JP2000077098A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2000077098A
JP2000077098A JP10242729A JP24272998A JP2000077098A JP 2000077098 A JP2000077098 A JP 2000077098A JP 10242729 A JP10242729 A JP 10242729A JP 24272998 A JP24272998 A JP 24272998A JP 2000077098 A JP2000077098 A JP 2000077098A
Authority
JP
Japan
Prior art keywords
solvent
electrolyte
sulfolane
formula
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10242729A
Other languages
Japanese (ja)
Other versions
JP4281030B2 (en
Inventor
Seijiro Ochiai
誠二郎 落合
Aya Kobayashi
亜矢 小林
Tokuo Inamasu
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP24272998A priority Critical patent/JP4281030B2/en
Publication of JP2000077098A publication Critical patent/JP2000077098A/en
Application granted granted Critical
Publication of JP4281030B2 publication Critical patent/JP4281030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high safety and high reliability. SOLUTION: Aluminum or an aluminum alloy is used as a positive current collector, and an electrolyte or a polymer gel electrolyte contains at least one of compounds represented by formula I, formula II and formula III, and a solvent having structure analogous to sulfolane or sultone is used as the main solvent to form a nonaqueous electrolyte battery. Formula I: LiOS2Rf1, formula II: LiN(SO2Rf2)(SO2Rf3), and formula III: LiC(SO2Rf4)(SO2Rf5)(SO2Rf6). (In formulas, Rf1-6 are -F, -CkF2k+1, -OCmH2mCn, k=1-5, m=1 or 2, and n=1-5).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池、リ
チウムイオン電池等の非水電解質電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery such as a lithium battery and a lithium ion battery.

【0002】[0002]

【従来の技術】近年の携帯用電子機器の小型化に伴い、
高エネルギー密度を有するリチウム二次電池の需要が増
大している。また、電気自動車用等の大型電池への応用
も期待されており、これらの研究開発において、高エネ
ルギー密度化や大容量化の技術や安全性向上の技術の確
立は不可欠である。現在、新しい支持電解質の開発がリ
チウム二次電池の安全性および信頼性の観点から必要に
なってきている。なぜならば、リチウム二次電池の支持
電解質として最も多く用いられているLiPF6は熱的
および化学的に安定であるとはいえず、新規支持電解質
を用いることにより、リチウム二次電池における安全性
および信頼性の改善、さらに充放電特性の改善が期待さ
れるからである。
2. Description of the Related Art With the recent miniaturization of portable electronic devices,
Demand for lithium secondary batteries having high energy density is increasing. In addition, application to large batteries for electric vehicles and the like is also expected, and in these research and development, establishment of technologies for increasing energy density and capacity and for improving safety are indispensable. At present, development of a new supporting electrolyte is required from the viewpoint of safety and reliability of a lithium secondary battery. This is because LiPF 6, which is most frequently used as a supporting electrolyte for lithium secondary batteries, is not thermally and chemically stable, and by using a new supporting electrolyte, safety and safety in lithium secondary batteries can be improved. This is because improvement in reliability and further improvement in charge / discharge characteristics are expected.

【0003】[0003]

【発明が解決しようとする課題】LiPF6 に変わる支
持電解質として、LiCF3 SO3 やLiN( SO2
3 2 (LiTFSI)に代表される含フッ素有機物
アニオンからなる支持電解質が期待されている。LiC
3 SO3 やLiTFSIはLiPF6 に比較して熱的
および化学的に安定であり、リチウム二次電池において
優れた特性を示すと考えられる。しかしながら、これら
含フッ素有機物アニオンを含む支持電解質を用いた場合
の問題点として、アルミニウム(Al)集電体の溶出が
挙げられる。例えば、プロピレンカーボネートやエチレ
ンカーボネートとジメチルカーボネート等の低粘度溶媒
との混合溶媒にLiPF6 を溶解した電解液中において
Al金属は、リチウムの標準電極電位に対して4Vの電
位を印加した場合においても安定に存在する。しかしな
がら、前記混合溶媒にLiCF3 SO3 やLiTFSI
を溶解した電解液中においてAl金属は、リチウムの標
準電極電位に対し4Vの電位を印加すると酸化電流が観
測され、Alが溶出していると考えられる。Al金属は
非常に軽量であり、かつ安価であるため、広くリチウム
二次電池の集電体として用いられてきており、Alの溶
出を抑制することがこれら含フッ素有機物アニオンから
なる支持電解質実用化における最大の課題である。
As supporting electrolytes replacing LiPF 6 , LiCF 3 SO 3 and LiN (SO 2 C
A supporting electrolyte comprising a fluorine-containing organic anion represented by F 3 ) 2 (LiTFSI) is expected. LiC
F 3 SO 3 and LiTFSI are thermally and chemically stable compared to LiPF 6 , and are considered to exhibit excellent characteristics in a lithium secondary battery. However, a problem when using a supporting electrolyte containing these fluorine-containing organic anions is elution of an aluminum (Al) current collector. For example, in an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of propylene carbonate or ethylene carbonate and a low-viscosity solvent such as dimethyl carbonate, Al metal is applied even when a potential of 4 V is applied to a standard electrode potential of lithium. Present stably. However, the mixed solvent may be LiCF 3 SO 3 or LiTFSI
When an electric potential of 4 V with respect to the standard electrode potential of lithium is applied to the Al metal in the electrolytic solution in which is dissolved, an oxidation current is observed, and it is considered that Al is eluted. Since Al metal is extremely lightweight and inexpensive, it has been widely used as a current collector for lithium secondary batteries, and it is important to suppress the elution of Al to use a supporting electrolyte composed of these fluorine-containing organic anions. Is the biggest challenge in

【0004】電解液中のAlの溶出において支持電解質
の及ぼす影響については明確ではないが、金村らによっ
て支持電解質の安定性が指摘されている(第28回新電
池構想部会講演会予稿集p.1)。LiPF6 を用いた
電解液中において5V(vs.Li/Li+ )でアノー
ド分極した後のAl電極表面には酸化物やフッ化物の存
在が確認され、XPS(光電子分光)による深さ分析の
プロファイルから被膜の主成分がAlF3 に変化してい
るのに対し、LiCF3 SO3 を用いた場合においては
O元素が多く、比較的F元素が少ない。また、アノード
酸化処理を行う前と同様のスペクトルが処理後に観測さ
れていることから、Al金属表面に生成する酸化物およ
びフッ化物の不働態被膜の有無あるいは性質がAl電極
の安定性に関係すると報告されている。LiCF3 SO
3 は安定であるためにAl表面に不働態被膜を生成せ
ず、LiPF6 は分解することによりAl表面に不働態
被膜を生成し、Al金属を安定化していると考えられ
る。
Although the effect of the supporting electrolyte on the elution of Al in the electrolytic solution is not clear, Kanamura et al. Pointed out the stability of the supporting electrolyte (see p. 1). After anodic polarization at 5 V (vs. Li / Li + ) in an electrolyte using LiPF 6 , the presence of oxides and fluorides was confirmed on the surface of the Al electrode, and depth analysis by XPS (photoelectron spectroscopy) was performed. While the main component of the film changes from the profile to AlF 3 , when LiCF 3 SO 3 is used, the O element is large and the F element is relatively small. Further, since the same spectrum as before the anodic oxidation treatment was observed after the treatment, it was concluded that the presence or nature of the passive film of oxide and fluoride formed on the Al metal surface is related to the stability of the Al electrode. It has been reported. LiCF 3 SO
It is considered that No. 3 is stable and does not generate a passive film on the Al surface, and LiPF 6 decomposes to form a passive film on the Al surface to stabilize the Al metal.

【0005】LiCF3 SO3 やLiTFSI等の支持
電解質を用いた場合におけるAlの溶出は、Fの供給が
なく、Al金属表面に不働態被膜が生成されないためで
あるとの見解より、添加剤の検討が行われている。一例
として、HF水溶液の添加が挙げられ、十分ではないが
Alの溶出が若干、抑制されることが確認されている。
しかしながら、このようなフッ素被膜を形成するような
添加剤は電池における充放電特性への影響が懸念され
る。
[0005] The elution of Al when using a supporting electrolyte such as LiCF 3 SO 3 or LiTFSI is based on the view that no F is supplied and no passive film is formed on the Al metal surface. Considerations are being made. One example is the addition of an aqueous HF solution, and although not sufficient, it has been confirmed that the elution of Al is slightly suppressed.
However, there is a concern that an additive that forms such a fluorine film may affect the charge and discharge characteristics of the battery.

【0006】そこで、含フッ素有機物アニオンを改良し
たLiN( SO2 2 5 2 やLiN( SO2
3 )( SO2 4 9 )等の支持電解質が提案されて
いる。これらの支持電解質は被膜形成による安定化とは
異なるメカニズムによってAlの溶出を抑制していると
考えられる。このメカニズムについては明確ではない
が、アニオンのサイズが影響している可能性がある。L
iCF3 SO3 やLiTFSIに比較して、これらの支
持電解質におけるアニオンのサイズは大きく、電荷密度
が低いと予想される。これによりAlを溶出する能力が
低下すると考えられる。あるいは、フルオロアルキル鎖
が長くなることにより立体障害的効果が現れている可能
性もある。しかしながら、アニオンのサイズが大きいほ
どAlの溶出抑制効果が大きいが、アニオンのサイズが
大きくなることにより移動度の低下が起こり、イオン伝
導度が低下するという問題点が残されている。
Therefore, LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 C
Supporting electrolytes such as F 3 ) (SO 2 C 4 F 9 ) have been proposed. It is considered that these supporting electrolytes suppress the elution of Al by a mechanism different from the stabilization by film formation. Although the mechanism is not clear, the size of the anion may have an effect. L
Compared to iCF 3 SO 3 and LiTFSI, it is expected that the size of the anion in these supporting electrolytes is large and the charge density is low. It is considered that this reduces the ability to elute Al. Alternatively, the steric hindrance effect may have appeared due to the longer fluoroalkyl chain. However, as the size of the anion is larger, the effect of suppressing the elution of Al is greater. However, there is a problem that the mobility of the anion increases due to the increase in the size of the anion, and the ion conductivity decreases.

【0007】[0007]

【課題を解決するための手段】本発明では上述の含フッ
素有機物アニオンを含む支持電解質を含む電解液あるい
は高分子ゲル電解質にアクセプター数が18.3よりも
大きな値を示す溶媒、具体的にはスルホラン又はスルト
ンに類似する構造を有する溶媒を加えることにより、A
lの溶出を抑制することが可能となる。よって、熱的お
よび化学的に安定な支持電解質を用いることにより、安
全性および信頼性の高いリチウム二次電池を得ることが
できる。
In the present invention, a solvent having an acceptor number larger than 18.3 in an electrolyte solution containing a supporting electrolyte containing a fluorine-containing organic anion or a polymer gel electrolyte, specifically, By adding a solvent having a structure similar to sulfolane or sultone, A
1 can be suppressed. Therefore, by using a thermally and chemically stable supporting electrolyte, a highly safe and reliable lithium secondary battery can be obtained.

【0008】アクセプター数はV.GultmannによってThe
Donor-Acceptor Approch to Molecular Interactions,
Plenum Press(1978)で報告されている。Gultmannはアク
セプター数を1,2−ジクロロエタン中でその溶媒とト
リエチルホスフィンオキシドによって形成された付加物
の31P−NMRの化学シフトを用いて示しており、(C
2 5 )PO:SbCl5 の化学シフトを100として
他の(C2 5 )PO:アクセプター溶媒の化学シフト
をアクセプター数(AN)と定義した。よって、ANの
値が大きい溶媒ほど強くアニオンに配位すると予想され
る。即ち、電解液あるいは高分子ゲル電解質中で、溶媒
が含フッ素有機物アニオンに強く配位することによりA
lの溶出を抑制する効果があると考えられる。
The number of acceptors was determined by V. Gultmann
Donor-Acceptor Approch to Molecular Interactions,
Plenum Press (1978). Gultmann shows the acceptor number using 31 P-NMR chemical shifts of the adduct formed by the solvent and triethylphosphine oxide in 1,2-dichloroethane, (C
2 H 5) PO: SbCl other chemical shifts of 5 as 100 (C 2 H 5) PO : defines the chemical shift of the acceptor solvent acceptor number and (AN). Therefore, it is expected that a solvent having a larger value of AN is more strongly coordinated to the anion. That is, in the electrolytic solution or the polymer gel electrolyte, the solvent is strongly coordinated to the fluorine-containing organic anion, so that A
It is considered that there is an effect of suppressing the elution of l.

【0009】アクセプター数が18.3より大きな値を
示す溶媒としてはジメチルホルムアミドなどのアミド
類、アセトニトリルなどのニトリル類等が挙げられる
が、リチウム二次電池に使用できる溶媒は多くなく、こ
れらのうちスルホラン又はスルトンに類似する構造を有
する溶媒において良好な電池特性が得られた。
Examples of the solvent having an acceptor number larger than 18.3 include amides such as dimethylformamide and nitriles such as acetonitrile. However, there are not many solvents which can be used for lithium secondary batteries. Good battery characteristics were obtained in a solvent having a structure similar to sulfolane or sultone.

【0010】[0010]

【発明の実施の形態】以下、本発明における非水電解質
電池について説明する。図1はAlの腐食を評価するた
めに用いたサイクリックボルタンメトリー用の評価セル
である。aは作用極であり、1cm2 のAl箔を用い
る。bおよびcはそれぞれ対極、参照極であり、共にニ
ッケル板にリチウムを圧着したものである。dは非水電
解質であり、非水溶媒にリチウム塩を溶解した非水電解
液、あるいは非水溶媒、リチウム塩および高分子の複合
材料である高分子ゲル電解質を用いる。評価条件は30
℃雰囲気、電位掃引速度0.1mV/sで行う。 (実施例1)非水電解液として、LiTFSIを1mo
l/lの濃度で溶解したスルホランを用いた。図1のセ
ルを用いてこの電解液のサイクリックボルタンメトリー
測定を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-aqueous electrolyte battery according to the present invention will be described below. FIG. 1 shows an evaluation cell for cyclic voltammetry used for evaluating the corrosion of Al. a is a working electrode, and an Al foil of 1 cm 2 is used. b and c are a counter electrode and a reference electrode, respectively, both of which are obtained by pressing lithium on a nickel plate. d is a non-aqueous electrolyte, and uses a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, or a polymer gel electrolyte which is a composite material of a non-aqueous solvent, a lithium salt and a polymer. Evaluation condition is 30
C. atmosphere, at a potential sweep rate of 0.1 mV / s. (Example 1) 1 mol of LiTFSI was used as a non-aqueous electrolyte.
Sulfolane dissolved at a concentration of 1 / l was used. Cyclic voltammetry measurement of this electrolyte was performed using the cell of FIG.

【0011】(比較例1)非水電解液として、LiTF
SIを1mol/lの濃度で溶解したγ−ブチロラクト
ンを用い、図1のセルを用いてこの電解液のサイクリッ
クボルタンメトリー測定を行った。
Comparative Example 1 LiTF was used as a non-aqueous electrolyte.
Using γ-butyrolactone in which SI was dissolved at a concentration of 1 mol / l, cyclic voltammetry measurement of this electrolytic solution was performed using the cell of FIG.

【0012】図2に実施例1および比較例1のサイクリ
ックボルタンメトリー測定の結果を示す。比較例1で見
られる3.7V以上での酸化電流が実施例1では観測さ
れず、実施例1でAlの溶出が抑制されていることが確
認された。しかしながら、実施例1における電解液はイ
オン伝導度が低いため、スルホランと他の溶媒との混合
溶媒を用いる必要がある。混合に用いる溶媒にはエチレ
ンカーボネートやプロピレンカーボネート等の環状炭酸
エステル、γ−ブチロラクトン等の環状カルボン酸エス
テル、テトラヒドロフランや1,3−ジオキソラン等の
環状エーテル、1,2−ジメトキシエタン等の鎖状エー
テル、ジメチルカーボネートやエチルメチルカーボネー
ト等の鎖状炭酸エステル、プロピオン酸メチル等の鎖状
カルボン酸エステルなどが挙げられるが、これに限定さ
れるものではなく、また、2種類以上を混合することも
可能である。
FIG. 2 shows the results of cyclic voltammetry measurements of Example 1 and Comparative Example 1. The oxidation current at 3.7 V or more observed in Comparative Example 1 was not observed in Example 1, and it was confirmed that the elution of Al was suppressed in Example 1. However, since the electrolyte in Example 1 has low ionic conductivity, it is necessary to use a mixed solvent of sulfolane and another solvent. Examples of the solvent used for mixing include cyclic carbonates such as ethylene carbonate and propylene carbonate, cyclic carboxylic esters such as γ-butyrolactone, cyclic ethers such as tetrahydrofuran and 1,3-dioxolan, and chain ethers such as 1,2-dimethoxyethane. Chain carbonates such as dimethyl carbonate and ethyl methyl carbonate, and chain carboxylate such as methyl propionate, but are not limited thereto, and two or more kinds can be mixed. It is.

【0013】(実施例2)γ−ブチロラクトンとスルホ
ランを重量比1:4で混合した後、LiTFSIを1m
ol/lの濃度で溶解して電解液を調製した。図1のセ
ルを用いてこの電解液のサイクリックボルタンメトリー
測定を行った。
(Example 2) After mixing γ-butyrolactone and sulfolane at a weight ratio of 1: 4, 1 m
The solution was dissolved at a concentration of ol / l to prepare an electrolytic solution. Cyclic voltammetry measurement of this electrolyte was performed using the cell of FIG.

【0014】(実施例3)γ−ブチロラクトンとスルホ
ランを重量比2:3で混合した後、LiTFSIを1m
ol/lの濃度で溶解して電解液を調製した。図1のセ
ルを用いてこの電解液のサイクリックボルタンメトリー
測定を行った。
Example 3 After mixing γ-butyrolactone and sulfolane at a weight ratio of 2: 3, 1 m of LiTFSI was added.
The solution was dissolved at a concentration of ol / l to prepare an electrolytic solution. Cyclic voltammetry measurement of this electrolyte was performed using the cell of FIG.

【0015】(比較例2)非水電解液として、LiBF
4 を1mol/lの濃度で溶解したγ−ブチロラクトン
を用い、図1のセルを用いてこの電解液のサイクリック
ボルタンメトリー測定を行った。
Comparative Example 2 LiBF was used as the non-aqueous electrolyte.
Using γ-butyrolactone in which 4 was dissolved at a concentration of 1 mol / l, cyclic voltammetry of this electrolytic solution was performed using the cell of FIG.

【0016】図3に実施例1、2、3および比較例2の
サイクリックボルタンメトリー測定の結果を示す。γ−
ブチロラクトンの含有量が増加するにつれ、3.8V以
上での酸化電流値の増加が確認された。しかしながら、
酸化ピーク電流値は図2の比較例1よりも約1/100
と小さく、Alの溶出が抑制されていることが確認され
た。
FIG. 3 shows the results of cyclic voltammetry measurements of Examples 1, 2, and 3 and Comparative Example 2. γ-
As the butyrolactone content increased, an increase in the oxidation current value at 3.8 V or higher was confirmed. However,
The oxidation peak current value is about 1/100 that of Comparative Example 1 in FIG.
It was confirmed that the elution of Al was suppressed.

【0017】(実施例4および5)ジメチルカーボネー
トとスルホランをそれぞれ重量比で1:4および2:3
で混合した後、LiTFSIを1mol/lの濃度で溶
解して電解液を調製した。表1に実施例1、2、3、4
および5の電解液を用いて20℃におけるイオン伝導度
を測定した結果を示す。γ−ブチロラクトンあるいはジ
メチルカーボネートを加えることによりイオン伝導度の
向上が確認された。
Examples 4 and 5 Dimethyl carbonate and sulfolane were used in a weight ratio of 1: 4 and 2: 3, respectively.
Then, LiTFSI was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. Table 1 shows Examples 1, 2, 3, and 4
5 shows the results of measuring the ionic conductivity at 20 ° C. using the electrolyte solutions of Examples 5 and 5. It was confirmed that the addition of γ-butyrolactone or dimethyl carbonate improved the ionic conductivity.

【0018】[0018]

【表1】 [Table 1]

【0019】また、高分子と実施例1〜5のような電解
液との複合体である高分子ゲル電解質においても同様な
Alの溶出が抑制されていることが確認された。以下、
高分子ゲル電解質を用いた電池について説明する。図4
は評価に用いた電池であり、1はAl集電体、2は正極
活物質、3は高分子ゲル電解質、4は負極活物質、5は
負極集電体、6は外装を示す。
It was also confirmed that similar elution of Al was suppressed in the polymer gel electrolyte which was a composite of the polymer and the electrolytic solution as in Examples 1 to 5. Less than,
A battery using a polymer gel electrolyte will be described. FIG.
Denotes a battery used for evaluation, 1 denotes an Al current collector, 2 denotes a positive electrode active material, 3 denotes a polymer gel electrolyte, 4 denotes a negative electrode active material, 5 denotes a negative electrode current collector, and 6 denotes an exterior.

【0020】(実施例6)高分子ゲル電解質として、ポ
リエーテル、LiTFSI、γ−ブチロラクトンおよび
スルホランからなる複合材料を用い、図4で示される電
池を用いて充放電サイクル試験を行った。γ−ブチロラ
クトンとスルホランの混合比は重量比で2:3とした。
正極活物質としてはLiCoO2 、負極活物質にはカー
ボンを用いた。充放電は1mAの電流値で2.7〜4.
2Vの範囲で行った。
Example 6 A charge / discharge cycle test was performed using a battery shown in FIG. 4 using a composite material composed of polyether, LiTFSI, γ-butyrolactone and sulfolane as a polymer gel electrolyte. The mixing ratio of γ-butyrolactone and sulfolane was 2: 3 by weight.
LiCoO 2 was used as the positive electrode active material, and carbon was used as the negative electrode active material. Charging / discharging is performed at a current value of 1 mA from 2.7 to 4.
The test was performed in the range of 2V.

【0021】(比較例3)高分子ゲル電解質として、ポ
リエーテル、LiTFSI、γ−ブチロラクトンからな
る複合材料を用い、図4で示される電池を用いて充放電
サイクル試験を行った。正極活物質としてはLiCoO
2 、負極活物質にはカーボンを用いた。充放電は1mA
の電流値で2.7〜4.2Vの範囲で行った。
Comparative Example 3 A charge / discharge cycle test was carried out using a battery shown in FIG. 4 by using a composite material composed of polyether, LiTFSI, and γ-butyrolactone as a polymer gel electrolyte. LiCoO as the positive electrode active material
2. Carbon was used as the negative electrode active material. Charge and discharge is 1mA
At a current value of 2.7 to 4.2 V.

【0022】実施例6および比較例3における充放電サ
イクル試験の結果を図5に示す。比較例3では1サイク
ル目から放電容量が低く、電池の解体後Alの腐食が確
認されたのに対し、実施例6では初期サイクルより高い
放電容量が得られ、サイクルを繰り返すことによる容量
劣化も小さい結果となった。また、電池の解体後Alの
腐食は確認されなかった。
FIG. 5 shows the results of the charge / discharge cycle test in Example 6 and Comparative Example 3. In Comparative Example 3, the discharge capacity was low from the first cycle, and corrosion of Al was confirmed after dismantling of the battery. On the other hand, in Example 6, a higher discharge capacity was obtained than in the initial cycle, and capacity deterioration due to repeated cycles was also observed. The result was small. Further, no corrosion of Al was confirmed after dismantling of the battery.

【0023】[0023]

【発明の効果】以上説明したように、化1、化2あるい
は化3で示されるフッ素有機物アニオンからなる支持電
解質を用いた非水電解液あるいは高分子ゲル電解質にお
いて、スルホラン又はスルトンに類似する構造を有する
溶媒を含有することにより、リチウム電池の集電体に用
いられるAlの腐食が抑制される。したがって、LiP
6 やLiBF4 に比較して熱的および化学的に安定で
ある含フッ素有機物アニオンからなるリチウム塩を用い
ることにより、安全性および信頼性に優れた二次電池を
提供できる。
As described above, the structure similar to sulfolane or sultone in a non-aqueous electrolyte or a polymer gel electrolyte using a supporting electrolyte comprising a fluorine organic anion represented by Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3 By containing a solvent having the following formula, corrosion of Al used for the current collector of the lithium battery is suppressed. Therefore, LiP
By using a lithium salt composed of a fluorine-containing organic anion that is more thermally and chemically stable than F 6 and LiBF 4 , a secondary battery excellent in safety and reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】サイクリックボルタンメトリー測定用セルの斜
視図である。
FIG. 1 is a perspective view of a cell for cyclic voltammetry measurement.

【図2】各種電解液を用いた場合におけるAl極のサイ
クリックボルタモグラムの比較図である。
FIG. 2 is a comparison diagram of a cyclic voltammogram of an Al electrode when various electrolytic solutions are used.

【図3】各種電解液を用いた場合におけるAl極のサイ
クリックボルタモグラムの比較図である。
FIG. 3 is a comparison diagram of a cyclic voltammogram of an Al electrode when various electrolytic solutions are used.

【図4】評価に用いた電池の断面図である。FIG. 4 is a cross-sectional view of a battery used for evaluation.

【図5】充放電サイクル試験におけるサイクル数と放電
容量との関係図である。
FIG. 5 is a relationship diagram between the number of cycles and a discharge capacity in a charge / discharge cycle test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/16 H01M 6/16 A Fターム(参考) 4C023 AA01 5H017 AA03 AS02 CC03 EE05 5H024 AA01 CC04 DD15 EE01 FF23 GG00 HH01 5H029 AJ12 AJ13 AK03 AL06 AM00 AM16 DJ07 DJ09 EJ01 EJ11 HJ01 HJ02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 6/16 H01M 6/16 A F term (Reference) 4C023 AA01 5H017 AA03 AS02 CC03 EE05 5H024 AA01 CC04 DD15 EE01 FF23 GG00 HH01 5H029 AJ12 AJ13 AK03 AL06 AM00 AM16 DJ07 DJ09 EJ01 EJ11 HJ01 HJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムあるいはアルミニウム合金
を正極の集電体とする電池において、電解液あるいは高
分子ゲル電解質が、化1、化2あるいは化3で示される
化合物のうち少なくとも一つを含み、且つスルホラン又
はスルトンに類似する構造を有する溶媒を主溶媒とする
ことを特徴とする非水電解質電池。 【化1】 【化2】 【化3】 (式中Rf1〜6は−F、−Ck 2k+1、−OCm 2m
n 2n+1であり、k=1〜5、m=1あるいは2、n
=1〜5である。)
1. A battery using aluminum or an aluminum alloy as a positive electrode current collector, wherein the electrolytic solution or the polymer gel electrolyte contains at least one of the compounds represented by Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3, and A non-aqueous electrolyte battery comprising, as a main solvent, a solvent having a structure similar to sulfolane or sultone. Embedded image Embedded image Embedded image (Wherein Rf1~6 is -F, -C k F 2k + 1 , -OC m H 2m
C n F 2n + 1 , k = 1 to 5, m = 1 or 2, n
= 1-5. )
【請求項2】 前記スルホラン又はスルトンに類似する
構造を有する溶媒の全溶媒中における含有量が、重量部
で60%以上であることを特徴とする請求項1記載の非
水電解質電池。
2. The nonaqueous electrolyte battery according to claim 1, wherein the content of the solvent having a structure similar to sulfolane or sultone in all solvents is 60% or more by weight.
【請求項3】 前記スルホラン又はスルトンに類似する
構造を有する溶媒が、化4および/または化5で示され
る化合物であることを特徴とする請求項1記載の非水電
解質電池。 【化4】 【化5】 (式中R1〜14は、−Hまたは−CH3 である。)
3. The non-aqueous electrolyte battery according to claim 1, wherein the solvent having a structure similar to sulfolane or sultone is a compound represented by Chemical Formula 4 and / or Chemical Formula 5. Embedded image Embedded image (Wherein R1~14 is -H or -CH 3.)
JP24272998A 1998-08-28 1998-08-28 Non-aqueous electrolyte battery Expired - Fee Related JP4281030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24272998A JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24272998A JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000077098A true JP2000077098A (en) 2000-03-14
JP4281030B2 JP4281030B2 (en) 2009-06-17

Family

ID=17093388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24272998A Expired - Fee Related JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4281030B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208437A (en) * 2001-01-09 2002-07-26 Mitsui Chemicals Inc Polymer solid electrolyte, and secondary cell using the same
JP2002305028A (en) * 2001-04-04 2002-10-18 Nissan Motor Co Ltd Manufacturing method of solid polyelectrolytic battery and solid polyelectrolyte
JP2005228631A (en) * 2004-02-13 2005-08-25 Nec Corp Electrolytic solution for secondary battery, and secondary battery using the same
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012056925A (en) * 2010-09-13 2012-03-22 Sumitomo Seika Chem Co Ltd Sulfone compound and nonaqueous electrolyte using the same
JP2014013704A (en) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery including the same
US8673489B2 (en) 2010-02-12 2014-03-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqeuous-electrolyte secondary battery
WO2014080870A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
WO2014080871A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
WO2021111847A1 (en) * 2019-12-06 2021-06-10 株式会社日立製作所 Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208437A (en) * 2001-01-09 2002-07-26 Mitsui Chemicals Inc Polymer solid electrolyte, and secondary cell using the same
JP4693248B2 (en) * 2001-01-09 2011-06-01 三井化学株式会社 Polymer solid electrolyte and secondary battery
JP2002305028A (en) * 2001-04-04 2002-10-18 Nissan Motor Co Ltd Manufacturing method of solid polyelectrolytic battery and solid polyelectrolyte
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
JP2005228631A (en) * 2004-02-13 2005-08-25 Nec Corp Electrolytic solution for secondary battery, and secondary battery using the same
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8673489B2 (en) 2010-02-12 2014-03-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqeuous-electrolyte secondary battery
US9515348B2 (en) 2010-02-12 2016-12-06 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte secondary battery
JP2012056925A (en) * 2010-09-13 2012-03-22 Sumitomo Seika Chem Co Ltd Sulfone compound and nonaqueous electrolyte using the same
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
JP2014013704A (en) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery including the same
WO2014080870A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
WO2014080871A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
JPWO2014080871A1 (en) * 2012-11-20 2017-01-05 日本電気株式会社 Lithium ion secondary battery
JPWO2014080870A1 (en) * 2012-11-20 2017-01-05 日本電気株式会社 Lithium ion secondary battery
US10177413B2 (en) 2012-11-20 2019-01-08 Nec Corporation Lithium ion secondary battery
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
WO2021111847A1 (en) * 2019-12-06 2021-06-10 株式会社日立製作所 Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP4281030B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
Park et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
KR20160136686A (en) Lithium metal battery
CN105633467B (en) Electrolyte and lithium ion battery adopting same
EP2765645A1 (en) Electrolytic solution for lithium air cell
JPWO2006115023A1 (en) Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
EP3675267A1 (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
ES2946916T3 (en) Mixture of lithium salts and their uses as battery electrolyte
JP4281030B2 (en) Non-aqueous electrolyte battery
JP2007053080A (en) Non-aqueous electrolytic solution, and electrochemical energy accumulating device using the same
JP2006339010A (en) Electrolytic solution for electrochemical device
JPWO2020022452A1 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
US20220029199A1 (en) Non-aqueous electrolyte solution for battery and lithium secondary battery
JP2009187880A (en) Nonaqueous electrolyte secondary battery
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2004079335A (en) Electrolytic solution for secondary battery and secondary battery using it
US20130130126A1 (en) Electrochemical cell for high-voltage operation and electrode coatings for use in the same
KR20190119572A (en) Improving Ionic Conductivity of Electrolytes Based on Lithium Imidazolate Salts
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees