JP2000068602A - Optical amplification factor measuring device - Google Patents

Optical amplification factor measuring device

Info

Publication number
JP2000068602A
JP2000068602A JP10235658A JP23565898A JP2000068602A JP 2000068602 A JP2000068602 A JP 2000068602A JP 10235658 A JP10235658 A JP 10235658A JP 23565898 A JP23565898 A JP 23565898A JP 2000068602 A JP2000068602 A JP 2000068602A
Authority
JP
Japan
Prior art keywords
light
wavelength
mode
polarization
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235658A
Other languages
Japanese (ja)
Inventor
Katsuaki Magari
克明 曲
Toshio Ito
敏夫 伊藤
Yuji Akatsu
祐史 赤津
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10235658A priority Critical patent/JP2000068602A/en
Publication of JP2000068602A publication Critical patent/JP2000068602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to measure it either gain in the TE mode or the TM mode of a sample to be measured is higher along with the polarization dependence of the sample. SOLUTION: This measuring device deflects light, which has a wide wavelength band emitted from a light source 21 and has a prescribed plane A of linear polarization, into light having a plane B of linear polarization of a mode coincided with the TE mode of a sample S to be measured by a polarizing element 22, adjusts the mode of the plane B to the TE mode and a TM mode of the sample S according to the taking in or out of a 1/2 wavelength constant 23 to make the light incide in the sample S and sample the emitting light take a wavelength spectral measurement by an optical spectrum analyzer 24, whereby it is made possible to measure it either gain of the TE mode and the TM mode is higher and at the same time, it is made possible to measure the polarization dependence of the sample S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば光通信、光
交換、光情報処理等に使用するデバイスの製造開発・選
別に適用して有効な光増幅利得測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification gain measuring apparatus which is effective when applied to, for example, manufacturing development and selection of devices used for optical communication, optical switching, optical information processing and the like.

【0002】[0002]

【従来の技術】光通信、光交換、光情報処理といった光
を利用した光伝送処理システムの構築を考えると、シス
テムを構成する様々なデバイスにおけるTEモードのゲ
イン(利得)とTMモードのゲインとの差、即ち偏波依
存性が大きな問題となる。
2. Description of the Related Art Considering the construction of an optical transmission processing system using light such as optical communication, optical switching, and optical information processing, the gain of a TE mode and the gain of a TM mode in various devices constituting the system are considered. , That is, the polarization dependence is a major problem.

【0003】例えば光ファイバや光スイッチでの光損失
を補償するために、図1に示すような半導体レーザ1の
両端面に反射防止膜2,3を施してなる半導体光増幅器
が用いられるが、前述したシステムにおける送信側から
の光の偏波状態は時間とともに変化するため、活性層4
に入力される光の偏波状態によってゲインが変動する
と、受信側での受光レベルが時間とともに変動し、受信
感度が大きく低下してしまうという問題があった。
For example, in order to compensate for optical loss in an optical fiber or an optical switch, a semiconductor optical amplifier in which antireflection films 2 and 3 are applied to both end surfaces of a semiconductor laser 1 as shown in FIG. 1 is used. Since the polarization state of light from the transmitting side in the system described above changes with time, the active layer 4
If the gain changes due to the polarization state of the light input to the receiver, there is a problem that the light receiving level on the receiving side changes with time, and the receiving sensitivity is greatly reduced.

【0004】そのため、半導体光増幅器等のデバイスに
対して、例えば1.0dB以下といった偏波依存性が要
求されることになり、偏波依存性の測定を行う必要が生
じてくる。また、偏波依存性の測定はデバイスにファイ
バを実装してモジュール化する前の段階、即ちチップ状
態で行わなければならない。
For this reason, devices such as semiconductor optical amplifiers are required to have a polarization dependency of, for example, 1.0 dB or less, and it becomes necessary to measure the polarization dependency. Further, the measurement of the polarization dependence must be performed in a stage before mounting the fiber in the device and modularizing the device, that is, in a chip state.

【0005】通常、偏波依存性の測定を行うには、ある
特定の波長を持つ光の偏波を回転させ、その時のゲイン
を測定する。このため、従来は1/2波長板と1/4波
長板とを組み合わせた偏波コントローラを利用して偏波
依存性の測定を行っていた。
Usually, to measure the polarization dependence, the polarization of light having a specific wavelength is rotated, and the gain at that time is measured. For this reason, conventionally, the polarization dependence has been measured using a polarization controller combining a 波長 wavelength plate and a 波長 wavelength plate.

【0006】図2は偏波コントローラを用いた従来の光
増幅利得測定装置の一例を示すもので、図中、11は測
定用単一波長光源、12は偏波ローテータ(コントロー
ラ)、13はパワーメーター、14は光ファイバ、1
5,16は先球ファイバ、Sは半導体レーザ型の光増幅
素子等の被測定試料である。
FIG. 2 shows an example of a conventional optical amplification gain measuring device using a polarization controller. In the drawing, 11 is a single wavelength light source for measurement, 12 is a polarization rotator (controller), and 13 is power. Meter, 14 is optical fiber, 1
Reference numerals 5 and 16 denote spherical fibers, and S denotes a sample to be measured such as a semiconductor laser type optical amplifier.

【0007】前記構成において、測定用単一波長光源1
1から発せられた特定の波長の光は光ファイバ14を介
して偏波ローテータ12に入射される。偏波ローテータ
12は1/4波長板17及び1/2波長板18を備え、
この1/4波長板17及び1/2波長板18を機械的に
回転させることで、偏波面の回転を実現する。
In the above configuration, the single wavelength light source for measurement 1
The light of a specific wavelength emitted from 1 is incident on the polarization rotator 12 via the optical fiber 14. The polarization rotator 12 includes a 波長 wavelength plate 17 and a 波長 wavelength plate 18,
The rotation of the polarization plane is realized by mechanically rotating the quarter-wave plate 17 and the half-wave plate 18.

【0008】偏波ローテータ12によって偏波面の回転
を制御された光は先球ファイバ15を介して被測定試料
Sに入射され、該被測定試料Sによる増幅等を受けて出
射された光は先球ファイバ16を介してパワーメーター
13に受信され、そのレベルが検出・表示される。
The light whose rotation of the polarization plane is controlled by the polarization rotator 12 is incident on the sample S via the spherical fiber 15, and the light emitted after being amplified by the sample S is emitted first. The power level is received by the power meter 13 via the spherical fiber 16, and its level is detected and displayed.

【0009】この時、偏波による入射光強度を一定にす
れば、パワーメーター13の表示値の最大と最小を求
め、両者の差を算出することで被測定試料Sの偏波依存
性を求めることができる。
At this time, if the intensity of the incident light due to the polarization is kept constant, the maximum and minimum of the display value of the power meter 13 are obtained, and the difference between the two values is calculated to obtain the polarization dependence of the sample S to be measured. be able to.

【0010】[0010]

【発明が解決しようとする課題】ところで、通常の半導
体レーザで用いられるような活性層では、厚みに比べて
幅が10倍程度大きいため、TEモードの利得がTMモ
ードの利得に比べて大きい。しかし、半導体増幅器では
活性層の断面が正方形状に近くなるため、TEモードと
TMモードのどちらの利得が大きいか分からなくなる。
Incidentally, in an active layer used in an ordinary semiconductor laser, the width of the active layer is about ten times larger than the thickness, so that the gain in the TE mode is larger than the gain in the TM mode. However, in the semiconductor amplifier, since the cross section of the active layer is close to a square, it is not clear which gain is higher in the TE mode or the TM mode.

【0011】即ち、前述した装置では偏波依存性は求め
られても、偏波面が特定できないため、チップ状態にお
けるTEモードとTMモードの利得の大小関係が分から
ず、デバイスの特性評価においては不十分であった。
That is, in the above-described apparatus, the polarization dependence cannot be determined, but the polarization plane cannot be specified. Therefore, the magnitude relationship between the TE mode and the TM mode gains in the chip state cannot be understood, and it is difficult to evaluate the device characteristics. Was enough.

【0012】また、上述の反射防止膜による無反射コー
ティングが完全ではなく、例えば0.5%の反射が残留
する場合、光増幅器のゲインは波長によって山谷(いわ
ゆるリップル)が生じる。このリップルの状態はTE方
向とTM方向とで異なるため、図3に示すように波長に
よってTEモードとTMモードのゲインが変わってしま
う。従って、波長によって偏波依存性(TEモードのゲ
イン−TMモードのゲイン)が異なるので、ある特定の
波長で測定した場合、全体の偏波依存性が得られないと
いう問題があった。
When the anti-reflection coating by the anti-reflection film is not perfect, for example, when the reflection of 0.5% remains, the gain of the optical amplifier has peaks and troughs (so-called ripples) depending on the wavelength. Since the state of this ripple is different between the TE direction and the TM direction, the gain in the TE mode and the gain in the TM mode change depending on the wavelength as shown in FIG. Therefore, the polarization dependence (TE mode gain-TM mode gain) differs depending on the wavelength, and thus, when measured at a specific wavelength, there is a problem that the entire polarization dependence cannot be obtained.

【0013】本発明の目的は、偏波依存性とともにTE
モードとTMモードのいずれの利得が大きいかを測定可
能な光増幅利得測定装置を提供することにある。
It is an object of the present invention to provide a polarization dependent TE
An object of the present invention is to provide an optical amplification gain measuring device capable of measuring which one of the gain in the mode and the TM mode is larger.

【0014】また、本発明の他の目的は、波長によるリ
ップルがあっても、偏波依存性とともにTEモードとT
Mモードのいずれの利得が大きいかを測定可能な光増幅
利得測定装置を提供することにある。
It is another object of the present invention to provide a TE mode and a T mode as well as polarization dependency even if there is ripple due to wavelength.
An object of the present invention is to provide an optical amplification gain measuring device capable of measuring which gain in the M mode is larger.

【0015】[0015]

【課題を解決するための手段】このような目的を達成す
るため、本発明では、広い波長帯域を有しかつ所定の直
線偏波面Aを持つ光を発生する光源と、直線偏波面Aを
持つ光を被測定試料の基本導波モードと一致する特定の
直線偏波面B及びこれに垂直な直線偏波面Cを持つ光に
切り替える偏波面切替手段と、入射光の光強度を波長分
光して測定する波長分光測定手段と、光源からの光を偏
波面を保持しながら偏波面切替手段へ伝搬する第1の導
波媒体と、偏波面切替手段からの光を偏波面を保持しな
がら被測定試料へ伝搬する第2の導波媒体と、被測定試
料からの光を波長分光測定手段へ伝搬する第3の導波媒
体とを備えたことを特徴とする。
According to the present invention, a light source having a wide wavelength band and generating light having a predetermined linear polarization plane A, and a linear polarization plane A are provided. Polarization plane switching means for switching light to a light having a specific linear polarization plane B and a linear polarization plane C perpendicular to the fundamental waveguide mode of the sample to be measured, and measuring the light intensity of the incident light by wavelength spectroscopy. A wavelength spectrometer, a first waveguide medium for transmitting light from the light source to the polarization plane switching unit while maintaining the polarization plane, and a sample to be measured while maintaining the polarization plane for the light from the polarization plane switching unit. And a third waveguide medium for propagating light from the sample to be measured to the wavelength spectrometer.

【0016】前記構成によれば、光源から広い波長帯域
を有しかつ所定の直線偏波面Aを持つ光を発生させ、こ
れを偏波面切替手段にて被測定試料のTEモード及びT
Mモードと一致する偏波面B及びCに調整して被測定試
料に入射し、その時の光強度を波長分光測定手段にて測
定するようになしたため、TEモード偏波とTMモード
偏波のいずれの利得が大きいかを測定できるとともに、
その差、即ち偏波依存性を測定できる。
According to the above configuration, light having a wide wavelength band and a predetermined linear polarization plane A is generated from the light source, and the light is transmitted to the TE mode and the T mode of the sample to be measured by the polarization plane switching means.
The polarization planes B and C are adjusted to coincide with the M mode, the light is incident on the sample to be measured, and the light intensity at that time is measured by the wavelength spectrometer, so that either the TE mode polarization or the TM mode polarization is measured. Can measure whether the gain of
The difference, that is, the polarization dependence can be measured.

【0017】また、測定精度としてpdB以下の測定を
行うために、波長分光測定手段の波長分解能が波長スペ
クトル上に生じたリップルの周期の最低m倍必要であれ
ば、 p・m>5 に設定したことを特徴とするものによれば、リップルに
依存することなく偏波依存性の測定が可能になる。
If the wavelength resolution of the wavelength spectrometer is required to be at least m times the period of the ripple generated on the wavelength spectrum in order to perform the measurement with a measurement accuracy of pdB or less, set to p · m> 5. According to the feature described above, the polarization dependence can be measured without depending on the ripple.

【0018】さらにまた、被測定試料からの光を偏波面
を保持しながら波長分光測定手段へ伝搬する第3の導波
媒体と、第3の導波媒体からの光のうち所定の直線偏波
面を持つ光のみを波長分光測定手段に入射する手段とを
備えたことを特徴とするものによれば、被測定試料中で
TEモード偏波とTMモード偏波の結合が起こった場
合、その変換の割合まで測定することが可能となる。
Further, a third waveguide medium for propagating light from the sample to be measured to the wavelength spectrometer while maintaining the polarization plane, and a predetermined linear polarization plane of the light from the third waveguide medium And means for injecting only light having a wavelength into the wavelength spectrometric measurement means, when the coupling between the TE mode polarization and the TM mode polarization occurs in the sample to be measured, the conversion thereof is performed. Can be measured.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0020】図4は本発明の光増幅利得測定装置の第1
の実施の形態を示すもので、図中、21は光源、22は
偏光素子、23は1/2波長板、24は光スペクトラム
アナライザ、25,26は偏波保持ファイバ、27は先
球偏波保持ファイバ、28は先球保持ファイバである。
FIG. 4 shows a first embodiment of the optical amplification gain measuring apparatus according to the present invention.
In the figure, reference numeral 21 denotes a light source, 22 denotes a polarizing element, 23 denotes a half-wave plate, 24 denotes an optical spectrum analyzer, 25 and 26 denote polarization maintaining fibers, and 27 denotes a spherically polarized wave. The holding fiber, 28 is a front-end holding fiber.

【0021】前記構成において、光源21は偏波保持フ
ァイバで構成された光ファイバアンプを備え、広い波長
帯域を有しかつ所定の直線偏波面Aを持つ光を発生す
る。この光は偏波保持ファイバ25により、その偏波面
を保持されたまま偏光素子22に入射される。偏光素子
22は偏光板等からなり、入射された光のうち特定の直
線偏波面、ここでは予め被測定試料SのTE方向に一致
させた直線偏波面Bを持つ光を選択的に透過する。
In the above configuration, the light source 21 has an optical fiber amplifier composed of a polarization maintaining fiber, and generates light having a wide wavelength band and a predetermined linear polarization plane A. This light is incident on the polarization element 22 by the polarization maintaining fiber 25 while maintaining its polarization plane. The polarizing element 22 is formed of a polarizing plate or the like, and selectively transmits light having a specific linear polarization plane, that is, a light having a linear polarization plane B that has been made to coincide with the TE direction of the sample S to be measured in advance.

【0022】前記特定の直線偏波面Bを持つ光は偏波保
持ファイバ26により、その偏波面Bを保持されたまま
1/2波長板23に入射されるが、この1/2波長板2
3は偏波保持ファイバ26と先球偏波保持ファイバ27
との間で抜き差し自在となっており、該1/2波長板2
3が抜かれた状態では直線偏波面Bを持つ光が、また、
挿入された状態では直線偏波面Bに垂直な方向の直線偏
波面C(被測定試料SのTM方向)を持つ光が、先球偏
波保持ファイバ27を介して被測定試料Sに切り替え入
射される如くなっている。
The light having the specific linear polarization plane B is incident on the half-wave plate 23 by the polarization maintaining fiber 26 while maintaining the polarization plane B.
3 is a polarization maintaining fiber 26 and a forward spherical polarization maintaining fiber 27
1 / wavelength plate 2
In the state where 3 is removed, the light having the linear polarization plane B
In the inserted state, light having a linear polarization plane C (the TM direction of the sample S to be measured) in a direction perpendicular to the linear polarization plane B is switched to and incident on the sample to be measured S via the spherical spherical polarization maintaining fiber 27. It is like.

【0023】被測定試料Sによる増幅等を受けて出射さ
れた光は先球ファイバ28を介して光スペクトラムアナ
ライザ24に入射され、波長に応じてレベル検出・表示
される。
The light emitted after being amplified by the sample S to be measured is incident on the optical spectrum analyzer 24 via the spherical fiber 28, and the level is detected and displayed according to the wavelength.

【0024】前記構成によれば、光源21より試験光と
して広い帯域を持つ光を発生でき、また、偏光素子2
2、偏波保持光ファイバ26及び1/2波長板23によ
り、被測定試料SのTE方向及びTM方向に対応した偏
波面を持つ光を選択的に供給でき、さらに光スペクトラ
ムアナライザ24により、波長に応じたレベルを検出で
きるので、図3に示したような、モード毎に波長対応の
利得を測定でき、測定波長帯域内の全ての波長におい
て、TEモードにおける利得とTMモードにおける利得
のいずれが大きいかが分かるとともに、偏波依存性を求
めることができる。
According to the above configuration, light having a wide band can be generated from the light source 21 as test light.
2. Light having a polarization plane corresponding to the TE direction and the TM direction of the sample S to be measured can be selectively supplied by the polarization maintaining optical fiber 26 and the half-wave plate 23. 3, the gain corresponding to the wavelength can be measured for each mode, as shown in FIG. 3, and at all wavelengths within the measurement wavelength band, either the gain in the TE mode or the gain in the TM mode is determined. In addition to knowing whether it is large, the polarization dependence can be obtained.

【0025】ところで、残留端面反射率Rに起因するリ
ップルが存在する時の光増幅器の利得Gは、
By the way, the gain G of the optical amplifier when the ripple caused by the residual end face reflectance R is present is

【0026】[0026]

【数1】 で表せる。ここで、GsはR=0の場合の理想的な光増
幅器の利得であり、実際にチップ状態で求めたいのはT
E偏波とTM偏波における、この値である。
(Equation 1) Can be represented by Here, Gs is an ideal gain of the optical amplifier in the case of R = 0.
This is the value for E polarization and TM polarization.

【0027】利得Gはリップルνの影響により、φ(測
定波長からの波長差を位相に変換したもの)によって周
期的に変動する。広帯域な光源を入射する場合を考え、
分解能も広帯域に設定した場合には、
The gain G periodically fluctuates due to φ (a wavelength difference from the measured wavelength converted into a phase) due to the influence of the ripple ν. Consider a case where a broadband light source is incident,
If the resolution is set to wide band,

【0028】[0028]

【数2】 という平均的な利得を観測することになる。(Equation 2) Average gain.

【0029】しかし、測定において十分に広い分解能が
取れない場合、分解能がリップルの周期のm倍よりも広
く、2mπ+φであるとすると、
However, when a sufficiently wide resolution cannot be obtained in the measurement, if the resolution is wider than m times the period of the ripple and 2mπ + φ,

【0030】[0030]

【数3】 となる。ここで、リップルνは、(Equation 3) Becomes Here, the ripple ν is

【0031】[0031]

【数4】 で表わされる。(Equation 4) Is represented by

【0032】初めに、分解能がリップルの周期に比べて
十分に大きい場合に、(1)式においてGavとGsとで
測定上、どれ位の差が出るかを考えると、
First, when the resolution is sufficiently large compared to the period of the ripple, it is considered how much the difference between Gav and Gs is measured in the equation (1).

【0033】[0033]

【数5】 となる。ここで、分子は定数とみなすことができる(通
常、R<0.05が実現できるので、分子はほぼ1とな
るため。)。
(Equation 5) Becomes Here, the molecule can be regarded as a constant (normally, since R <0.05 can be realized, the molecule is almost 1).

【0034】この方法の適用範囲を調べるため、Gavを
Gsの偏波依存性を真値から0.5dB以下の精度で求
める場合を考えると、測定可能なGsの上限値が(3)
式から定まる。これとリップルνをRに対してプロット
したものが図5である。AR(反射防止膜)による反射
率の低減として悪くても5%程度以下(<−13dB)
が可能だとすると、Gs≧10dBでν≦8dBに対し
ても精度良く測定できる。
Considering the case where Gav is obtained from the true value of the polarization dependence of Gs with an accuracy of 0.5 dB or less in order to examine the application range of this method, the upper limit of the measurable Gs is (3)
Determined from the formula. FIG. 5 plots this and the ripple ν against R. At least about 5% or less (<-13 dB) as a reduction in reflectance by AR (anti-reflection film)
Is possible, it is possible to accurately measure even for Gs ≧ 10 dB and ν ≦ 8 dB.

【0035】このように本測定方法では光増幅器の広範
囲な領域に亘って測定が可能である。この場合に測定し
た結果は(2)式で示されたようにリップルのない波長
特性となる(図6)。
As described above, according to the present measuring method, measurement can be performed over a wide range of the optical amplifier. In this case, the result of the measurement is a wavelength characteristic free from ripples as shown by the equation (2) (FIG. 6).

【0036】次に、分解能がリップルの周期に比べて十
分でない場合、分解能として最低どれくらいの帯域を必
要とするかを調べるために(3)式の値が(2)式の値
からどれくらいずれるかを検討する。そこで、前述した
ν=8dBのワーストケースに対して、
Next, if the resolution is not enough compared to the ripple period, to find out at least how much bandwidth is required as the resolution, how much the value of equation (3) differs from the value of equation (2) To consider. Therefore, for the worst case of ν = 8 dB described above,

【0037】[0037]

【数6】 で定義されたAのφ依存性を考慮することにする。この
式は(4)式に示されるようにリップルが非常に小さい
場合(ν〜1)、Aが1に近い値となる。図7にその結
果を示す。
(Equation 6) Let us consider the φ dependence of A defined in. In this equation, A is close to 1 when the ripple is very small (ν 式 1) as shown in equation (4). FIG. 7 shows the result.

【0038】三角関数の特徴から特異点を有するが、こ
の点を避けるために分解能の微調整機能を有することも
できる。図7から分かるように 許容測定精度 m 0.5dB 10 1.0dB 5 2.0dB 3 3.0dB 2 で与えられるmの値が必要である。即ち、許容測定精度
をpdBとすると、 p・m>5 …(7) であれば良いことになる。
Although there is a singular point due to the characteristics of the trigonometric function, a fine adjustment function of the resolution may be provided to avoid this point. As can be seen from FIG. 7, the value of m given by the allowable measurement accuracy m 0.5 dB 10 1.0 dB 5 2.0 dB 3 3.0 dB 2 is required. That is, assuming that the allowable measurement accuracy is pdB, it suffices that p · m> 5 (7).

【0039】図8は本発明の光増幅利得測定装置の第2
の実施の形態を示すもので、ここでは第1の実施の形態
において先球保持ファイバ28の代わりに先球偏波保持
ファイバ31を用いるとともに、光スペクトラムアナラ
イザ24との間に偏光素子32を挿入してなっている。
FIG. 8 shows a second embodiment of the optical amplification gain measuring apparatus according to the present invention.
In this embodiment, a spherical polarization maintaining fiber 31 is used instead of the spherical holding fiber 28 in the first embodiment, and a polarization element 32 is inserted between the optical spectrum analyzer 24 and the optical fiber analyzer 24. It is doing.

【0040】前記構成によれば、光スペクトラムアナラ
イザ24には所定の偏波光のみが入射されることにな
り、被測定試料S中でTE偏波とTM偏波の結合が起こ
った場合にその変換の割合までも測定することができ
る。
According to the above configuration, only a predetermined polarized light is incident on the optical spectrum analyzer 24. When the TE polarization and the TM polarization are combined in the sample S to be measured, the conversion is performed. Can be measured.

【0041】この実施の形態により測定した結果を図9
に示す。正方形状に近い断面の活性層を備えた光増幅器
では、TE偏波とTM偏波の結合が生じ易く、図6に示
した偏波依存性の測定結果とは少し変化(ここでは減
少)を示している。
FIG. 9 shows the result of measurement according to this embodiment.
Shown in In an optical amplifier having an active layer having a cross section close to a square, coupling between TE polarization and TM polarization is likely to occur, and the measured result of polarization dependence shown in FIG. Is shown.

【0042】なお、第1及び第2の実施の形態におい
て、光源21として通常の光ファイバアンプと偏光子と
を組み合わせたものを用いることも可能である(但し、
光ファイバアンプの長さが長いために出力光の偏波が不
安定となり、偏光子通過後の出力が変動する可能性があ
る。)。また、光源21としてSLD(スーパールミネ
ッセントダイオード)、LED等を用いても同様な効果
を得ることができる。
In the first and second embodiments, a combination of a normal optical fiber amplifier and a polarizer can be used as the light source 21 (however,
Since the length of the optical fiber amplifier is long, the polarization of the output light becomes unstable, and the output after passing through the polarizer may fluctuate. ). Further, similar effects can be obtained by using an SLD (super luminescent diode), an LED, or the like as the light source 21.

【0043】また、波長分光測定を行う装置として光ス
ペクトラムアナライザを用いたが、分光器と受光器の組
み合わせや、可変波長フィルタと受光器との組み合わせ
を用いても良いことは言うまでもない。
Although an optical spectrum analyzer is used as an apparatus for performing wavelength spectrometry, it goes without saying that a combination of a spectroscope and a light receiver or a combination of a variable wavelength filter and a light receiver may be used.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
広い波長帯域を有しかつ所定の直線偏波面Aを持つ光
を、被測定試料のTEモード及びTMモードと一致する
直線偏波面B及びこれに垂直な直線偏波面Cを持つ光に
切り替えて被測定試料に入射させ、その出射光を波長分
光測定させることにより、TEモード偏波とTMモード
偏波のいずれの利得が大きいかを測定できるとともに、
偏波依存性を測定できる。
As described above, according to the present invention,
The light having a wide wavelength band and a predetermined linear polarization plane A is switched to a light having a linear polarization plane B coincident with the TE mode and TM mode of the sample to be measured and a linear polarization plane C perpendicular thereto. By injecting the light into the measurement sample and measuring the wavelength of the emitted light, it is possible to measure which of the TE mode polarization and the TM mode polarization has a larger gain,
The polarization dependence can be measured.

【0045】また、波長分光測定手段の波長分解能をリ
ップル周期に比べて十分に広くすることにより、リップ
ルに依存することなく偏波依存性の測定が可能になる。
Further, by setting the wavelength resolution of the wavelength spectrometer to be sufficiently wider than the ripple period, it is possible to measure the polarization dependence without depending on the ripple.

【0046】さらにまた、波長分光測定手段に所定の直
線偏波面を持つ光のみを入射させることにより、被測定
試料中でTE偏波とTM偏波の結合が起こった場合、そ
の変換の割合まで測定することが可能となる。
Furthermore, by injecting only light having a predetermined linear polarization plane into the wavelength spectrometer, when coupling between TE polarization and TM polarization occurs in the sample to be measured, the conversion ratio is reduced. It becomes possible to measure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体光増幅器の一例を示す構造の説明図FIG. 1 is an explanatory diagram of a structure showing an example of a semiconductor optical amplifier.

【図2】従来の光増幅利得測定装置の一例を示す構成図FIG. 2 is a configuration diagram showing an example of a conventional optical amplification gain measuring device.

【図3】利得の波長依存性の説明図FIG. 3 is an explanatory diagram of wavelength dependence of gain.

【図4】本発明の光増幅利得測定装置の第1の実施の形
態を示す構成図
FIG. 4 is a configuration diagram showing a first embodiment of the optical amplification gain measuring device of the present invention.

【図5】第1の実施の形態の適用範囲を説明する図FIG. 5 is a diagram illustrating an applicable range of the first embodiment.

【図6】第1の実施の形態における測定結果を示す説明
FIG. 6 is an explanatory diagram showing a measurement result in the first embodiment.

【図7】リップルの周期と波長分解能との関係の説明図FIG. 7 is an explanatory diagram of the relationship between the ripple period and the wavelength resolution.

【図8】本発明の光増幅利得測定装置の第2の実施の形
態を示す構成図
FIG. 8 is a configuration diagram showing a second embodiment of the optical amplification gain measuring device of the present invention.

【図9】第2の実施の形態における測定結果を示す説明
FIG. 9 is an explanatory diagram showing a measurement result in the second embodiment.

【符号の説明】[Explanation of symbols]

21:光源、22,32:偏光素子、23:1/2波長
板、24:光スペクトラムアナライザ、25,26:偏
波保持ファイバ、27,31:先球偏波保持ファイバ、
28:先球保持ファイバ。
21: light source, 22, 32: polarizing element, 23: 1/2 wavelength plate, 24: optical spectrum analyzer, 25, 26: polarization maintaining fiber, 27, 31: spherical polarization maintaining fiber,
28: tip ball holding fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤津 祐史 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 (72)発明者 吉國 裕三 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 5F072 AB13 AK04 JJ20 KK30 5F073 AB22 BA01 HA08 HA10 HA11 HA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Akatsu 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Corporation (72) Inventor Yuzo Yoshikuni 3- 192-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo No. Nippon Telegraph and Telephone Corporation F-term (reference) 5F072 AB13 AK04 JJ20 KK30 5F073 AB22 BA01 HA08 HA10 HA11 HA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 広い波長帯域を有しかつ所定の直線偏波
面Aを持つ光を発生する光源と、 直線偏波面Aを持つ光を被測定試料の基本導波モードと
一致する特定の直線偏波面B及びこれに垂直な直線偏波
面Cを持つ光に切り替える偏波面切替手段と、 入射光の光強度を波長分光して測定する波長分光測定手
段と、 光源からの光を偏波面を保持しながら偏波面切替手段へ
伝搬する第1の導波媒体と、 偏波面切替手段からの光を偏波面を保持しながら被測定
試料へ伝搬する第2の導波媒体と、 被測定試料からの光を波長分光測定手段へ伝搬する第3
の導波媒体とを備えたことを特徴とする光増幅利得測定
装置。
1. A light source having a wide wavelength band and generating light having a predetermined linear polarization plane A, and a light source having a linear polarization plane A is provided with a specific linear polarization matching a fundamental waveguide mode of a sample to be measured. Polarization plane switching means for switching to light having a wavefront B and a linear polarization plane C perpendicular thereto, wavelength spectrum measurement means for measuring the light intensity of the incident light by wavelength spectrum, and holding the polarization plane of the light from the light source. A first waveguide medium that propagates to the polarization switching means while the second waveguide medium propagates light from the polarization switching means to the DUT while maintaining the polarization plane; and light from the DUT. To the wavelength spectrometer.
An optical amplification gain measuring device comprising:
【請求項2】 測定精度としてpdB以下の測定を行う
ために、波長分光測定手段の波長分解能が波長スペクト
ル上に生じたリップルの周期の最低m倍必要であれば、 p・m>5 に設定したことを特徴とする請求項1記載の光増幅利得
測定装置。
2. If the wavelength resolution of the wavelength spectrometer is required to be at least m times the period of a ripple generated on the wavelength spectrum in order to perform a measurement of pdB or less as the measurement accuracy, set to p · m> 5. 2. The optical amplification gain measuring device according to claim 1, wherein:
【請求項3】 被測定試料からの光を偏波面を保持しな
がら波長分光測定手段へ伝搬する第3の導波媒体と、第
3の導波媒体からの光のうち所定の直線偏波面を持つ光
のみを波長分光測定手段に入射する手段とを備えたこと
を特徴とする請求項1または2記載の光増幅利得測定装
置。
3. A third waveguide medium for propagating light from a sample to be measured to a wavelength spectrometer while maintaining a polarization plane, and a predetermined linear polarization plane of light from the third waveguide medium. 3. The optical amplification gain measuring device according to claim 1, further comprising: means for causing only the light having the light to be incident on the wavelength spectrum measuring means.
JP10235658A 1998-08-21 1998-08-21 Optical amplification factor measuring device Pending JP2000068602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235658A JP2000068602A (en) 1998-08-21 1998-08-21 Optical amplification factor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235658A JP2000068602A (en) 1998-08-21 1998-08-21 Optical amplification factor measuring device

Publications (1)

Publication Number Publication Date
JP2000068602A true JP2000068602A (en) 2000-03-03

Family

ID=16989287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235658A Pending JP2000068602A (en) 1998-08-21 1998-08-21 Optical amplification factor measuring device

Country Status (1)

Country Link
JP (1) JP2000068602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177075A (en) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for screening characteristics of semiconductor optical amplifier
JP2010171257A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Evaluating method for semiconductor laminated structure, and manufacturing method for optical semiconductor device
JP2011007655A (en) * 2009-06-26 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measuring characteristics of optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177075A (en) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for screening characteristics of semiconductor optical amplifier
JP2010171257A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Evaluating method for semiconductor laminated structure, and manufacturing method for optical semiconductor device
JP2011007655A (en) * 2009-06-26 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measuring characteristics of optical device

Similar Documents

Publication Publication Date Title
Baney et al. Theory and measurement techniques for the noise figure of optical amplifiers
KR100341825B1 (en) OSNR Monitoring Method and Apparatus using Polarization-Nulling Method
EP0875743A1 (en) A wavemeter and an arrangement for the adjustment of the wavelength of an optical source
EP0654657A2 (en) System and method for measuring polarization dependent loss
JPH0743489B2 (en) Polarization independent optical amplifier
US6836327B1 (en) In-line optical polarimeter based on integration of free-space optical elements
WO2021036167A1 (en) Apparatus for measuring fp transmittance curve using whispering gallery mode laser light source, and method
US6256103B1 (en) System and method for optical heterodyne detection of an optical signal
US6762829B2 (en) Measurement of optical properties of passive optical devices using the matrix method
US6590666B2 (en) Method and system for optical spectrum analysis with non-uniform sweep rate correction
JP2000068602A (en) Optical amplification factor measuring device
EP1130813B1 (en) Method and system for optical heterodyne detection using optical attenuation
KR19990014935A (en) Polarization mode dispersion measurement method
US6898000B2 (en) Polarization-independent optical sampling with extended wavelength range
WO2018010255A1 (en) Device and method for realizing spectral polarization independent measurement based on frequency domain depolarization structure
US6728025B2 (en) Semiconductor optical amplifier characteristic evaluation method and apparatus
JP3403643B2 (en) Polarization-dependent precision measurement equipment
Baney et al. Broadband frequency characterization of optical receivers using intensity noise
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JPH0115808B2 (en)
JP3098162B2 (en) Measurement method of polarization dependence of transmission loss of optical branching device
JP2831429B2 (en) High sensitivity optical frequency discriminator
JPH07243940A (en) Polarization-dependent loss measuring method and device
Kuusela Linewidth measurement of external cavity lasers
Baribault et al. Stitch-free widely tunable dual-channel fibre laser for use in a passive component analyser