JP2000077084A - Packing material for solid polymer fuel cell separator - Google Patents

Packing material for solid polymer fuel cell separator

Info

Publication number
JP2000077084A
JP2000077084A JP10243094A JP24309498A JP2000077084A JP 2000077084 A JP2000077084 A JP 2000077084A JP 10243094 A JP10243094 A JP 10243094A JP 24309498 A JP24309498 A JP 24309498A JP 2000077084 A JP2000077084 A JP 2000077084A
Authority
JP
Japan
Prior art keywords
solution
total
total amount
molar ratio
packing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10243094A
Other languages
Japanese (ja)
Other versions
JP3742724B2 (en
Inventor
Michinari Miyagawa
倫成 宮川
Shinji Hijiya
慎司 泥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP24309498A priority Critical patent/JP3742724B2/en
Publication of JP2000077084A publication Critical patent/JP2000077084A/en
Application granted granted Critical
Publication of JP3742724B2 publication Critical patent/JP3742724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To make use for a long time possible by forming with addition liquid silicone rubber formed by crosslinking reaction of A solution and B solution, and by limiting a molar ratio of the total vinyl group amount to the total methyl group amount in the A solution and the B solution, and a molar ratio of the total hydrogen group amount to the total vinyl group amount to each specified range. SOLUTION: A solution is represented by formula I, and m+n=50-2000. B solution is represented by formula II, and m'+n'=8-98, and M'<1. Molar ratio of the total vinyl amount to the total methyl group amount in the A solution and the B solution is made 0.1-0.6, and molar ratio of the total hydrogen group amount to the total vinyl group amount is made 1.5-3.5. Silicone resin having this composition and having a viscosity of 103-104 poise (25 deg.C) is preferable, and the thickness of a silicone resin layer after molding is made 0.05-1.0 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型の燃料電池と
して使用できる固体高分子型燃料電池セパレータに係
り、特に、長期の使用が可能なセパレータ用パッキング
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell separator which can be used as a small fuel cell, and more particularly to a packing material for a separator which can be used for a long time.

【0002】[0002]

【従来の技術とその課題】最近の環境問題や資源問題に
対応して燃料電池の開発が活発に行われている。特に燃
料電池としては小型、軽量化の要求から固体高分子型燃
料電池が検討され、このような電池用のセパレータとし
ては、より小型化が要求され、また多数のセパレータを
重ね合わせて使用することから耐久性が優れ、長期間使
用できるセパレータ用パッキング材が要求されている。
2. Description of the Related Art Fuel cells are being actively developed in response to recent environmental problems and resource problems. In particular, polymer electrolyte fuel cells are being studied because of the demand for smaller and lighter fuel cells, and more compact separators for such cells are required. Therefore, there is a demand for a packing material for a separator which has excellent durability and can be used for a long time.

【0003】このようなセパレータ用パッキング材とし
ては各種樹脂からなるパッキング材が検討されている
が、成形性、耐熱性、弾性に優れたシリコーンゴム製の
パッキング材が主に使用されている。さらにシリコーン
ゴムとしてはより成形性に優れた二液タイプの付加型液
状シリコーン樹脂が用いられている。しかしながら、二
液タイプの付加型液状シリコーン樹脂では確かに成形性
は優れているが、長期間の弾性を維持することが出来
ず、耐久性に劣るという問題があった。
As such packing materials for separators, packing materials made of various resins have been studied, but silicone rubber packing materials having excellent moldability, heat resistance and elasticity are mainly used. Further, as the silicone rubber, a two-component addition type liquid silicone resin having better moldability is used. However, although the two-pack type addition type liquid silicone resin has excellent moldability, it has a problem that it cannot maintain elasticity for a long time and is inferior in durability.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の問題点
を解消できる固体高分子型燃料電池セパレータを見出し
たものであり、その要旨とするところは、固体高分子型
燃料電池セパレータの少なくとも片側周縁部に被覆する
パッキング材において、そのパッキング材が下記A液と
B液を反応架橋させてなる付加型液状シリコーンゴムか
らなるとともに、
SUMMARY OF THE INVENTION The present invention has found a polymer electrolyte fuel cell separator which can solve the above-mentioned problems, and the gist of the invention is to provide at least a polymer electrolyte fuel cell separator. In the packing material to be coated on one side peripheral portion, the packing material is made of an addition type liquid silicone rubber obtained by reacting and crosslinking the following liquid A and liquid B,

【化3】 Embedded image

【化4】 (1)A液及びB液中の合計ビニル基量と合計メチル基
量とのモル比が、合計ビニル基量/合計メチル基量=
0.1〜0.6の範囲、及び、(2)A液及びB液中の
合計水素基量と合計ビニル基量とのモル比が、合計水素
基量/合計ビニル基量=1.5〜3.5の範囲であるこ
とを特徴とする固体高分子型燃料電池セパレータ用パッ
キング材にある。
Embedded image (1) The molar ratio between the total amount of vinyl groups and the total amount of methyl groups in the solution A and the solution B is such that the total amount of vinyl groups / the total amount of methyl groups =
0.1 to 0.6, and (2) the molar ratio of the total amount of hydrogen groups to the total amount of vinyl groups in the solution A and the solution B is such that the total amount of hydrogen groups / the total amount of vinyl groups = 1.5 To 3.5, a packing material for a polymer electrolyte fuel cell separator.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明に使用される液状シリコーン樹脂は、特許請求の
範囲に示した化学構造式のA液及びB液を用い、通常、
この二液は成形直前に混合される。触媒としては、通
常、白金系触媒が使用される。本発明においては上記A
液及びB液中の合計ビニル基量、合計メチル基量及び、
合計水素基量を測定し、三者間のモル比が特定の範囲に
おいて、パッキング材として優れた特性を有することを
見出したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The liquid silicone resin used in the present invention uses A liquid and B liquid of the chemical structural formulas shown in the claims,
These two components are mixed immediately before molding. Usually, a platinum-based catalyst is used as the catalyst. In the present invention, the above A
Liquid and the total amount of vinyl groups in the liquid B, the total amount of methyl groups, and
The total amount of hydrogen groups was measured, and it was found that when the molar ratio among the three was in a specific range, the packing material had excellent properties.

【0006】上記モル比の測定方法は水素核磁気共鳴装
置( 1H−NMR)を使用し、溶媒、重クロロホルム、
試料濃度5重量%、測定温度30℃の測定条件にて測定
すればよい。
The above molar ratio is measured by using a hydrogen nuclear magnetic resonance apparatus ( 1 H-NMR),
What is necessary is just to measure under the measurement conditions of a sample density of 5 weight% and a measurement temperature of 30 degreeC.

【0007】上記モル比の範囲は、次の(1)、(2)
の両者を満足する必要がある。 (1)A液及びB液中の合計ビニル基量と合計メチル基
量とのモル比が、合計ビニル基量/合計メチル基量=
0.1〜0.6の範囲であること。このモル比が0.1
未満では、架橋点が少なすぎてゴムの硬度が低下しパッ
キング材としてのシール効果が出にくいという問題があ
る。0.6を越えるものでは、耐久性に劣るという問題
がある。
The range of the above molar ratio is as follows (1) and (2)
It is necessary to satisfy both. (1) The molar ratio between the total amount of vinyl groups and the total amount of methyl groups in the solution A and the solution B is such that the total amount of vinyl groups / the total amount of methyl groups =
The range is 0.1 to 0.6. This molar ratio is 0.1
If it is less than 100, there are problems that the number of crosslinking points is too small, the hardness of the rubber is reduced, and the sealing effect as a packing material is hardly obtained. If it exceeds 0.6, there is a problem that the durability is poor.

【0008】(2)A液及びB液中の合計水素基量と合
計ビニル基量とのモル比が、合計水素基量/合計ビニル
基量=1.5〜3.5の範囲であること。このモル比が
1.5未満では、硬化時間が長くなり、成形性に劣り、
3.5を越えるものでは、耐久性に劣るという問題があ
る。
(2) The molar ratio of the total amount of hydrogen groups to the total amount of vinyl groups in the solution A and the solution B is in a range of 1.5 to 3.5. . When the molar ratio is less than 1.5, the curing time becomes longer and the moldability is poor,
If it exceeds 3.5, there is a problem that durability is poor.

【0009】上記組成内容のシリコーン樹脂を用いたパ
ッキング材の成形方法は通常の射出成形方法やプレス成
形方法によればよく、セパレータ本体にステンレン鋼板
等の金属薄板を使用したものでは、金型内に金属薄板を
保持して樹脂を射出するインサート成形法によることも
できる。
The method of molding the packing material using the silicone resin having the above composition may be a conventional injection molding method or a press molding method. In the case where a thin metal plate such as a stainless steel plate is used for the separator body, the inside of the mold is not used. An insert molding method in which a thin metal plate is held and resin is injected is also possible.

【0010】また上記シリコーン樹脂は、粘度が103
〜104 ポイズ(25℃)の樹脂が好適に使用できる。
粘度が103 ポイズ未満のものでは、柔らかすぎて取り
扱いにくく、104 ポイズを越えるものでは、成形時の
流動性に劣り易い傾向にある。 さらに、必要に応じて
微粉末シリカ、ケイそう土、高熱伝導性無機フイラー等
の充填剤を添加してもよい。
The above silicone resin has a viscosity of 10 3
A resin of 〜1010 4 poise (25 ° C.) can be suitably used.
If the viscosity is less than 10 3 poise, it is too soft and difficult to handle, and if it exceeds 10 4 poise, the fluidity during molding tends to be poor. Further, if necessary, a filler such as finely divided silica, diatomaceous earth, or a highly heat-conductive inorganic filler may be added.

【0011】成形後のシリコーン樹脂層の厚みは0.0
5mm〜1.0mmの範囲とする必要がある。0.05
mm未満では、正確な成形がしずらく、また弾力効果が
出にくく、パッキング材としての利用性に劣り、1.0
mmを超えるものでは、特に固体高分子型燃料電池のセ
パレータ用としての用途では小型化しずらく、またコス
ト高になるという問題がある。
The thickness of the molded silicone resin layer is 0.0
It is necessary to be in the range of 5 mm to 1.0 mm. 0.05
If the thickness is less than 1.0 mm, accurate molding is difficult, the elasticity effect is hardly obtained, and the usability as a packing material is poor.
In the case where the diameter is larger than mm, there is a problem that it is difficult to reduce the size and the cost is increased, especially in a use as a separator of a polymer electrolyte fuel cell.

【0012】さらに、成形後のシリコーン樹脂層の硬度
を40〜70、好ましくは50〜60の範囲とする必要
がある。硬度の測定方法はJISK6301 スプリン
グ式硬さ試験 A形に準拠して行なう。この硬度が40
未満では柔らかすぎて取り扱いにくく、70を超えると
硬くなりすぎて弾力性に欠けるという問題がある。
Further, the hardness of the molded silicone resin layer must be in the range of 40 to 70, preferably 50 to 60. The hardness is measured according to JIS K6301 Spring type hardness test A type. This hardness is 40
If it is less than 70, it is too soft to handle easily, and if it exceeds 70, it becomes too hard and lacks elasticity.

【0013】[0013]

【実施例】以下、実施例について説明するが、本発明は
これに限定されるものではない。表1に示した組成の液
状シリコーンゴムを用いて下記の方法にてパッキング材
を得た。原料のA液とB液を1:1(重量比)でビーカ
ー中で撹拌混合し、2時間真空乾燥機中で真空脱泡し
た。その後、所定形状(100mm×100mm×1
2.5mm)の下型に充填し、再度2時間真空乾燥機中
で真空脱泡した。次に上型で蓋をして、プレス機を用
い、170℃の加熱温度で、90Kg/cm2 、10分
間加圧した。その後、200℃で4時間乾燥し(二次加
硫)、得られた板状の試験片を所定の円形状試験片に打
ち抜いた。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Using a liquid silicone rubber having the composition shown in Table 1, a packing material was obtained by the following method. The liquid A and the liquid B of the raw materials were stirred and mixed in a beaker at a ratio of 1: 1 (weight ratio), and defoamed in a vacuum dryer for 2 hours. Then, a predetermined shape (100 mm x 100 mm x 1
(2.5 mm), and again degassed in a vacuum dryer for 2 hours. Next, the plate was covered with an upper mold, and was pressed at 90 Kg / cm 2 for 10 minutes at a heating temperature of 170 ° C. using a press machine. Then, it was dried at 200 ° C. for 4 hours (secondary vulcanization), and the obtained plate-shaped test piece was punched into a predetermined circular test piece.

【0014】得られた円形状試験片につき、応力緩和耐
久試験を行い、その結果を表1に示した。 応力緩和耐久試験の試験方法:直径29.0mm、厚さ
12.5mmの円形状試験片を圧縮板に挟み、2分以内
に25%の圧縮歪みまで圧縮した。圧縮後直ちに、あら
かじめ90℃、90%に保持した恒温高湿槽に圧縮した
試験片を入れ、加熱を行った。30分経過後、試験片を
恒温高湿槽から取り出し、2時間以内に試験片及び圧縮
板を試験室の標準状態に戻し、試験室の標準状態で圧縮
応力F(0)の測定を行った。以後、所定のt時間毎
に、この操作を繰り返し、圧縮応力F(t)を150時
間まで測定した。測定は2回づつ行い、測定値が10%
以内で一致することを確かめた。圧縮応力保持率を以下
の式により、算出した。 R(t)=F(t)/F(0)×100。 この値が75%以上のものを(◎)、65%以上75%
未満のものを(△)、65%未満を(×)とした。
The obtained circular test piece was subjected to a stress relaxation durability test, and the results are shown in Table 1. Test method of stress relaxation durability test: A circular test piece having a diameter of 29.0 mm and a thickness of 12.5 mm was sandwiched between compression plates and compressed to a compression strain of 25% within 2 minutes. Immediately after the compression, the compressed test piece was placed in a constant temperature and high humidity tank previously maintained at 90 ° C. and 90%, and heated. After a lapse of 30 minutes, the test piece was taken out of the constant temperature and high humidity chamber, the test piece and the compression plate were returned to the standard state of the test room within 2 hours, and the compression stress F (0) was measured in the standard state of the test room. . Thereafter, this operation was repeated every predetermined time t, and the compressive stress F (t) was measured up to 150 hours. The measurement is performed twice and the measured value is 10%
Make sure they match within. The compression stress retention was calculated by the following equation. R (t) = F (t) / F (0) × 100. If this value is 75% or more (◎), 65% or more and 75%
Less than (%) and less than 65% (x).

【0015】[0015]

【表1】 [Table 1]

【0016】表1から本発明において規定するモル比を
全て満足する試料No1及び2は圧縮応力保持率が良好
で長期間弾性を維持できるため長期間の耐久性に優れて
いることが分かる。これに対して、モル比が範囲外の試
料No3、4は圧縮応力保持率が低く耐久性に劣ってい
ることが分かる。
From Table 1, it can be seen that Samples Nos. 1 and 2, which satisfy all of the molar ratios specified in the present invention, have excellent compressive stress retention and can maintain elasticity for a long period of time, and thus have excellent long-term durability. On the other hand, it can be seen that the samples Nos. 3 and 4 having a molar ratio out of the range have a low compressive stress retention and are inferior in durability.

【0017】[0017]

【発明の効果】上述したように、本発明のパッキング材
では、長期間弾性を維持できる耐久性に優れており、長
期の使用が可能な固体高分子型燃料電池のセパレータ用
パッキング材として好適に使用できる。
As described above, the packing material of the present invention has excellent durability for maintaining elasticity for a long period of time, and is suitable as a packing material for a polymer electrolyte fuel cell separator which can be used for a long period of time. Can be used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子型燃料電池セパレータの少な
くとも片側周縁部に被覆するパッキング材において、そ
のパッキング材が下記A液とB液を反応架橋させてなる
付加型液状シリコーンゴムからなるとともに、 【化1】 【化2】 (1)A液及びB液中の合計ビニル基量と合計メチル基
量とのモル比が、 合計ビニル基量/合計メチル基量=0.1〜0.6の範
囲、及び、(2)A液及びB液中の合計水素基量と合計
ビニル基量とのモル比が、 合計水素基量/合計ビニル基量=1.5〜3.5の範囲
であることを特徴とする固体高分子型燃料電池セパレー
タ用パッキング材。
1. A packing material for covering at least one peripheral edge of a polymer electrolyte fuel cell separator, wherein the packing material is made of an addition type liquid silicone rubber obtained by reacting and crosslinking the following liquid A and liquid B, and Formula 1 Embedded image (1) The molar ratio between the total amount of vinyl groups and the total amount of methyl groups in the solution A and the solution B is in the range of total vinyl group amount / total methyl group amount = 0.1 to 0.6, and (2) The molar ratio of the total amount of hydrogen groups to the total amount of vinyl groups in the liquid A and the liquid B is in the range of (total amount of hydrogen groups / total amount of vinyl groups) = 1.5 to 3.5. Packing material for molecular fuel cell separator.
JP24309498A 1998-08-28 1998-08-28 Packing material for polymer electrolyte fuel cell separator Expired - Fee Related JP3742724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24309498A JP3742724B2 (en) 1998-08-28 1998-08-28 Packing material for polymer electrolyte fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24309498A JP3742724B2 (en) 1998-08-28 1998-08-28 Packing material for polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2000077084A true JP2000077084A (en) 2000-03-14
JP3742724B2 JP3742724B2 (en) 2006-02-08

Family

ID=17098708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24309498A Expired - Fee Related JP3742724B2 (en) 1998-08-28 1998-08-28 Packing material for polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP3742724B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004983A1 (en) * 1999-07-13 2001-01-18 Nok Corporation Gasket for fuel cell and method of forming it
JP2002083616A (en) * 2000-07-05 2002-03-22 Mitsubishi Plastics Ind Ltd Packing material for solid polymer type fuel cell
EP1263065A1 (en) * 2001-05-23 2002-12-04 Wacker-Chemie GmbH Use of crosslinkable silicone rubbers, stable against degradation as sealants in fuel cells
EP1073138A3 (en) * 1999-07-26 2003-04-23 Tigers Polymer Corporation Sealing structure of fuel cell and process for molding rubber packing
US6713205B2 (en) 2001-04-17 2004-03-30 Shin-Etsu Chemical Co., Ltd. Sealing material for solid polymer fuel cell separator
US6875534B2 (en) 2001-06-22 2005-04-05 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US7087338B2 (en) 2002-02-28 2006-08-08 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
CN100385722C (en) * 2002-07-03 2008-04-30 本田技研工业株式会社 Fuel cell separator and method of manufacturing the separator
US7482403B2 (en) 2001-04-13 2009-01-27 Shin-Etsu Chemical Co., Ltd. Sealing material for polymer electrolyte fuel-cell separator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004983A1 (en) * 1999-07-13 2001-01-18 Nok Corporation Gasket for fuel cell and method of forming it
US7063911B1 (en) 1999-07-13 2006-06-20 Nok Corporation Gasket for fuel cell and method of forming it
EP1073138A3 (en) * 1999-07-26 2003-04-23 Tigers Polymer Corporation Sealing structure of fuel cell and process for molding rubber packing
US7052797B2 (en) 1999-07-26 2006-05-30 Tigers Polymers Corporation Sealing structure of fuel cell and process for molding rubber packing
US7553577B2 (en) 1999-07-26 2009-06-30 Tigers Polymer Corporation Sealing structure of fuel cell and process for molding rubber packing
JP2002083616A (en) * 2000-07-05 2002-03-22 Mitsubishi Plastics Ind Ltd Packing material for solid polymer type fuel cell
US7482403B2 (en) 2001-04-13 2009-01-27 Shin-Etsu Chemical Co., Ltd. Sealing material for polymer electrolyte fuel-cell separator
US6713205B2 (en) 2001-04-17 2004-03-30 Shin-Etsu Chemical Co., Ltd. Sealing material for solid polymer fuel cell separator
EP1263065A1 (en) * 2001-05-23 2002-12-04 Wacker-Chemie GmbH Use of crosslinkable silicone rubbers, stable against degradation as sealants in fuel cells
US6875534B2 (en) 2001-06-22 2005-04-05 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US7087338B2 (en) 2002-02-28 2006-08-08 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
CN100385722C (en) * 2002-07-03 2008-04-30 本田技研工业株式会社 Fuel cell separator and method of manufacturing the separator

Also Published As

Publication number Publication date
JP3742724B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
Javni et al. Effect of different isocyanates on the properties of soy‐based polyurethanes
CN102272206B (en) Crosslinked resin foam and manufacturing method thereof
JP2000077084A (en) Packing material for solid polymer fuel cell separator
CN113480786B (en) Graphene natural rubber sole composite foam material for old people and preparation method thereof
WO2005097860A1 (en) Low-hardness thermosetting polyurethane elastomer and production method thereof
TWI440664B (en) Hydrogen storage alloy and resin composition
KR20140036536A (en) An integrated fluorine gasket manufactured by injection molding for hydrogen fuel cells
Shan et al. Effect of network structure of epoxy DGEBA‐poly (oxypropylene) diamines on tensile behavior
Luo et al. Effect of crosslinking agent on properties and morphology of water‐blown semirigid polyurethane foam
JP2007297438A (en) Composition for forming semiconducting urethane elastomer and semiconducting roll produced by using the same
JPH0714744B2 (en) Tray for integrated circuits
JP2000188118A (en) Packing material for solid polymer fuel cell separator
Sankaran et al. Characterization of epoxy syntactic foams by dynamic mechanical analysis
EP1273602B1 (en) Silicone gel composition
US8372192B2 (en) Fuel cell separator
D'Asaro et al. Multidimensional characterization of piezoresistive carbon black silicone rubber composites
CA1130493A (en) Method for the preparation of noncellular, filled thermoset castings having superior mechanical properties
JP2001216979A (en) Packing material for solid high polymer fuel cell separator
JP3325213B2 (en) Method for producing silicone rubber sponge and silicone rubber sponge
US20190245218A1 (en) Resin composition for dense fuel cell separators
WO2019123914A1 (en) Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex
JP4842448B2 (en) Packing material for polymer electrolyte fuel cell
US5480725A (en) Fusing member having tin-filled, addition cured layer
WO2005061571A1 (en) Process for producing soft polyurethane foam, process for producing conductive soft polyurethane foam, conductive roll and process for producing the same
JPH04226308A (en) Cleaning blade for electronic photograph copying machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees