JP2000073120A - Production of grain oriented silicon steel sheet free from edge crack and edge distortion - Google Patents

Production of grain oriented silicon steel sheet free from edge crack and edge distortion

Info

Publication number
JP2000073120A
JP2000073120A JP10245122A JP24512298A JP2000073120A JP 2000073120 A JP2000073120 A JP 2000073120A JP 10245122 A JP10245122 A JP 10245122A JP 24512298 A JP24512298 A JP 24512298A JP 2000073120 A JP2000073120 A JP 2000073120A
Authority
JP
Japan
Prior art keywords
annealing
temperature
steel sheet
hot
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10245122A
Other languages
Japanese (ja)
Inventor
Tetsuo Toge
哲雄 峠
Tsutomu Kami
力 上
Makoto Watanabe
渡辺  誠
Tadashi Nakanishi
匡 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10245122A priority Critical patent/JP2000073120A/en
Publication of JP2000073120A publication Critical patent/JP2000073120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a grain oriented silicon steel sheet capable of surely preventing edge crack at the time of hot rolling and edge distortion at the time of finish annealing, and excellent in magnetic properties and film characteristics by specifying the contents of acid soluble Al, N, Se and S in a silicon steel slab stock having a specified compsn., lowering slab heating temp., reducing the coating weight of oxygen in the steel subjected to decarburizing annealing, lowering finish annealing temp. and shortening the time of finish annealing time. SOLUTION: A silicon steel slab contg., by weight %, 0.005 to 0.08 C, 1.0 to 7.0 Si, 0.03 to 2.5 Mn, 0.001 to 0.030 acid soluble Al, 0.003 to 0.010 N and Se+2.47S<=0.035 is used, and is heated at <=1300 deg.C. At the time of decarburizing annealing, the annealing is executed in such a manner that the coating weight of oxygen in the steel after the annealing is controlled to 1.7 g/m2, and, in the finish annealing, the annealing is executed in such a manner that the maximum arrival temp. in the outwardly coiled part of the coil is controlled to <1,150 deg.C or 1,150 to <1,200 deg.C, and its residence time at >=1,150 deg.C is controlled to <=30 min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、方向性珪素鋼板の
製造方法に関し、とくに、耳割れや耳歪がなく、しかも
磁気特性と被膜特性も良好な一方向性珪素鋼板を安定し
て製造する方法を提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet, and more particularly to a method for stably producing a grain-oriented silicon steel sheet which is free of edge cracks and ear distortions and has good magnetic properties and coating properties. Suggest a method.

【0002】[0002]

【従来の技術】方向性珪素鋼板は、主として変圧器その
他の電気機器の鉄心材料として使用され、磁束密度およ
び鉄損値などの磁気特性に優れることが基本的に重要で
ある。そのため、厚さ100〜300mmのスラブを高温に加熱
した後熱間圧延し、次いで熱延板を1回または中間焼鈍
をはさむ2回以上の冷間圧延によって最終板厚とし、脱
炭を兼ねた1次再結晶焼鈍後、焼鈍分離剤を塗布してか
ら二次再結晶および純化を目的とした高温長時間の仕上
焼鈍を行うという複雑な工程がとられている。磁気特性
を高めるためには、仕上焼鈍工程での二次再結晶で、磁
化容易軸である<001>軸が圧延方向にそろった{110}
<001>方位の結晶粒を成長させることが重要であるこ
とがわかっている。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers and other electric equipment, and it is basically important that they have excellent magnetic properties such as magnetic flux density and iron loss value. Therefore, a slab having a thickness of 100 to 300 mm was heated to a high temperature and then hot-rolled, and then the hot-rolled sheet was subjected to one or two or more cold-rollings including intermediate annealing to obtain a final sheet thickness, which also served as decarburization. After the primary recrystallization annealing, a complicated process of applying an annealing separating agent and then performing high-temperature and long-time finish annealing for the purpose of secondary recrystallization and purification is performed. In order to improve the magnetic properties, the <001> axis, which is the axis of easy magnetization, is aligned with the rolling direction in the secondary recrystallization in the finish annealing process {110}.
It has been found that it is important to grow crystal grains of <001> orientation.

【0003】このような二次再結晶を効果的に促進させ
るためには、一次再結晶粒の成長を抑制するインヒビタ
ーと呼ばれる分散相を、均一かつ適正なサイズで分散さ
せることが重要である。かかるインヒビターとしては、
MnS 、MnSe、AlN およびBNのような硫化物、Se化合物や
窒化物等であって、鋼中への溶解度が極めて小さいもの
が主に用いられ、その他必要に応じてSb、Nb、Ge、Sn、
Cr等を必要に応じて添加したものが用いられてきた。こ
のような硫化物、Se化合物、窒化物等からなるインヒビ
ターの適正制御の方法としては、このインヒビターを熱
延前のスラブ加熱時にいったん完全に固溶させた後、熱
延工程以降に微細に析出させる方法がとられてきた。従
って、このインヒビターを十分に固溶させるためには、
1400℃を超えるような高い温度に加熱する必要があり、
それ故に方向性電磁鋼板のスラブ加熱の温度は、普通鋼
のスラブ加熱に比べて約200℃も高い温度で行われてい
る。
[0003] In order to effectively promote such secondary recrystallization, it is important to disperse a dispersed phase called an inhibitor which suppresses the growth of primary recrystallized grains in a uniform and appropriate size. Such inhibitors include:
MnS, MnSe, sulfides such as AlN and BN, Se compounds and nitrides, etc., whose solubility in steel is extremely small are mainly used, and Sb, Nb, Ge, Sn ,
What added Cr etc. as needed has been used. As an appropriate method of controlling such an inhibitor composed of a sulfide, a Se compound, a nitride, etc., the inhibitor is completely dissolved once during slab heating before hot rolling, and then finely precipitated after the hot rolling process. There has been a way to make it happen. Therefore, in order to sufficiently dissolve this inhibitor,
It is necessary to heat to a high temperature exceeding 1400 ° C,
Therefore, the slab heating temperature of the grain-oriented electrical steel sheet is about 200 ° C. higher than that of ordinary steel slab heating.

【0004】また、二次再結晶を効果的に生じさせるた
めには、インヒビターの適正制御の他に、1次再結晶後
の結晶粒径、集合組織を適正に制御することも有効であ
る。即ち、1次再結晶粒径が大きいほど、仕上焼鈍時の
粒成長の駆動力が小さくなる。そして、粒成長の駆動力
とインヒビターの抑制力のバランスを適正に制御する
と、二次再結晶が効果的に生じる。また、{110 }<001
> 方位に集積した粒のみが二次再結晶するためには、1
次再結晶後の段階で、{110 }<001> 方位が成長しやす
い集合組織をもったマトリクスの中に、二次再結晶の核
になる{110 }<001> 方位粒が散在していることが有効
である。このような方法の採用により、{110 }<001>
方位に集積した二次再結晶を得ることが可能になり、高
磁束密度、低鉄損の製品が得られるようになる。
[0004] In order to effectively generate secondary recrystallization, it is also effective to appropriately control the crystal grain size and texture after the primary recrystallization in addition to the appropriate control of the inhibitor. That is, the larger the primary recrystallized grain size, the smaller the driving force for grain growth during finish annealing. When the balance between the driving force for grain growth and the inhibitory force of the inhibitor is properly controlled, secondary recrystallization is effectively generated. Also, {110} <001
> For secondary recrystallization of only grains accumulated in
In the stage after the next recrystallization, the {110} <001> orientation grains, which are the nucleus of the secondary recrystallization, are scattered in the matrix with the texture in which the {110} <001> orientation is easy to grow It is effective. By adopting such a method, {110} <001>
It becomes possible to obtain secondary recrystallization integrated in the orientation, and a product with high magnetic flux density and low iron loss can be obtained.

【0005】ところで、最近の方向性電磁鋼板について
は、磁気特性だけでなく、安価な製品についての需要が
高まっている。そして、このような要請に応えるために
は、何よりもまず製品の歩留りを良くすることが重要で
ある。そのためには、熱間圧延時に発生するエッジ部の
形状不良、および、仕上焼鈍の際に生じるコイル下端の
折れ込みを如何に防止するかが重要な課題となる。
[0005] In recent years, demand for not only magnetic properties but also inexpensive products of grain-oriented electrical steel sheets has been increasing. In order to meet such demands, it is first and foremost to improve the product yield. For that purpose, it is an important issue how to prevent the shape defect of the edge part generated at the time of hot rolling, and how to prevent the coil lower end from being bent at the time of finish annealing.

【0006】一般に、熱延板のエッジ部においては、コ
イルの耳部が削りとられたり、耳部にのこぎり歯状の割
れが生じやすく、歩留まり低下の大きな要因となってい
る。このような熱延板の耳部の割れは、日本鉄鋼協会の
用語定義(ISIJ TR006)では“耳荒れ”とも称されてい
るが、ここでは、以下“耳割れ”と称する。また、仕上
焼鈍においては、コイルをアップエンド状に載置して高
温長時間の焼鈍を行うため、コイル下端の外周部に折れ
込みが入りやすく、歩留まり低下の大きな要因となって
いる。このような形状不良は、日本鉄鋼協会の用語定義
(ISIJ TR006)では“耳折れ”とも称されているが、ここ
では、以下“耳歪”と称する。
Generally, at the edge of the hot-rolled sheet, the lugs of the coil are cut off, and the lugs tend to have saw-toothed cracks, which is a major factor in lowering the yield. Such a crack at the edge of the hot-rolled sheet is also referred to as “ear cracking” in the definition of terms of the Iron and Steel Institute of Japan (ISIJ TR006), but is hereinafter referred to as “ear crack”. Further, in the finish annealing, since the coil is placed in an up-end shape and annealing is performed at a high temperature for a long time, the outer peripheral portion of the lower end of the coil is easily broken, which is a major factor in lowering the yield. Such shape defects are defined by the Japanese Iron and Steel Institute
In (ISIJ TR006), it is also referred to as "ear break", but is hereinafter referred to as "ear distortion".

【0007】さて、方向性電磁鋼板製造時の熱間圧延工
程における耳割れ防止の技術については、既に数多くの
提案がある。例えば、特開昭55−62142号公報では、仕
上熱間圧延中の温度低下を220℃以内にする方法が、特
開昭61−96032号公報では、仕上圧延以降の圧下率を制
御する方法を開示しているが、粗圧延時や仕上圧延前段
で発生する耳割れに対しては防止効果がない。また、特
開昭60−145204号公報、特開昭61−71104号公報、特開
昭60−200916号公報、特開昭62−196328号公報、特開平
5−138207号公報では、熱間圧延中のシートバーの側面
の形状を整えることで耳割れを防止する方法を開示して
いるが、これらの技術も、粗圧延時や仕上圧延前段で発
生する耳割れに対しては防止効果がほとんどないという
問題があった。
There have already been many proposals for techniques for preventing edge cracks in the hot rolling step in the production of grain-oriented electrical steel sheets. For example, in Japanese Patent Application Laid-Open No. 55-62142, a method of reducing the temperature drop during finish hot rolling to 220 ° C. or less, and in Japanese Patent Application Laid-Open No. 61-96032, a method of controlling the rolling reduction after finish rolling is described. Although disclosed, there is no effect of preventing ear cracks generated at the time of rough rolling or at the preceding stage of finish rolling. Also, JP-A-60-145204, JP-A-61-71104, JP-A-60-200916, JP-A-62-196328, and JP-A-5-138207 disclose hot rolling. It discloses a method of preventing edge cracks by adjusting the shape of the side surface of the inside sheet bar, but these techniques also have almost no effect on preventing edge cracks occurring at the time of rough rolling or at the preceding stage of finish rolling. There was no problem.

【0008】その他、特開平9−70602号公報では、耳
割れが主に仕上圧延前段で発生していることに着目し
て、粗圧延後のシートバーの形状に関して、シートバー
の側縁部の厚みte(mm)とシートバー幅方向中央部の厚
みtc(mm)が、下記式; te−tc≧1(mm) を満足するような形状にする技術も提案している。この
提案技術は、粗圧延時に適切な幅圧下を行うという方法
であり、耳割れの発生頻度、耳割れ探さ(鋼板のエッジ
部から幅方向に測った割れの長さ)をかなり軽減させる
ことができたが、耳割れを確実に防止するには至らなか
った。
In addition, in Japanese Patent Application Laid-Open No. 9-70602, attention is paid to the fact that the edge cracks are mainly generated at the stage before the finish rolling, and regarding the shape of the sheet bar after the rough rolling, the side edge of the sheet bar is examined. A technique has been proposed in which the thickness te (mm) and the thickness tc (mm) at the center of the sheet bar in the width direction satisfy the following expression: te−tc ≧ 1 (mm). This proposed technique is a method of performing appropriate width reduction at the time of rough rolling, which can significantly reduce the frequency of occurrence of edge cracks and the search for edge cracks (length of cracks measured in the width direction from the edge of the steel sheet). It did, but did not reliably prevent ear cracks.

【0009】その他、方向性電磁鋼板製造時の仕上焼鈍
段階での耳歪を防止する技術としては、どちらかという
と焼鈍装置についての改良技術が多く、例えば、特公昭
53−38683号公報ではコイルとベースプレートの間に入
れるスペーサを分割する方法を開示しており、特開昭60
−131928号公報では、ベースプレートの形状を改良する
方法を開示しており、特開平1−110255号公報では、ベ
ースプレートやスペーサをセラミックス製とする方法を
開示している。また、特開昭58−61231(特公昭62−156
15 )号公報では、ベースプレートとスペーサの間にセ
ラミック繊維板を介在させる方法を開示し、さらに特開
平7−62453 号公報においては、そのセラミック繊維板
に多数の貫通孔を設けることで耳歪の発生を効果的に防
止する方法を提案している。しかしながら、これらの各
先行提案技術に共通していることは、高温, 長時間の焼
鈍を行うときに、耳歪を確実には防止ができないという
点に問題があった。
As other techniques for preventing ear distortion at the finish annealing stage in the production of grain-oriented electrical steel sheets, there have been many improved techniques for annealing equipment.
JP-A-53-38683 discloses a method of dividing a spacer inserted between a coil and a base plate.
Japanese Patent Application No. 131928 discloses a method for improving the shape of a base plate, and Japanese Patent Application Laid-Open No. 1-110255 discloses a method in which a base plate and a spacer are made of ceramics. Further, Japanese Patent Application Laid-Open No. 58-61231 (JP-B-62-156)
No. 15) discloses a method in which a ceramic fiber plate is interposed between a base plate and a spacer. Further, Japanese Patent Application Laid-Open No. 7-62453 discloses that a large number of through holes are provided in the ceramic fiber plate to reduce ear distortion. It proposes a method to prevent the occurrence effectively. However, what is common to these prior arts is that there is a problem that ear distortion cannot be reliably prevented when performing high-temperature, long-time annealing.

【0010】一方で、仕上焼鈍を低温, 短時間で行うこ
とにより耳歪を低減する技術の提案もある。例えば、特
開平9−143526号公報では、最終冷間圧延前の焼鈍条件
を特定し、鋼板表面のサブスケールの状態と脱珪層の厚
みを制御することにより、仕上焼鈍時の純化を促進し、
もって仕上焼鈍時の低温, 短時間化を実現する方法を提
案している。たしかにこの技術は、耳歪の低減に有効で
あるが、冷延前の鋼板の表面状態は素材成分や熱延条件
の変動により大きく変動することから、適正な制御が難
しく、それ故に耳割れを低減するための熱延条件とは両
立しないという問題点を抱えていた。
On the other hand, there has been proposed a technique for reducing ear distortion by performing finish annealing at a low temperature for a short time. For example, in Japanese Patent Application Laid-Open No. 9-143526, purifying at the time of finish annealing is promoted by specifying annealing conditions before final cold rolling and controlling the state of the subscale on the steel sheet surface and the thickness of the desiliconized layer. ,
We have proposed a method to achieve low temperature and short time during finish annealing. Certainly, this technology is effective in reducing ear distortion, but since the surface condition of the steel sheet before cold rolling varies greatly due to variations in the material composition and hot rolling conditions, it is difficult to properly control it. There was a problem that it was incompatible with the hot rolling conditions for reduction.

【0011】[0011]

【発明が解決しようとする課題】上述したように、従来
の技術は、製品歩留りに影響する耳割れならびに耳歪の
発生をともに確実に防止するという点においてなお改善
の余地を残しており、とくに鉄損や被膜特性を全く犠牲
にすることなくこれらの発生を確実に阻止する有効な手
段についての提案に欠けていた。そこで、本発明の主た
る目的は、熱間圧延時の耳割れと仕上焼鈍時の耳歪をと
もに確実に防止することができる一方向性珪素鋼板の有
利な製造方法を提案することにある。本発明の他の目的
は、磁気特性と被膜特性が共に優れる一方向性珪素鋼板
の有利な製造方法を提案することにある。
As described above, the prior art still has room for improvement in that it reliably prevents both ear cracks and ear distortions that affect the product yield. There was a lack of proposals for effective means to reliably prevent these occurrences without sacrificing any iron loss or coating properties. Accordingly, a main object of the present invention is to propose an advantageous method for producing a unidirectional silicon steel sheet, which can reliably prevent both edge cracks during hot rolling and ear distortion during finish annealing. Another object of the present invention is to propose an advantageous method for producing a unidirectional silicon steel sheet having excellent magnetic properties and coating properties.

【0012】[0012]

【課題を解決するための手段】本発明の研究者らは、従
来技術が抱えている上述した課題に対して鋭意研究を重
ねた結果、熱間圧延時のコイルに発生した耳割れと仕上
焼鈍時のコイルに発生した耳歪をともに防止することが
できると共に、磁気特性と被膜特性を良好に保つための
一方向性珪素鋼板製造方法の開発に成功した。すなわ
ち、本発明は、C:0.005 〜0.08wt%、Si:1.0 〜7.0
wt%、Mn:0.03〜2.5 wt%を含有する珪素鋼スラブを加
熱し、熱間圧延し、次いで熱延板焼鈍を施し、その後、
一回または中間焼鈍を挟む二回以上の冷間圧延を行い、
さらにその後、脱炭焼鈍と仕上焼鈍とを施して方向性電
磁鋼板を製造する方法において、酸可溶性Al:0.001 〜
0.030 %、N:0.003〜0.010 %、Se+2.47S≦0.035
%にかかる成分組成を有するスラブを用い、このスラブ
の加熱を1300℃以下の温度にて行い、脱炭焼鈍に当たっ
ては、焼鈍後の板の酸素目付量が1.7 g/m2以下になるよ
うに焼鈍し、そして仕上焼鈍においては、コイルの外巻
き部分の最高到達温度を1150℃未満にするか、または、
この温度を1150℃以上1200℃未満とし、かつで1150℃以
上の温度に滞在させる時間を30時間以内となるように焼
鈍することを特徴とする、耳割れ、耳歪のない方向性電
磁鋼板の製造方法である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned problems of the prior art, and as a result, have found ear cracks generated in coils during hot rolling and finish annealing. We succeeded in developing a method for manufacturing a unidirectional silicon steel sheet to prevent both ear distortion generated in the coil at the time and to maintain good magnetic characteristics and coating characteristics. That is, in the present invention, C: 0.005 to 0.08 wt%, Si: 1.0 to 7.0
wt%, Mn: A silicon steel slab containing 0.03 to 2.5 wt% is heated, hot-rolled, and then subjected to hot-rolled sheet annealing.
Perform cold rolling once or twice or more with intermediate annealing,
Further thereafter, in a method of producing a grain-oriented electrical steel sheet by performing decarburizing annealing and finish annealing, acid-soluble Al: 0.001 to
0.030%, N: 0.003 to 0.010%, Se + 2.47S ≦ 0.035
%, And the slab is heated at a temperature of 1300 ° C. or less. In the decarburizing annealing, the oxygen basis weight of the annealed plate is 1.7 g / m 2 or less. Annealing, and in the final annealing, the maximum temperature of the outer winding portion of the coil is less than 1150 ℃, or
This temperature is set to 1150 ° C or higher and lower than 1200 ° C, and is characterized by being annealed so that the time for staying at a temperature of 1150 ° C or higher is within 30 hours. It is a manufacturing method.

【0013】なお、本発明においては、脱炭焼鈍板の酸
素目付量を1.7 g/m2以下に制御するためには、脱炭焼鈍
を酸素ポテンシャルPH2O /PH2が0.50以下になる雰囲
気中で行うことが有効である。また、耳割れの防止とコ
イル幅方向全域にわたっての製品の磁性安定化のために
は、鋳造時に電磁攪拌を施すことも有効である。そし
て、必要に応じ、熱間圧延終了後、二次再結晶開始まで
の間に鋼板に窒化処理を施すことは、インヒビターの抑
制力が強化され、良好な二次再結晶を生じさせるので有
効である。
In the present invention, in order to control the oxygen basis weight of the decarburized annealed sheet to 1.7 g / m 2 or less, the decarburization annealing is performed in an atmosphere in which the oxygen potential PH 2 O / PH 2 is 0.50 or less. It is effective to do it inside. Also, in order to prevent ear cracks and stabilize the magnetic properties of the product over the entire area in the coil width direction, it is effective to perform electromagnetic stirring during casting. And if necessary, after the end of hot rolling, performing nitriding treatment on the steel sheet before the start of the secondary recrystallization is effective because the inhibitory force of the inhibitor is strengthened and a good secondary recrystallization is generated. is there.

【0014】以下に、本発明を開発するに至った経緯に
ついて、発明者らが行った実験, 検討に基づき説明す
る。発明者らは、まず、仕上焼鈍での耳歪発生を解消す
るために、仕上焼鈍の低温化、短時間化が有効であると
考え、この点について検討した。なお、この実験に先立
ち、仕上焼鈍の際の温度履歴が、コイルの部位によって
どの程度変わるかを調査した。その結果、コイルの外巻
き部分は昇熱過程での温度上昇が速いため、高温域に滞
在する時間が内巻き部分に比べて非常に長くなることが
わかった。これまで、仕上焼鈍の温度、時間を制御する
ことにより、耳歪の低減を図る技術はあったが、コイル
のどの部分の温度を制御すべきかは検討されていなかっ
た。そこで、本発明では、耳歪がコイルの外巻き部分で
激しく発生することから、コイル外巻き部の温度でもっ
て制御することにした。
Hereinafter, the process of developing the present invention will be described based on experiments and studies conducted by the inventors. The inventors first considered that lowering the temperature of the finish annealing and shortening the time were effective in order to eliminate occurrence of ear distortion in the finish annealing, and examined this point. Prior to this experiment, it was investigated how much the temperature history during the finish annealing changes depending on the position of the coil. As a result, it was found that the temperature of the outer winding portion of the coil increased rapidly during the heat-up process, so that the time spent in the high-temperature region was much longer than that of the inner winding portion. Until now, there has been a technique for reducing the ear distortion by controlling the temperature and time of the finish annealing, but it has not been studied which part of the coil should be controlled in temperature. Therefore, in the present invention, since the ear distortion is severely generated in the outer winding portion of the coil, the temperature is controlled based on the temperature of the outer winding portion of the coil.

【0015】 仕上焼鈍温度低下と時間短縮の影響に
ついて (実験1) 表1に示すa (不適合成分例) の成分組成の200mm厚の
スラブを1400℃の温度に加熱後、熱間圧延して2.5 mmの
熱延コイルとし、引き続き、1000℃に60秒間保持する熱
延板焼鈍を施した。そして、酸洗後、0.34mmの厚みに冷
間圧延し、脱脂処理を行い、次いで、850 ℃で120秒間
の脱炭焼鈍を施した。その脱炭焼鈍後は焼鈍分離剤を塗
布して仕上焼鈍を施した。この仕上焼鈍は、均熱温度を
1225℃、1200℃、1175℃、1150℃、1125℃の5通りに変
化させ、均熱時間(コイル外巻き部が均熱温度ないし均
熱温度から10℃以内の温度域に滞在する時間:以後も同
じ)は10時間と40時間の2通りとして行った。そして、
この仕上焼鈍の後、耳歪の発生状況を調査し、鉄損(w
17/50) の測定を行った。その結果を図1〜3に示す
が、仕上焼鈍の低温化、短時間化は、確かに耳歪の防止
に有効であった。しかし、鉄損の劣化を招いた。その
上、この実験においては、熱延コイルに多数の耳割れが
発生した。
Influence of Reduction of Finish Annealing Temperature and Time Reduction (Experiment 1) A 200 mm thick slab having a component composition of a (incompatible component example) shown in Table 1 was heated to a temperature of 1400 ° C., and then hot-rolled to 2.5 mm. mm hot rolled coil, followed by hot rolled sheet annealing maintained at 1000 ° C. for 60 seconds. Then, after pickling, it was cold-rolled to a thickness of 0.34 mm, degreased, and then decarburized at 850 ° C. for 120 seconds. After the decarburizing annealing, a finish annealing was performed by applying an annealing separator. This finish annealing reduces the soaking temperature
Change the temperature in five ways: 1225 ° C, 1200 ° C, 1175 ° C, 1150 ° C, 1125 ° C, and soak time (time during which the outer winding of the coil stays in the soaking temperature or within 10 ° C within the soaking temperature: The same was done for 10 hours and 40 hours. And
After this finish annealing, the occurrence of ear distortion was investigated and the iron loss (w
17/50). The results are shown in FIGS. 1 to 3, and the lower temperature and shorter time of the finish annealing were certainly effective in preventing ear distortion. However, the iron loss deteriorated. In addition, in this experiment, many cracks occurred in the hot-rolled coil.

【0016】 鉄損を改善するためのスラブの成分組
成 (Se、S) の検討 (実験2) スラブの成分組成に着目した理由は、実験1において鉄
損が劣化した試料について調べた結果によると、仕上焼
鈍後にもSe、Sの残留量が多いことがわかったからであ
る。つまり、耳歪が生じないような低温, 短時間の仕上
焼鈍では、Se,Sの残留量が多く純化が不十分となり、
その結果、鉄損が劣化したものと考えられる。そこで、
そのSeおよびSの含有量を低減させてみることにした。
すなわち、この実験は、Se, S含有量の少ない、表1に
示すb (本発明適合成分例) の成分組成のスラブ (200m
m厚) を1400℃の温度に加熱し、実験1と同様の条件で
仕上焼鈍までの処理を行った。この実験でも、仕上焼鈍
については、均熱温度を1225℃、1200℃、1175℃、1150
℃、1125℃の5通りに変化させ、均熱時間は10時間と40
時間の2通りで行った。そして、この仕上焼鈍の後、耳
歪の発生状況を調査し、鉄損(w17/50)を測定した。
その結果を図4〜6に示すが、Se, S含有量の少ないス
ラブを、仕上焼鈍に際して低温、短時間で処理すれば、
耳歪発生深さ (mm) と長手方向の歪長さ (m)はともに
低下していた。しかし、鉄損(w17/50)の方は、どの
仕上焼鈍条件についても1.5 W/kgを超え、良好な磁気特
性を示すものは得られなかったし、熱延コイルには相変
わらず耳割れが頻繁に発生した。
Investigation of Slab Component Composition (Se, S) for Improving Iron Loss (Experiment 2) The reason for focusing on the slab component composition is as follows from the result of examining a sample whose iron loss has deteriorated in Experiment 1. This is because it was found that the residual amounts of Se and S were large even after the finish annealing. In other words, low-temperature, short-time finish annealing that does not cause ear distortion causes a large amount of residual Se and S, resulting in insufficient purification.
As a result, the iron loss is considered to have deteriorated. Therefore,
We decided to reduce the contents of Se and S.
That is, in this experiment, the slab (200 m
m thickness) was heated to a temperature of 1400 ° C., and the treatment up to finish annealing was performed under the same conditions as in Experiment 1. In this experiment, the soaking temperatures were 1225 ° C, 1200 ° C, 1175 ° C, and 1150 ° C for the finish annealing.
℃, 1125 ℃, soaking time is 10 hours and 40
We went in two ways. After the finish annealing, the occurrence of ear distortion was investigated, and the iron loss (w17 / 50) was measured.
The results are shown in FIGS. 4 to 6. If the slab with a small content of Se and S is treated at a low temperature and in a short time at the time of finish annealing,
Both the ear strain generation depth (mm) and the longitudinal strain length (m) decreased. However, the iron loss (w17 / 50) exceeded 1.5 W / kg under any of the finish annealing conditions, and no material showing good magnetic properties was obtained. Occurred.

【0017】 スラブの加熱温度を低くする試み (実
験3) この実験は、上記実験2の仕上焼鈍後の鋼板をマクロ組
織を観察したところ、どの試料も二次再結晶は安定して
生じていたものの、二次粒が直径50mm以上に粗大化して
おり、また、二次粒の方位をX線回折により測定する
と、{110 }<001> 方位からND軸回りに10度以上ずれ
た粒が多数観測された結果に基づいて行われたものであ
る。即ち、このような現象は、インヒビターの抑制力が
適正に制御されていないことを意味している。インヒビ
ターは、主に、熱延板焼鈍の昇温過程で微細析出するこ
とで抑制力を発揮する。従って、その抑制力を調節する
方法としては、まず、熱延板焼鈍条件を適正化すること
が有効であるとの考え方から、発明者らは、実験2と同
様の実験を熱延板焼鈍温度を800℃から1150℃まで変化
させて行ってみた。しかしその結果、鉄損(W17/50)
を1.4 W/kg以下にすることはできなかった。
Attempt to lower the heating temperature of the slab (Experiment 3) In this experiment, when the macrostructure of the steel sheet after the finish annealing in Experiment 2 was observed, secondary recrystallization was stably generated in every sample. However, the secondary grains were coarsened to a diameter of 50 mm or more, and when the orientation of the secondary grains was measured by X-ray diffraction, many grains were shifted from the {110} <001> orientation by more than 10 degrees around the ND axis. This was done based on the observed results. That is, such a phenomenon indicates that the inhibitory force of the inhibitor is not properly controlled. The inhibitor mainly exerts a suppressing effect by being finely precipitated during the heating process of hot-rolled sheet annealing. Therefore, as a method of adjusting the restraining force, first, from the idea that it is effective to optimize the hot-rolled sheet annealing conditions, the inventors conducted an experiment similar to Experiment 2 to the hot-rolled sheet annealing temperature. Was changed from 800 ° C. to 1150 ° C. However, as a result, iron loss (W17 / 50)
Could not be reduced to 1.4 W / kg or less.

【0018】そこで、その抑制力をより大きく変化させ
る目的で、スラブ加熱温度の低温化を試みた。この点に
関し、一般的な方向性珪素鋼スラブの加熱は、インヒビ
ター成分として含有させている硫化物、Se化合物、窒化
物を十分に固溶させる目的で1400℃を超えるような高温
に加熱しているが、本発明スラブのようにSe、Sの含有
量を大幅に低減した場合には、かような高温加熱は必ず
しも必要ないとの考え方に基づくものである。このこと
はまた、熱延コイルの耳割れ防止の観点からも有効では
ないかとも考えられる。
[0018] Therefore, in order to further change the suppressing power, an attempt was made to lower the slab heating temperature. In this regard, general heating of a directional silicon steel slab is performed by heating to a high temperature exceeding 1400 ° C. for the purpose of sufficiently dissolving the sulfide, Se compound, and nitride contained as an inhibitor component. However, when the contents of Se and S are greatly reduced as in the slab of the present invention, such a high-temperature heating is not necessarily required. This is also considered to be effective from the viewpoint of preventing cracking of the hot-rolled coil.

【0019】このような考え方の下で、発明者らは、表
1に示すb (本発明適合成分例) の成分組成のスラブ
(200mm厚) を1400℃、1350℃、1300℃、1250℃、1200
℃、1150℃の各温度に加熱後、実験1と同様の条件で仕
上焼鈍まで行った。ここでも、仕上焼鈍については、均
熱温度を1150℃、均熱時間は10時間とした。このような
条件で行った仕上焼鈍後の鉄損(W17/50)測定結果を
図7に示す。この図に示すように、スラブ加熱温度が13
00℃以下の場合、鉄損(W17/50)は1.3 W/kg以下を
示した。しかも、スラブ加熱温度が1300℃以下という低
温加熱の条件下では、熱延コイルでの耳割れも完全に防
止でき、仕上焼鈍後の耳歪も防止できた。しかしなが
ら、スラブ加熱温度が1300℃以下の条件下では、新たな
問題として被膜外観の劣化が生じた。即ち、仕上焼鈍
後、未反応分離剤を除去して表面を観察すると、フォル
ステライト被膜がはげ落ちた部分が多く発生していた。
Under such a concept, the present inventors have proposed a slab having a component composition of b (example of a component suitable for the present invention) shown in Table 1.
(200mm thickness) at 1400 ℃, 1350 ℃, 1300 ℃, 1250 ℃, 1200
After heating to each temperature of 1 ° C. and 1150 ° C., the same process as in Experiment 1 was performed until finish annealing. Here, as for the finish annealing, the soaking temperature was 1150 ° C., and the soaking time was 10 hours. FIG. 7 shows the results of measuring iron loss (W17 / 50) after finish annealing performed under such conditions. As shown in this figure, the slab heating temperature was 13
When the temperature was lower than 00 ° C., the iron loss (W17 / 50) was 1.3 W / kg or less. Moreover, under the condition of low-temperature heating at a slab heating temperature of 1300 ° C. or less, ear cracks in the hot-rolled coil were completely prevented, and ear distortion after finish annealing was also prevented. However, under the condition that the slab heating temperature is 1300 ° C. or lower, the appearance of the coating deteriorates as a new problem. That is, after finishing annealing, when the unreacted separating agent was removed and the surface was observed, many portions where the forsterite film had peeled off were found.

【0020】 発明者らは次に、被膜を改善する方法
について検討した。 (実験4) 実験3での被膜不良の原因を調査したところ、被膜不良
材は非常に酸化されやすい性質があることがわかった。
図8に、実験3の試料の脱炭焼鈍後の酸素目付量を示
す。被膜不良であったスラブ加熱温度1300℃以下の試料
では、この酸素目付量が急激に高くなっている。つま
り、スラブ中のSe、Sの含有量が少なく、このスラブ加
熱温度が低い場合には、酸化されやすい傾向があること
がわかる。とくに脱炭焼鈍時に酸化されやすい試料とい
うのは、仕上焼鈍においてもまた酸化されやすい性質が
あり、それ故にフォルステライト被膜が過剰に形成され
ることとなって、鋼板表面からの剥落が助長されるもの
と考えられる。
Next, the inventors studied a method for improving the coating. (Experiment 4) When the cause of the coating failure in Experiment 3 was investigated, it was found that the coating defective material had a very easily oxidizable property.
FIG. 8 shows the basis weight of oxygen after the decarburization annealing of the sample of Experiment 3. In the sample with the slab heating temperature of 1300 ° C. or lower where the film was defective, the oxygen weight was sharply increased. That is, it is understood that when the contents of Se and S in the slab are small and the slab heating temperature is low, the slab tends to be oxidized. In particular, a sample that is easily oxidized during decarburization annealing has a property that it is also easily oxidized even during finish annealing, so that forsterite film is excessively formed, which facilitates peeling off from the steel sheet surface It is considered something.

【0021】そこで、発明者らは、脱炭焼鈍板の酸素目
付量と仕上焼鈍後の被膜特性の関係についても調べてみ
た。その結果、Se、Sの含有量が少なく、スラブ加熱温
度が低い場合であっても、脱炭焼鈍時の雰囲気を適正に
制御して、該脱炭焼鈍板の酸素目付量を1.7 g/m2以下
に抑えることができれば、良好なフオルステライト被膜
を得ることができることをつきとめた。
Therefore, the inventors also examined the relationship between the oxygen basis weight of the decarburized annealed sheet and the film properties after finish annealing. As a result, even when the contents of Se and S are small and the slab heating temperature is low, the atmosphere during the decarburization annealing is appropriately controlled so that the oxygen basis weight of the decarburized annealed plate is 1.7 g / m2. It has been found that if it can be suppressed to 2 or less, a good forsterite film can be obtained.

【0022】このような実験、検討の結果から、本発明
では結論として、 スラブ加熱温度の低下 脱炭焼鈍板の酸素目付量の低減 仕上焼鈍の低温短時間化 を図ることが有効であるとの結論に達し、上記の課題解
決手段に想到したのである。以下に、本発明にかかる製
造方法の詳細につき、製造工程に従って説明する。
From the results of these experiments and examinations, the present invention concludes that it is effective to reduce the slab heating temperature, reduce the oxygen basis weight of the decarburized annealed sheet, and shorten the finish annealing at a low temperature for a short time. The conclusion has been reached, and the above-mentioned solution to the problem has been reached. Hereinafter, the details of the manufacturing method according to the present invention will be described according to the manufacturing steps.

【0023】[0023]

【発明の実施の形態】素材の成分組成; C:0.0050wt%以上、0.08wt%以下 Cは、組織を改善し、二次再結晶を安定化させるために
必要な元素で、そのために0.005 wt%以上が必要であ
る。しかし、0.08wt%を超えて含有すると冷延時の破断
が増加すること、また、脱炭焼鈍の際に脱炭に要する時
間が長くなり生産性が落ちることから、0.08wt%以下に
限定する。
BEST MODE FOR CARRYING OUT THE INVENTION C: 0.0050 wt% or more and 0.08 wt% or less C is an element necessary for improving the structure and stabilizing the secondary recrystallization, and therefore 0.005 wt%. % Or more is required. However, if the content exceeds 0.08 wt%, the fracture during cold rolling increases, and the time required for decarburization during decarburization annealing becomes longer and the productivity decreases, so the content is limited to 0.08 wt% or less.

【0024】Si:1.0 wt%以上、7.0 wt%以下 Siは、電気抵抗を増加させ鉄損を低減するために必須の
元素であり、このためには1.0 wt%以上含有させること
が必要であるが、7.0 wt%を超えて含有すると加工性が
劣化し、製造や製品の加工が極めて困難になるので、1.
0 wt%以上7.0wt%以下の範囲とする。
Si: 1.0 wt% or more, 7.0 wt% or less Si is an essential element for increasing electric resistance and reducing iron loss, and therefore, it is necessary to contain 1.0 wt% or more. However, if the content exceeds 7.0 wt%, the processability deteriorates, and it becomes extremely difficult to manufacture and process the products.
The range is from 0 wt% to 7.0 wt%.

【0025】Mn:0.03wt%以上、2.5 wt%以下 Mnは、同じく電気抵抗を高め、また、製造時の熱間加工
性を向上させるので必要な元素である。この目的のため
には、0.03wt%以上の含有が必要であるが、2.5 wt%を
超えて含有した場合、γ変態を誘起して磁気特性が劣化
するので、0.03wt%以上2.5 wt%以下の範囲とする。
Mn: 0.03% by weight or more and 2.5% by weight or less Mn is an element necessary for increasing electric resistance and improving hot workability during production. For this purpose, a content of 0.03 wt% or more is necessary. However, if the content exceeds 2.5 wt%, γ transformation is induced and magnetic properties are deteriorated. Therefore, 0.03 wt% or more and 2.5 wt% or less. Range.

【0026】酸可溶性Al:0.001〜0.030 wt% Alは、インヒビター成分として、0.0010wt%以上、0.03
0 wt%以下含有させることが必要である。AlはNと結び
ついてAlNとしてインヒビターの役割を果たすが、AlN
をスラブ加熱時に固溶させ、熱延板焼鈍の昇温過程で微
細析出させることにより、一次再結晶粒の成長抑制効果
が高まる。しかし、Alの含有量が0.001wt%未満の場合
は、熱延板焼鈍の昇温過程において析出するAlNの量が
不足し、逆に0.030wt%を超える場合は、1300℃以下で
のスラブ加熱の際にAlNの固溶が困難となるために熱延
板焼鈍の昇温過程において微細に析出するAlNの量が不
足する。従って、インヒビターとしての効果を効果的に
発揮させるために、Alの含有量は0.001 wt%以上、0.03
0 wt%以下とする。
Acid-soluble Al: 0.001 to 0.030 wt% Al is an inhibitor component of not less than 0.0010 wt% and 0.03 wt%
It must be contained at 0 wt% or less. Al plays an inhibitory role as AlN in combination with N, but AlN
Is solid-dissolved during slab heating and is finely precipitated during the heating process of hot-rolled sheet annealing, whereby the effect of suppressing the growth of primary recrystallized grains is enhanced. However, if the Al content is less than 0.001 wt%, the amount of AlN precipitated during the heating process of hot-rolled sheet annealing becomes insufficient, and if it exceeds 0.030 wt%, the slab heating at 1300 ° C or less is performed. In this case, the solid solution of AlN becomes difficult, so that the amount of AlN that is finely precipitated during the heating process of hot-rolled sheet annealing is insufficient. Therefore, in order to effectively exert the effect as an inhibitor, the content of Al is 0.001 wt% or more, and 0.03 wt% or more.
0 wt% or less.

【0027】N:0.0030〜0.0100wt% Nは、AlNを形成し、インヒビターとして機能するので
0.0030wt%以上含有させることが必要である。しかしな
がら、0.0100wt%を超えて含有すると鋼中でガス化し、
膨れ等の欠陥をもたらすので、0.0030wt%以上、0.0100
wt%以下の範囲にしなければならない。
N: 0.0030 to 0.0100 wt% N forms AlN and functions as an inhibitor.
It is necessary to contain 0.0030 wt% or more. However, if it exceeds 0.0100 wt%, it will gasify in steel,
0.0030wt% or more, 0.0100%
It must be in the range of wt% or less.

【0028】SeおよびS:Se+2.47S≦0.035 wt% Se, Sは、MnあるいはCuと結びついてインヒビターとし
て機能するが、本発明では、Se,Sを過剰に含有した場
合、仕上焼鈍において純化に高温長時間を要するため耳
歪が発生しやすい。また、スラブ加熱温度を低くするた
め、Se,Sを過剰に含有した場合、MnSeあるいはMnSを
核にしてAlNの粗大析出物が出やすくなり、インヒビタ
ーの抑制力がかえって弱くなる。とくに、スラブ加熱温
度が1300℃以下であり、仕上焼鈍を上述したような本発
明に適合する条件で行う場合には、Se、Sは重量%でSe
+2.47Sを0.035 wt%以下にすることが適切である。ま
た、Se、Sをこの範囲に制限することは、熱間圧延時に
析出Seや析出Sを起点とする亀裂の発生を抑え得るの
で、耳割れの防止にも有効である。
Se and S: Se + 2.47S ≦ 0.035 wt% Se and S are combined with Mn or Cu to function as an inhibitor. However, in the present invention, when Se and S are excessively contained, they are purified in finish annealing. Ear distortion tends to occur due to high temperature and long time. In addition, when Se and S are excessively contained in order to lower the slab heating temperature, coarse precipitates of AlN are likely to be generated with MnSe or MnS as a nucleus, and the inhibitor suppressing power is rather weakened. In particular, when the slab heating temperature is 1300 ° C. or less and the finish annealing is performed under the conditions suitable for the present invention as described above, Se and S are expressed in weight% of Se.
It is appropriate to set + 2.47S to 0.035 wt% or less. Further, limiting Se and S to these ranges is effective in preventing edge cracks, because cracks originating from precipitated Se and precipitated S can be suppressed during hot rolling.

【0029】本発明では、その他のインヒビター成分と
して、Sb、Sn、Cr、Ge、Nb、Ti、B等を必要に応じて添
加することもできる。特に、SbもしくはSnは粒界偏析し
やすく、粒成長抑制力の補強に格段の効果を有する。こ
れらの元素をインヒビターとして機能させるためのそれ
ぞれの含有量としては、Sb:0.001 wt%以上、Sn:0.00
1 wt%以上、Cr:0.001 wt%以上、Ge:0.001 wt%以
上、Nb:0.001 wt%以上、Ti:0.0005wt%以上、B:0.
0001wt%以上を必要とする。しかし、Sb:0.080 wt%超
え、Sn:0.30wt%超え、Cr:0.30wt%超え、Ge:0.30wt
%超え、Nb:0.30wt%超え、Ti:0.0020wt%超え、B:
0.0020wt%超えで含有した場合には、製品のベンド特性
など機械特性が劣化する。従って、これらの元素をイン
ヒビターとして利用する場合の含有量は、それぞれ、Sb
は0.001 〜0.080 wt%の範囲、Snは0.001 〜0.30wt%の
範囲、Crは0.001 〜0.30wt%の範囲、Geは0.001 〜0.30
wt%の範囲、Nbは0.001 〜0.30wt%の範囲、Tiは0.0005
〜0.0020wt%の範囲、Bは0.0001〜0.0020wt%の範囲と
する。
In the present invention, Sb, Sn, Cr, Ge, Nb, Ti, B, etc. can be added as necessary as other inhibitor components. In particular, Sb or Sn tends to segregate at the grain boundaries, and has a remarkable effect in reinforcing the grain growth suppressing power. The contents of these elements to function as inhibitors are as follows: Sb: 0.001 wt% or more, Sn: 0.001 wt% or more.
1 wt% or more, Cr: 0.001 wt% or more, Ge: 0.001 wt% or more, Nb: 0.001 wt% or more, Ti: 0.0005 wt% or more, B: 0.
0001 wt% or more is required. However, Sb: more than 0.080 wt%, Sn: more than 0.30 wt%, Cr: more than 0.30 wt%, Ge: 0.30 wt%
%, Nb: more than 0.30 wt%, Ti: more than 0.0020 wt%, B:
If the content exceeds 0.0020 wt%, mechanical properties such as bend properties of the product are deteriorated. Therefore, when these elements are used as inhibitors, their contents are Sb, respectively.
Is in the range of 0.001 to 0.080 wt%, Sn is in the range of 0.001 to 0.30 wt%, Cr is in the range of 0.001 to 0.30 wt%, and Ge is 0.001 to 0.30 wt%.
wt%, Nb is 0.001 to 0.30 wt%, Ti is 0.0005
B is in the range of 0.0001 to 0.0020 wt%.

【0030】スラブの鋳造; 上述した成分組成にした
溶鋼を連続鋳造法あるいは造魂法で鋳造し、必要に応じ
て分塊工程を挟んでスラブとする。なお、鋳造時に電磁
攪拌を施すことは、スラブの柱状晶部分に起因する磁性
劣化を防止するので好ましい。
Casting of slab: The molten steel having the above-mentioned composition is cast by a continuous casting method or a soul-making method, and a slab is inserted with a lump-forming step as necessary. In addition, it is preferable to perform electromagnetic stirring at the time of casting, since magnetic deterioration due to the columnar crystal portion of the slab is prevented.

【0031】熱間圧延; 上記スラブは、通常の方法に
従い、熱間圧延に先立ち加熱された後、熱間圧延して熱
延コイルとされる。上記スラブの加熱は、熱間圧延時の
耳割れを防止するため、ならびにゴス方位からずれた2
次粒の発生を抑制するために1300℃以下の温度で行う。
スラブ加熱温度を低くすることは、エネルギーコスト低
減のためにも好ましい。なお、近年、スラブ加熱を行わ
ず、連続鋳造後、直接熱間圧延を行う方法が提案されて
いるが、この方法は、スラブ加熱温度を低くすることが
できるので、本発明においても好適に実施しうる。
Hot Rolling: The slab is heated prior to hot rolling and then hot rolled into a hot rolled coil according to a usual method. The heating of the slab is intended to prevent ear cracks during hot rolling, and to prevent deviation from the Goss orientation.
The treatment is performed at a temperature of 1300 ° C. or less in order to suppress the generation of secondary grains.
Lowering the slab heating temperature is also preferable for reducing energy costs. In recent years, a method has been proposed in which hot rolling is performed directly after continuous casting without performing slab heating, but this method can be used in the present invention because the slab heating temperature can be lowered. Can.

【0032】熱延板焼鈍; 熱間圧延された鋼板は、引
き続いて、熱延板焼鈍が施される。この熱延板焼鈍の目
的は一般に、昇温過程でのインヒビターAlNの微細析出
と組織の均一化にあるが、本発明ではスラブ加熱温度を
低くしているので後者の目的が充足されているため、イ
ンヒビターの微細析出に重点をおいて熱延板焼鈍を行
う。熱延板焼鈍の温度、時間は特に限定するものではな
いが、他の工程条件とも組み合わせて、インヒビターの
抑制力を強化すべく適正化された条件で熱延板焼鈍を行
うことが好ましい。
Hot-rolled sheet annealing: The hot-rolled steel sheet is subsequently subjected to hot-rolled sheet annealing. The purpose of this hot-rolled sheet annealing is generally to finely precipitate the inhibitor AlN and homogenize the structure during the temperature raising process. However, in the present invention, since the slab heating temperature is lowered, the latter purpose is satisfied. The hot rolled sheet annealing is performed with emphasis on fine precipitation of the inhibitor. Although the temperature and time of the hot-rolled sheet annealing are not particularly limited, it is preferable to perform the hot-rolled sheet annealing under conditions optimized in combination with other process conditions to enhance the inhibitory force of the inhibitor.

【0033】冷間圧延; 熱延板焼鈍を施した後、1回
または中間焼鈍を挟む2回以上の冷間圧延により最終板
厚とする。この冷間圧延は、ゼンジミア圧延機で行って
もタンデム圧延機で行っても良い。この場合、圧延温度
を常温よりも高く ( 200℃程度) し、圧延時の動的歪時
効あるいはパス間での静的歪時効により集合組織を制御
することは、本発明においても製品の磁気特性を向上さ
せる上で有効である。
Cold rolling: After hot-rolled sheet annealing, the final sheet thickness is obtained by cold rolling once or twice or more with intermediate annealing. This cold rolling may be performed by a Sendzimir rolling mill or a tandem rolling mill. In this case, setting the rolling temperature higher than the normal temperature (about 200 ° C.) and controlling the texture by dynamic strain aging during rolling or static strain aging between passes is the same as in the present invention. It is effective in improving.

【0034】脱炭焼鈍、仕上焼鈍、コーティング;冷間
圧延後、脱炭焼鈍を施し、その後、焼鈍分離剤を塗布し
て仕上焼鈍を施す。この脱炭焼鈍では、製品の被膜特性
を良好にするために脱炭焼鈍板の酸素目付量が1.7 g/
m2以下になるように制御する。その酸素目付量を制御す
る方法として本発明では、焼鈍雰囲気内に、酸化ポテン
シャルを示すPH2O /PH2が0.50以下となるような条件
の下で脱炭焼鈍を行うことが好ましい。また、仕上焼鈍
については、耳歪を確実に防止するために、コイル外巻
き部分の最高到達温度を1150℃未満に制御するか、また
はそのコイル外巻き部分の最高到達温度を1150℃以上12
00℃未満の範囲内であって1150℃以上に滞在する時間が
30時間以内となるように制御することが好ましい。な
お、上記仕上焼鈍後は、必要に応じて絶縁コーティング
を塗布焼き付け、更に平坦化焼鈍を施し、製品とする。
Decarburizing annealing, finish annealing, coating: After cold rolling, decarburizing annealing is performed, and then an annealing separator is applied to finish annealing. In this decarburization annealing, the oxygen basis weight of the decarburized annealed plate was 1.7 g /
m 2 is controlled to be below. In the present invention, as a method for controlling the oxygen basis weight, it is preferable to perform decarburizing annealing in an annealing atmosphere under conditions such that PH 2 O / PH 2 indicating an oxidation potential is 0.50 or less. Regarding finish annealing, in order to reliably prevent ear distortion, the maximum temperature of the coil outer winding portion is controlled to less than 1150 ° C, or the maximum temperature of the coil outer winding portion is set to 1150 ° C or higher.
The time to stay in the range below 00 ℃ and stay above 1150 ℃
It is preferable to control so as to be within 30 hours. After the finish annealing, an insulating coating is applied and baked if necessary, and further flattening annealing is performed to obtain a product.

【0035】[0035]

【実施例】(実施例1)表1に示すa、bの成分組成を
有する200 mm厚のスラブ各9本を連続鋳造法により鋳造
した。次に、上記各スラブを3本ずつ、1180℃、1280
℃、1380℃の温度に加熱したのち熱間圧延して2.5 mmの
熱延コイルとし、引き続き、1000℃に30秒間保持する熱
延板焼鈍を施した。その後、酸洗してから冷間圧延し0.
34mmの厚みの冷延板とし、その冷延板を脱脂処理してか
ら850 ℃で120 秒間の脱炭焼鈍を施した。脱炭焼鈍を施
す際の炉内雰囲気の酸化ポテンシャルPH2O /PH2は0.
40に制御した。この脱炭焼鈍の後、焼鈍分離剤を塗布し
て仕上焼鈍を施した。この仕上焼鈍では25℃/h でT℃
まで昇温し、X時間均熱保持後、50℃/h で冷却するヒ
ートパターンとし、T、Xを以下の3条件に変化させ
た。 イ:T=1225℃ X=10hr ロ:T=1175℃ X=40hr ハ:T=1175℃ X=10hr 次いで、仕上焼鈍の後、未反応分離剤を除去し、コロイ
ダルシリカを含有するリン酸マグネシウムを主成分とす
る絶縁コーティングを塗布し、800℃で焼き付けて製品
とした。次に、各製品から圧延方向に沿ってエプスタイ
ンサイズの試験片を切り出し、磁束密度B8とw17/50
(磁束密度1.7 Tにおける鉄損)とを測定し、かつ被膜
外観の検査を行った。そして、熱間圧延終了後に深さ3
mm以上の耳割れの発生状況を、脱炭焼鈍後に酸素目付量
を、仕上焼鈍後に耳歪の発生状況を調査した。その結果
を表2に示す。表2に示す結果から明らかなように、本
発明に係る製造方法に適合する例では、耳割れ、耳歪が
格段に防止され、かつ、磁気特性と被膜特性が良好であ
った。
EXAMPLES (Example 1) Nine slabs each having a composition of a and b shown in Table 1 and having a thickness of 200 mm were cast by a continuous casting method. Next, three of each of the above slabs were placed at 1180 ° C and 1280 ° C.
C. and 1380.degree. C., then hot-rolled to form a 2.5 mm hot-rolled coil, and subsequently subjected to hot-rolled sheet annealing maintained at 1000.degree. C. for 30 seconds. After that, it was pickled and cold rolled.
A cold-rolled sheet having a thickness of 34 mm was degreased, and then subjected to decarburizing annealing at 850 ° C. for 120 seconds. The oxidation potential PH 2 O / PH 2 of the furnace atmosphere during decarburization annealing is 0.
Controlled to 40. After the decarburizing annealing, a finish annealing was performed by applying an annealing separator. In this finish annealing, T ° C at 25 ° C / h
After heating for X hours and maintaining the soaking for X hours, a heat pattern of cooling at 50 ° C./h was used, and T and X were changed to the following three conditions. A: T = 1225 ° C. X = 10 hr B: T = 1175 ° C. X = 40 hr C: T = 1175 ° C. X = 10 hr After the finish annealing, the unreacted separating agent is removed, and the magnesium phosphate containing colloidal silica is removed. An insulating coating mainly comprising is applied and baked at 800 ° C. to obtain a product. Next, a test piece of Epstein size was cut out from each product along the rolling direction, and the magnetic flux density B8 and w17 / 50
(Iron loss at a magnetic flux density of 1.7 T) and the appearance of the coating film was inspected. And after hot rolling, the depth 3
The occurrence of ear cracks of mm or more was investigated, the basis weight of oxygen after decarburization annealing, and the occurrence of ear distortion after finish annealing. Table 2 shows the results. As is evident from the results shown in Table 2, in the example suitable for the manufacturing method according to the present invention, ear cracks and ear distortion were remarkably prevented, and the magnetic properties and coating properties were good.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】(実施例2)表1に示すc、dの成分組成
を有する200mm厚のスラブ各6本を連続鋳造法により鋳
造した。鋳造時には電磁攪拌を施した。次に、各成分組
成のスラブを1200℃に加熱したのち熱間圧延して2.5 mm
の熱延コイルとし、引き続き、950℃に60秒間保持する
熱延板焼鈍を施した。その後、酸洗してから冷間圧延し
0.34mmの厚みの冷延板とし、その冷延板を脱脂処理して
から、850 ℃で120秒間の脱炭焼鈍を施した。脱炭焼鈍
を施す際の炉内雰囲気の酸化ポテンシャルPH2O /PH2
は0.35、0.45、0.55の3通りに変化させた。この脱炭焼
鈍の後、焼鈍分離剤を塗布して仕上焼鈍を施した。この
仕上焼鈍では25℃/h でT℃まで昇温し、X時間均熱保
持後、50℃/h で冷却するヒートパターンとし、T、X
を以下の2条件に変化させた。 イ:T=1225℃ X=10hr ハ:T=1175℃ X=10hr
(Example 2) Six 200 mm thick slabs having the component compositions of c and d shown in Table 1 were cast by a continuous casting method. At the time of casting, electromagnetic stirring was performed. Next, the slab of each component composition was heated to 1200 ° C. and then hot-rolled to 2.5 mm
, And subsequently subjected to hot-rolled sheet annealing at 950 ° C. for 60 seconds. Then, pickling and cold rolling
A cold rolled sheet having a thickness of 0.34 mm was degreased, and then subjected to decarburizing annealing at 850 ° C. for 120 seconds. Oxidation potential of furnace atmosphere when performing decarburization annealing PH 2 O / PH 2
Was changed in three ways: 0.35, 0.45, and 0.55. After the decarburizing annealing, a finish annealing was performed by applying an annealing separator. In this finish annealing, the temperature was raised to T ° C at a rate of 25 ° C / h, and maintained at a soaking temperature of X hours, followed by cooling at 50 ° C / h.
Was changed to the following two conditions. B: T = 1225 ° C X = 10hr C: T = 1175 ° C X = 10hr

【0039】仕上焼鈍後、未反応分離剤を除去し、コロ
イダルシリカを含有するリン酸マグネシウムを主成分と
する絶縁コーティングを塗布し、800℃で焼き付け製品
とした。各製品から圧延方向に沿ってエプスタインサイ
ズの試験片を切り出し、磁束密度B8とw17/50(磁束
密度1.7 Tにおける鉄損)を測定し、かつ被膜外観の検
査を行った。そして、熱間圧延終了後に深さ3mm以上の
耳割れの発生状況を、脱炭焼鈍後に酸素目付量を、仕上
焼鈍後に耳歪の発生状況を調査した。結果を表3に示
す。表3に示す結果からわかるように、本発明の製造方
法を遵守した場合に、耳割れ、耳歪がなく、かつ、磁気
特性と被膜特性が良好であった。
After the finish annealing, the unreacted separating agent was removed, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. to obtain a product. A test piece of Epstein size was cut out from each product along the rolling direction, the magnetic flux density B8 and w17 / 50 (iron loss at a magnetic flux density of 1.7 T) were measured, and the appearance of the coating was inspected. Then, the occurrence of ear cracks having a depth of 3 mm or more after the completion of hot rolling, the oxygen basis weight after decarburization annealing, and the occurrence of ear distortion after finish annealing were examined. Table 3 shows the results. As can be seen from the results shown in Table 3, when the production method of the present invention was adhered to, there were no ear cracks and ear distortions, and the magnetic properties and coating properties were good.

【0040】[0040]

【表3】 [Table 3]

【0041】(実施例3)表1に示すe、fの成分組成
を有する250 mm厚のスラブを各9本を連続鋳造法により
鋳造した。次に、各成分組成のスラブを3本ずつ、1150
℃、1250℃、1350℃の温度に加熱したのち、熱間圧延し
て2.8 mmの熱延コイルとし、引き続き、950 ℃に60秒間
保持する熱延板焼鈍を施した。その後、酸洗し、1.7 mm
の厚みまでの第1回目冷間圧延を施し、950 ℃の温度で
中間焼鈍を施した後、再び酸洗し、0.22mmの厚みまでの
第2回目の冷間圧延を施した。脱脂処理を行った後、85
0 ℃で120秒間の脱炭焼鈍を施したが、この脱炭焼鈍時
の炉内雰囲気の酸化ポテンシャルPH2O /PH2は0.40に
制御した。脱炭焼鈍後、焼鈍分離剤を塗布して仕上焼鈍
を施した。仕上焼鈍では850 ℃に15時間保持した後、25
℃/h でT℃まで昇温し、X時間均熱保持後、50℃/h
で冷却するヒートパターンとし、T、Xを以下の2条件
に変化させた。 イ:T=1225℃ X=10hr ロ:T=1175℃ X=40hr ハ:T=1175℃ X=10hr
Example 3 Nine slabs each having a composition of e and f shown in Table 1 and having a thickness of 250 mm were cast by a continuous casting method. Next, three slabs of each component composition were added, 1150
C., 1250.degree. C., and 1350.degree. C., then hot-rolled to form a 2.8 mm hot-rolled coil, and subsequently annealed at 950.degree. C. for 60 seconds. Then, pickling, 1.7 mm
After the first cold rolling to a thickness of 950 ° C., an intermediate annealing at a temperature of 950 ° C., pickling again, and a second cold rolling to a thickness of 0.22 mm. After degreasing, 85
Decarburization annealing was performed at 0 ° C. for 120 seconds, and the oxidation potential PH 2 O / PH 2 of the furnace atmosphere during this decarburization annealing was controlled to 0.40. After decarburizing annealing, a finish annealing was performed by applying an annealing separator. In the finish annealing, after holding at 850 ° C for 15 hours, 25
Temperature rise to T ° C at 50 ° C / h.
, And T and X were changed to the following two conditions. B: T = 1225 ° C X = 10hr B: T = 1175 ° C X = 40hr C: T = 1175 ° C X = 10hr

【0042】次に、仕上焼鈍後、未反応分離剤を除去
し、コロイダルシリカを含有するリン酸マグネシウムを
主成分とする絶縁コーティングを塗布し、800℃で焼き
付け製品とした。各製品から圧延方向に沿ってエプスタ
インサイズの試験片を切り出し、磁束密度B8とw17/
50(磁束密度1.7 Tにおける鉄損)を測定、および被膜
外観の検査を行った。また、熱間圧延終了後に深さ3mm
以上の耳割れの発生状況を、脱炭焼鈍後に酸素目付量
を、仕上焼鈍後に耳歪の発生状況を調査した。その結果
を表4にまとめて示す。表4に示すように、本発明の製
造方法を遵守した場合に、耳割れ、耳歪がなく、かつ、
磁気特性と被膜特性が良好であった。
Next, after the finish annealing, the unreacted separating agent was removed, an insulating coating mainly containing magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. to obtain a product. From each product, test specimens of Epstein size were cut out along the rolling direction, and the magnetic flux densities B8 and w17 /
50 (iron loss at a magnetic flux density of 1.7 T) was measured, and the appearance of the coating was inspected. After hot rolling, the depth is 3mm.
The occurrence of the above ear cracks was examined for oxygen basis weight after decarburization annealing, and the occurrence of ear distortion after finish annealing. The results are summarized in Table 4. As shown in Table 4, when the manufacturing method of the present invention is adhered to, there are no ear cracks and ear distortions, and
Magnetic properties and film properties were good.

【0043】[0043]

【表4】 [Table 4]

【0044】(実施例4)表1に示すg、hの成分組成
を有する200mm厚のスラブ各9本を連続鋳造法により鋳
造した。次に、各成分組成のスラブを3本ずつ、1180
℃、1280℃、1380℃の温度に加熱後、熱間圧延して2.5
mmの熱延コイルとし、引き続き、975 ℃に45秒間保持す
る熱延板焼鈍を施した。その後、酸洗した後、0.34mmの
厚みに冷間圧延し、脱脂処理を行った後、850 ℃で120
秒間の脱炭焼鈍を施した。脱炭焼鈍を施す際の炉内雰囲
気の酸化ポテンシャルPH2O /PH2は0.40に制御した。
脱炭焼鈍後、ストリップを走行せしめる状態で、750 ℃
×30秒の窒化処理を、水素75wt%、窒素25wt%と微量の
アンモニアの混合ガス中で行い、鋼板の窒素量を220ppm
とした。次いで、焼鈍分離剤を塗布して仕上焼鈍を施
した。仕上焼鈍では25℃/h でT℃まで昇温し、X時間
均熱保持後、50℃/h で冷却するヒートパターンとし、
T、Xを以下の3条件に変化させた。 イ:T=1225℃ X=10hr ロ:T=1175℃ X=40hr ハ:T=1175℃ X=10hr
Example 4 Nine slabs each having a composition of g and h shown in Table 1 and having a thickness of 200 mm were cast by a continuous casting method. Next, 3 slabs of each component composition
After heating to 1280 ℃, 1380 ℃, and hot rolling 2.5
mm hot-rolled coil, followed by hot-rolled sheet annealing maintained at 975 ° C. for 45 seconds. Then, after pickling, cold-rolled to a thickness of 0.34 mm, degreased, and heated at 850 ° C. for 120 hours.
A decarburization annealing for 2 seconds was performed. The oxidation potential PH 2 O / PH 2 in the furnace atmosphere during decarburization annealing was controlled to 0.40.
After decarburizing annealing, the strip is run at 750 ° C.
Nitrogen treatment for 30 seconds in a mixed gas of 75wt% hydrogen, 25wt% nitrogen and a small amount of ammonia to reduce the nitrogen content of the steel sheet to 220ppm
And Then, a finish annealing was performed by applying an annealing separator. In the case of finish annealing, the temperature is raised to T ° C at 25 ° C / h, soaked for X hours, and then cooled at 50 ° C / h.
T and X were changed under the following three conditions. A: T = 1225 ° C X = 10hr B: T = 1175 ° C X = 40hr C: T = 1175 ° C X = 10hr

【0045】仕上焼鈍後、未反応分離剤を除去し、コロ
イダルシリカを含有するリン酸マグネシウムを主成分と
する絶縁コーティングを塗布し、800℃で焼き付け製品
とした。各製品から圧延方向に沿ってエプスタインサイ
ズの試験片を切り出し、磁束密度B8とw17/50(磁束
密度1.7 Tにおける鉄損)を測定、および被膜外観の検
査を行った。また、熱間圧延終了後に深さ3mm以上の耳
割れの発生状況を、脱炭焼鈍後に酸素目付量を、仕上焼
鈍後に耳歪の発生状況を調査した。結果を表5に示す。
表5に示すように、本願発明の製造方法を遵守した場合
に、耳割れ、耳歪がなく、かつ、磁気特性と被膜特性が
良好であった。
After the finish annealing, the unreacted separating agent was removed, an insulating coating mainly containing magnesium phosphate containing colloidal silica was applied, and the product was baked at 800 ° C. to obtain a product. A test piece of Epstein size was cut out from each product along the rolling direction, the magnetic flux density B8 and w17 / 50 (iron loss at a magnetic flux density of 1.7 T) were measured, and the appearance of the coating was inspected. Further, the occurrence of ear cracks having a depth of 3 mm or more after the completion of hot rolling, the oxygen basis weight after decarburization annealing, and the occurrence of ear distortion after finish annealing were examined. Table 5 shows the results.
As shown in Table 5, when the manufacturing method of the present invention was adhered to, the ear cracks and ear distortion did not occur, and the magnetic characteristics and the film characteristics were good.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】かくして本発明によれば、熱延コイルに
耳割れがなく、仕上焼鈍後に耳歪がなく、かつ、磁気特
性と被膜特性とを互いに他を犠牲にすることなく、良好
な一方向性電磁鋼板の製造が可能になった。
Thus, according to the present invention, there is no crack in the hot-rolled coil, no distortion after the finish annealing, and the magnetic properties and the coating properties are good without sacrificing each other. Production of grain-oriented electrical steel sheets has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上焼鈍温度と耳歪発生深さの関係を示すグラ
フである。
FIG. 1 is a graph showing a relationship between a finish annealing temperature and a depth of occurrence of ear distortion.

【図2】仕上焼鈍温度と耳歪の長さの関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between a finish annealing temperature and a length of ear distortion.

【図3】仕上焼鈍温度と鉄損の関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between finish annealing temperature and iron loss.

【図4】仕上焼鈍温度と耳歪発生深さの関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between a finish annealing temperature and a depth of occurrence of ear distortion.

【図5】仕上焼鈍温度と耳歪の長さの関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the finish annealing temperature and the length of ear distortion.

【図6】仕上焼鈍温度と鉄損の関係を示すグラフであ
る。
FIG. 6 is a graph showing a relationship between a finish annealing temperature and iron loss.

【図7】スラブ加熱温度と製品の鉄損の関係を示すグラ
フである。
FIG. 7 is a graph showing a relationship between a slab heating temperature and iron loss of a product.

【図8】スラブ加熱温度と脱炭焼鈍後の酸素目付量の関
係を示すグラフである。
FIG. 8 is a graph showing a relationship between a slab heating temperature and an oxygen basis weight after decarburizing annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 誠 岡山県倉敷市水島川崎通1丁目 (番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 中西 匡 岡山県倉敷市水島川崎通1丁目 (番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 BA01 BA02 FA01 JA04 MA01 MA02 5E041 AA02 AA11 AA19 BC01 CA02 HB05 HB07 HB11 NN01 NN05 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Watanabe 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Prefecture (without address) Kawasaki Steel Corporation Mizushima Works (72) Inventor, Tadashi Nakanishi 1, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Chome (without address) Kawasaki Steel Corporation Mizushima Works F term (reference) 4K033 AA02 BA01 BA02 FA01 JA04 MA01 MA02 5E041 AA02 AA11 AA19 BC01 CA02 HB05 HB07 HB11 NN01 NN05 NN17 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.005 〜0.08wt%、Si:1.0 〜7.0 wt
%、Mn:0.03〜2.5 wt%を含有する珪素鋼スラブを加熱
し、熱間圧延し、次いで熱延板焼鈍を施し、その後、一
回または中間焼鈍を挟む二回以上の冷間圧延を行い、さ
らにその後、脱炭焼鈍と仕上焼鈍とを施して方向性電磁
鋼板を製造する方法において、 酸可溶性Al:0.001 〜0.030 %、N:0.003〜0.010
%、Se+2.47S≦0.035%にかかる成分組成を有するス
ラブを用い、このスラブの加熱を1300℃以下の温度にて
行い、脱炭焼鈍に当たっては、焼鈍後の板の酸素目付量
が1.7 g/m2以下になるように焼鈍し、そして仕上焼鈍に
おいては、コイルの外巻き部分の最高到達温度を1150℃
未満にするか、または、この温度を1150℃以上1200℃未
満とし、かつで1150℃以上の温度に滞在させる時間を30
時間以内となるように焼鈍することを特徴とする、耳割
れ、耳歪のない方向性電磁鋼板の製造方法。
1. C: 0.005 to 0.08 wt%, Si: 1.0 to 7.0 wt%
%, Mn: a silicon steel slab containing 0.03 to 2.5 wt% is heated, hot-rolled, and then subjected to hot-rolled sheet annealing, and then cold-rolled once or twice or more with intermediate annealing interposed. And further thereafter performing decarburizing annealing and finish annealing to produce a grain-oriented electrical steel sheet, wherein acid-soluble Al: 0.001 to 0.030%, N: 0.003 to 0.010%
%, Se + 2.47S ≦ 0.035% using a slab having a composition of about 0.035%, and heating this slab at a temperature of 1300 ° C. or less. In the decarburization annealing, the oxygen basis weight of the annealed sheet is 1.7 g / m 2 or less, and in finish annealing, the maximum temperature of the outer winding of the coil is set to 1150 ° C.
Or the temperature must be 1150 ° C or more and less than 1200 ° C, and the time for staying at a temperature of 1150 ° C or more
A method for producing a grain-oriented electrical steel sheet free of edge cracks and ear distortions, wherein annealing is performed so as to be performed within a period of time.
【請求項2】脱炭焼鈍を酸素ポテンシャルPH2O /PH2
が0.50以下となる雰囲気中で行うことにより、脱炭焼鈍
板の酸素目付量を1.7 g/m2以下に制御することを特徴と
する請求項1記載の方向性電磁鋼板の製造方法。
2. The decarburization annealing is performed at an oxygen potential PH 2 O / PH 2
2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the oxygen content of the decarburized annealed sheet is controlled to 1.7 g / m 2 or less by performing in an atmosphere in which is 0.50 or less.
【請求項3】鋳造時に電磁攪拌を施す、請求項1または
2に記載の方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein electromagnetic stirring is performed during casting.
【請求項4】熱間圧延終了後、二次再結晶開始までの間
に、鋼板に窒化処理を施すことを特徴とする、請求項
1, 2または3に記載の方向性電磁鋼板の製造方法。
4. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the steel sheet is subjected to nitriding treatment after completion of hot rolling and before the start of secondary recrystallization. .
JP10245122A 1998-08-31 1998-08-31 Production of grain oriented silicon steel sheet free from edge crack and edge distortion Pending JP2000073120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10245122A JP2000073120A (en) 1998-08-31 1998-08-31 Production of grain oriented silicon steel sheet free from edge crack and edge distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10245122A JP2000073120A (en) 1998-08-31 1998-08-31 Production of grain oriented silicon steel sheet free from edge crack and edge distortion

Publications (1)

Publication Number Publication Date
JP2000073120A true JP2000073120A (en) 2000-03-07

Family

ID=17128957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10245122A Pending JP2000073120A (en) 1998-08-31 1998-08-31 Production of grain oriented silicon steel sheet free from edge crack and edge distortion

Country Status (1)

Country Link
JP (1) JP2000073120A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530056B1 (en) * 2001-11-13 2005-11-22 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet with excellent productivity
JP2012102344A (en) * 2010-11-05 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet
WO2015021900A1 (en) * 2013-08-13 2015-02-19 优泊公司 Labeled hollow formed container and forming method thereof
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
CN110586657A (en) * 2019-09-04 2019-12-20 鞍钢股份有限公司 Production method for reducing crack defects of hot-rolled edge of non-oriented silicon steel
WO2023074908A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530056B1 (en) * 2001-11-13 2005-11-22 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet with excellent productivity
JP2012102344A (en) * 2010-11-05 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet
WO2015021900A1 (en) * 2013-08-13 2015-02-19 优泊公司 Labeled hollow formed container and forming method thereof
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP7100581B2 (en) 2015-12-18 2022-07-13 ポスコ Manufacturing method of annealing separator for grain-oriented electrical steel sheets, grain-oriented electrical steel sheets, and grain-oriented electrical steel sheets
US11505843B2 (en) 2015-12-18 2022-11-22 Posco Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet
CN110586657A (en) * 2019-09-04 2019-12-20 鞍钢股份有限公司 Production method for reducing crack defects of hot-rolled edge of non-oriented silicon steel
WO2023074908A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
CN109906284B (en) Oriented electrical steel sheet and method for manufacturing the same
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2000073120A (en) Production of grain oriented silicon steel sheet free from edge crack and edge distortion
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP7159594B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP4753558B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP2006213953A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPH0726156B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925