP3135539B2 (en
Inventor
Toru Numaguchi
徹 沼口
Yasuhiro Izawa
康浩 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP11081669A priority Critical patent/JP3135539B2/en
Priority to US09/382,151 priority patent/US6261991B1/en
Publication of JP2000079340A publication Critical patent/JP2000079340A/en
Application granted granted Critical
Publication of JP3135539B2 publication Critical patent/JP3135539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a reforming catalyst for hydrocarbons the activity of which can be kept for a long time. SOLUTION: In a catalyst, an active component of Ni is supported on a carrier of α-Al2O3 or CaO-Al2O3 a part of the Ni reacts with the carrier to form the compound of NiAl2O3, both components of Ni and NiAl2O3 contain carbon, and the latticce constants of the Ni and the NiAl2O3 in the catalyst are increased by the incorporation of carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性低下の少な
い、改良された炭化水素用水蒸気改質触媒に関する。
[0001] The present invention relates to an improved hydrocarbon reforming catalyst for hydrocarbons, which has a small activity reduction.

【0002】[0002]

【従来の技術】一般に触媒の高活性は、活性成分を微細
に分散させ活性成分表面積を大きくすることで実現され
る。周知のように、金属粒子を微細に分散させる方法
は、含浸法、沈着法、共沈法、混練法、イオン交換法等
で担持した後の酸化還元処理や析出沈殿担持法等で実現
される。しかし、炭化水素用水蒸気改質触媒に適用して
活性成分を微細化しても、該触媒は高温で使用される
為、活性成分のシンタリングが著しい。シンタリングは
活性成分の粒子が微細であるほど急速に進行し、急速な
活性低下を招く。
2. Description of the Related Art In general, high activity of a catalyst is realized by finely dispersing an active ingredient to increase the surface area of the active ingredient. As is well known, a method of finely dispersing metal particles is realized by an oxidation-reduction treatment or a precipitation-precipitation supporting method after supporting by an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, or the like. . However, even when applied to a steam reforming catalyst for hydrocarbons to make active components finer, the sintering of the active components is remarkable because the catalyst is used at a high temperature. Sintering proceeds more rapidly as the active ingredient particles are finer, causing a rapid decrease in activity.

【0003】一方、炭化水素用水蒸気改質反応を高活性
で行う為には、触媒の細孔構造を工夫して有効拡散係数
を大きくすることが有効である。これは該反応では反応
原料や生成物が細孔内を拡散して行く時の拡散抵抗が大
きい為である。
On the other hand, in order to carry out the steam reforming reaction for hydrocarbons with high activity, it is effective to devise the pore structure of the catalyst to increase the effective diffusion coefficient. This is because in the reaction, the diffusion resistance is high when the reaction raw materials and products diffuse in the pores.

【0004】本発明者らは、特許1894792号公
報、特公平6−83787号公報において、細孔構造を
工夫して有効拡散係数を大きくすることで触媒の高活性
を実現する提案をした。また、触媒の機械強度と高活性
を両立させた提案を特開平9−299798号公報にお
いて開示した。これら研究を実施したとき、活性成分の
微細化も同時に検討した。一般に触媒の高活性は、活性
成分を微細に分散させ活性成分表面積を大きくすること
でも実現され、炭化水素用水蒸気改質反応でも同様であ
る。即ち、有効拡散係数の増大と活性成分の微細化は相
乗的に高活性化に寄与するが、前述の通り、該反応では
活性成分のシンタリングが著しいという問題がある。
The present inventors have proposed in Japanese Patent No. 1894792 and Japanese Patent Publication No. 6-83787 to realize a high activity of a catalyst by devising a fine pore structure to increase an effective diffusion coefficient. Japanese Patent Application Laid-Open No. 9-299798 discloses a proposal for achieving both mechanical strength and high activity of a catalyst. When these studies were performed, miniaturization of the active ingredient was also considered. Generally, the high activity of the catalyst is also realized by finely dispersing the active ingredient to increase the surface area of the active ingredient, and the same is true in the steam reforming reaction for hydrocarbons. That is, the increase in the effective diffusion coefficient and the miniaturization of the active ingredient synergistically contribute to high activation. However, as described above, there is a problem that sintering of the active ingredient is remarkable in the reaction.

【0005】本発明者らの前記提案による高活性触媒の
活性低下は、従来の市販触媒よりも小さなため実用的に
は使用可能であった。しかし、実用的にはなるものの同
一反応率を維持するためには、反応器において反応温度
を暫時上昇させる必要があった。そのためのエネルギー
は、触媒の活性低下とともに増大する。したがって、省
エネルギーの観点からさらに長期間にわたって触媒の活
性低下を防止できる改善すべき課題は残されていた。
[0005] The decrease in the activity of the highly active catalyst proposed by the present inventors was smaller than that of a conventional commercially available catalyst, so that the catalyst was practically usable. However, in order to maintain the same reaction rate, although practical, it was necessary to temporarily raise the reaction temperature in the reactor. The energy for this increases as the activity of the catalyst decreases. Therefore, from the viewpoint of energy saving, there remains a problem to be solved that can prevent the activity of the catalyst from decreasing for a longer period of time.

【0006】[0006]

【発明が解決しようとする課題】本発明は、触媒の活性
低下が少ない改良された炭化水素用水蒸気改質触媒を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved steam reforming catalyst for hydrocarbons, which has a small decrease in the activity of the catalyst.

【0007】[0007]

【課題を解決するための手段】本発明者らは、炭化水素
用水蒸気改質触媒の活性低下を改善すべく試行錯誤を繰
り返し、鋭意検討を行った。その結果、以下に記載の触
媒の活性低下は極めて起こりにくい、という知見を得
た。すなわち、(1)担体がα−Al23 あるいはC
aO−Al23 であり、該担体に担持された活性成分
であるNiが、Niとα−Al23 からなる担体との
化合物(以下、NiAl24 と称す)を形成し、Ni
およびNiAl24 として担持され、そのいずれにも
炭素が含有された触媒とされ、炭素を含有させる前に比
較して、該触媒中のNiおよびNiAl24 の格子定
数がそれぞれ増加した触媒とされること、(2)担体が
α−Al23 あるいはCaO−Al23であり、該担
体に担持された活性成分であるNiに炭素が含有された
触媒とされ、炭素を含有させる前に比較して、該触媒中
のNiの格子定数が増加した触媒とされること、(3)
前記(1)および(2)の触媒において活性成分として
のNiを触媒中にNiとして3〜20wt%含有するこ
と、等である。本発明は、上記事情と上記知見に基づき
なされたもので、本発明の目的は以下の手段で達成でき
る。
Means for Solving the Problems The present inventors have repeated trial and error in order to improve the decrease in the activity of the steam reforming catalyst for hydrocarbons, and have made intensive studies. As a result, they have found that the activity of the catalyst described below is hardly reduced. That is, (1) the carrier is α-Al 2 O 3 or C
aO-Al 2 O 3 , wherein Ni as an active component supported on the carrier forms a compound of Ni and a carrier composed of α-Al 2 O 3 (hereinafter, referred to as NiAl 2 O 4 ); Ni
And NiAl 2 O 4 , each of which is a catalyst containing carbon, in which the lattice constants of Ni and NiAl 2 O 4 in the catalyst are increased as compared to before the inclusion of carbon. (2) The carrier is α-Al 2 O 3 or CaO—Al 2 O 3 , and the active component Ni supported on the carrier is a catalyst in which carbon is contained. (3) that the catalyst has an increased lattice constant of Ni in the catalyst as compared to before the
In the catalysts of (1) and (2), Ni as an active component is contained in the catalyst in an amount of 3 to 20% by weight as Ni. The present invention has been made based on the above circumstances and the above findings, and the object of the present invention can be achieved by the following means.

【0008】すなわち、本発明は、(1)活性成分Ni
がα−Al23 担体に担持され、該活性成分Niの一
部が前記担体と化合物NiAl24 を形成し、前記N
iおよびNiAl24 のいずれの成分にも炭素が含有
された触媒であって、前記いずれの成分にも炭素が含有
される前のものと比べて、該触媒のNiの格子定数およ
びNiAl24 の格子定数が増加したことを特徴とす
る改良された炭化水素用水蒸気改質触媒であり、(2)
活性成分NiがCaO−Al23 担体に担持され、該
活性成分Niの一部が前記担体と化合物NiAl24
を形成し、前記NiおよびNiAl24のいずれの成分
にも炭素が含有された触媒であって、前記いずれの成分
にも炭素が含有される前のものと比べて、該触媒のNi
の格子定数およびNiAl24の格子定数が増加したこ
とを特徴とする改良された炭化水素用水蒸気改質触媒で
あり、(3)Niの格子定数の増加が0.0001nm以上0.00
08nm以下であり、NiAl24 の格子定数の増加が、
0.001nm以上 0.005nm以下である(1)又は(2)に記
載の改良された炭化水素用水蒸気改質触媒である。また
本発明は、(4)活性成分Niがα−Al23 担体に
担持され、該活性成分Niに炭素が含有された触媒であ
って、該活性成分Niに炭素が含有される前のものと比
べて、該触媒のNiの格子定数が増加したことを特徴と
する改良された炭化水素用水蒸気改質触媒であり、
(5)活性成分NiがCaO−Al23 担体に担持さ
れ、該活性成分Niに炭素が含有された触媒であって、
該活性成分Niに炭素が含有される前のものと比べて、
該触媒のNiの格子定数が増加したことを特徴とする改
良された炭化水素用水蒸気改質触媒であり、(6)Ni
の格子定数の増加が0.0001nm以上0.0008nm以下である
(4)又は(5)に記載の改良された炭化水素用水蒸気
改質触媒であり、(7)活性成分が触媒中にNiとして
3〜20wt%含有される(1)〜(6)のいずれかに
記載の改良された炭化水素用水蒸気改質触媒である。
That is, the present invention relates to (1) an active ingredient Ni
Is supported on an α-Al 2 O 3 carrier, and a part of the active ingredient Ni forms a compound NiAl 2 O 4 with the carrier,
i and NiAl 2 O 4 , wherein the catalyst contains carbon in both components, and the catalyst has a Ni lattice constant and NiAl 2 An improved steam reforming catalyst for hydrocarbons, characterized in that the lattice constant of O 4 is increased, (2)
Active ingredient Ni is supported on CaO-Al 2 O 3 carrier, compound part of the active ingredient Ni is said carrier NiAl 2 O 4
Wherein Ni and NiAl 2 O 4 are both carbon-containing catalysts, compared to the catalyst before carbon is also contained in any of the components.
An improved steam reforming catalyst for hydrocarbons, characterized in that the lattice constant of NiAl 2 O 4 and the lattice constant of NiAl 2 O 4 are increased.
08 nm or less, and the increase in the lattice constant of NiAl 2 O 4
The improved steam reforming catalyst for hydrocarbons according to (1) or (2), which has a diameter of 0.001 nm or more and 0.005 nm or less. The present invention also provides (4) a catalyst in which the active component Ni is supported on an α-Al 2 O 3 carrier, and the active component Ni contains carbon, and the active component Ni contains no carbon. An improved steam reforming catalyst for hydrocarbons, characterized in that the Ni lattice constant of the catalyst has increased compared to that of
(5) A catalyst in which the active component Ni is supported on a CaO-Al 2 O 3 carrier, and the active component Ni contains carbon.
Compared to the active component Ni before containing carbon,
An improved steam reforming catalyst for hydrocarbons, characterized in that the Ni lattice constant of the catalyst has been increased.
(4) or (5), wherein the increase in the lattice constant of the catalyst is 0.0001 nm or more and 0.0008 nm or less. The improved steam reforming catalyst for hydrocarbons according to any one of (1) to (6), which contains 20 wt%.

【0009】[0009]

【発明の実施の形態】本発明において、水蒸気改質され
るのに好適な炭化水素とは、炭素数1のメタンから炭素
数8の炭化水素およびこれらの化合物をいう。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, hydrocarbons suitable for steam reforming include methane having 1 carbon atom to hydrocarbons having 8 carbon atoms and compounds thereof.

【0010】担体について以下に説明する。本発明にお
いて、担体とはその代表成分としてα−Al23 およ
びCaO−Al23 をいうが、これに限定されるもの
ではない。また、担体は、いずれにしても細孔分布を有
するが、その細孔分布の形に限定されるものではない。
例えば、出願人が特許1894792号公報、特公平6
−83787公報、特開平9−299798号公報等に
開示した担体は、本発明に含まれることはいうまでもな
いことである。
The carrier will be described below. In the present invention, the carrier refers to α-Al 2 O 3 and CaO—Al 2 O 3 as representative components, but is not limited thereto. In addition, the carrier has a pore distribution in any case, but is not limited to the shape of the pore distribution.
For example, the applicant has disclosed Japanese Patent No. 1894792,
Needless to say, the carriers disclosed in JP-A-83787 and JP-A-9-299798 are included in the present invention.

【0011】触媒の活性成分について以下に説明する。
本発明において対象となる活性成分は、Niである。活
性成分であるNiの濃度は、本発明において、触媒中に
Niとして3〜20wt%含有される。3wt%未満で
あると、触媒の活性が低い場合がある。また、20wt
%を越えると触媒の耐シンタリング性があるが、触媒の
活性があまり増加しないことがあり、活性成分の濃度は
触媒中にNiとして3〜20wt%含有されれば足り
る。なお、触媒の不純物あるいは添加物等として、アル
カリ金属としては、K、アルカリ土類金属としては、B
a、Mg、Sr、周期律表IIIA族としてはGa、In、
La、その他Ti、Zr等が含まれていても特に、本発
明の触媒の活性、活性低下に対し悪い影響がない。
The active components of the catalyst will be described below.
The active ingredient of interest in the present invention is Ni. In the present invention, the concentration of Ni as an active component is 3 to 20 wt% as Ni in the catalyst. If it is less than 3 wt%, the activity of the catalyst may be low. In addition, 20wt
%, The catalyst has sintering resistance, but the activity of the catalyst may not increase so much. It is sufficient that the concentration of the active component is 3 to 20% by weight as Ni in the catalyst. As impurities or additives of the catalyst, K is used as an alkali metal, and B is used as an alkaline earth metal.
a, Mg, Sr, as the group IIIA of the periodic table, Ga, In,
Even if La, other Ti, Zr, or the like is contained, there is no adverse effect on the activity and activity of the catalyst of the present invention.

【0012】以下に、α−Al23 担体およびCaO
−Al23 担体に触媒の活性成分を微細に分散・担持
する方法について説明する。先ず、α−Al23 担体
に触媒の活性成分を微細に分散・担持する方法について
説明する。前記活性成分Niは含浸法、沈着法、共沈
法、混練法、イオン交換法等により担持することができ
るが、通常、含浸法が選択される。通常の含浸法でNi
をα−Al23 担体に担持後、120℃程度で乾燥さ
せ、さらに、300〜400℃あるいはそれ以上の温度
で焼成して硝酸塩を分解する。後述の比較例2に示す触
媒Nがこれに相当する。この触媒は、本発明の請求項4
および請求項6でいう活性成分に炭素が含有される前の
ものである。このように処理されたものを空気中900
℃程度で熱処理し、活性成分と担体成分の化合物である
NiAl24 を生成させ、750℃程度で還元する
と、NiAl24 の共存下、Niを活性成分とする触
媒が得られることが知られている。これに限定されない
が、後述の比較例1に示す触媒NNAがこれに相当す
る。この触媒は、本発明の請求項1および請求項3でい
う活性成分に炭素が含有される前のものである。しか
し、前記のように活性成分に炭素を含有させないものを
それぞれ触媒として用いると、例えば、比較例1および
比較例2に示すように大なり小なり活性低下を起こす。
An α-Al 2 O 3 carrier and CaO
A method for finely dispersing and supporting the active component of the catalyst on the Al 2 O 3 carrier will be described. First, a method of finely dispersing and supporting the active component of the catalyst on the α-Al 2 O 3 carrier will be described. The active ingredient Ni can be supported by an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, or the like, and usually, the impregnation method is selected. Ni by normal impregnation
Is carried on an α-Al 2 O 3 carrier, dried at about 120 ° C., and calcined at a temperature of 300 to 400 ° C. or higher to decompose nitrates. The catalyst N shown in Comparative Example 2 described below corresponds to this. This catalyst is used in claim 4 of the present invention.
And before the active ingredient contains carbon. The material thus treated is placed in air at 900
When heat treatment is performed at about ℃ to generate NiAl 2 O 4 which is a compound of the active ingredient and the carrier component, and reduction is performed at about 750 ° C., a catalyst containing Ni as an active ingredient can be obtained in the presence of NiAl 2 O 4. Are known. Although not limited to this, the catalyst NNA shown in Comparative Example 1 described below corresponds to this. This catalyst is before the active component contains carbon in claims 1 and 3 of the present invention. However, when each of the active components which do not contain carbon as described above is used as a catalyst, for example, as shown in Comparative Examples 1 and 2, the activity is reduced to a greater or lesser extent.

【0013】次に、CaO−Al23 担体に触媒の活
性成分を微細に分散・担持する方法について説明する。
ここで、CaO−Al23 担体とは、少なくともその
一部がAl23 と化合物を形成するCaOとAl23
で構成された担体をいう。主たる化合物の一つとして
は、CaOとAl23 とのアルミネートがあげられ、
好ましくはCaOの50%以上がAl23 とアルミネ
ートを形成されることをいう。アルミネート化合物は、
例えば、α−Al23 とCaO・Al23 から構成さ
れるいわゆるカルシウム・アルミナセメント、水酸化ア
ルミニウム等を成形後、1300℃以上で焼成する通常
の方法で調製して得られる。また、α−Al23 にか
えγ−Al23 を用いてもよい。CaOとしての含有
率は、触媒中に0.5wt%〜25wt%、好ましくは
2wt%〜20wt%である。0.5wt%未満である
と、圧壊強度が低く、25wt%を越えても圧壊強度は
あまり変わりがなく、むしろ活性が低下することがある
ため避けるべきである。前記活性成分Niは含浸法、沈
着法、共沈法、混練法、イオン交換法等により担持する
ことができるが、通常、含浸法が選択される。通常の含
浸法でNiをCaO−Al23 担体に担持後、120
℃程度で乾燥させ、さらに300〜400℃あるいはそ
れ以上の温度で焼成して硝酸塩を分解する。後述の比較
例4に示す触媒CaNがこれに相当する。この触媒は、
本発明の請求項5および請求項6でいう活性成分に炭素
が含有される前のものである。このように処理されたも
のを空気中900℃程度で熱処理し、活性成分と担体成
分の化合物であるNiAl24 を生成させ、750℃
程度で還元すると、NiAl24 の共存下、Niを活
性成分とする触媒が得られることが知られている。これ
に限定されないが、後述の比較例3に示す触媒CaNN
Aがこれに相当する。この触媒は、本発明の請求項2お
よび請求項3でいう活性成分に炭素が含有される前のも
のである。このような活性成分に炭素を含有させないも
のを触媒として用いると、例えば比較例3に示すように
大きなり小なり活性低下を起こす。
Next, a method for finely dispersing and supporting the active component of the catalyst on the CaO—Al 2 O 3 carrier will be described.
Here, the CaO-Al 2 O 3 carrier, CaO and Al 2 O 3, at least a part of which forms a compound with Al 2 O 3
Refers to a carrier composed of One of the main compounds is an aluminate of CaO and Al 2 O 3 ,
Preferably, it means that 50% or more of CaO forms aluminate with Al 2 O 3 . The aluminate compound is
For example, so-called calcium alumina cement composed of α-Al 2 O 3 and CaO · Al 2 O 3, after forming the aluminum hydroxide obtained by preparing in a conventional manner is fired at 1300 ° C. or higher. Further, γ-Al 2 O 3 may be used instead of α-Al 2 O 3 . The content of CaO in the catalyst is 0.5 wt% to 25 wt%, preferably 2 wt% to 20 wt%. If the content is less than 0.5 wt%, the crushing strength is low, and if the content exceeds 25 wt%, the crushing strength is not so changed, and the activity may be reduced. The active ingredient Ni can be supported by an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, or the like, and usually, the impregnation method is selected. After Ni is loaded on a CaO-Al 2 O 3 support by a normal impregnation method, 120
C. and dried at about 300 to 400.degree. C. or higher to decompose nitrates. The catalyst CaN shown in Comparative Example 4 described below corresponds to this. This catalyst
This is before the active ingredient contains carbon in claims 5 and 6 of the present invention. The material thus treated is heat-treated at about 900 ° C. in the air to generate NiAl 2 O 4 which is a compound of the active ingredient and the carrier component, and is heated at 750 ° C.
It has been known that a catalyst containing Ni as an active component can be obtained in the presence of NiAl 2 O 4 when the catalyst is reduced to a certain extent. Although not limited to this, the catalyst CaNN shown in Comparative Example 3 described later
A corresponds to this. This catalyst is before the active component contains carbon in the second and third aspects of the present invention. When a catalyst containing no carbon in such an active component is used as a catalyst, for example, as shown in Comparative Example 3, the activity becomes large or small and the activity is reduced.

【0014】以下に、本発明でいう触媒の活性低下が少
ない改良された炭化水素用水蒸気改質触媒についてNi
を用いて説明する。前記触媒NNAおよび触媒CaNN
Aで例示される炭素を含有させる前のものは水素処理さ
れ、後に詳述する炭素処理および酸化・還元処理がなさ
れ、処理後のNiおよびNiAl24 の格子定数と、
前記炭素を含有させる前のものと比べてNiの格子定数
の増加が0.0001nm以上0.0008nm以下およびNiAl2
4 の格子定数の増加が 0.001nm以上 0.005nm以下である
ものが、本発明の請求項1、請求項2および請求項3で
いう触媒となる。また、前記触媒Nおよび触媒CaNで
例示される炭素を含有させる前のものは水素処理され、
後に詳述する炭素処理および酸化・還元処理がなされ、
それぞれ処理後のNiの格子定数と、前記炭素を含有さ
せる前のものと比べてのNiの格子定数の増加が0.0001
nm以上0.0008nm以下であるものが、本発明の請求項4、
請求項5および請求項6でいう触媒となる。前記炭素処
理は、炭素析出が過剰に起こり活性成分の表面を炭素が
被覆してしまわないよう制御された条件で行えば足り
る。これに限定されないのはいうまでもないことである
が、前記条件の1例として、炭素数1〜4くらいの低級
炭化水素を、水蒸気存在下で水蒸気の炭化水素の炭素に
対するモル比を1〜3、600〜750℃、30分〜5
時間の条件下で処理する方法が挙げられる。なお、低級
炭化水素に不飽和炭化水素を用いた場合には、前記モル
比を2〜4として行えば足りる。このように炭素処理さ
れたものを少なくとも1回以上酸化・還元操作を繰り返
すことにより、活性成分と担体との炭素を含有する化合
物と共存する、炭素を含有する活性成分の微細化を実現
させることができる。
The improved hydrocarbon reforming catalyst for hydrocarbons according to the present invention which has a small decrease in the activity of the catalyst will be described below.
This will be described with reference to FIG. The catalyst NNA and the catalyst CaNN
The carbon before being exemplified by A is subjected to a hydrogen treatment, and a carbon treatment and an oxidation / reduction treatment described in detail later are performed, and a lattice constant of Ni and NiAl 2 O 4 after the treatment,
The increase in the lattice constant of Ni is not less than 0.0001 nm and not more than 0.0008 nm as compared with that before the carbon is contained, and NiAl 2 O
The catalyst in which the increase in the lattice constant of No. 4 is 0.001 nm or more and 0.005 nm or less is the catalyst described in claims 1, 2 and 3 of the present invention. Further, the catalyst N and the catalyst CaN before being contained therein are subjected to hydrogen treatment,
Carbon treatment and oxidation / reduction treatment, which will be described in detail later, are performed.
The lattice constant of Ni after the treatment and the increase in the lattice constant of Ni as compared to those before the carbon was contained were 0.0001, respectively.
What is not less than nm and not more than 0.0008 nm is claim 4 of the present invention,
The catalyst described in claims 5 and 6 is provided. It is sufficient that the carbon treatment is performed under a controlled condition so that carbon deposition is excessive and the surface of the active ingredient is not coated with carbon. It is needless to say that the present invention is not limited to this. As an example of the above-mentioned conditions, a lower hydrocarbon having about 1 to 4 carbon atoms may be used in the presence of steam to make the molar ratio of the hydrocarbon of the steam to the carbon 1 to 1. 3, 600 to 750 ° C, 30 minutes to 5
A method in which the treatment is performed under the condition of time is mentioned. When an unsaturated hydrocarbon is used as the lower hydrocarbon, it is sufficient to set the molar ratio to 2 to 4. By subjecting the carbon-treated product to at least one oxidation / reduction operation at least once, the carbon-containing active ingredient coexisting with the active ingredient and the carbon-containing compound of the carrier can be miniaturized. Can be.

【0015】以下に、格子定数について説明する。ま
ず、本発明の請求項1、請求項2および請求項3にいう
触媒について説明する。前記触媒NNAおよび触媒Ca
NNAで例示される炭素を含有させる前のものに比べ
て、前記本発明の触媒において該触媒のNiの格子定数
の増加が、0.0001nm以上0.0008nm以下であり、該触媒の
NiAl24 の格子定数の増加が 0.001nm以上 0.005n
m以下であることが特に好ましい。Niに関し、前記増
加が0.0001nm未満であると、効果が少ないことがある。
また、前記増加が0.0008nmを越えると効果は、大きくな
る傾向を示すが、0.0008nmを越えて増加してもその効果
は前記増加に対し顕著でなくなるため、前記増加は0.00
01nm以上0.0008nm以下を選択すれば足りる。NIAl2
4 に関し、前記増加が、 0.001nm未満であると、効果
は小さいことがある。また、 0.005nmを越えると効果は
大きくなる傾向を示すが、 0.005nmを越えて増加しても
その効果は前記増加に対し顕著でなくなるため、前記増
加は0.001nm以上 0.005nm以下を選択すれば足りる。な
お、後述の実施例1および比較例1、並びに実施例3お
よび比較例3にその1例を示す。
Hereinafter, the lattice constant will be described. First, the catalyst according to the first, second and third aspects of the present invention will be described. The catalyst NNA and the catalyst Ca
Compared to the one before containing carbon exemplified by NNA, the increase in the lattice constant of Ni in the catalyst of the present invention is 0.0001 nm or more and 0.0008 nm or less in the catalyst of the present invention, and the NiAl 2 O 4 of the catalyst is Increase of lattice constant 0.001nm or more 0.005n
m or less is particularly preferred. With regard to Ni, if the increase is less than 0.0001 nm, the effect may be small.
When the increase exceeds 0.0008 nm, the effect tends to increase.However, even when the increase exceeds 0.0008 nm, the effect is not remarkable with respect to the increase.
It is sufficient to select from 01 nm to 0.0008 nm. NIAl 2
It relates O 4, wherein the increase is less than 0.001 nm, there is the effect is small. In addition, the effect tends to increase when the thickness exceeds 0.005 nm, but the effect is not remarkable with respect to the increase even when the increase exceeds 0.005 nm, so that the increase is selected from 0.001 nm or more and 0.005 nm or less. Is enough. One example is shown in Example 1 and Comparative Example 1 and Example 3 and Comparative Example 3 described later.

【0016】また、前記炭素処理が行われた触媒と、前
記触媒Nで例示される炭素を含有させる前のものに比べ
て、該触媒のNiの格子定数の増加が、0.0001nm以上0.
0008nm以下であることが特に好ましい。前記増加が0.00
01nm未満であると、効果が少ないことがある。また、前
記増加が0.0008nmを越えると効果は、大きくなる傾向を
示すが、0.0008nmを越えて増加してもその効果は前記増
加に対し顕著でなくなるため、前記増加は0.0001nm以
上、0.0008nm以下を選択すれば足りる。なお、後述の実
施例2および比較例2にその1例を示す。ここで、格子
定数は、例えば、新実験化学講座6、基礎技術5 構造
解析、p.110 、日本化学会編、丸善、1977等に記載
の通常のX線回折法により求めることが出来る。
In addition, the increase in the lattice constant of Ni of the catalyst is 0.0001 nm or more, as compared with the catalyst subjected to the carbon treatment and the catalyst before containing carbon exemplified in the catalyst N.
It is particularly preferred that it is not more than 0008 nm. Said increase is 0.00
If it is less than 01 nm, the effect may be small. Further, when the increase exceeds 0.0008 nm, the effect tends to increase.However, even if the increase exceeds 0.0008 nm, the effect is not remarkable with respect to the increase, so the increase is 0.0001 nm or more, 0.0008 nm. The following selections are sufficient. One example is shown in Example 2 and Comparative Example 2 described later. Here, the lattice constant can be determined, for example, by a normal X-ray diffraction method described in New Experimental Chemistry Course 6, Basic Technology 5, Structural Analysis, p.110, edited by The Chemical Society of Japan, Maruzen, 1977, and the like.

【0017】前記格子定数の増加と炭素含有濃度の関係
について説明する。一般に、純粋な物質の中に原子を溶
け込ませた場合、原子の体積が異なる場合、格子定数が
変化することはVegardの法則として知られてい
る。前記活性成分中の炭素濃度が増加する場合も該格子
定数は増大する。このような視点から炭素含有濃度を測
定したところ、前記Niの格子定数の増加が0.0001nm以
上である時、前記Ni中の炭素濃度の増加は0.2原子
百分率以上であった。しかし、前記NiAl24格子定
数の増加と炭素含有濃度の増加の関係についての詳細に
ついては不明の点がある。ここで、活性成分中の炭素濃
度は、成書、例えば、触媒講座 第3巻、p.145、触媒
学会編、講談社、1985に記載の昇温反応法(TP
R)で測定される。前記格子定数の増加と炭素含有濃度
の増加の関係について不明な点はあるが、要は、前記格
子定数の増加の条件を満足すれば、水蒸気改質条件下で
も殆ど活性低下を起こさない本発明でいう触媒が得られ
る。なお、前記格子定数を満足する条件等は、予め予備
試験を行うことにより設定することで足りる。
The relationship between the increase in the lattice constant and the carbon content will be described. In general, it is known as Vegard's law that when an atom is dissolved in a pure substance, when the volume of the atom is different, the lattice constant changes. The lattice constant also increases when the carbon concentration in the active ingredient increases. When the carbon content concentration was measured from such a viewpoint, when the increase in the lattice constant of Ni was 0.0001 nm or more, the increase in the carbon concentration in Ni was 0.2 atomic percent or more. However, the details of the relationship between the increase in the lattice constant of NiAl 2 O 4 and the increase in the carbon content are unknown. Here, the carbon concentration in the active ingredient can be determined by the temperature rise reaction method (TP) described in a written book, for example, Catalyst Course Vol. 3, p.145, edited by the Catalysis Society of Japan, Kodansha, 1985.
R). Although it is unclear about the relationship between the increase in the lattice constant and the increase in the carbon content, the point is that, if the conditions for the increase in the lattice constant are satisfied, the activity of the present invention hardly decreases even under steam reforming conditions. Is obtained. It should be noted that the conditions or the like satisfying the lattice constant may be set by conducting a preliminary test in advance.

【0018】[0018]

【実施例】以上のように本発明を説明したが、更に本発
明を詳細に実施例を用いて説明する。なお、本発明は、
以下に記載の実施例にのみに制限されることがないの
は、いうまでもないことである。
The present invention has been described above. The present invention will be described in more detail with reference to the following examples. In addition, the present invention
It goes without saying that the invention is not limited only to the embodiments described below.

【0019】実施例1 通常の含浸法で直径5mmのα−Al23 にNiを
6.8wt%担持調製した後、空気中950℃で3時間
熱処理してNi基準で含有Niの40wt%をNiAl
24 とした。これを常圧、750℃で3時間水素処理
後、常圧、600℃、水蒸気とメタンのモル比(以下、
S/Cと称す)S/C=1の条件下で5時間「炭素処
理」を行った。この後、「酸化・還元処理」として常
圧、650℃で15分間、水蒸気流通下に置き、直ちに
常圧、600℃で3分間水素処理を行った。以上の炭素
処理、酸化・還元処理を再び繰り返した。これらの処理
で調製された触媒を触媒NNACReと呼ぶ。触媒NN
ACReを10bar、600℃、S/C=3、空間速
度SV0 =200000(1/h)の条件でメタン水蒸
気改質反応に連続的に使用した。活性はメタンの転化率
で表わすが、180時間にわたりメタン転化率は10.
26%で安定し変化しなかった。触媒NNACReのN
iおよびNiAl24 の格子定数は次のようであっ
た。 Ni NiAl24 (単位:nm) 炭素処理前 0.3523 0.7930 炭素処理後 0.3525 0.7950 使用後 0.3525 0.7950 格子定数の増加 0.0002 0.002 実施例2 通常の含浸法で直径5mmのα−Al23 にNiを
6.8wt%担持調製し、その後の炭素処理、酸化・還
元処理については実施例1と同様に行った。該触媒を触
媒NCReと呼ぶ。これを実施例1と同様の条件で連続
運転を行った。メタン転化率は180時間で11.21
%から0.57%低下した。触媒NCReのNiの格子
定数は次のようであった。 比較例1 実施例1の炭素処理、酸化・還元処理を行わない以外は
実施例1と同様に行って調製した触媒を触媒NNAと呼
ぶ。これを実施例1と同様の条件で連続運転を行った。
メタン転化率は180時間で9.18%から0.41%
低下した。触媒NNAのNiおよびNiAl24 の格
子定数は次のようであった。 Ni NiAl24 (単位:nm) 使用前 0.3523 0.7930 使用後 0.3523 0.7932 格子定数の増加 0.0 0.0002 比較例2 実施例2の炭素処理、酸化・還元処理を行わない以外は
実施例1と同様に行って調製した触媒を触媒Nと呼ぶ。
これを実施例1と同様の条件で連続運転を行った。メタ
ン転化率は180時間で9.57%から1.49%低下
した。触媒NのNiの格子定数は次のようであった。 実施例3 実施例1のα−Al23 をCaO−Al23 に変えた
以外は実施例1と同様に行って調製した触媒を触媒Ca
NNACReと呼ぶ。これを実施例1と同様の条件で連
続運転を行った。メタン転化率は90時間で6.73%
から0.21%低下した。触媒CaNNACReのNi
およびNiAl24 の格子定数は次のようであった。 Ni NiAl24 (単位:nm) 炭素処理前 0.3523 0.7960 炭素処理後 0.3525 0.7990 使用後 0.3525 0.7990 格子定数の増加 0.0002 0.0030 比較例3 実施例3の炭素処理、酸化・還元処理を行わない以外は
実施例3と同様に行って調製した触媒を触媒CaNNA
と呼ぶ。これを実施例3と同様の条件で連続運転を行っ
た。メタン転化率は90時間で7.53%から0.45
%低下した。触媒CaNNAのNiおよびNiAl2
4 の格子定数は次のようであった。 Ni NiAl24 (単位:nm) 炭素処理前 0.3523 0.7960 使用後 0.3523 0.7960 格子定数の増加 0.0 0.0 実施例4 実施例2のα−Al23 をCaO−Al23 に変えた
以外は実施例2と同様に行って調製した触媒を触媒Ca
NCReと呼ぶ。これを実施例1と同様の条件で連続運
転を行った。メタン転化率は90時間で8.56%から
0.18%低下した。触媒CaNCReのNiの格子定
数は次のようであった。 比較例4 実施例4の炭素処理、酸化・還元処理を行わない以外は
実施例4と同様に行って調製した触媒を触媒CaNと呼
ぶ。これを実施例4と同様の条件で連続運転を行った。
メタン転化率は90時間で7.83%から0.76%低
下した。触媒CaNのNiの格子定数は次のようであっ
た。 本発明の触媒で、その1例として例示される触媒NNA
CRe(実施例1)は180時間にわたり全く活性低下
が見られなかった。これに対し、本発明外の触媒で、そ
の1例として例示される触媒NNA(比較例1)は、1
80時間でメタン転化率が0.41%低下した。このこ
とから本発明の触媒は、大幅に活性低下が改善された。
また、本発明の触媒で、その1例として例示される触媒
NCRe(実施例2)においては、180時間でメタン
転化率が0.57%しか活性低下を起こさなかった。こ
れに対し、本発明外の触媒で、その1例として例示され
る触媒N(比較例2)は、180時間でメタン転化率が
1.49%低下した。さらに、本発明の触媒で、その1
例として例示される触媒CaNNACRe(実施例3)
においては、90時間で0.21%しか活性低下を起こ
さなかった。これに対し、本発明外の触媒で、その1例
として例示される触媒CaNNA(比較例3)は、90
時間でメタン転化率が0.45%低下した。また、本発
明の触媒で、その1例として例示される触媒CaNCR
e(実施例4)においては、90時間で0.18%しか
活性低下を起こさなかった。これに対し、本発明外の触
媒で、その1例として例示される触媒CaN(比較例
4)は、90時間でメタン転化率が0.76%低下し
た。以上のように、本発明の触媒は、大幅に活性低下が
改善された触媒であることが分かった。
Example 1 After preparing 6.8 wt% of Ni on α-Al 2 O 3 having a diameter of 5 mm by a usual impregnation method, heat-treating at 950 ° C. for 3 hours in the air to obtain 40 wt% of the contained Ni on the basis of Ni. To NiAl
2 O 4 was used. This was hydrogenated at 750 ° C. for 3 hours at normal pressure, and then at normal pressure, 600 ° C., and a molar ratio of steam and methane (hereinafter, referred to as “hydrogen”)
"Carbon treatment" was performed for 5 hours under the condition of S / C = 1. Thereafter, as an “oxidation / reduction treatment”, the mixture was placed under steam flow at normal pressure and 650 ° C. for 15 minutes, and immediately subjected to hydrogen treatment at normal pressure and 600 ° C. for 3 minutes. The above carbon treatment and oxidation / reduction treatment were repeated again. The catalyst prepared by these treatments is called catalyst NNACRe. Catalyst NN
ACRe was continuously used in the methane steam reforming reaction under the conditions of 10 bar, 600 ° C., S / C = 3, and space velocity SV 0 = 200000 (1 / h). The activity is expressed as the conversion of methane, and the conversion of methane is 10.10 over 180 hours.
It was stable at 26% and did not change. N of catalyst NNACRe
The lattice constants of i and NiAl 2 O 4 were as follows. Ni NiAl 2 O 4 (unit: nm) Before carbon treatment 0.3523 0.7930 After carbon treatment 0.3525 0.7950 After use 0.3525 0.7950 Increase in lattice constant 0.0002 0.002 Example 2 Normal 6.8 wt% of Ni was supported on α-Al 2 O 3 having a diameter of 5 mm by the impregnation method described above, and the subsequent carbon treatment and oxidation / reduction treatment were performed in the same manner as in Example 1. The catalyst is called catalyst NCRe. This was continuously operated under the same conditions as in Example 1. Methane conversion is 11.21 in 180 hours
From 0.5% to 0.57%. The lattice constant of Ni of the catalyst NCRe was as follows. Comparative Example 1 A catalyst prepared in the same manner as in Example 1 except that the carbon treatment and oxidation / reduction treatment of Example 1 were not performed is referred to as catalyst NNA. This was continuously operated under the same conditions as in Example 1.
Methane conversion rate from 9.18% to 0.41% in 180 hours
Dropped. The lattice constants of Ni and NiAl 2 O 4 of the catalyst NNA were as follows. Ni NiAl 2 O 4 (unit: nm) Before use 0.3523 0.7930 After use 0.3523 0.7932 Increase in lattice constant 0.0 0.0002 Comparative Example 2 Carbon treatment, oxidation / reduction treatment of Example 2 The catalyst prepared in the same manner as in Example 1 except that the reaction was not performed is referred to as catalyst N.
This was continuously operated under the same conditions as in Example 1. The methane conversion dropped from 9.57% to 1.49% in 180 hours. The lattice constant of Ni of the catalyst N was as follows. Example 3 A catalyst prepared in the same manner as in Example 1 except that α-Al 2 O 3 in Example 1 was changed to CaO—Al 2 O 3 was replaced with a catalyst Ca
Called NNACRe. This was continuously operated under the same conditions as in Example 1. Methane conversion rate is 6.73% in 90 hours
From 0.21%. Catalyst CaNNACRe Ni
And the lattice constants of NiAl 2 O 4 were as follows. Ni NiAl 2 O 4 (unit: nm) Before carbon treatment 0.3523 0.7960 After carbon treatment 0.3525 0.7990 After use 0.3525 0.7990 Increase in lattice constant 0.0002 0.0030 Comparative Example 3 Implementation A catalyst prepared in the same manner as in Example 3 except that the carbon treatment and the oxidation / reduction treatment in Example 3 were not performed,
Call. This was continuously operated under the same conditions as in Example 3. Methane conversion from 7.53% to 0.45 in 90 hours
% Decreased. Ni and NiAl 2 O of the catalyst CaNNA
The lattice constant of 4 was as follows. Ni NiAl 2 O 4 (unit: nm) Before carbon treatment 0.3523 0.7960 After use 0.3523 0.7960 Increase in lattice constant 0.0 0.0 Example 4 α-Al 2 O 3 of Example 2 Was changed to CaO-Al 2 O 3 except that the catalyst prepared in the same manner as in Example 2 was replaced with a catalyst Ca
Called NCRe. This was continuously operated under the same conditions as in Example 1. The methane conversion dropped from 8.56% to 0.18% in 90 hours. The lattice constant of Ni of the catalyst CaNCRe was as follows. Comparative Example 4 A catalyst prepared in the same manner as in Example 4 except that the carbon treatment and the oxidation / reduction treatment of Example 4 were not performed is referred to as a catalyst CaN. This was continuously operated under the same conditions as in Example 4.
The methane conversion dropped from 7.83% to 0.76% in 90 hours. The lattice constant of Ni of the catalyst CaN was as follows. Catalyst NNA exemplified by the catalyst of the present invention as one example
CRe (Example 1) showed no decrease in activity over 180 hours. On the other hand, the catalyst NNA (Comparative Example 1) which is a catalyst outside the present invention and exemplified as an example thereof is 1
In 80 hours, the methane conversion dropped by 0.41%. From this, the catalyst of the present invention has greatly improved activity reduction.
In the case of the catalyst NCRe (Example 2) exemplified as one example of the catalyst of the present invention, the activity of methane conversion decreased by only 0.57% in 180 hours. On the other hand, the catalyst N (Comparative Example 2), which is an example of the catalyst other than the present invention, showed a decrease in the methane conversion of 1.49% in 180 hours. Further, in the catalyst of the present invention,
Catalyst CaNNACRe exemplified as an example (Example 3)
Showed a decrease in activity of only 0.21% in 90 hours. On the other hand, a catalyst CaNNA (Comparative Example 3), which is a catalyst outside the present invention and exemplified as an example thereof, has a capacity of 90%.
Over time, the methane conversion decreased by 0.45%. Further, the catalyst of the present invention, a catalyst CaNCR exemplified as an example thereof,
In e (Example 4), the activity was reduced by only 0.18% in 90 hours. In contrast, the catalyst CaN (Comparative Example 4), which is a catalyst outside the present invention and is exemplified as an example, showed a decrease in methane conversion of 0.76% in 90 hours. As described above, it was found that the catalyst of the present invention was a catalyst in which the decrease in activity was significantly improved.

【0020】[0020]

【発明の効果】本発明の改良された炭化水素用水蒸気改
質触媒によれば、以下に記載の効果がある。 (1) 触媒の活性低下が改善された為、長時間運転後も初
期の活性が維持され、従来活性低下時に行っていた加熱
温度を上げる必要がなくなり、大きな省エネルギーが達
成された。 (2) 長時間初期の活性が維持されるので、触媒交換の頻
度が低減し、触媒交換に要する労力が軽減できた。
According to the improved steam reforming catalyst for hydrocarbons of the present invention, the following effects can be obtained. (1) Since the decrease in the activity of the catalyst was improved, the initial activity was maintained even after a long operation, and it was not necessary to increase the heating temperature, which was conventionally performed when the activity was reduced, and large energy savings were achieved. (2) Since the initial activity is maintained for a long time, the frequency of catalyst replacement is reduced, and the labor required for catalyst replacement can be reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 活性成分Niがα−Al23 担体に担
持され、該活性成分Niの一部が前記担体と化合物Ni
Al24 を形成し、前記NiおよびNiAl24 のい
ずれの成分にも炭素が含有された触媒であって、前記い
ずれの成分にも炭素が含有される前のものと比べて、該
触媒のNiの格子定数およびNiAl24 の格子定数
が増加したことを特徴とする改良された炭化水素用水蒸
気改質触媒。
1. An active ingredient Ni is carried on an α-Al 2 O 3 carrier, and a part of the active ingredient Ni is mixed with the carrier Ni.
A catalyst that forms Al 2 O 4 and contains carbon in both components of Ni and NiAl 2 O 4 , wherein the catalyst is compared with a catalyst before containing carbon in both components. An improved steam reforming catalyst for hydrocarbons, characterized in that the Ni lattice constant and NiAl 2 O 4 lattice constant of the catalyst are increased.
【請求項2】 活性成分NiがCaO−Al23 担体
に担持され、該活性成分Niの一部が前記担体と化合物
NiAl24 を形成し、前記NiおよびNiAl24
のいずれの成分にも炭素が含有された触媒であって、前
記いずれの成分にも炭素が含有される前のものと比べ
て、該触媒のNiの格子定数およびNiAl24 の格
子定数が増加したことを特徴とする改良された炭化水素
用水蒸気改質触媒。
2. The active ingredient Ni is supported on a CaO—Al 2 O 3 carrier, and a part of the active ingredient Ni forms a compound NiAl 2 O 4 with the carrier, and the Ni and NiAl 2 O 4
Is a catalyst in which carbon is contained in any of the components, and the lattice constant of Ni and the lattice constant of NiAl 2 O 4 of the catalyst are lower than those before carbon is contained in any of the components. An improved steam reforming catalyst for hydrocarbons, characterized by an increase.
【請求項3】 Niの格子定数の増加が0.0001nm以上0.
0008nm以下であり、NiAl24 の格子定数の増加
が、 0.001nm以上 0.005nm以下であることを特徴とする
請求項1又は2に記載の改良された炭化水素用水蒸気改
質触媒。
3. An increase in the lattice constant of Ni of 0.0001 nm or more.
The improved steam reforming catalyst for hydrocarbons according to claim 1 or 2, wherein the increase in the lattice constant of NiAl 2 O 4 is 0.001 nm or more and 0.005 nm or less.
【請求項4】 活性成分Niがα−Al23 担体に担
持され、該活性成分Niに炭素が含有された触媒であっ
て、該活性成分Niに炭素が含有される前のものと比べ
て、該触媒のNiの格子定数が増加したことを特徴とす
る改良された炭化水素用水蒸気改質触媒。
4. A catalyst in which an active component Ni is supported on an α-Al 2 O 3 carrier and the active component Ni contains carbon, as compared with a catalyst before the active component Ni contains carbon. An improved steam reforming catalyst for hydrocarbons, characterized in that the lattice constant of Ni of the catalyst has been increased.
【請求項5】 活性成分NiがCaO−Al23 担体
に担持され、該活性成分Niに炭素が含有された触媒で
あって、該活性成分Niに炭素が含有される前のものと
比べて、該触媒のNiの格子定数が増加したことを特徴
とする改良された炭化水素用水蒸気改質触媒。
5. A catalyst in which an active ingredient Ni is supported on a CaO—Al 2 O 3 carrier, and the active ingredient Ni contains carbon, compared to a catalyst before the active ingredient Ni contains carbon. An improved steam reforming catalyst for hydrocarbons, characterized in that the lattice constant of Ni of the catalyst has been increased.
【請求項6】 Niの格子定数の増加が0.0001nm以上0.
0008nm以下であることを特徴とする請求項4又は5に記
載の改良された炭化水素用水蒸気改質触媒。
6. An increase in lattice constant of Ni of 0.0001 nm or more.
The improved steam reforming catalyst for hydrocarbons according to claim 4 or 5, wherein the catalyst has a diameter of 0008 nm or less.
【請求項7】 活性成分が触媒中にNiとして3〜20
wt%含有されることを特徴とする請求項1〜6のいず
れか1項記載の改良された炭化水素用水蒸気改質触媒。
7. The catalyst according to claim 1, wherein the active ingredient is 3 to 20 as Ni in the catalyst.
The improved steam reforming catalyst for hydrocarbons according to any one of claims 1 to 6, wherein the catalyst is contained by wt%.
JP11081669A 1998-07-10 1999-03-25 Improved steam reforming catalyst for hydrocarbons Expired - Fee Related JP3135539B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11081669A JP3135539B2 (en) 1998-07-10 1999-03-25 Improved steam reforming catalyst for hydrocarbons
US09/382,151 US6261991B1 (en) 1999-03-25 1999-08-24 Steam-reforming catalyst for hydrocarbons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19534298 1998-07-10
JP10-195342 1998-07-10
JP11081669A JP3135539B2 (en) 1998-07-10 1999-03-25 Improved steam reforming catalyst for hydrocarbons

Publications (2)

Publication Number Publication Date
JP2000079340A true JP2000079340A (en) 2000-03-21
JP3135539B2 JP3135539B2 (en) 2001-02-19

Family

ID=26422673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081669A Expired - Fee Related JP3135539B2 (en) 1998-07-10 1999-03-25 Improved steam reforming catalyst for hydrocarbons

Country Status (1)

Country Link
JP (1) JP3135539B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647309B1 (en) 2005-01-21 2006-11-23 삼성에스디아이 주식회사 Support for fuel gas reforming catalyst with excellent heat and mass transfer characteristics and manufacturing method thereof
EP1829821A1 (en) * 2006-03-01 2007-09-05 Enea-Ente Per Le Nuove Tecnologie, L'Energia e L'Ambiente Membrane process for hydrogen production from reforming of organic products, such as hydrocarbons or alcohols
JP2019172539A (en) * 2018-03-29 2019-10-10 太平洋マテリアル株式会社 Calcium aluminate powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647309B1 (en) 2005-01-21 2006-11-23 삼성에스디아이 주식회사 Support for fuel gas reforming catalyst with excellent heat and mass transfer characteristics and manufacturing method thereof
EP1829821A1 (en) * 2006-03-01 2007-09-05 Enea-Ente Per Le Nuove Tecnologie, L'Energia e L'Ambiente Membrane process for hydrogen production from reforming of organic products, such as hydrocarbons or alcohols
JP2019172539A (en) * 2018-03-29 2019-10-10 太平洋マテリアル株式会社 Calcium aluminate powder
JP7040978B2 (en) 2018-03-29 2022-03-23 太平洋マテリアル株式会社 Calcium aluminate powder

Also Published As

Publication number Publication date
JP3135539B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
RU2476267C2 (en) Composite oxide of catalyst of reforming of hydrocarbons, method of its obtaining and method of obtaining synthesis-gas with its application
EP0558346B1 (en) Silver catalyst for production of ethylene oxide
JP3394248B2 (en) Zeolite L
JP4316323B2 (en) Hydrocarbon reforming catalyst and method for producing the same
US20080032887A1 (en) Nickel on Strontium-Doped Calcium Aluminate Catalyst for Reforming
EP1611072B1 (en) Palladium-based catalyst for selective hydrogenation of acetylene
EP1732688B1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
EP0327177B1 (en) A catalyst-on-carrier for the non-selective oxidation of organic compounds, a process for the non-selective oxidation of, in particular, organic compounds
KR20010080035A (en) Impregnation process for catalysts
EA019236B1 (en) Method for activating strengthened iron catalyst for slurry reactors
US5773589A (en) Steam reforming catalysts for lower hydrocarbons
JP2004000900A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2001149780A (en) Method for manufacturing ammonia and ammonia synthesizing gas
KR20170003781A (en) Preparation method of catalyst comprising a ruthenium-contained catalyst layer formed on the body surface
EP1449581B1 (en) Catalyst for steam reforming containing nickel, magnesium and aluminium, process for producing the catalyst, and process for producing hydrogen using the catalyst
JP2000000469A (en) Nickel based catalyst for reforming and production of synthetic gas using the same
JP2003225566A (en) Catalyst for decomposing hydrocarbon and production method therefor
EP2198960A1 (en) Catalyst for hydrocarbon reforming and process for producing synthesis gas with the same
KR20010101612A (en) Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
JPS6232972B2 (en)
JP3050558B2 (en) Catalyst support material and method for producing such support material
JP3135539B2 (en) Improved steam reforming catalyst for hydrocarbons
US6261991B1 (en) Steam-reforming catalyst for hydrocarbons
JPH0459052A (en) Catalyst for steam reforming
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees