JP2000067932A - Alkaline storage battery remaining capacity estimation method and capacity estimation device - Google Patents

Alkaline storage battery remaining capacity estimation method and capacity estimation device

Info

Publication number
JP2000067932A
JP2000067932A JP10229622A JP22962298A JP2000067932A JP 2000067932 A JP2000067932 A JP 2000067932A JP 10229622 A JP10229622 A JP 10229622A JP 22962298 A JP22962298 A JP 22962298A JP 2000067932 A JP2000067932 A JP 2000067932A
Authority
JP
Japan
Prior art keywords
capacity
discharge
voltage
battery
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10229622A
Other languages
Japanese (ja)
Other versions
JP3641367B2 (en
Inventor
Toshiro Hirai
敏郎 平井
Yasuo Sato
靖夫 佐藤
Koji Nakauchiki
弘司 中打木
Yukiyasu Kano
幸泰 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22962298A priority Critical patent/JP3641367B2/en
Publication of JP2000067932A publication Critical patent/JP2000067932A/en
Application granted granted Critical
Publication of JP3641367B2 publication Critical patent/JP3641367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out the estimation of capacity in a short time in an arbitrary discharge state by estimating remaining capacity by applying an open circuit voltage, nominal capacity and estimated capacity in a pause state before and after charge or discharge to a voltage-capacity curve as well as estimating dischargeable capacity from full charge. SOLUTION: A computer 3 measures, memorizes and records the terminal voltage and current of a test object cell or a combination battery 1, and additional data such as temperature, humidity and battery distortion as required at predetermined intervals while controlling a test in a condition set in advance. The computer applies a deterioration determining standard formula relative to a battery capacity and remaining capacity estimation method to the obtained test data, makes a deterioration determining formula from the deterioration determining standard formula according to a predetermined procedure to estimate the dischargeable capacity from fully charged state of the test object cell or the combination battery 1, and is provided with an arithmetic function to estimate the remaining capacity by applying it to a voltage-capacity relation formula, and furthermore, provided with a characteristic forming function to plot the test data at intervals of a certain period of time if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用中のバックア
ップ用アルカリ蓄電池の容量および残量を予測するため
のアルカリ蓄電池容量残量推定法および容量推定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery capacity remaining amount estimating method and apparatus for estimating the capacity and remaining amount of a backup alkaline storage battery in use.

【0002】なお、容量とは満充電状態から想定終止電
圧に至るまで放電した場合の容量、残量とはある範囲ま
で放電した状態において規定終止電圧まであとどれくら
い放電が可能かを示す容量の値を指している。容量は一
定電流で放電した場合、電流×時間で求める。
The capacity is the capacity when the battery is discharged from the fully charged state to the expected end voltage, and the remaining amount is the value of the capacity indicating how much discharge is possible to the specified end voltage when the battery is discharged to a certain range. Pointing to. The capacity is obtained by multiplying current × time when discharging at a constant current.

【0003】[0003]

【従来の技術】近年、通信サービスの多様化、大規模化
が進行し、同時に高信頼性も要求されている。これに伴
って多種多様な無停電給電システムの導入、あるいはバ
ックアップ電源の適用が推進され、バックアップ用二次
電池も大量に使用されるようになってきた。これらの装
置、システムの信頼性確保のために、バックアップ用二
次電池の残量表示、保守、適切な取り替え時期の把握が
必要となってきた。
2. Description of the Related Art In recent years, communication services have been diversified and scaled up, and at the same time, high reliability is also required. Along with this, introduction of various uninterruptible power supply systems or application of backup power supplies has been promoted, and backup secondary batteries have been used in large quantities. In order to ensure the reliability of these devices and systems, it has become necessary to display the remaining amount of the backup secondary battery, perform maintenance, and grasp the appropriate replacement time.

【0004】従来の二次電池容量推定方法としては、試
験電池を、端子電圧が規定の放電終止電圧に到達するま
で定電流放電しその時間を求める方法がある。
As a conventional method for estimating the capacity of a secondary battery, there is a method in which a test battery is discharged at a constant current until the terminal voltage reaches a prescribed discharge end voltage, and the time is obtained.

【0005】この方法では、電池の容量は正確に求める
ことができるが、長時間の測定となり、また、測定中に
停電などのトラブルが生じると負荷装置への給電が不可
能となるという欠点があった。
In this method, the capacity of the battery can be accurately obtained, but it takes a long time to measure, and if a trouble such as a power failure occurs during the measurement, power cannot be supplied to the load device. there were.

【0006】別の方法としては、交流インピーダンスに
よる内部インピーダンスを測定したり、あるいは一定時
間の定電流放電、または充電を行い、これに対する電圧
応答を電流値で除した値を内部抵抗として用いて、あら
かじめ取得しておいた内部抵抗、あるいはインピーダン
スと電池容量との関係に適用し、電池容量を推定する。
As another method, the internal impedance due to AC impedance is measured, or constant current discharging or charging is performed for a certain period of time, and a value obtained by dividing a voltage response to the current by a current value is used as an internal resistance. The battery capacity is estimated by applying the relationship between the internal resistance or the impedance and the battery capacity that have been acquired in advance.

【0007】この方法では、比較的短時間で容量推定が
可能となるが、あらかじめ試験対象となる各サイズ、各
メーカ製電池の容量と内部インピーダンスとの関係を把
握し、これを記憶しておく必要があり、膨大なデータ取
得と記憶容量の確保が必要であった。さらには電池の改
良ごとに新たなデータ取得と記録を実施する必要がある
という欠点を有していた。
In this method, the capacity can be estimated in a relatively short time. However, the relationship between the capacity of each battery to be tested and the capacity of each manufacturer's battery and the internal impedance is grasped in advance and stored. It was necessary to acquire a huge amount of data and secure storage capacity. Further, there is a disadvantage that it is necessary to acquire and record new data every time the battery is improved.

【0008】さらに、これらの方法による欠点を改善す
るために、係数補正のみで多種類の電池に適用可能な汎
用性の高い劣化判定基準式が考案された(特願平7−2
38363)。同方法では、短時間の放電、あるいは充
電によって比較的簡単に容量推定が可能となる反面、判
定のためには常に試験対象電池をあらかじめ満充電して
おかなければならないという欠点を有していた。
Further, in order to improve the drawbacks caused by these methods, a highly versatile deterioration criterion formula that can be applied to various types of batteries only by coefficient correction has been devised (Japanese Patent Application No. 7-2).
38363). This method makes it possible to estimate the capacity relatively easily by short-time discharging or charging, but has the disadvantage that the test target battery must always be fully charged in advance for determination. .

【0009】また、これらのバックアップ電池について
は容量推定法のみ提案されており、充電と放電とを頻繁
に繰り返して使用するサイクル用電池に関するような残
量推定は皆無であった。そのため、バックアップ電池の
劣化状態が正しく把握されていないと、予想していた使
用時間に満たないという不便も生じることがしばしば存
在した。
Further, only the capacity estimation method has been proposed for these backup batteries, and there is no estimation of the remaining amount as in the case of a cycle battery which repeatedly uses charging and discharging. For this reason, if the state of deterioration of the backup battery is not correctly grasped, there is often an inconvenience that the expected usage time is not reached.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
現状を解決するため、任意の放電状態で短時間に容量推
定が実施でき、同時に残量もまた推定できるアルカリ蓄
電池容量残量推定法および容量推定装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems by providing a method for estimating the capacity of an alkaline storage battery capable of estimating the capacity in a short time in an arbitrary discharge state and estimating the remaining capacity at the same time. And a capacity estimation device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、アルカリ蓄電池(以下、セルと呼称)、ま
たは直列に複数個接続されたアルカリ蓄電池群(以下、
組電池と呼称)に関して、試験対象セル、あるいは組電
池をいったん休止状態においた後、一定電流値で短時間
放電、または充電して、その放電または充電前後の端子
電圧の変化から内部抵抗を求め、この内部抵抗と休止状
態における開回路電圧とを、容量と内部抵抗と開回路電
圧とからなる劣化判定基準式を試験対象の新品電池の内
部抵抗と公称容量によって係数補正した判定式に適用し
て、満充電からの放電可能容量を推定すると同時に、放
電、あるいは充電前後の休止状態における開回路電圧と
該公称容量と推定容量とを、電圧−容量曲線に適用して
残量を推定するアルカリ蓄電池容量残量推定法と、デー
タを管理するコンピュータと、蓄電池の試験条件をコン
トロールする充放電器とから構成され、該試験電池の容
量および残量推定法における劣化判定式と電圧−容量関
係式を演算する回路または機能を該コンピュータに内蔵
して上記に記載する手順に従って試験セル、または組電
池の容量および残量推定を行うことを特徴とする装置
と、既存の無停電給電システムや二次電池充放電自動試
験装置に組み込み、試験電池の容量および残量推定を行
うための、試験データを収集管理し、かつ、上記に記載
する電池容量および残量推定法に従って容量および残量
推定値を求めるために演算を行うコンピュータと、必要
ならば、該試験電池の試験条件を制御する電流制御器、
または充放電制御器とから構成されるか、または、既設
コンピュータに上記に記載した電池容量および残量推定
法の手順を行う演算回路、または機能とを増設し搭載し
てなり、必要ならば、該電流制御器、または充放電制御
器とから構成される容量および残量推定機能を提案する
ものである。
In order to achieve the above object, the present invention provides an alkaline storage battery (hereinafter, referred to as a cell) or a group of alkaline storage batteries connected in series (hereinafter, referred to as "cells").
(Referred to as assembled battery), after the test target cell or assembled battery is in a quiescent state, discharged or charged at a constant current value for a short time, and the internal resistance is calculated from the change in the terminal voltage before and after the discharging or charging. The internal resistance and the open circuit voltage in the resting state are applied to a determination equation obtained by correcting the deterioration determination reference equation composed of the capacity, the internal resistance, and the open circuit voltage by the internal resistance and the nominal capacity of a new battery to be tested. The alkali that estimates the remaining capacity by estimating the dischargeable capacity from full charge and simultaneously applying the open circuit voltage in the rest state before and after discharging or charging, the nominal capacity, and the estimated capacity to a voltage-capacity curve. A method for estimating the remaining capacity of a storage battery, a computer for managing data, and a charger / discharger for controlling test conditions of the storage battery; A device or a circuit for calculating a deterioration determination formula and a voltage-capacity relation formula in the computer and performing capacity estimation and remaining capacity estimation of a test cell or an assembled battery in accordance with the above-described procedure. Incorporation into existing uninterruptible power supply systems and automatic rechargeable battery charging / discharging test equipment to collect and manage test data for estimating test battery capacity and remaining capacity, and battery capacity and remaining capacity described above A computer that performs calculations to determine capacity and remaining capacity estimates according to the estimation method, and, if necessary, a current controller that controls test conditions of the test battery;
Or a charge / discharge controller, or an existing computer is additionally provided with an arithmetic circuit or function for performing the procedure of the battery capacity and remaining amount estimation method described above, and if necessary, The present invention proposes a capacity and remaining amount estimation function including the current controller or the charge / discharge controller.

【0012】本発明になる電池容量および残量推定法が
高い精度で推定可能な理由は、電池劣化の進行によって
セパレータ中の電解液の減少、正極、負極抵抗の増大、
負極かつ物質の減少によって電池の内部抵抗が増大する
こと、また、放電の進行によって例えば負極カドミウム
が水酸化カドミウムに変化し、電解液濃度が変化する
が、これら劣化、放電深度が内部抵抗と密接に関係して
いるため、端子電圧、内部抵抗、容量の因子で構成され
る推定法の基準式および電圧−容量曲線が電池の特性を
より正確に表現できているためと考えられる。
The battery capacity and remaining amount estimating method according to the present invention can be estimated with high accuracy because the deterioration of the battery, the decrease in the electrolyte in the separator, the increase in the positive and negative electrode resistance due to the progress of the battery deterioration, and the like.
The internal resistance of the battery increases due to the decrease in the negative electrode and the substance.In addition, the progress of the discharge changes, for example, cadmium hydroxide into cadmium hydroxide and changes the electrolyte concentration. It is considered that the reference formula and the voltage-capacity curve of the estimation method composed of the factors of the terminal voltage, the internal resistance, and the capacity can more accurately represent the characteristics of the battery.

【0013】なお、放電深度とは満充電状態から規定終
止電圧までの完全放電状態に至るまで放電した場合を1
00%として、放電量の大きさ(放電の進み具合)を示
すものである。Depth of Discharge
からDODとも呼ばれる。記述としては定格容量に対す
る放電電気量の比率(%)である。逆に充電の進み具合
を表す言葉は特になくSOC(State of Ch
arge)がしばしば使用される。
The depth of discharge is defined as 1 when the battery is discharged from a fully charged state to a completely discharged state up to a specified end voltage.
The magnitude of the discharge amount (the progress of the discharge) is shown as 00%. Depth of Discharge
Also called DOD. The description is the ratio (%) of the amount of discharged electricity to the rated capacity. Conversely, there is no particular word indicating the progress of charging, and the SOC (State of Ch)
) are often used.

【0014】[0014]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】アルカリ蓄電池(以下、セルと呼称)、ま
たは直列に複数個接続されたアルカリ蓄電池群(以下、
組電池と呼称)に関して、該セル、あるいは組電池の端
子電圧をモニタしながらこれをいったん休止状態に置
き、端子電圧Voc1 を記録した後、一定の電流値Iで短
時間放電、あるいは充電を行い、その放電、充電直後の
端子電圧V2 を記録してその電圧差 ΔV=Voc1 −V2 を放電、あるいは充電電流値で除した値Z Z=ΔV/I を内部抵抗として求め、あるいは、一定の電流値Iで短
時間放電、あるいは充電を行い、その放電、充電が終了
し休止に入った直後の端子電圧Voc3 を記録してその電
圧差 ΔV′=V2 −Voc3 を放電、あるいは充電電流値で除した値Z′ Z′=ΔV′/I を内部抵抗として求め、あらかじめ異なる劣化状態のセ
ル特性から求めておいた劣化判定基準式の定数補正を実
施してこれに適用して、該試験対象セル、あるいは組電
池の満充電状態からの放電可能容量Qを推定すると同時
に、上記の短時間充電、あるいは放電を実施する前の休
止時の端子電圧Voc1 、あるいは実施直後の休止時の端
子電圧Voc3 を、あらかじめ求めておいた該試験対象の
新品セルの電圧−容量曲線に適用して算出した残量(放
電残時間)Qr0と上記短時間充電、あるいは放電によっ
て推定された満充電状態からの放電可能容量Qと該試験
対象セル、あるいは組電池の公称容量Qo とから、残量
(放電残時間)Qr を Qr =Qr0(Q/Qo ) によって推定する。
An alkaline storage battery (hereinafter, referred to as a cell) or a group of alkaline storage batteries connected in series (hereinafter, referred to as cells).
(Referred to as an assembled battery), while monitoring the terminal voltage of the cell or the assembled battery, temporarily suspending the cell, recording the terminal voltage Voc1, and then discharging or charging at a constant current value I for a short time. The terminal voltage V2 immediately after the discharging and charging is recorded, and the voltage difference ΔV = Voc1−V2 divided by the discharging or charging current value ZZ = ΔV / I is obtained as an internal resistance, or a constant current is calculated. A short-term discharge or charge is performed at the value I, the terminal voltage Voc3 immediately after the discharge or charge is completed and the pause is entered is recorded, and the voltage difference ΔV '= V2-Voc3 is divided by the discharge or charge current value. The determined value Z ′ Z ′ = ΔV ′ / I is determined as the internal resistance, and a constant is corrected for the deterioration determination reference formula determined in advance from the cell characteristics in different deteriorated states. Or At the same time as estimating the dischargeable capacity Q from the fully charged state of the battery pack, the terminal voltage Voc1 at the time of suspension before performing the above-mentioned short-time charging or discharging, or the terminal voltage Voc3 at the time of suspension immediately after the execution, is determined in advance. The remaining amount (remaining discharge time) Qr0 calculated by applying to the obtained voltage-capacity curve of the new cell to be tested and the dischargeable capacity Q from the fully charged state estimated by the short-time charging or discharging described above. The remaining capacity (remaining discharge time) Qr is estimated from Qr and Qr = Qr0 (Q / Qo).

【0016】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0017】本発明になる電池容量および残量推定法に
おいて、満充電状態からの放電可能容量を推定する方法
には電池容量Qと内部抵抗Zとから構成される劣化判定
基準式 Q=aln(Z)+b (a,bは定数、a<0) (1) を基本的関係式として用いる。該基準式(1)について
は、満充電状態におけるニッケルカドミウム電池の内部
抵抗Zの対数値と放電可能容量Qとが直線関係にあるこ
とを基本としている(N.Kato,etal.,J.
Power Source,(1997))。この結果
をもとにさらに検討を進めた結果、満充電からの放電可
能容量が公称容量の70%を越えるような比較的劣化の
進行していない電池には任意の放電深度にある電池にも
適用可能なことが判明した。その根拠を図1によって示
す。
In the battery capacity and remaining capacity estimation method according to the present invention, a method for estimating a dischargeable capacity from a fully charged state includes a deterioration determination criterion Q = aln ( Z) + b (a and b are constants, a <0) (1) is used as a basic relational expression. The reference equation (1) is based on the fact that the logarithmic value of the internal resistance Z of the nickel cadmium battery in a fully charged state and the dischargeable capacity Q have a linear relationship (N. Kato, et al., J. Am.
Power Source, (1997)). As a result of further study on the basis of this result, it was found that batteries with relatively little deterioration such that the dischargeable capacity from full charge exceeds 70% of the nominal capacity are not limited to batteries at an arbitrary depth of discharge. It turned out to be applicable. The basis is shown by FIG.

【0018】すなわち図1は、一定電流値にて一定時間
放電するごとに測定した電圧応答ΔVの大きさを示した
結果の一例を示した図であり、1−1は公称容量比10
0%の容量を持つ未劣化電池の各放電状態における電圧
応答ΔVの大きさを示した曲線であり、1−2は同90
%の場合の曲線であり、1−3は同80%の場合の曲線
であり、1−4は同70%の場合の曲線であり、1−5
は同60%の場合の曲線である。
That is, FIG. 1 is a view showing an example of the result showing the magnitude of the voltage response ΔV measured every time the battery is discharged at a constant current value for a predetermined time.
12 is a curve showing the magnitude of the voltage response ΔV in each discharge state of an undegraded battery having a capacity of 0%, wherein 1-2 is 90%.
%, 1-3 is a curve at 80%, 1-4 is a curve at 70%, 1-5
Is a curve at 60%.

【0019】図1から明らかなように、公称容量比が8
0%以上の容量を持つ電池では、電圧応答の大きさΔV
は放電状態によらずほぼ一定であることがわかる。
As is apparent from FIG. 1, the nominal capacity ratio is 8
In a battery having a capacity of 0% or more, the magnitude of the voltage response ΔV
Is almost constant irrespective of the discharge state.

【0020】従って、本発明において使用される上記劣
化判定基準式(1)は、従来の満充電状態の電池に関わ
る内部抵抗Zと容量Qとの関係とはまったく異なった意
味を持ち、適用領域が異なっていることがわかる。すな
わち、満充電状態を含めた任意の放電状態における内部
抵抗が上記劣化判定基準式(1)に適用可能であること
になる。
Therefore, the above-mentioned degradation criterion equation (1) used in the present invention has a completely different meaning from the relationship between the internal resistance Z and the capacity Q related to the conventional fully charged battery, Are different. That is, the internal resistance in an arbitrary discharge state including the fully charged state can be applied to the above-described deterioration criterion equation (1).

【0021】上記劣化判定基準式(1)は、係数a,b
を試験対象セル、あるいは組電池の公称容量QA と内部
抵抗ZA とによって変換され、 Q=a(QA /QB )ln(Z)+QA −a(QA /QB )ln(ZA ) (2) (QB は基準式作成のために用いたセルの容量) となる劣化判定式として、満充電状態からの放電可能容
量の推定に用いられる。
The above-mentioned deterioration criterion equation (1) is obtained by calculating coefficients a and b.
The nominal capacity of the tested cell or battery pack, Q is converted by the A and the internal resistance Z A, Q = a (Q A / Q B) ln (Z) + Q A -a (Q A / Q B) ln ( Z A ) (2) (Q B is the capacity of the cell used for creating the reference formula) is used for estimating the dischargeable capacity from the fully charged state as a deterioration determination formula.

【0022】なお、上記劣化判定式(2)の導出は以下
の通りで行った。
The derivation of the above-mentioned deterioration determination equation (2) was performed as follows.

【0023】上記劣化判定基準式(1)を作成するのに
用いた電池Bの容量をQB とし、同じく同式(1)を作
成するのに用いた大幅に劣化した電池の容量は電池Aの
容量の1/nであり、内部抵抗は電池Aのp倍であると
すると、 QB =aln(ZB )+b (21) QB /n =aln(ZB )+[aln(p)+b] (22) が成り立つ。
The capacity greatly deteriorated battery was used to the capacity of the battery B and Q B, also creates a Doshiki (1) used to make the degradation determination criterion formula (1) Battery A a 1 / n of the capacity, when the internal resistance is p times the battery a, Q B = aln (Z B) + b (21) Q B / n = aln (Z B) + [aln (p) + B] (22) holds.

【0024】ここで、試験対象電池の容量Qと内部抵抗
Zの関係は Q=aln(Z)+b(a、bは定数、a<0) (23) が成り立っているとする。
Here, the relation between the capacity Q of the test object battery and the internal resistance Z is as follows: Q = a * ln (Z) + b * (a * and b * are constants, a * <0) (23) And

【0025】式(13)を構成する試験対象電池Aの容
量をQA 、内部抵抗ZA とし同じく同式(1)を作成す
るのに用いた電池は、内部抵抗が電池Aのp倍である大
幅に劣化電池で、その容量は電池Aの容量の1/mであ
るとすると、 QA =aln(ZA )+b (24) QA /m=aln(ZA )+[aln(p)+b] (25) となる。
The capacity of the battery A to be tested constituting the equation (13) is set to Q A and the internal resistance Z A, and the battery used to create the same equation (1) has an internal resistance p times that of the battery A. in some significantly deteriorated battery, when the capacity is to be 1 / m of capacity of the battery a, Q a = a * ln (Z a) + b * (24) Q a / m = a * ln (Z a) + [A * ln (p) + b * ] (25)

【0026】 式(11)−式(12)から QB [1−(1/n)]=−aln(p) (26) 式(14)−式(15)から QA =[1−(1/m)]=−aln(p) (27) 式(16)/式(17)より (QB /QA )[(1−1/n)/(1−1/m)=a/a] (28) n>>1、m>>1だから式(18)から a=a(QA /QB ) (29) 式(19)を式(14)に代入して b=QA −a(QA /QB )ln(ZA ) (30) 式(19)、式(20)を式(13)に代入して上記劣
化判定式(2)を得ることができる。
From the equations (11)-(12), Q B [1- (1 / n)] = − aln (p) (26) From the equations (14)-(15), Q A = [1- ( 1 / m)] = − a * ln (p) (27) From Equation (16) / Equation (17), (Q B / Q A ) [(1-1 / n) / (1-1 / m) = a / a * ] (28) Since n >> 1 and m >> 1, a * = a (Q A / Q B ) (29) from equation (18) is substituted for equation (19) into equation (14). b * = Q A −a (Q A / Q B ) ln (Z A ) (30) Substituting the equations (19) and (20) into the equation (13) to obtain the above-mentioned deterioration determination equation (2) Can be.

【0027】しかしながら、上記劣化判定式(2)は劣
化状態の進行が進むと満充電状態の場合しか適用できな
くなる。それは先に示した図1によって明らかである。
However, the above-mentioned deterioration determination equation (2) can be applied only when the battery is fully charged as the deterioration state progresses. This is evident from FIG. 1 shown above.

【0028】すなわち、図1において、劣化が進行した
公称容量比70%、および60%の容量の電池では、放
電が進むにつれて、電圧応答の大きさΔVが大きくなっ
てくる。特に、開回路電圧Vocが1.20V以下になる
とΔVの増大は顕著であり、このままでは放電深度が深
い状態の試験セル、あるいは組電池には劣化判定式
(2)が適用不可能である。
That is, in FIG. 1, in a battery with a capacity of 70% or 60% of the nominal capacity ratio in which the deterioration has progressed, the magnitude of the voltage response ΔV increases as the discharge proceeds. In particular, when the open circuit voltage Voc becomes 1.20 V or less, the increase in ΔV is remarkable. In this state, the deterioration determination formula (2) cannot be applied to a test cell or a battery pack having a deep discharge depth.

【0029】そこで上記判定式(2)に代わる劣化判定
式として、内部抵抗Zと開回路電圧Vとで表される容量
Qの式、 Q=QA {[ln(Z)+dV−e]/(fV−g)} (3) (d,e,f,gは定数) を本発明では提案するものである。
Therefore, as a deterioration judgment formula replacing the above judgment formula (2), a formula of a capacitance Q expressed by an internal resistance Z and an open circuit voltage V, Q = Q A {[ln (Z) + dV-e] / (FV−g)} (3) (d, e, f, and g are constants) are proposed in the present invention.

【0030】上記劣化判定式(3)は図1におけるよう
な各放電深度での電圧応答の大きさΔVの結果を基本に
して作成された関係式である。該判定式(3)における
定数d,e,f,gは、試験対象セル、あるいは組電池
に該当する未劣化品について、異なる4段階の放電深度
まで放電させて求めた開回路電圧と内部抵抗の値と、公
称容量から求めた容量QA からQ=QA として(3)式
に適用し、これらを決定して用いる。
The above-mentioned deterioration determination equation (3) is a relational equation created based on the result of the magnitude ΔV of the voltage response at each depth of discharge as shown in FIG. The constants d, e, f, and g in the determination formula (3) are the open circuit voltage and the internal resistance obtained by discharging the undegraded product corresponding to the test target cell or the assembled battery to four different discharge depths. the value, applied from the capacitor Q a obtained from nominal capacity as Q = Q a in equation (3), used to determine these.

【0031】以下に上記劣化判定式(3)の導出手順を
概説する。
The procedure for deriving the above-mentioned deterioration determination formula (3) will be outlined below.

【0032】電圧応答ΔVの対数と開回路電圧Vとの関
係を図2に示す。図2に明らかなように、電圧応答ΔV
の対数値と開回路電圧Vとの間には、極めて良い直線関
係が得られる。
FIG. 2 shows the relationship between the logarithm of the voltage response ΔV and the open circuit voltage V. As apparent from FIG. 2, the voltage response ΔV
An extremely good linear relationship is obtained between the logarithmic value of and the open circuit voltage V.

【0033】図2において、2−1は公称容量比100
%の容量を持つ未劣化電池の開回路電圧Vと電圧応答Δ
Vの関係を示した直線であり、2−2は同90%の場合
の直線であり、2−3は同80%の場合の直線であり、
2−4は同70%の場合の直線であり、2−5は同60
%の場合の直線である。
In FIG. 2, 2-1 is a nominal capacity ratio of 100
Open circuit voltage V and voltage response Δ of an undegraded battery having a capacity of 10%
V is a straight line indicating the relationship of V, 2-2 is a straight line at 90%, 2-3 is a straight line at 80%,
2-4 is a straight line at 70%, and 2-5 is a straight line at 70%.
It is a straight line in the case of%.

【0034】従って、内部抵抗Zと開回路電圧Vとの間
には以下の関係式が成立する。
Accordingly, the following relational expression is established between the internal resistance Z and the open circuit voltage V.

【0035】 ln(Z)=−jV+k (31) (31)式において、係数jおよびkは電池の劣化度、
すなわちQ/QA (Q A は公称容量)に直線的に依存
し、 j=−f(Q/QA )+d (32) および k=−g(Q/QA )+e (33) となる。(32)、(33)を(31)に代入すると、 ln(Z)=−[−f(Q/QA )+d]V+[−g(Q/QA )+e] (34) ln(Z)=(fV−g)(Q/QA )−dV+8 (35) (35)式より上記劣化判定式(3)が求まる。
Ln (Z) = − jV + k (31) In the equation (31), the coefficients j and k are the degree of battery deterioration,
That is, Q / QA(Q ALinearly depends on the nominal capacity)
J = −f (Q / QA) + D (32) and k = −g (Q / QA) + E (33). By substituting (32) and (33) for (31), ln (Z) = − [− f (Q / QA) + D] V + [− g (Q / QA) + E] (34) ln (Z) = (fV−g) (Q / QA) −dV + 8 (35) From the equation (35), the above-mentioned deterioration determination equation (3) is obtained.

【0036】該判定式(3)に、開回路電圧Voc1 、ま
たたはVoc3 と、内部抵抗Z、またはZ′とを代入して
算出した値Qを、満充電状態からの放電可能容量とす
る。
The value Q calculated by substituting the open circuit voltage Voc1 or Voc3 and the internal resistance Z or Z 'into the judgment formula (3) is defined as the dischargeable capacity from the fully charged state. .

【0037】劣化判定式(3)を式(2)の代わりに適
用する条件は、試験対象セル、あるいは組電池の開回路
電圧Voc1 、またはVoc3 と、劣化判定式(2)を用い
て推定した満充電状態からの放電可能容量Qと、該当す
る未劣化品の容量QA との関係が実験データから判断し
て Voc1 (Q/QA )<0.85×(セル数) または、 Voc3 (Q/QA )<0.85×(セル数) となる場合である。上記比が0.85×(セル数)以上
の場合に劣化判定式(3)を用いると、劣化判定式
(2)より推定値の誤差が大きくなってしまう場合があ
り好ましくない。
The conditions for applying the deterioration judgment equation (3) instead of the equation (2) were estimated using the open circuit voltage Voc1 or Voc3 of the test cell or the battery pack and the deterioration judgment equation (2). a discharge capacity Q from the fully charged state, VOC1 relationship between capacity Q a of the appropriate non-deteriorated products is determined from the experimental data (Q / Q a) <0.85 × ( number of cells) or, Voc3 ( Q / Q A ) <0.85 × (number of cells). If the above-mentioned ratio is equal to or more than 0.85 × (the number of cells) and the deterioration determination formula (3) is used, the error of the estimated value may become larger than the deterioration determination formula (2), which is not preferable.

【0038】本発明になる方法では、このようにして満
充電状態からの放電可能容量Qを求めることが可能とな
るとともに、同時に、試験時の放電状態から後どの程度
放電が可能かという残量も判定が可能である。
In the method according to the present invention, the dischargeable capacity Q from the fully charged state can be obtained in this way, and at the same time, the remaining amount of discharge after the discharge state at the time of the test is determined. Can also be determined.

【0039】すなわち、上記の短時間充電、あるいは放
電を実施する前の休止時の端子電圧Voc1 、あるいは実
施直後の休止時の端子電圧Voc3 を、あらかじめ求めて
おいた該試験対象の新品セルの電圧−容量曲線に適用し
て算出した残量(放電残時間)Qr0と上記短時間充電、
あるいは放電によって推定された満充電状態からの放電
可能容量Qと該試験対象セル、あるいは組電池の未劣化
品の容量QA とから、残量(放電残時間)Qr を Qr =Qr0(Q/QA ) によって推定する残量を推定するために使用する電圧−
容量曲線は、試験対象の満充電状態におかれた新品セル
の開回路端子電圧Vo を記録した後これを、0.1C、
ないし0.2Cの電流率で30分以下の一定時間で放電
し、これを1時間以上の休止状態におき休止時の最後に
開回路端子電圧Voxを記録して、再び同一条件で放電さ
せ、これを1.0V以下の電圧まで繰り返してVo とV
oxとを、放電時間(放電容量)ごとにプロットして求め
る。
That is, the terminal voltage Voc1 at the time of suspension before performing the above-mentioned short-time charging or discharging, or the terminal voltage Voc3 at the time of suspension immediately after performing the above-mentioned short-time charging or discharging, is determined in advance by the voltage of the new cell to be tested. -The remaining amount (remaining discharge time) Qr0 calculated by applying to the capacity curve and the short-time charging,
Or dischargeable capacity Q and the test target cell from the fully charged state estimated by the discharge or from the undegraded product capacity Q A of the battery pack, the remaining amount (discharge remaining time) Qr Qr = Qr0 (Q / Q A ) The voltage used to estimate the remaining amount estimated by-
The capacity curve is obtained by recording the open circuit terminal voltage Vo of a new cell in a fully charged state to be tested, and then recording the voltage at 0.1 C,
To discharge at a current rate of 0.2 C for a fixed time of 30 minutes or less, put it in a resting state of 1 hour or more, record the open circuit terminal voltage Vox at the end of the rest, and discharge again under the same conditions; This is repeated until a voltage of 1.0 V or less, and Vo and V
ox is determined by plotting for each discharge time (discharge capacity).

【0040】なお、Cは、放電や充電の電流値の大きさ
を示す1つの値である。時間率という考え方があり、電
流Iで終止電圧になるまで放電するのにt時間かかる場
合、t時間率放電という言い方で電流値を表す。その
時、電池の定格容量(公称容量)をCとして用いる。例
えば、1Cという場合、1時間で放電を終了する1時間
率放電を示す。定格容量が1Ahの電池の場合、1×2
=2Aの電流値で放電したことになる。0.2Cと言え
ば、0.2×2=0.4Aの電流値で放電し、これは5
時間率放電(放電に5時間かかる)になる。Cに公称容
量の値を適用して、その前の数値をかけ算すれば電流値
が求まる。
C is one value indicating the magnitude of the current value of discharging or charging. There is a concept of time rate, and when it takes t time to discharge until the current I reaches the end voltage, the current value is expressed by the term t time rate discharge. At this time, the rated capacity (nominal capacity) of the battery is used as C. For example, 1C indicates a one-hour rate discharge in which discharge is completed in one hour. 1 × 2 for batteries with a rated capacity of 1 Ah
= 2A. Speaking of 0.2C, the battery is discharged at a current value of 0.2 × 2 = 0.4A.
Time rate discharge (discharge takes 5 hours). The current value is obtained by applying the value of the nominal capacity to C and multiplying by the numerical value before that.

【0041】上記電圧−容量曲線を求めるための放電条
件は、0.2C以下0.1C以上であればこれに限定さ
れることはないが、算出上0.1C,0.2Cが簡便で
あり好ましい。0.1C未満の放電では、該曲線を求め
るために膨大な時間を要し、かつ試験中に電池の状態が
放電以外の要素(特に自己放電)で変化してしまう可能
性があり好ましくない。また、0.2Cを越える大きな
電流率では、放電後の休止状態が不安定であり、電圧の
誤差が大きくなり好ましくない。
The discharge conditions for obtaining the voltage-capacitance curve are not limited to the above, provided that they are not more than 0.2C and not less than 0.1C, but 0.1C and 0.2C are simple for calculation. preferable. If the discharge is less than 0.1 C, it takes an enormous amount of time to obtain the curve, and the state of the battery may change due to factors other than the discharge (particularly, self-discharge) during the test, which is not preferable. At a large current rate exceeding 0.2 C, the resting state after the discharge is unstable, and the voltage error increases, which is not preferable.

【0042】さらに放電時間を30分より長くすると、
データ数の減少につながって、基準となる電圧−容量曲
線の信頼性の低下をきたすことになり好ましくない。休
止時間については1時間未満だと安定な休止状態に至ら
ず電圧の誤差が大きくなり好ましくない。
Further, when the discharge time is longer than 30 minutes,
This leads to a decrease in the number of data, which leads to a reduction in the reliability of the reference voltage-capacity curve, which is not preferable. If the pause time is less than one hour, a stable pause state is not reached, and a voltage error increases, which is not preferable.

【0043】本発明になる電池容量および残量推定法で
は、試験対象となるアルカリ蓄電池(セル)、または直
列に接続された複数個の組電池をいったん休止状態にお
いた後、一定電流値で短時間放電してその端子電圧の変
化を測定する。
In the method for estimating the battery capacity and the remaining amount according to the present invention, an alkaline storage battery (cell) to be tested or a plurality of batteries connected in series is temporarily stopped, and then short-circuited at a constant current value. Discharge for a time and measure the change in the terminal voltage.

【0044】推定のために必要な充電、放電時間は1秒
以下であることが好ましい。充電、または放電時間が1
秒を超える長い時間では、端子電圧の変化に電池の内部
抵抗だけでなく電解液中のイオンの拡散の遅れによる影
響が強く含まれるようになり、この影響が判定誤差を大
きくするので好ましくない。
The charging and discharging time required for the estimation is preferably 1 second or less. 1 charge or discharge time
If the time is longer than a second, the change in terminal voltage strongly includes not only the internal resistance of the battery but also the influence of the delay in diffusion of ions in the electrolyte, and this influence undesirably increases the determination error.

【0045】推定のために1秒以下の短時間充電を実施
する場合、電流値は0.05C以上の電流率であること
が好ましい。0.05Cより小さい電流率の充電電流で
は電圧変化が小さく端子電圧の読み取り誤差が大きくな
って推定誤差の増大を招くことになり好ましくない。
When charging for a short time of 1 second or less is performed for estimation, the current value is preferably a current rate of 0.05 C or more. If the charging current has a current rate smaller than 0.05 C, the voltage change is small and the reading error of the terminal voltage increases, which leads to an increase in the estimation error, which is not preferable.

【0046】同様に、推定のために1秒以下の短時間放
電を実施する場合、電流値は0.5C以上の電流率であ
ることが好ましい。0.5Cより小さい電流率の放電電
流では電圧変化が小さく端子電圧の読み取り誤差が大き
くなって推定誤差の増大を招くことになり好ましくな
い。
Similarly, when a short-time discharge of 1 second or less is performed for estimation, the current value is preferably a current rate of 0.5 C or more. If the discharge current has a current rate smaller than 0.5 C, the voltage change is small and the reading error of the terminal voltage increases, which leads to an increase in the estimation error, which is not preferable.

【0047】充電、あるいは放電前の端子電圧Voc1 は
試験対象セル、あるいは組電池が休止状態におかれ充
電、あるいは放電が開始される2秒以内の電圧であるこ
とが好ましい。充電、あるいは放電開始の2秒を超える
以前の端子電圧では、試験電池の状態が変化し、充電、
放電を実施した電池状態との関係が複雑となり好ましく
ない。
The terminal voltage Voc1 before charging or discharging is preferably a voltage within 2 seconds from the start of charging or discharging when the cell to be tested or the battery pack is in a rest state. If the terminal voltage exceeds 2 seconds before the start of charging or discharging, the state of the test battery changes and charging,
The relationship with the state of the discharged battery is complicated, which is not preferable.

【0048】また、充電、あるいは放電終了後に記録さ
れる端子電圧Voc3 は充電、あるいは放電終了後2秒以
内の電圧であることがこのましい。2秒を超えた後の端
子電圧では、試験電池内部の状態が大きく変化してしま
い、Voc1 やV2 との関係が複雑となって誤差の増大を
きたすので好ましくない。
It is preferable that the terminal voltage Voc3 recorded after the end of charging or discharging be a voltage within 2 seconds after the end of charging or discharging. If the terminal voltage exceeds 2 seconds, the state inside the test battery greatly changes, and the relationship between Voc1 and V2 becomes complicated, which increases the error, which is not preferable.

【0049】本発明になる電池容量および残量推定方法
を適用して満充電状態からの放電可能容量および残量推
定を行う装置は、データを管理するコンピュータと、電
池の試験条件をコントロールする充放電器とから構成さ
れ、該電池容量および残量推定方法における劣化判定
式、および電圧−容量曲線(関係式)をもとに演算する
回路または機能を該コンピュータに内蔵して上記に記載
する手順に従って試験セル、または組電池の容量および
残量推定を行うことを特徴とする。
The apparatus for estimating the dischargeable capacity and the remaining capacity from the fully charged state by applying the battery capacity and remaining capacity estimation method according to the present invention comprises a computer for managing data and a battery for controlling test conditions of the battery. A procedure comprising a discharger, a circuit or a function for calculating based on a deterioration determination formula and a voltage-capacity curve (relational expression) in the battery capacity and remaining amount estimation method, and described in the computer. The estimation of the capacity and the remaining amount of the test cell or the assembled battery is performed according to the following.

【0050】該容量および残量推定装置の構成概念の一
例を図3に示すが、試験制御、データ収集、電池容量お
よび残量推定の実行機能が満足されれば、構成は何らこ
れに限定されるものではない。
FIG. 3 shows an example of the configuration concept of the capacity and remaining amount estimating apparatus. However, the configuration is not limited to this as long as the functions of test control, data collection, and estimation of battery capacity and remaining amount are satisfied. Not something.

【0051】図3は1の試験対象セル、あるいは組電池
を、12の試験装置に配置した概念の一例を示したもの
である。試験装置12は、該試験電池1を試験するため
に具体的な充電、放電の実行を行う充放電器2と、この
充放電器の制御や記憶、記録を行うコンピュータ3で構
成される。
FIG. 3 shows an example of a concept in which one test target cell or battery pack is arranged in 12 test devices. The test apparatus 12 includes a charge / discharge unit 2 for executing specific charge and discharge for testing the test battery 1 and a computer 3 for controlling, storing, and recording the charge / discharge unit.

【0052】充放電器2は、定電流負荷装置4と定電流
定電圧電源5、およびスイッチS1,S2とから構成さ
れている。定電流負荷装置4は、試験電池1から供給さ
れる電流が一定の設定値に維持されるように負荷を変動
させるものである。定電流定電圧電源5は充電、放電が
一定の時間で規定されている場合に設定電圧に達するま
での間、定電流源として動作し、設定電圧に達した後は
定電圧電源として動作する。
The charger / discharger 2 comprises a constant current load device 4, a constant current / constant voltage power supply 5, and switches S1 and S2. The constant current load device 4 changes the load so that the current supplied from the test battery 1 is maintained at a constant set value. The constant-current / constant-voltage power supply 5 operates as a constant-current power supply until charging reaches a set voltage when charging and discharging are specified for a fixed time, and operates as a constant-voltage power supply after reaching the set voltage.

【0053】コンピュータ3は、試験全体を制御するC
PU6、充放電制御とデータ記録、さらには本発明の電
池容量および残量推定法に関する劣化判定基準式や電圧
−容量関係式(曲線)のプログラムがあらかじめ収納さ
れているROM7の他、さらに該基準式から上記に記載
した手順によって判定式を作成し、この劣化判定式と電
圧−容量関係式に試験データを適用して容量および残量
推定を行う作業用RAM8、およびプリンタ9、キーボ
ード10、充放電状態や試験結果を表示する表示器11
から構成される。
The computer 3 controls the entire test C
PU6, a ROM 7 in which a program for a deterioration determination reference formula and a voltage-capacity relational expression (curve) relating to the charge / discharge control and data recording, and the battery capacity and remaining amount estimation method of the present invention are stored in advance, A determination formula is created from the formula according to the procedure described above, and the working RAM 8 for estimating the capacity and remaining amount by applying test data to the deterioration determination formula and the voltage-capacity relational formula, a printer 9, a keyboard 10, a charging Display 11 for displaying discharge status and test results
Consists of

【0054】ROM7に格納されているプログラムに従
って、CPU6が充放電器2の定電流定電圧電源5、定
電流負荷装置4、スイッチS1,S2、の装置全体を制
御する。個々の特性試験に必要な設定値などはキーボー
ド10によって入力される。
According to the program stored in the ROM 7, the CPU 6 controls the whole of the constant current / constant voltage power supply 5, the constant current load device 4, and the switches S1 and S2 of the charger / discharger 2. The setting values and the like necessary for each characteristic test are input by the keyboard 10.

【0055】コンピュータ3においては、あらかじめ設
定された条件において試験の制御を行いながら、試験電
池1の端子電圧、電流、さらに必要に応じて温度、湿
度、電池歪みなどのデータを所定の時間間隔で測定し、
記憶し、さらに記録する。また、得られた試験データに
基準式を適用し、判定式を作成して試験対象セル、ある
いは組電池の満充電状態からの放電可能容量を推定し、
電圧−容量関係式に適用して残量推定を行う演算機能、
さらに必要ならば試験データを一定時間毎にプロットす
る特性作成機能を具備している。
In the computer 3, while controlling the test under preset conditions, the terminal voltage and current of the test battery 1 and, if necessary, data such as temperature, humidity, battery distortion, etc., at predetermined time intervals. Measure,
Remember and record. In addition, a reference formula is applied to the obtained test data, a judgment formula is created, and the dischargeable capacity from the fully charged state of the test target cell or the assembled battery is estimated,
A calculation function for estimating the remaining amount by applying to the voltage-capacity relational expression,
Furthermore, if necessary, a function for plotting test data at regular intervals is provided.

【0056】本発明になるアルカリ蓄電池の容量および
残量推定機能は、試験データを収集管理し、かつ、上記
の手順に従って容量および残量推定値を求めるために演
算を行うコンピュータと、必要ならば、該試験電池の試
験放電条件を制御する放電電流制御器、または充放電制
御器とから構成されるか、または、既設コンピュータに
上記に記載した電池容量および残量推定法の手順を行う
演算回路、または機能とを増設し搭載してなり、必要な
らば、放電電流制御器、または充放電制御器とから構成
され、既存の無停電給電システムや二次電池充放電自動
試験装置に組み込んで、従来の機能な加えて試験対象電
池の容量および残量推定を可能にする機能を付与するこ
とを特徴とするものである。
The capacity and remaining capacity estimating function of the alkaline storage battery according to the present invention includes a computer which collects and manages test data and performs an operation to obtain a capacity and remaining capacity estimated value according to the above-described procedure; An arithmetic circuit comprising a discharge current controller for controlling test discharge conditions of the test battery, or a charge / discharge controller, or performing the procedure of the battery capacity and remaining amount estimation method described above in an existing computer , Or with additional functions, if necessary, consisting of a discharge current controller or a charge / discharge controller, and incorporated into the existing uninterruptible power supply system or secondary battery charge / discharge automatic test equipment, The present invention is characterized in that a function for estimating the capacity and remaining amount of the test target battery is provided in addition to the conventional functions.

【0057】従って、本発明になる該試験電池容量およ
び残量推定機能は、できるだけ、既存装置、あるいはシ
ステム本来の機能を損なったり、低下させないことで、
容量および残量推定を行う。
Accordingly, the function of estimating the test battery capacity and the remaining amount according to the present invention is minimized by impairing or lowering the original functions of the existing device or system.
Estimate capacity and remaining amount.

【0058】一例として無停電給電システムに本発明に
なる電池容量および残量推定機能を付与した構成概念を
図4に示す。
As an example, FIG. 4 shows a configuration concept in which the uninterruptible power supply system is provided with a battery capacity and remaining capacity estimation function according to the present invention.

【0059】図4は本発明になる電池容量および残量推
定機能のコンピュータ制御部を電力変換装置の内部に配
置し、接続して構成された無停電給電システムの構成概
念の一例を示したものである。
FIG. 4 shows an example of the configuration concept of an uninterruptible power supply system in which a computer control unit having a battery capacity and remaining capacity estimation function according to the present invention is arranged inside a power converter and connected thereto. It is.

【0060】図4において、1の試験セル、あるいは組
電池と、13の交流、または直流電源と、14の電力変
換装置と、15の負荷装置とによって無停電給電システ
ムの基本構成をなしている。14の電力変換装置内に
は、主変換回路16が搭載されて、電源13からの交
流、または直流電力を変換する。
In FIG. 4, the basic configuration of the uninterruptible power supply system is constituted by one test cell or battery pack, 13 AC or DC power supplies, 14 power converters, and 15 load devices. . A main conversion circuit 16 is mounted in the power converter 14 and converts AC or DC power from the power supply 13.

【0061】本発明における電池容量および残量推定機
能は、コンピュータ3と定電流制御回路17と試験時に
主回路から切り離すスイッチ18とで構成される。
The function of estimating the battery capacity and the remaining amount in the present invention comprises the computer 3, a constant current control circuit 17, and a switch 18 which is disconnected from the main circuit at the time of a test.

【0062】本発明の容量および残量推定機能を構成す
るコンピュータ3は、容量および残量推定のための放
電、あるいは充電試験全体を制御するCPU6、試験制
御とデータ記録、さらには本発明の電池容量および残量
推定法に関する基準式、および関係式のプログラムがあ
らかじめ収納されているROM7の他、さらに該基準式
を上記に記載した手順によって試験データに適用し判定
式を作成して容量推定を行い、電圧−容量関係式に適用
して残量推定を行う作業用RAM8、およびプリンタ
9、キーボード10、放電状態や試験結果を表示する表
示器11から構成される。表示器11は、使用上の利便
性を考慮して該コンピュータ3の他に、電力変換装置1
4の壁面の作業者の認識しやすい部位にも取り付けるこ
とができる。
The computer 3 constituting the capacity and remaining amount estimating function of the present invention includes a CPU 6 for controlling the entire discharge or charging test for estimating the capacity and remaining amount, test control and data recording, and furthermore, the battery of the present invention. In addition to the ROM 7 in which a program of a reference formula relating to the capacity and remaining amount estimation method and a relational expression is stored in advance, the reference formula is applied to the test data according to the above-described procedure, and a determination formula is created to estimate the capacity. The system comprises a working RAM 8 for estimating the remaining amount by applying to a voltage-capacity relational expression, a printer 9, a keyboard 10, and a display 11 for displaying a discharge state and a test result. The display 11 is provided with the power conversion device 1 in addition to the computer 3 in consideration of convenience in use.
4 can also be attached to a part of the wall surface that is easy for the operator to recognize.

【0063】なお、図4に示した構成概念はあくまで具
体的な一例であって、上述した容量推定の機能を保持
し、構成要素を完備していれば、無停電給電システム、
あるいはそれ以外の装置に該容量推定機能を付与する構
成は何らこれに限定されることはない。
The configuration shown in FIG. 4 is merely a specific example, and if the above-described capacity estimation function is retained and the components are completed, the uninterruptible power supply system,
Alternatively, the configuration for providing the capacity estimation function to other devices is not limited to this.

【0064】以下に、本発明になる電池容量および残量
推定方法について実施例によって説明するが、本発明は
何らこれらに限定されるものではない。
Hereinafter, the method for estimating the battery capacity and the remaining amount according to the present invention will be described with reference to examples. However, the present invention is not limited to these examples.

【0065】[0065]

【実施例】[実施例1]非常灯に用いられていたトリク
ル単一ニッケルカドミウム電池(公称容量QB=4A
h)を回収するとともに、同型の新品電池を購入して、
内部抵抗と容量とを評価した。
EXAMPLES Example 1] trickle single nickel-cadmium batteries have been used in the emergency lamp (nominal capacity Q B = 4A
h) and purchase a new battery of the same type,
The internal resistance and capacity were evaluated.

【0066】実施した試験は、以下の通りである。The tests performed are as follows.

【0067】すなわち、回収、または購入した各電池を
電池充放電試験装置に設置して、0.1CmA(400
mA)の電流値で16時間充電し、1時間休止の後、
0.2CmA(800mA)の電流値で1.0Vまで放
電し、1時間の休止を行う。これを2回繰り返し、3回
目の放電を開始する直前の休止状態で、1.0CmA
(4000mA)の電流値で10msecの短時間放電
を行い、その電圧応答の大きさを測定した。電圧応答
は、短時間放電を実施する直前と、短時間放電を終了す
る直前の端子電圧の差を採用した。この短時間放電の
後、1時間の休止を置いて、0.2CmA(800m
A)の定電流で1.0Vまで放電を行い、この容量を電
池容量とした。電圧応答の大きさを電流値で除した値を
内部抵抗とした。
That is, each of the collected or purchased batteries was set in a battery charge / discharge test apparatus, and the batteries were charged at 0.1 CmA (400
After charging for 16 hours at a current value of mA) and resting for 1 hour,
The battery is discharged to 1.0 V at a current value of 0.2 CmA (800 mA), and a pause of one hour is performed. This is repeated twice, and in the rest state immediately before the start of the third discharge, 1.0 CmA
(4000 mA) current was discharged for a short time of 10 msec, and the magnitude of the voltage response was measured. As the voltage response, a difference between terminal voltages immediately before the short-time discharge was performed and immediately before the short-time discharge was terminated was employed. After this short-time discharge, a pause of 1 hour is set to 0.2 CmA (800 mA).
The battery was discharged to 1.0 V at the constant current of A), and this capacity was defined as the battery capacity. The value obtained by dividing the magnitude of the voltage response by the current value was defined as the internal resistance.

【0068】こうして測定した各電池の容量Qを内部抵
抗Zの対数についてプロットすると良好な直線関係が得
られ、その関係は Q=−1291×ln(Z)+8490 (4) となり、これを劣化判定基準式とした。
When the capacity Q of each battery thus measured is plotted with respect to the logarithm of the internal resistance Z, a good linear relationship is obtained, and the relationship is as follows: Q = −1291 × ln (Z) +8490 (4) The standard formula was used.

【0069】次に、試験対象となるトリクル単三ニッケ
ルカドミウム電池の3セル直列パック(公称容量600
mAh)の新品を購入し、電流値は充電を0.1CmA
(60mA)、放電を0.2CmA(120mA)、内
部抵抗を求めるための短時間放電を1.0CmA(60
0mA)とした以外上記と同様の条件で試験を行い容量
A =642と内部抵抗ZA =65.25を求めた。こ
れらの値をもとに、劣化判定基準式(4)の係数a=−
1291とb=8490を補正して Q=a(QA /QB )ln(Z)+QA −a(QA /QB )ln(ZA ) =−174×ln(Z)+1368 (5) なるトリクル単三ニッケルカドミウム電池の3セル直列
パックの劣化判定式を得た。
Next, a three-cell series pack of a trickle AA nickel cadmium battery to be tested (nominal capacity 600
mAh), and the current value is 0.1 CmA for charging.
(60 mA), the discharge was 0.2 CmA (120 mA), and the short-time discharge for determining the internal resistance was 1.0 CmA (60 mA).
The test was performed under the same conditions as above except that the current was set to 0 mA), and the capacity Q A = 642 and the internal resistance Z A = 65.25 were determined. Based on these values, the coefficient a = − in the deterioration determination criterion equation (4)
1291 and b = 8490 to correct the Q = a (Q A / Q B) ln (Z) + Q A -a (Q A / Q B) ln (Z A) = -174 × ln (Z) +1368 (5 ) A deterioration determination formula for a three-cell series pack of a trickle AA nickel cadmium battery was obtained.

【0070】上記試験を実施した後、該電池パックを
0.1CmA(60mA)で16時間充電した後、1時
間休止を置き端子電圧Voc1 を測定してから、600m
A、10msecの短時間放電を実施し、放電終了直前
に端子電圧V2 を測定し上記方法と同様にして内部抵抗
Z1 =(Voc1 −V2 )/600を求めた。その後、
0.2CmA(120mA)で30分間(60mAh)
放電してから、2時間の休止をおき、端子電圧Vocx を
測定した後、再び600mA、10msecの短時間放
電を実施し端子電圧Vx2を測定してこれを終了し、上記
方法と同様にして内部抵抗Zx =(Vocx −Vx2)/6
00を求めた。
After the above test was performed, the battery pack was charged at 0.1 CmA (60 mA) for 16 hours, and after a pause of 1 hour, the terminal voltage Voc1 was measured.
A, a short-time discharge of 10 msec was performed, and the terminal voltage V2 was measured immediately before the end of the discharge, and the internal resistance Z1 = (Voc1 -V2) / 600 was determined in the same manner as described above. afterwards,
30 minutes (60 mAh) at 0.2 CmA (120 mA)
After the discharge, a pause of 2 hours is set, and after measuring the terminal voltage Vocx, a short-time discharge of 600 mA and 10 msec is performed again, the terminal voltage Vx2 is measured, and the measurement is terminated. Resistance Zx = (Vocx-Vx2) / 6
00 was sought.

【0071】この30分放電、2時間休止、端子電圧V
ocx 測定、10msec放電、端子電圧Vx2測定の操作
を放電時の電圧が3.0V(1.0V/セル)に至るま
で繰り返した。放電電圧が3.0V(1.0V/セル)
に至ると直ちに放電を終了し、2時間の休止ののち上記
と同じ条件で内部抵抗を求めた。
The discharge for 30 minutes, the pause for 2 hours, the terminal voltage V
The operations of ocx measurement, 10 msec discharge, and measurement of terminal voltage Vx2 were repeated until the voltage at the time of discharge reached 3.0 V (1.0 V / cell). Discharge voltage is 3.0V (1.0V / cell)
Immediately after the discharge, the internal resistance was determined under the same conditions as above after a pause of 2 hours.

【0072】こうして求めた試験データのうち、4つの
放電状態のデータを選択し、それぞれの短時間放電を実
施する直前の休止電圧Vocx と、内部抵抗Zx と、上記
A=642とから Q=QA {[ln(Z)+dV−e]/(fV−g)} (3) (d,e,f,gは定数) の定数d,e,f,gを算出し、 Q=642 × {[ln(Z)+15.1V−11.3]/(0.15V−0.208)} (6) なる別の劣化判定式を作成した。該判定式(6)は、 Voc1 (Q/QA )<2.55(0.85V×3セル) (7) となる場合に、上記劣化判定式(5)に代わって使用す
ることにした。
From the test data obtained in this way, four data in the discharge state are selected, and Q = 642 from the quiescent voltage Vocx, the internal resistance Zx, and the above Q A = 642 immediately before the short-time discharge is performed. Q A {[ln (Z) + dV-e] / (fV-g)} (3) Calculate constants d, e, f, and g of (d, e, f, and g are constants), and Q = 642 × {[Ln (Z) + 15.1V-11.3] / (0.15V-0.208)} (6) Another deterioration determination formula was created. If Voc1 (Q / Q A ) <2.55 (0.85 V × 3 cells) (7), the decision formula (6) is used instead of the degradation decision formula (5). .

【0073】また、上記試験によって求めた放電におけ
る端子電圧が3.0Vに至る各放電状態の休止電圧Voc
1 と満充電からの総放電量との関係、電圧−容量曲線を
あらかじめプロットして、図5に示す残量算出のための
基礎データを得た。
The rest voltage Voc in each discharge state when the terminal voltage in the discharge obtained by the above test reaches 3.0 V.
The relationship between 1 and the total discharge amount from full charge and the voltage-capacity curve were plotted in advance to obtain basic data for calculating the remaining amount shown in FIG.

【0074】図5は、該試験電池パックの残量を推定す
るために使用される基礎データであり、一例として、試
験した電池パックの端子電圧Voc1 が図5に示した値で
ある場合、その値を曲線に適用して満充電からの容量Q
1 が求められ、初期容量QAとの差、 Qr0=QA −Q1 (8) Qr0を未劣化品の場合の残量とする。また、この残量を 100×(Qr0/QA ) (9) として、パーセントで示すこともできる。
FIG. 5 shows basic data used for estimating the remaining amount of the test battery pack. As an example, when the terminal voltage Voc1 of the tested battery pack is the value shown in FIG. Applying the value to the curve, the capacity Q from full charge
1 is determined, the difference between the initial capacity Q A, the remaining amount of the case of the non-deteriorated products of Qr0 = Q A -Q1 (8) Qr0. Further, as the remaining amount 100 × (Qr0 / Q A) (9), may also be indicated as a percentage.

【0075】こうして得られた劣化判定式(5)、およ
び(6)、および電圧−容量の基礎データをもとに、回
収したトリクル単一ニッケルカドミウム電池パック(3
セル直列、公称容量600mAh)の容量および残量推
定を行った。
Based on the deterioration judgment formulas (5) and (6) thus obtained and the basic data of the voltage-capacity, the collected trickle single nickel cadmium battery pack (3
The capacity and remaining capacity of the cell in series, with a nominal capacity of 600 mAh) were estimated.

【0076】回収した電池パックは、まず0.1CmA
(60mA)で16時間充電し、1時間の休止を置く。
端子電圧Voc1 を測定した後、1.0CmA(600m
A)で10msecの短時間放電を行い、放電終了直前
の電圧V2 を測定し、内部抵抗Z=ΔV/I=(Voc1
−V2 )/600を求める。
The recovered battery pack was first charged at 0.1 CmA
(60 mA) for 16 hours and rest for 1 hour.
After measuring the terminal voltage Voc1, 1.0 CmA (600 m
In A), a short-time discharge of 10 msec is performed, the voltage V2 immediately before the end of the discharge is measured, and the internal resistance Z = ΔV / I = (Voc1
-V2) / 600.

【0077】該電池パックを2時間休止した後、0.2
CmA(120mA)で開回路電圧Voc1 が3.60V
(1.20V/セル)以上3.75V(1.25V/セ
ル)未満となるまで放電する。1時間の休止後、上記と
同様の手順で端子電圧Voc1、内部抵抗Zを測定する。
After suspending the battery pack for 2 hours, 0.2
Open circuit voltage Voc1 is 3.60 V at CmA (120 mA)
(1.20 V / cell) or more and until it becomes less than 3.75 V (1.25 V / cell). After a pause of one hour, the terminal voltage Voc1 and the internal resistance Z are measured in the same manner as described above.

【0078】さらに2時間休止した後、0.2CmA
(120mA)の電流値で開回路電圧Voc1 が3.30
V(1.10V/セル)以上3.60V(1.20V/
セル)未満となるまで放電し、同様にして2時間休止の
後、端子電圧Voc1 と内部抵抗を測定する。
After resting for another 2 hours, 0.2 CmA
(120 mA) and the open circuit voltage Voc1 is 3.30.
V (1.10 V / cell) or more and 3.60 V (1.20 V / cell)
Cell), and after a pause of 2 hours in the same manner, the terminal voltage Voc1 and the internal resistance are measured.

【0079】こうして測定した端子電圧Voc1 と内部抵
抗を関係式(7)を考慮して劣化判定式(5)または
(6)に代入し、満充電からの放電可能容量Qを算出し
た。
The terminal voltage Voc1 and the internal resistance thus measured were substituted into the deterioration judgment formula (5) or (6) in consideration of the relational expression (7), and the dischargeable capacity Q from full charge was calculated.

【0080】さらに、該試験電池パックは、0.2Cm
A(120mA)で端子電圧3.0V(1.0V/セ
ル)まで放電し、満充電からの総容量を求め、これを実
測容量Qm とした。推定容量Qと実測容量Qm とから、 Err=100×(Q−Qm )/Qm (10) を算出し、これを誤差Errとした。
Further, the test battery pack has a capacity of 0.2 Cm.
At A (120 mA), the battery was discharged to a terminal voltage of 3.0 V (1.0 V / cell), and a total capacity from a full charge was obtained, which was defined as an actually measured capacity Qm. From the estimated capacity Q and the measured capacity Qm, Err = 100 × (Q−Qm) / Qm (10) was calculated, and this was defined as an error Err.

【0081】結果を図6に示す。FIG. 6 shows the results.

【0082】図6は実測した満充電状態からの放電可能
容量に対する、上記(10)の関係によって求めた誤差
を示した図である。図6において、白丸は満充電状態で
の試験電池パックの測定結果であり、四角は端子電圧V
oc1 が3.60V以上3.75V未満の放電状態にある
試験電池パックの測定結果であり、黒丸は端子電圧Voc
1 が3.30V以上3.60V未満の放電状態にある試
験電池パックの測定結果である。
FIG. 6 is a diagram showing an error obtained from the measured dischargeable capacity from the fully charged state according to the relationship (10). In FIG. 6, a white circle indicates the measurement result of the test battery pack in a fully charged state, and a square indicates the terminal voltage V.
oc1 is a measurement result of the test battery pack in a discharge state of 3.60 V or more and less than 3.75 V, and a black circle indicates the terminal voltage Voc.
1 is a measurement result of the test battery pack in a discharge state of 3.30 V or more and less than 3.60 V.

【0083】図6に明らかなように、測定対象となった
電池パックのあらゆる容量(劣化状態)に対し、本発明
になる方法により推定した満充電からの放電可能容量
は、実測した容量に比べて誤差±15%以内と良好な推
定精度であることが判った。
As is clear from FIG. 6, the dischargeable capacity from full charge estimated by the method according to the present invention for all capacities (deterioration state) of the battery pack to be measured is smaller than the actually measured capacity. As a result, it was found that the estimation accuracy was good with an error within ± 15%.

【0084】さらに、端子電圧Voc1 の値を図5に示す
電圧−容量曲線(関係)に適用し、上記図5に示した電
圧−容量の関係から(8)式によって得られた残量Qr0
と、これに劣化判定式(5)および(6)によって得ら
れた満充電からの放電可能推定容量Qと初期容量QA
から Qr =Qr0(Q/QA ) (11) によって試験電池の残量を推定した。これを上記に示し
た方法で測定した実測残量Qrmと比較し、 Err(r) =100×(Qr −Qrm)/Qrm (12) として誤差を求めた。
Further, the value of the terminal voltage Voc1 is applied to the voltage-capacity curve (relation) shown in FIG. 5, and the remaining amount Qr0 obtained by the equation (8) from the voltage-capacity relationship shown in FIG.
When this from the dischargeable estimated capacity Q and the initial capacity Q A fully charged battery pack obtained by degradation determination formulas (5) and (6) Qr = QR0 (Q / Q A) of the test battery by (11) The remaining amount was estimated. This was compared with the actually measured remaining amount Qrm measured by the method described above, and the error was obtained as Err (r) = 100 × (Qr−Qrm) / Qrm (12).

【0085】結果を図7に示す。図7は試験した異なる
劣化状態にある3個の電池パックについて、実測残量に
対する(12)式で求めた推定残量の誤差Err(r) の結
果を示したものである。
FIG. 7 shows the results. FIG. 7 shows the result of the error Err (r) of the estimated remaining amount obtained by the equation (12) with respect to the actually measured remaining amount for the three battery packs in different deterioration states tested.

【0086】図7に示したように、各放電状態で測定し
た推定残量は、実測値に比べて±10%以内の誤差であ
り、本発明になる方法により、高精度で残量が推定可能
であることが判った。
As shown in FIG. 7, the estimated remaining amount measured in each discharge state is within ± 10% of the error measured, and the remaining amount is estimated with high accuracy by the method according to the present invention. It turned out to be possible.

【0087】[実施例2]実施例1において試験した電
池パックの結果を用い、各放電状態での端子電圧Voc1
と実施例1における劣化判定式(5)および(6)から
求めた、満充電からの放電可能容量推定Qの判定精度の
検討を実施した。
Example 2 Using the results of the battery packs tested in Example 1, the terminal voltage Voc1 in each discharge state
In addition, the determination accuracy of the dischargeable capacity estimation Q from full charge obtained from the deterioration determination expressions (5) and (6) in Example 1 was examined.

【0088】劣化判定式(6)の使用基準となる、試験
電池パックの端子電圧Voc1 と未劣化品の容量QA と劣
化判定式(5)から求めた推定容量Qとの関係、 J=Voc1 (Q/QA ) (13) の値を変えて判定誤差の大きさを調べた。
[0088] the use criteria of degradation determination formulas (6), the relationship between the estimated capacity Q was determined as the terminal voltage VOC1 test battery pack from undegraded product capacity Q A deterioration determination formula (5), J = VOC1 (Q / Q A ) The magnitude of the judgment error was examined by changing the value of (13).

【0089】結果を図8に示す。FIG. 8 shows the results.

【0090】図8は、上記実施例1に示した劣化判定式
(6)を使用する判断基準である、式(13)によって
求めた値Jに対する誤差範囲を示したものである。
FIG. 8 shows an error range with respect to the value J obtained by the equation (13), which is a criterion for using the deterioration judgment equation (6) shown in the first embodiment.

【0091】図8から明らかなように、Jの値が2.5
5未満で劣化判定式(6)を使用した場合の推定容量の
実測容量に対する誤差は、Jの値が2.55以上で同
(6)式を使用した場合に比べて小さくなり良好な精度
で容量推定が可能になることがわかった。
As is apparent from FIG. 8, when the value of J is 2.5
The error of the estimated capacity with respect to the actually measured capacity when the deterioration determination formula (6) is used when the value is less than 5 is smaller than that when the same formula (6) is used when the value of J is equal to or greater than 2.55 and the accuracy is good. It turns out that capacity estimation becomes possible.

【0092】[実施例3]トリクル単三ニッケルカドミ
ウムセル(公称容量600mAh)の残量を推定するた
めに、電圧−容量曲線を作成した。
Example 3 A voltage-capacity curve was created in order to estimate the remaining amount of a trickle AA nickel cadmium cell (nominal capacity 600 mAh).

【0093】試験対象の未劣化品10セルについて、こ
れをいったん0.1CmA(60mA)で16時間充電
した後、開回路端子電圧Vocを記録し、これを図11に
示す条件で放電し、休止状態におき、休止時の最後に開
回路端子電圧Vocx を記録して、再び同一条件で放電さ
せ、これを1.0V以下の電圧まで繰り返してVocとV
ocx とを、放電時間(放電容量)ごとにプロットした。
After charging 10 cells of the undegraded product to be tested once at 0.1 CmA (60 mA) for 16 hours, the open circuit terminal voltage Voc was recorded, and this was discharged under the conditions shown in FIG. State, and at the end of the pause, the open circuit terminal voltage Vocx is recorded, discharged again under the same conditions, and this is repeated until a voltage of 1.0 V or less, and Voc and Voc are repeated.
ocx and were plotted for each discharge time (discharge capacity).

【0094】トリクル単三ニッケルカドミウムセル(公
称容量600mAh)を100セル回収し、0.1Cm
A(60mA)の電流率で16時間充電した後、実施例
1と同様にして満充電状態からの放電可能容量を推定す
るとともに、実施例1と同様にして、開回路端子電圧V
oc1 と推定容量Qをそれぞれの未劣化品セルについて作
成した上記電圧−容量曲線に各10セルずつ適用して残
量Qr を推定するとともに、実測残量Qrmも併せて求め
た。(12)式によって推定誤差を算出し、その絶対値
の最大値を図11に示した。
100 trickle AA nickel cadmium cells (nominal capacity 600 mAh) were collected, and 0.1 Cm
After charging at a current rate of A (60 mA) for 16 hours, the dischargeable capacity from the fully charged state was estimated in the same manner as in Example 1, and the open circuit terminal voltage V
The remaining capacity Qr was estimated by applying oc1 and the estimated capacity Q to the above-described voltage-capacity curve prepared for each undegraded cell, by 10 cells each, and the measured remaining capacity Qrm was also determined. The estimation error was calculated by the equation (12), and the maximum value of the absolute value was shown in FIG.

【0095】図11に示した絶対誤差の最大値から明ら
かなように、電圧−容量曲線を作成する放電の条件は、
0.1CmA(60mA),0.2CmA(120m
A)の電流率、各放電の時間は0.5時間以下が好まし
く、また各放電後の休止時間は1時間以上であることが
好ましいことがわかった。
As is clear from the maximum value of the absolute error shown in FIG. 11, the discharge conditions for forming the voltage-capacity curve are as follows.
0.1 CmA (60 mA), 0.2 CmA (120 mA
It was found that the current rate of A) and the time of each discharge are preferably 0.5 hours or less, and the rest time after each discharge is preferably 1 hour or more.

【0096】[実施例4]実施例1に用いたのと同様の
5つのトリクル単三ニッケルカドミウム電池パック(3
セル直列)新品を購入し、上記実施例1において求めた
劣化判定基準式(4)から劣化判定式を導いた。
Example 4 The same five trickle AA nickel cadmium battery packs (3
A new cell (serial cell) was purchased, and a deterioration judgment formula was derived from the deterioration judgment reference formula (4) obtained in the first embodiment.

【0097】すなわち、該電池パックを0.1CmA
(60mA)の電流率で16時間充電し、1時間休止し
た後、0.2CmA(120mA)の電流率で3.0V
(1.0V/セル)まで放電し、1時間休止を行う。こ
の充放電を2回繰り返し、さらに、同じ条件で充電し休
止した。放電を実施する前に、端子電圧Voc1 を測定
し、電流値1.0CmA(600mA)で、図12に示
した時間tだけ短時間放電し、該放電を終了する直前の
端子電圧V2 を測定した。1時間の休止をおいた後、
0.2CmA(120mA)の電流率で3.0Vまで放
電を行い、この放電から容量QA を求めた。内部抵抗Z
A はZA =(Voc1 −V2 )/600から求めた。これ
らの値をもとに、劣化判定基準式(4)の係数a=−1
291とb=8490を補正して劣化判定式(2)の係
数a′,b′を以下の式で決定、図12に示す値を得
た。
That is, the battery pack was set at 0.1 CmA.
After charging for 16 hours at a current rate of (60 mA) and resting for 1 hour, 3.0 V at a current rate of 0.2 CmA (120 mA)
(1.0 V / cell) and pause for 1 hour. This charge / discharge was repeated twice, and the battery was further charged under the same conditions and stopped. Before the discharge, the terminal voltage Voc1 was measured, the current was discharged at a current value of 1.0 CmA (600 mA) for a short time t shown in FIG. 12, and the terminal voltage V2 immediately before the termination of the discharge was measured. . After a one hour pause,
Was discharged to 3.0V at a current rate of 0.2 CmA (120 mA), it was determined capacity Q A from the discharge. Internal resistance Z
A was determined from Z A = (Voc1−V2) / 600. Based on these values, the coefficient a = −1 of the deterioration determination criterion equation (4)
291 and b = 8490 were corrected, and the coefficients a ′ and b ′ of the deterioration determination equation (2) were determined by the following equations, and the values shown in FIG. 12 were obtained.

【0098】 a′=a(QA /QB ) (14) b′=QA −a(QA /QB )ln(ZA ) (15) その後、該電池パックを0.1CmA(60mA)の電
流率で16時間充電し、1時間休止した。続いて、端子
電圧Voc1 を測定し、電流率1.0CmA(600m
A)で、図12に示した時間tだけ短時間放電し、該放
電を終了する直前の端子電圧V2 を測定した。1時間の
休止をおいた後、0.2CmA(120mA)の電流率
で30分間放電し、2時間の休止をおいた。2時間休止
が完了すると端子電圧を測定し放電深度xにおける開回
路電圧Vocx とした。そして再び同条件の短時間放電を
実施、端子電圧Vx2を測定して短時間放電を終了した。
A ′ = a (Q A / Q B ) (14) b ′ = Q A −a (Q A / Q B ) ln (Z A ) (15) Then, the battery pack was put into 0.1 CmA (60 mA). The battery was charged for 16 hours at the current rate described in (1), and then stopped for 1 hour. Subsequently, the terminal voltage Voc1 was measured, and the current rate was set to 1.0 CmA (600 m
In A), the battery was discharged for a short period of time t shown in FIG. 12, and the terminal voltage V2 immediately before the end of the discharge was measured. After a pause of 1 hour, the battery was discharged at a current rate of 0.2 CmA (120 mA) for 30 minutes, and a pause of 2 hours was performed. When the suspension for 2 hours was completed, the terminal voltage was measured and set as the open circuit voltage Vocx at the depth of discharge x. Then, short-time discharge was again performed under the same conditions, and the terminal voltage Vx2 was measured to terminate the short-time discharge.

【0099】放電中の端子電圧が3.0V(1.0V/
セル)に到達するまで、この30分間放電、2時間休
止、端子電圧Vocx 測定、短時間放電、端子電圧Vx2測
定の手順を繰り返した。これらの各放電深度xにおける
Vocx とZx =(Vocx −Vx2)/Iと容量QA から別
の劣化判定式(3)の係数d,e,f,gを決定、図1
2に示す値を得た。
The terminal voltage during discharge is 3.0 V (1.0 V /
The procedure of discharging for 30 minutes, resting for 2 hours, measuring the terminal voltage Vocx, discharging for a short time, and measuring the terminal voltage Vx2 was repeated until the cell (cell) was reached. Coefficient d, decision e, f, and g of Vocx and Zx in these respective discharge depth x = (Vocx -Vx2) / I and another degradation determination formulas capacity Q A (3), Figure 1
2 were obtained.

【0100】このようにして作成した2つの劣化判定式
に基づいて、回収したトリクル単三ニッケルカドミウム
電池パック(3セル直列、公称容量600mAh)50
パックについて各10パックずつそれぞれの未劣化品か
ら作成した判定式に適用し、実施例1と同様にして容量
推定と実際の容量測定を行った。
The collected trickle AA nickel cadmium battery pack (3 cells in series, nominal capacity 600 mAh) 50
The capacity estimation and the actual capacity measurement were performed in the same manner as in Example 1 by applying to a judgment formula created from each undegraded product for each of 10 packs.

【0101】図12に結果を示す。すなわち、図12に
は、測定した推定容量Qと実測容量Qm とから得られた
誤差の絶対値の最大を示しており、短時間放電時間tが
1秒以下では誤差が小さく高精度の容量推定を行えるこ
とが明らかとなった。
FIG. 12 shows the results. That is, FIG. 12 shows the maximum value of the absolute value of the error obtained from the measured estimated capacity Q and the actually measured capacity Qm. It became clear that it can be done.

【0102】[実施例5]実施例1に用いたのと同様の
5つのトリクル単三ニッケルカドミウム電池パック(3
セル直列)新品を購入し、上記実施例1において求めた
劣化判定基準式(4)から劣化判定式を導いた。
Example 5 The same five trickle AA nickel cadmium battery packs as used in Example 1 (3
A new cell (serial cell) was purchased, and a deterioration judgment formula was derived from the deterioration judgment reference formula (4) obtained in the first embodiment.

【0103】すなわち、該電池パックを0.1CmA
(60mA)の電流率で16時間充電し、1時間休止し
た後、0.2CmA(120mA)の電流率で3.0V
(1.0V/セル)まで放電し、1時間休止を行う。こ
の充放電を2回繰り返し、さらに、同じ条件で充電し休
止した。放電を実施する前に、端子電圧Voc1 を測定
し、図13に示す各電流値Iで、10msecの間短時
間放電し、該放電を終了する直前の端子電圧V2 を測定
した。1時間の休止をおいた後、0.2CmA(120
mA)の電流率で3.0Vまで放電を行い、この放電か
ら容量QA を求めた。内部抵抗ZA はZA =(Voc1 −
V2 )/Iから求めた。これらの値をもとに、劣化判定
基準式(4)の係数a=−1291とb=8490を補
正して劣化判定式(2)の係数a′,b′を以下の式で
決定、図13に示す値を得た。
That is, the battery pack was charged at 0.1 CmA.
After charging for 16 hours at a current rate of (60 mA) and resting for 1 hour, 3.0 V at a current rate of 0.2 CmA (120 mA)
(1.0 V / cell) and pause for 1 hour. This charge / discharge was repeated twice, and the battery was further charged under the same conditions and stopped. Prior to the discharge, the terminal voltage Voc1 was measured, and the terminal voltage Voc was measured at each current value I shown in FIG. 13 for a short period of 10 msec, and the terminal voltage V2 immediately before the termination of the discharge was measured. After a one-hour pause, 0.2 CmA (120
was discharged to 3.0V at a current rate of mA), it was determined capacity Q A from the discharge. The internal resistance Z A is Z A = (Voc1−
V2) / I. Based on these values, the coefficients a = −1291 and b = 8490 of the deterioration judgment reference formula (4) are corrected, and the coefficients a ′ and b ′ of the deterioration judgment formula (2) are determined by the following expressions. 13 was obtained.

【0104】 a′=a(QA /QB ) (14) b′=QA −a(QA /QB )ln(ZA ) (15) その後、該電池パックを0.1CmA(60mA)の電
流率で16時間充電し、1時間休止した。続いて、端子
電圧Voc1 を測定し、図13に示す各電流率で、10m
secの間短時間放電し、該放電を終了する直前の端子
電圧V2 を測定した。1時間の休止をおいた後、0.2
CmA(120mA)の電流率で30分間放電し、2時
間の休止をおいた。2時間休止が完了すると端子電圧を
測定し放電深度xにおける開回路電圧Vocx とした。そ
して再び10msec短時間放電を実施、端子電圧Vx2
を測定して短時間放電を終了した。
A ′ = a (Q A / Q B ) (14) b ′ = Q A −a (Q A / Q B ) ln (Z A ) (15) Then, the battery pack was put into 0.1 CmA (60 mA). The battery was charged for 16 hours at the current rate described in (1), and then stopped for 1 hour. Subsequently, the terminal voltage Voc1 was measured, and at each current rate shown in FIG.
The battery was discharged for a short period of time during the second, and the terminal voltage V2 immediately before the discharge was terminated was measured. After a one-hour pause, 0.2
Discharge was performed at a current rate of CmA (120 mA) for 30 minutes, and a pause of 2 hours was set. When the suspension for 2 hours was completed, the terminal voltage was measured and set as the open circuit voltage Vocx at the depth of discharge x. Then, a short discharge is performed again for 10 msec, and the terminal voltage Vx2
Was measured to complete the discharge for a short time.

【0105】放電中の端子電圧が.3.0Vに到達する
まで、この30分間放電、2時間休止、端子電圧Vocx
測定、10msec短時間放電、端子電圧Vx2測定を繰
り返した。これらの各放電深度xにおけるVocx とZx
=(Vocx −Vx2)/Iと容量QA から別の劣化判定式
(3)の係数d,e,f,gを決定、図13に示す値を
得た。
When the terminal voltage during discharge is. This 30-minute discharge, 2-hour pause, and terminal voltage Vocx until the voltage reaches 3.0 V
Measurement, 10 msec short-time discharge, and measurement of terminal voltage Vx2 were repeated. Vocx and Zx at each of these discharge depths x
= (Vocx−Vx2) / I and the capacitances Q A , the coefficients d, e, f, and g of another deterioration determination formula (3) were determined, and the values shown in FIG. 13 were obtained.

【0106】このようにして作成した2つの劣化判定式
に基づいて、図3に示す、本発明になる容量および残量
判定機能を具備した充放電試験装置を使用して、回収し
たトリクル単三ニッケルカドミウム電池パック(3セル
直列、公称容量600mAh)50パックについて実施
例1と同様にして各未劣化品から作成した劣化判定式に
10パックずつ適用し、容量推定と実際の容量測定を行
った。
Based on the two deterioration judgment formulas thus prepared, the trickle AA collected using the charge / discharge test apparatus having the capacity and remaining amount judgment function according to the present invention shown in FIG. 3 is used. With respect to 50 packs of nickel cadmium battery packs (3 cells in series, nominal capacity 600 mAh), 10 packs were applied to the deterioration determination formula created from each undegraded product in the same manner as in Example 1, and capacity estimation and actual capacity measurement were performed. .

【0107】図13に結果を示す。すなわち、図13に
は、測定した推定容量Qと実測容量Qm とから得られた
誤差の絶対値の最大を示しており、10msec短時間
放電の電流値が0.5CmA以上では誤差が小さく高精
度の容量推定を行えることが明らかとなった。
FIG. 13 shows the results. That is, FIG. 13 shows the maximum of the absolute value of the error obtained from the measured estimated capacity Q and the actually measured capacity Qm. When the current value of the short-time discharge of 10 msec is 0.5 CmA or more, the error is small and the precision is high. It was clarified that the capacity could be estimated.

【0108】[実施例6]実施例1に用いたのと同様の
5つのトリクル単三ニッケルカドミウム電池パック(3
セル直列)新品を購入し、上記実施例1において求めた
劣化判定基準式(4)から劣化判定式を導いた。
[Example 6] Five trickle AA nickel cadmium battery packs (3
A new cell (serial cell) was purchased, and a deterioration judgment formula was derived from the deterioration judgment reference formula (4) obtained in the first embodiment.

【0109】すなわち、該電池パックを0.1CmA
(60mA)の電流率で16時間充電し、1時間休止し
た後、0.2CmA(120mA)の電流率で3.0V
まで放電し、1時間休止を行う。この充放電を2回繰り
返し、さらに、同じ条件で充電し休止した。放電を実施
する前に、端子電圧Voc1 を測定し、図14に示す各電
流値Iで、10msecの間短時間充電し、該充電を終
了する直前の端子電圧V2 を測定した。1時間の休止を
おいた後、0.2CmA(120mA)の電流率で3.
0Vまで放電を行い、この放電から容量QA を求めた。
内部抵抗ZA はZ A =(V2 −Voc1 )/Iから求め
た。これらの値をもとに、劣化判定基準式(4)の係数
a=−1291とb=8490を補正して劣化判定式
(2)の係数a′,b′を以下の式で決定、図14に示
す値を得た。
That is, the battery pack was set at 0.1 CmA.
(60 mA) at a current rate of 16 hours, pause for 1 hour
After that, at a current rate of 0.2 CmA (120 mA), 3.0 V
And discharge for 1 hour. Repeat this charge and discharge twice
And then charged and paused under the same conditions. Perform discharge
Before the operation, the terminal voltage Voc1 is measured, and each voltage shown in FIG.
At the flow value I, the battery is charged for a short time for 10 msec, and the charging is terminated.
Immediately before the termination, the terminal voltage V2 was measured. One hour rest
After placing, at a current rate of 0.2 CmA (120 mA), 3.
0V and discharge from this capacity QAI asked.
Internal resistance ZAIs Z A= (V2-Voc1) / I
Was. Based on these values, the coefficient of the deterioration judgment criterion equation (4)
a = -1291 and b = 8490 are corrected to determine the deterioration
The coefficients a 'and b' of (2) are determined by the following equations, and are shown in FIG.
Value.

【0110】 a′=a(QA /QB ) (14) b′=QA −a(QA /QB )ln(ZA ) (15) その後、該電池パックの端子電圧Voc1 を測定し、図1
4に示す各電流率で、10msecの間短時間充電し、
該充電を終了する直前の端子電圧V2 を測定した。1時
間の休止をおいた後、0.1CmA(60mA)の電流
率で1時間充電し、1時間の休止した。1時間休止が完
了すると端子電圧を測定し充電状態Xにおける開回路電
圧Vocx とした。そして再び10msec短時間放電を
実施、端子電圧Vx2を測定して短時間放電を終了した。
[0110] a '= a (Q A / Q B) (14) b' = Q A -a (Q A / Q B) ln (Z A) (15) Then, measure the terminal voltage Voc1 of the battery pack And FIG.
At each of the current rates shown in FIG. 4, the battery was charged for a short time for 10 msec.
The terminal voltage V2 immediately before the end of the charging was measured. After a one-hour pause, the battery was charged at a current rate of 0.1 CmA (60 mA) for one hour and then suspended for one hour. When the one-hour pause was completed, the terminal voltage was measured and set as the open circuit voltage Vocx in the charged state X. Then, short-time discharge was performed again for 10 msec, and the terminal voltage Vx2 was measured to complete the short-time discharge.

【0111】充電の総時間が16時間に到達するまで、
この1時間放電、1時間休止、端子電圧Vocx 測定、1
0msec短時間充電、端子電圧Vx2測定を繰り返し
た。これらの各充電状態XにおけるVocx とZx =(V
x2−Vocx )/Iと容量QA から別の劣化判定式(3)
の係数d,e,f,gを決定、図14に示す値を得た。
Until the total charging time reaches 16 hours,
Discharge for 1 hour, pause for 1 hour, measure terminal voltage Vocx,
The charging for a short time of 0 msec and the measurement of the terminal voltage Vx2 were repeated. Vocx and Zx = (V
x2−Vocx) / I and capacity Q A , another deterioration determination formula (3)
Were determined, and the values shown in FIG. 14 were obtained.

【0112】このようにして作成した2つの劣化判定式
を適用した、図3に示す、本発明になる容量および残量
判定機能を具備した充放電試験装置を使用して、回収し
たトリクル単三ニッケルカドミウム電池パック(3セル
直列、公称容量600mAh)50パックを各10パッ
クずつ適用して、実施例1に示した短時間放電の代わり
に、電流率が図14に示す値で短時間充電を行う以外は
実施例1と同様の手順で容量推定と実際の容量測定を行
った。
The trickle AA collected using the charge / discharge test apparatus having the capacity and remaining amount judgment function according to the present invention shown in FIG. 3 to which the two deterioration judgment formulas prepared as described above are applied. Applying 10 packs each of 50 packs of nickel cadmium battery packs (3 cells in series, nominal capacity 600 mAh), instead of the short-time discharge shown in the first embodiment, the current rate is changed to the value shown in FIG. Except that the capacity estimation and the actual capacity measurement were performed in the same procedure as in Example 1.

【0113】図14に結果を示す。すなわち、図14に
は、測定した推定容量Qと実測容量Qm とから得られた
誤差の絶対値の最大を示しており、10msec短時間
放電の電流値が0.05CmA以上では誤差が小さく高
精度の容量推定を行えることが明らかとなった。
FIG. 14 shows the results. That is, FIG. 14 shows the maximum of the absolute value of the error obtained from the measured estimated capacity Q and the actually measured capacity Qm. When the current value of the 10 msec short-time discharge is 0.05 CmA or more, the error is small and the accuracy is high. It was clarified that the capacity could be estimated.

【0114】[実施例7]実施例1に用いたのと同様の
5つのトリクル単三ニッケルカドミウム電池パック(3
セル直列)新品を購入し、上記実施例1において求めた
劣化判定基準式(4)から劣化判定式を導いた。
Example 7 The same five trickle AA nickel cadmium battery packs (3) as used in Example 1 were used.
A new cell (serial cell) was purchased, and a deterioration judgment formula was derived from the deterioration judgment reference formula (4) obtained in the first embodiment.

【0115】すなわち、該電池パックを0.1CmA
(60mA)の電流率で16時間充電し、1時間休止し
た後、0.2CmA(120mA)の電流率で3.0V
まで放電し、1時間休止を行う。この充放電を2回繰り
返し、さらに、同じ条件で充電し休止した。放電開始2
秒前に、端子電圧Voc1 を測定し、1.0CmA(60
0mA)の電流率で、10msecの間短時間放電し、
該放電を終了する直前の端子電圧V2 を測定した。1時
間の休止をおいた後、0.2CmA(120mA)の電
流率で3.0Vまで放電を行い、この放電から容量QA
を求めた。内部抵抗ZA はZA =(V2 −Voc1 )/I
から求めた。これらの値をもとに、劣化判定基準式
(4)の係数a=−1291とb=8490を補正して
劣化判定式(2)の係数a′,b′を以下の式で決定、
下記に示す値を得た。
That is, the battery pack was set at 0.1 CmA.
After charging for 16 hours at a current rate of (60 mA) and resting for 1 hour, 3.0 V at a current rate of 0.2 CmA (120 mA)
And discharge for 1 hour. This charge / discharge was repeated twice, and the battery was further charged under the same conditions and stopped. Discharge start 2
Two seconds before, the terminal voltage Voc1 was measured, and 1.0 CmA (60
0 mA) at a current rate of 10 msec for a short time,
The terminal voltage V2 immediately before the termination of the discharge was measured. After a one-hour pause, the battery was discharged to 3.0 V at a current rate of 0.2 CmA (120 mA), and the capacity Q A was measured from this discharge.
I asked. Internal resistance Z A is Z A = (V2 -Voc1) / I
Asked from. Based on these values, the coefficients a = −1291 and b = 8490 of the deterioration judgment reference formula (4) are corrected, and the coefficients a ′ and b ′ of the deterioration judgment formula (2) are determined by the following expressions.
The following values were obtained:

【0116】−174=a(QA /QB ) 1368=QA −a(QA /QB )ln(ZA ) その後、該電池パックを0.1CmA(60mA)の電
流率で16時間充電し、1時間休止した。続いて、放電
開始2秒前に、端子電圧Voc1 を測定し、1.0CmA
(600mA)の電流率で、10msecの間短時間放
電し、該放電を終了する直前の端子電圧V2 を測定し
た。1時間の休止をおいた後、0.2CmA(120m
A)の電流率で30分間放電し、2時間の休止をおい
た。2時間休止が完了すると次の放電開始2秒前に、端
子電圧を測定し放電深度xにおける開回路電圧Vocx と
した。そして再び10msec短時間放電を実施、端子
電圧Vx2を測定して短時間放電を終了した。
[0116] -174 = a (Q A / Q B) 1368 = Q A -a (Q A / Q B) ln (Z A) Then, 16 hours the battery pack at a current rate of 0.1 CmA (60 mA) Charged and paused for 1 hour. Subsequently, two seconds before the start of discharge, the terminal voltage Voc1 was measured, and 1.0 CmA was measured.
At a current rate of (600 mA), the battery was discharged for a short period of time for 10 msec, and the terminal voltage V2 immediately before the termination of the discharge was measured. After a one-hour pause, 0.2 CmA (120 m
Discharge was performed at the current rate of A) for 30 minutes, and a pause of 2 hours was set. Upon completion of the two-hour pause, two seconds before the start of the next discharge, the terminal voltage was measured and used as the open circuit voltage Vocx at the discharge depth x. Then, short-time discharge was performed again for 10 msec, and the terminal voltage Vx2 was measured to complete the short-time discharge.

【0117】放電中の端子電圧が3.0Vに到達するま
で、この30分間放電、2時間休止、端子電圧Vocx 測
定、10msec短時間放電、端子電圧Vx2測定を繰り
返した。これらの各放電深度xにおけるVocx とZx =
(Vocx −Vx2)/Iと容量QA から別の劣化判定式
(3)の係数d,e,f,gを決定、それぞれ、d=1
5.1、e=−11.3、f=0.15、g=0.20
8を得た。
Until the terminal voltage during the discharge reached 3.0 V, the discharge for 30 minutes, the pause for 2 hours, the measurement of the terminal voltage Vocx, the discharge for a short time of 10 msec, and the measurement of the terminal voltage Vx2 were repeated. Vocx and Zx = at each of these discharge depths x
(Vocx -Vx2) / I and capacity Q factor of another degradation determination formulas A (3) d, decision e, f, and g, respectively, d = 1
5.1, e = -11.3, f = 0.15, g = 0.20
8 was obtained.

【0118】このようにして作成した2つの劣化判定式
に基づいて、回収したトリクル単三ニッケルカドミウム
電池パック(3セル直列、公称容量600mAh)10
パックについて端子電圧測定を短時間放電前の所定の時
間に実施した他は、実施例1と同様にして、容量推定と
実際の容量測定を行った。
Based on the two deterioration judgment formulas thus prepared, the collected trickle AA nickel cadmium battery pack (3 cells in series, nominal capacity 600 mAh) 10
The capacity estimation and the actual capacity measurement were performed in the same manner as in Example 1 except that the terminal voltage measurement of the pack was performed at a predetermined time before the short-time discharge.

【0119】図9に結果を示す。すなわち、図9には、
端子電圧Voc1 測定を短時間放電開始前に実施した時間
と誤差範囲との関係を示した図である。図9から明らか
なように、測定した推定容量Qと実測容量Qm とから得
られた誤差は、短時間放電開始前の2秒以内の端子電圧
測定を実施した場合、開始前2秒を越える時間で端子電
圧を測定する場合に比べて、誤差が小さくなり高精度の
容量推定を行えることが判った。
FIG. 9 shows the results. That is, in FIG.
FIG. 4 is a diagram showing a relationship between a time when a terminal voltage Voc1 measurement is performed before a short-time discharge starts and an error range. As is clear from FIG. 9, the error obtained from the measured estimated capacity Q and the actually measured capacity Qm is the time exceeding 2 seconds before the start when the terminal voltage measurement is performed within 2 seconds before the start of the short-time discharge. It has been found that the error is smaller and the capacitance estimation can be performed with higher accuracy as compared with the case where the terminal voltage is measured by using.

【0120】[実施例8]実施例1に用いたのと同様の
5つのトリクル単三ニッケルカドミウム電池パック(3
セル直列)新品を購入し、上記実施例1において求めた
劣化判定基準式(4)から劣化判定式を導いた。
Example 8 The same five trickle AA nickel cadmium battery packs as used in Example 1 (3
A new cell (serial cell) was purchased, and a deterioration judgment formula was derived from the deterioration judgment reference formula (4) obtained in the first embodiment.

【0121】すなわち、該電池パックを0.1CmA
(60mA)の電流率で16時間充電し、1時間休止し
た後、0.2CmA(120mA)の電流率で3.0V
まで放電し、1時間休止を行う。この充放電を2回繰り
返し、さらに、同じ条件で充電し休止した。次に1.0
CmA(600mA)の電流率で、10msecの間短
時間放電し、該放電を終了する直前の端子電圧V2 を測
定し、該放電終了後2秒経過の時点の端子電圧Voc3 を
測定した。1時間の休止をおいた後、0.2CmA(1
20mA)の電流率で3.0Vまで放電を行い、この放
電から容量QA を求めた。内部抵抗ZA はZA =(V2
−Voc1 )/Iから求めた。これらの値をもとに、劣化
判定基準式(4)の係数a=−1291とb=8490
を補正して劣化判定式(2)の係数a′,b′を以下の
式で決定、以下に示す値を得た。
That is, the battery pack was set at 0.1 CmA.
After charging for 16 hours at a current rate of (60 mA) and resting for 1 hour, 3.0 V at a current rate of 0.2 CmA (120 mA)
And discharge for 1 hour. This charge / discharge was repeated twice, and the battery was further charged under the same conditions and stopped. Then 1.0
At a current rate of CmA (600 mA), the battery was discharged for a short period of time for 10 msec, the terminal voltage V2 immediately before the end of the discharge was measured, and the terminal voltage Voc3 two seconds after the end of the discharge was measured. After a one-hour pause, 0.2 CmA (1
Was discharged to 3.0V at a current rate of 20 mA), it was determined capacity Q A from the discharge. The internal resistance Z A is Z A = (V2
-Voc1) / I. Based on these values, the coefficients a = −1291 and b = 8490 of the deterioration determination criterion equation (4)
Was corrected, and the coefficients a 'and b' of the deterioration determination equation (2) were determined by the following equations, and the following values were obtained.

【0122】−174=a(QA /QB ) 1370=QA −a(QA /QB )ln(ZA ) その後、該電池パックを0.1CmA(60mA)の電
流率で16時間充電し、1時間休止した。続いて、1.
0CmA(600mA)の電流率で、10msecの間
短時間放電し、該放電を終了する直前の端子電圧V2 を
測定し、該放電終了後2秒経過の時点の端子電圧Voc3
を測定した。1時間の休止をおいた後、0.2CmA
(120mA)の電流率で30分間放電し、2時間の休
止をおいた。2時間休止が完了すると再び10msec
短時間放電を実施、端子電圧Vx2を測定して短時間放電
を終了し、終了後2秒経過で端子電圧を測定し放電深度
xにおける開回路電圧Vocx とした。
[0122] -174 = a (Q A / Q B) 1370 = Q A -a (Q A / Q B) ln (Z A) Then, 16 hours the battery pack at a current rate of 0.1 CmA (60 mA) Charged and paused for 1 hour. Then, 1.
At a current rate of 0 CmA (600 mA), the battery was discharged for a short period of time for 10 msec, and the terminal voltage V2 immediately before the end of the discharge was measured.
Was measured. 0.2 CmA after 1 hour pause
(120 mA) at a current rate of 30 minutes and a 2 hour pause. 10msec again after 2 hours pause
The short-time discharge was performed, the terminal voltage Vx2 was measured, and the short-time discharge was terminated. Two seconds after the termination, the terminal voltage was measured to obtain the open-circuit voltage Vocx at the discharge depth x.

【0123】放電中の端子電圧が3.0Vに到達するま
で、この30分間放電、2時間休止、10msec短時
間放電、端子電圧Vx2測定、端子電圧Vocx 測定の操作
を繰り返した。これらの各放電深度xにおけるVocx と
Zx =(Vx2−Vocx )/Iと容量QA から別の劣化判
定式(3)の係数d,e,f,gを決定、それぞれ、d
=15.0、e=−11.4、f=0.15、g=0.
210を得た。
Until the terminal voltage during the discharge reached 3.0 V, the operations of discharging for 30 minutes, resting for 2 hours, discharging for a short time of 10 msec, measuring terminal voltage Vx2, and measuring terminal voltage Vocx were repeated. Coefficients d, e, f, and g decision Vocx and Zx in these respective discharge depth x = (Vx2-Vocx) / I and another degradation determination formulas capacity Q A (3), respectively, d
= 15.0, e = -11.4, f = 0.15, g = 0.
210 was obtained.

【0124】このようにして作成した2つの劣化判定式
を適用した、図3に示す、本発明になる容量および残量
判定機能を具備した充放電試験装置を使用して、回収し
たトリクル単三ニッケルカドミウム電池パック(3セル
直列、公称容量600mAh)10パックについて端子
電圧測定を短時間放電終了後の所定時間経過で実施した
他は、実施例1と同様にして、容量推定と実際の容量測
定を行った。
The trickle AA collected by using the charge / discharge test apparatus having the capacity and remaining amount judgment function according to the present invention shown in FIG. 3 to which the two deterioration judgment formulas prepared as described above are applied. Capacity estimation and actual capacity measurement were performed in the same manner as in Example 1 except that the terminal voltage measurement was performed on a 10 pack of nickel cadmium battery packs (3 cells in series, nominal capacity 600 mAh) after a short period of time after discharge was completed. Was done.

【0125】図10に結果を示す。すなわち、図10
は、端子電圧Voc3 測定を実施した短時間放電終了後所
定時刻と誤差範囲との関係を示した図である。
FIG. 10 shows the results. That is, FIG.
FIG. 4 is a diagram showing a relationship between a predetermined time after the completion of a short-time discharge in which the terminal voltage Voc3 measurement is performed and an error range.

【0126】図10から明らかなように、測定した推定
容量Qと実測容量Qm とから得られた誤差は、短時間放
電終了後の2秒以内の端子電圧Voc3 測定を実施した場
合、終了後2秒を越える時間で端子電圧Voc3 を測定す
る場合に比べて、誤差が小さくなり高精度の容量推定を
行えることが判った。
As is clear from FIG. 10, the error obtained from the measured estimated capacity Q and the actually measured capacity Qm is the difference between the terminal voltage Voc3 within two seconds after the end of the short-time discharge and the terminal voltage Voc3 after the end. It has been found that the error is small and the capacitance can be estimated with high accuracy as compared with the case where the terminal voltage Voc3 is measured in a time exceeding seconds.

【0127】[0127]

【発明の効果】以上述べたように本発明によれば、短時
間で満充電状態からの放電可能容量、および残量が比較
的高精度で推定でき、無停電給電システムなどバックア
ップ電源の高信頼化と効率的なメンテナンス実施が期待
できることになり大きな貢献を果たすことになる。
As described above, according to the present invention, the dischargeable capacity from the full charge state and the remaining amount can be estimated with relatively high accuracy in a short time, and the reliability of the backup power supply such as an uninterruptible power supply system can be highly reliable. And efficient maintenance can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるニッケルカドミウム電池の容量を
推定する判定式作成のための試験データであり、各放電
深度(容量)と短時間放電に対する応答電圧ΔVとの関
係を示したデータ図である。
FIG. 1 is test data for creating a determination formula for estimating the capacity of a nickel cadmium battery according to the present invention, and is a data diagram showing a relationship between each discharge depth (capacity) and a response voltage ΔV to short-time discharge. is there.

【図2】本発明になるニッケルカドミウム電池の容量を
推定する判定式作成のための試験データであり、開回路
電圧Vと短時間放電に対する応答電圧ΔVとの関係を示
したデータ図である。
FIG. 2 is test data for creating a determination formula for estimating the capacity of a nickel cadmium battery according to the present invention, and is a data diagram showing a relationship between an open circuit voltage V and a response voltage ΔV to short-time discharge.

【図3】本発明になるニッケルカドミウム電池の容量お
よび残量を推定する機能を搭載した充放電試験装置の一
例を示す構成概念図である。
FIG. 3 is a configuration conceptual diagram showing an example of a charge / discharge test apparatus equipped with a function of estimating the capacity and remaining amount of a nickel cadmium battery according to the present invention.

【図4】本発明になるニッケルカドミウム電池の容量お
よび残量推定機能を搭載した無停電給電システムの一例
を示す構成概念図である。
FIG. 4 is a configuration conceptual diagram showing an example of an uninterruptible power supply system equipped with a function for estimating the capacity and remaining amount of a nickel cadmium battery according to the present invention.

【図5】本発明の実施例1における残量推定に用いる容
量と電圧の関係を示した基礎データの特性図である。
FIG. 5 is a characteristic diagram of basic data showing a relationship between capacity and voltage used for remaining amount estimation in the first embodiment of the present invention.

【図6】本発明の実施例1の結果を示した図であり、各
放電状態における判定容量の実測容量に対する誤差を示
した特性図である。
FIG. 6 is a diagram showing the results of Example 1 of the present invention, and is a characteristic diagram showing an error of the determined capacity with respect to the actually measured capacity in each discharge state.

【図7】本発明の実施例1の結果を示した図であり、各
放電状態における判定残量の実測残量に対する誤差を示
した特性図である。
FIG. 7 is a graph showing a result of the first embodiment of the present invention, and is a characteristic diagram showing an error of a determined remaining amount with respect to an actually measured remaining amount in each discharge state.

【図8】本発明の実施例2の結果を示した図であり、劣
化判定使用の判断基準値Jと推定容量誤差との関係を示
す特性図である。
FIG. 8 is a diagram illustrating a result of Example 2 of the present invention, and is a characteristic diagram illustrating a relationship between a criterion value J for use of deterioration determination and an estimated capacity error.

【図9】本発明の実施例7の結果を示した図であり、端
子電圧Voc1 測定時刻と推定容量誤差との関係を示した
特性図である。
FIG. 9 is a diagram illustrating a result of Example 7 of the present invention, and is a characteristic diagram illustrating a relationship between a measurement time of a terminal voltage Voc1 and an estimated capacitance error.

【図10】本発明の実施例8の結果を示した図であり、
端子電圧Voc3 測定時刻と推定容量誤差との関係を示し
た特性図である。
FIG. 10 shows the results of Example 8 of the present invention;
FIG. 9 is a characteristic diagram showing a relationship between a terminal voltage Voc3 measurement time and an estimated capacitance error.

【図11】本発明に係る電圧−容量曲線を求めるための
放電、休止条件の一例を示す説明図である。
FIG. 11 is an explanatory diagram showing an example of discharge and rest conditions for obtaining a voltage-capacity curve according to the present invention.

【図12】本発明に係る短時間放電の時間と容量推定誤
差の一例を示す説明図である。
FIG. 12 is an explanatory diagram showing an example of a short discharge time and a capacity estimation error according to the present invention.

【図13】本発明に係る短時間放電の電流率と容量推定
誤差の一例を示す説明図である。
FIG. 13 is an explanatory diagram showing an example of a current rate of short-time discharge and a capacity estimation error according to the present invention.

【図14】本発明に係る短時間充電の電流率と容量推定
誤差の一例を示す説明図である。
FIG. 14 is an explanatory diagram showing an example of a current rate of short-time charging and a capacity estimation error according to the present invention.

【符号の説明】[Explanation of symbols]

1 試験対象セル、あるいは組電池 2 充放電器 3 コンピュータ 4 定電流負荷装置 5 定電流定電圧電源 6 CPU 7 ROM 8 RAM 9 プリンタ 10 キーボード 11 表示器 12 充放電試験装置本体 13 交流、直流電源 14 電力変換装置 15 負荷装置 16 主変換回路 17 定電流制御回路 18 スイッチ S1,S2 充放電切り換えスイッチ DESCRIPTION OF SYMBOLS 1 Test cell or assembled battery 2 Charger / discharger 3 Computer 4 Constant current load device 5 Constant current constant voltage power supply 6 CPU 7 ROM 8 RAM 9 Printer 10 Keyboard 11 Display 12 Charge / discharge test apparatus main body 13 AC / DC power supply 14 Power conversion device 15 Load device 16 Main conversion circuit 17 Constant current control circuit 18 Switch S1, S2 Charge / discharge switch

フロントページの続き (72)発明者 中打木 弘司 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 鹿野 幸泰 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 2G016 CA07 CB06 CB11 CB12 CB13 CB21 CB22 CB24 CB31 CC01 CC02 CC04 CC06 CC12 CC27 CC28 CD01 CD02 CD03 CE00 5G003 AA01 BA01 CA02 CA11 CB06 CC02 EA05 FA08 GC05 5H030 AA08 AS03 FF42 FF43 FF44Continued on the front page (72) Inventor Hiroshi Nakauchigi 3-192-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Yukiyasu Kano 3-192-1, Nishishinjuku, Shinjuku-ku, Tokyo F-term in Nippon Telegraph and Telephone Corporation (reference)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ蓄電池(以下、セルと呼称)、
または直列に複数個接続されたアルカリ蓄電池群(以
下、組電池と呼称)に関して、 試験対象セル、あるいは組電池をいったん休止状態にお
いた後、一定電流値で短時間放電、または充電して、そ
の放電または充電前後の端子電圧の変化から内部抵抗を
求め、この内部抵抗と休止状態における開回路電圧と
を、容量と内部抵抗と開回路電圧とからなる劣化判定基
準式を試験対象の新品電池の内部抵抗と公称容量によっ
て係数補正した判定式に適用して、満充電からの放電可
能容量を推定すると同時に、放電、あるいは充電前後の
休止状態における開回路電圧と該公称容量と推定容量と
を、電圧−容量曲線に適用して残量を推定することを特
徴とするアルカリ蓄電池容量残量推定法。
An alkaline storage battery (hereinafter referred to as a cell);
Alternatively, for a group of alkaline storage batteries connected in series (hereinafter referred to as “assembled battery”), the test cell or battery is placed in a quiescent state and then discharged or charged at a constant current value for a short time. The internal resistance is obtained from the change in the terminal voltage before and after discharging or charging, and the internal resistance and the open circuit voltage in the halt state are calculated by using the deterioration judgment reference formula including the capacity, the internal resistance, and the open circuit voltage of the new battery to be tested. Applying to the determination formula with the coefficient corrected by the internal resistance and the nominal capacity, at the same time estimating the dischargeable capacity from full charge, discharging, or the open circuit voltage in the rest state before and after charging and the nominal capacity and the estimated capacity, A remaining capacity estimation method for an alkaline storage battery, wherein the remaining capacity is estimated by applying to a voltage-capacity curve.
【請求項2】 セル、あるいは組電池の端子電圧をモニ
タしながらこれをいったん休止状態に置き、端子電圧V
oc1 を記録した後、一定の電流値Iで短時間放電、ある
いは充電を行い、その放電、充電直後の端子電圧V2 を
記録してその電圧差 ΔV=Voc1 −V2 を放電、あるいは充電電流値で除した値Z Z=ΔV/I を内部抵抗として求め、 あるいは、一定の電流値Iで短時間放電、あるいは充電
を行い、その放電、充電が終了し休止に入った直後の端
子電圧Voc3 を記録してその電圧差 ΔV′=V2 −Voc3 を放電、あるいは充電電流値で除した値Z′ Z′=ΔV′/I を内部抵抗として求め、 あらかじめ異なる劣化状態のセル特性から求めておいた
劣化判定基準式の定数補正を実施してこれに適用して、
該試験対象セル、あるいは組電池の満充電状態からの放
電可能容量Qを推定すると同時に、 上記の短時間充電、あるいは放電を実施する前の休止時
の端子電圧Voc1 、あるいは実施直後の休止時の端子電
圧Voc3 を、あらかじめ求めておいた該試験対象の新品
セルの電圧−容量曲線に適用して算出した残量(放電残
時間)Qr0と上記短時間充電、あるいは放電によって推
定された満充電状態からの放電可能容量Qと該試験対象
セル、あるいは組電池の公称容量Qo とから、残量(放
電残時間)Qr を Qr =Qr0(Q/Qo ) によって推定することを特徴とする請求項1記載のアル
カリ蓄電池容量残量推定法。
2. While monitoring a terminal voltage of a cell or an assembled battery, the terminal is temporarily put in a rest state, and the terminal voltage V
After recording oc1, discharging or charging is performed for a short time at a constant current value I, the terminal voltage V2 immediately after the discharging and charging is recorded, and the voltage difference ΔV = Voc1−V2 is discharged or the charging current value is calculated. The divided value ZZ = ΔV / I is obtained as an internal resistance, or a short-time discharge or charge is performed at a constant current value I, and the terminal voltage Voc3 is recorded immediately after the discharge and the charge are completed and a pause is entered. Then, the voltage difference ΔV ′ = V2−Voc3 is divided by the discharge or charge current value, and the value Z ′ Z ′ = ΔV ′ / I is determined as the internal resistance. Implement the constant correction of the criterion formula and apply it to this,
At the same time as estimating the dischargeable capacity Q of the test target cell or the battery pack from the fully charged state, the terminal voltage Voc1 at the time of suspension before performing the above-described short-time charging or discharging, or at the time of suspension immediately after the execution. The remaining voltage (remaining discharge time) Qr0 calculated by applying the terminal voltage Voc3 to a previously determined voltage-capacity curve of a new cell to be tested and the full charge state estimated by the above short-time charge or discharge The remaining capacity (remaining discharge time) QR is estimated from the dischargeable capacity Q from the battery and the nominal capacity Qo of the test cell or the battery pack by Qr = Qr0 (Q / Qo). A method for estimating the remaining capacity of an alkaline storage battery according to the description.
【請求項3】 試験対象セル、あるいは組電池の満充電
状態からの放電可能容量を求める方法において、算出の
基本となる劣化判定基準式が、内部抵抗Zの対数と容量
Qとから構成される式 Q=aln(Z)+b (a,bは定数、a<0) (1) であり、該基準式(1)の定数a,bについて、試験対
象セルあるいは組電池の新品(未劣化品)の容量QA
A =ΔV/Iの内部抵抗ZA とを用いて、 a→a(QA /QB ) b→QA −a(QA /QB )ln(ZA ) (QB は基準式作成のために用いたセルの容量) となるように変換した式、 Q=a(QA /QB )ln(Z)+QA −a(QA /QB )ln(ZA ) (2) を劣化判定式として用い、該判定式(2)に、内部抵抗
Z、またはZ′を代入して算出した値Qを、満充電状態
からの放電可能容量とし、 さらに、試験対象セル、あるいは組電池の開回路電圧V
oc1 、またはVoc3 と、上記劣化判定式(2)において
算出したQの値と、該当する未劣化品の容量QA との関
係が Voc1 (Q/QA )<0.85×(セル数) または、 Voc3 (Q/QA )<0.85×(セル数) となる場合には、このQ値を用いずに、劣化判定式
(2)の代わりに、内部抵抗Zと開回路電圧Vとで表さ
れる容量Qの式、 Q=QA {[ln(Z)+dV−e]/(fV−g)} (3) (d,e,f,gは定数) について、定数d,e,f,gを、未劣化品について異
なる4段階の放電深度まで放電させて求めた開回路電圧
と内部抵抗の値と、Q=QA とから決定してこれを用
い、該判定式(3)に、開回路電圧Voc1 、またはVoc
3 と、内部抵抗Z、またはZ′とを代入して算出した値
Qを、満充電状態からの放電可能容量とし、一方、残量
を推定するために使用する電圧−容量曲線は、試験対象
の満充電状態におかれた新品セルの開回路端子電圧Vo
を記録した後これを、0.1C、ないし0.2Cの電流
率で30分以下の一定時間で放電し、これを1時間以上
の休止状態におき休止時の最後に開回路端子Voxを記録
して、再び同一条件で放電させ、これを1.0V以下の
電圧まで繰り返してVo とVoxとを、放電時間(放電容
量)ごとにプロットして求めた曲線であることを特徴と
する請求項2記載のアルカリ蓄電池容量残量推定法。
3. A method of determining a dischargeable capacity of a test cell or a battery pack from a fully charged state, wherein a deterioration determination criterion used as a basis for calculation includes a logarithm of an internal resistance Z and a capacity Q. Expression Q = aln (Z) + b (a and b are constants, a <0) (1). For the constants a and b in the reference expression (1), a new cell (undegraded product) ) by using the internal resistance Z a capacity Q a and Z a = [Delta] V / I of, a → a (Q a / Q B) b → Q a -a (Q a / Q B) ln (Z a) (Q B is the capacity of the cell used for creating reference formula) was converted to the equation, Q = a (Q a / Q B) ln (Z) + Q a -a (Q a / Q B) ln (Z A ) (2) is used as a deterioration determination formula, and a value Q calculated by substituting the internal resistance Z or Z ′ into the determination formula (2) is used as a dischargeable capacity from a fully charged state. And the open circuit voltage V of the cell under test or the battery pack
oc1, or a Voc3, the value of Q calculated in the deterioration determination formula (2), the relationship between the volume QA of the appropriate non-deteriorated products Voc1 (Q / Q A) < 0.85 × ( number of cells) or , Voc3 (Q / Q A ) <0.85 × (the number of cells), the Q value is not used, and instead of the deterioration judgment formula (2), the internal resistance Z and the open circuit voltage V Where Q = Q A {[ln (Z) + dV-e] / (fV-g)} (3) (where d, e, f and g are constants) , f, and g, the open circuit voltage was determined by discharged to discharge depth of four different stages for non-deteriorated products and the value of the internal resistance, it was determined from the Q = Q a used,該判formula (3 ), The open circuit voltage Voc1 or Voc
3 and the internal resistance Z or Z 'are substituted, and the value Q calculated is taken as the dischargeable capacity from the fully charged state. On the other hand, the voltage-capacity curve used for estimating the remaining amount is the test object. Open circuit terminal voltage Vo of a new cell in a fully charged state
Is discharged at a current rate of 0.1 C or 0.2 C for a fixed time of 30 minutes or less, and the battery is put into a rest state for one hour or more, and the open circuit terminal Vox is recorded at the end of the rest. The discharge is performed again under the same conditions, and the discharge is repeated until a voltage of 1.0 V or less, and Vo and Vox are curves obtained by plotting for each discharge time (discharge capacity). 2. The method for estimating the remaining capacity of an alkaline storage battery according to 2.
【請求項4】 請求項2記載のアルカリ蓄電池容量残量
推定法において、試験対象セル、あるいは組電池の満充
電状態からの放電可能容量を求めるために実施される端
子電圧の記録と、充電、あるいは放電条件が、充電、あ
るいは放電前の端子電圧Voc1 は試験対象セル、あるい
は組電池が休止状態におかれ充電、あるいは放電が開始
される2秒以内の電圧であり、 充電は0.05C以上の電流率で実施され、 放電は0.5C以上の電流率で実施され、 充電、あるいは放電時間がともに1秒以下であり、 充電、あるいは放電中に記録される端子電圧V2 は、充
電、あるいは放電終了直前の電圧であり、 充電、あるいは放電終了後に記録される端子電圧Voc3
は充電、あるいは放電終了後2秒以内の電圧であること
を特徴とするアルカリ蓄電池容量残量推定法。
4. A method for estimating a remaining capacity of an alkaline storage battery according to claim 2, wherein the recording of a terminal voltage performed to determine a dischargeable capacity of the test target cell or the assembled battery from a fully charged state, and a method of charging, Alternatively, the discharge condition is that the terminal voltage Voc1 before charging or discharging is a voltage within 2 seconds after the cell to be tested or the battery pack is put into a rest state and charging or discharging is started, and charging is 0.05 C or more. The discharge is performed at a current rate of 0.5 C or more, and the charge or discharge time is 1 second or less. The terminal voltage V2 recorded during the charge or discharge is the charge or discharge This is the voltage immediately before the end of discharge, and the terminal voltage Voc3 recorded after the end of charge or discharge.
Is a voltage within 2 seconds after the end of charging or discharging.
【請求項5】 データを管理するコンピュータと、アル
カリ蓄電池の試験条件をコントロールする充放電器とか
ら構成され、請求項2記載のアルカリ蓄電池容量残量推
定法における適用基準式および電圧−容量曲線を演算す
る回路または機能を該コンピュータに内蔵して請求項2
記載のアルカリ蓄電池容量残量推定法の手順に従って試
験対象セル、または組電池の容量および残量推定を行う
ことを特徴とするアルカリ蓄電池容量推定装置。
5. A computer for managing data and a charger / discharger for controlling test conditions of an alkaline storage battery, wherein an application standard expression and a voltage-capacity curve in the method for estimating a remaining capacity of an alkaline storage battery according to claim 2 are defined. 3. A circuit or function for performing calculations is built in the computer.
An alkaline storage battery capacity estimating apparatus for estimating the capacity and the remaining capacity of a test target cell or an assembled battery according to the procedure of the method for estimating a remaining capacity of an alkaline storage battery described in the above.
【請求項6】 試験データを収集管理し、かつ、請求項
2記載のアルカリ蓄電池容量残量推定法に従って容量お
よび残量推定値を求めるために演算を行うコンピュータ
と、該試験セル、あるいは組電池の試験放電、あるいは
充電条件を制御する電流制御器、または充放電制御器と
から構成されるか、 または、既設コンピュータに請求項2記載のアルカリ蓄
電池容量残量推定法の手順を行う演算回路、または機能
とを増設して搭載してなり、かつ、該電流制御器、また
は充放電制御器とから構成されることを特徴とするアル
カリ蓄電池容量推定装置。
6. A computer which collects and manages test data and performs an operation for obtaining an estimated value of capacity and remaining amount in accordance with the method for estimating remaining amount of alkaline storage battery according to claim 2, and said test cell or battery pack. An arithmetic circuit configured to include a current controller for controlling test discharge or charging conditions, or a charge / discharge controller, or to perform a procedure of the alkaline storage battery capacity estimation method according to claim 2 to an existing computer; Alternatively, an alkaline storage battery capacity estimating apparatus characterized by being provided with additional functions and being equipped with the current controller or the charge / discharge controller.
JP22962298A 1998-08-14 1998-08-14 Alkaline battery capacity remaining amount estimation method and capacity estimation device Expired - Fee Related JP3641367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22962298A JP3641367B2 (en) 1998-08-14 1998-08-14 Alkaline battery capacity remaining amount estimation method and capacity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22962298A JP3641367B2 (en) 1998-08-14 1998-08-14 Alkaline battery capacity remaining amount estimation method and capacity estimation device

Publications (2)

Publication Number Publication Date
JP2000067932A true JP2000067932A (en) 2000-03-03
JP3641367B2 JP3641367B2 (en) 2005-04-20

Family

ID=16895086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22962298A Expired - Fee Related JP3641367B2 (en) 1998-08-14 1998-08-14 Alkaline battery capacity remaining amount estimation method and capacity estimation device

Country Status (1)

Country Link
JP (1) JP3641367B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053510A1 (en) * 2002-12-11 2004-06-24 Japan Storage Battery Co., Ltd. Battery charged condition computing device and battery charged condition computing method
US6842708B2 (en) 2001-04-27 2005-01-11 International Business Machines Corporation Method and apparatus for determining battery life
KR100709842B1 (en) 2005-11-03 2007-04-23 삼성에스디아이 주식회사 Battery pack
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
WO2008084791A1 (en) * 2007-01-11 2008-07-17 Panasonic Corporation Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger
CN100451669C (en) * 2002-12-11 2009-01-14 株式会社杰士汤浅 Battery charged condition computing device and battery charged condition computing method
US7554296B2 (en) 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
JP2010281673A (en) * 2009-06-04 2010-12-16 Toshiba Corp System and method for measuring partial discharge voltage
JP2012141202A (en) * 2010-12-28 2012-07-26 Gs Yuasa Corp Ocv characteristics estimation method for nonaqueous electrolyte secondary battery, ocv characteristics estimation device, and power storage system
KR101268082B1 (en) 2011-10-25 2013-06-04 현대중공업 주식회사 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
AT504698A3 (en) * 2008-04-01 2013-09-15 Avl List Gmbh METHOD AND DEVICE FOR MONITORING THE OPERATING STATUS OF A BATTERY
JP2014029273A (en) * 2012-07-31 2014-02-13 Mitsubishi Motors Corp Battery pack inspection method and apparatus
KR101556786B1 (en) * 2007-11-21 2015-10-01 주식회사 엘지화학 System for estimating life time of a secondary battery and methode for estmating life time of a secondary battery
WO2016160651A1 (en) * 2015-03-30 2016-10-06 Eaton Corporation Apparatus and methods for battery monitoring using discharge pulse measurements
CN111919355A (en) * 2018-03-28 2020-11-10 古河电气工业株式会社 Power storage system and measurement method
JP2021035119A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Controller
CN113884918A (en) * 2021-09-09 2022-01-04 欣旺达电动汽车电池有限公司 Method and device for predicting battery capacity
CN114487885A (en) * 2022-02-11 2022-05-13 国网河南省电力公司电力科学研究院 Quality estimation method and screening method for storage batteries for transformer substation
CN114814588A (en) * 2021-06-30 2022-07-29 南京地铁运营有限责任公司 Method for quickly estimating capacity of storage battery
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842708B2 (en) 2001-04-27 2005-01-11 International Business Machines Corporation Method and apparatus for determining battery life
US7323848B2 (en) 2002-12-11 2008-01-29 Japan Storage Battery Co., Ltd. Battery charging state arithmetic operation device for calculating charging state of battery, and battery charging state arithmetic operation method
CN100451669C (en) * 2002-12-11 2009-01-14 株式会社杰士汤浅 Battery charged condition computing device and battery charged condition computing method
WO2004053510A1 (en) * 2002-12-11 2004-06-24 Japan Storage Battery Co., Ltd. Battery charged condition computing device and battery charged condition computing method
US7554296B2 (en) 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
KR100709842B1 (en) 2005-11-03 2007-04-23 삼성에스디아이 주식회사 Battery pack
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
US8102152B2 (en) 2007-01-11 2012-01-24 Panasonic Corporation Deterioration detecting method and deterioration suppressing method for rechargeable lithium batteries, deterioration detector, deterioration suppressor, battery pack, and charger
WO2008084791A1 (en) * 2007-01-11 2008-07-17 Panasonic Corporation Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger
JP2008192607A (en) * 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd Deterioration detecting method and deterioration preventing method of lithium secondary battery, deterioration detecting device and deterioration preventing device, and battery pack and charger provided with the same
KR101556786B1 (en) * 2007-11-21 2015-10-01 주식회사 엘지화학 System for estimating life time of a secondary battery and methode for estmating life time of a secondary battery
AT504698A3 (en) * 2008-04-01 2013-09-15 Avl List Gmbh METHOD AND DEVICE FOR MONITORING THE OPERATING STATUS OF A BATTERY
AT504698B1 (en) * 2008-04-01 2013-10-15 Avl List Gmbh METHOD AND DEVICE FOR MONITORING THE OPERATING STATUS OF A BATTERY
JP2010281673A (en) * 2009-06-04 2010-12-16 Toshiba Corp System and method for measuring partial discharge voltage
JP2012141202A (en) * 2010-12-28 2012-07-26 Gs Yuasa Corp Ocv characteristics estimation method for nonaqueous electrolyte secondary battery, ocv characteristics estimation device, and power storage system
KR101268082B1 (en) 2011-10-25 2013-06-04 현대중공업 주식회사 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
JP2014029273A (en) * 2012-07-31 2014-02-13 Mitsubishi Motors Corp Battery pack inspection method and apparatus
CN107430172B (en) * 2015-03-30 2022-03-04 伊顿智能动力有限公司 Battery monitoring apparatus and method using discharge pulse measurements
WO2016160651A1 (en) * 2015-03-30 2016-10-06 Eaton Corporation Apparatus and methods for battery monitoring using discharge pulse measurements
CN107430172A (en) * 2015-03-30 2017-12-01 伊顿公司 The battery detection apparatus and method measured using discharge pulse
US9983266B2 (en) 2015-03-30 2018-05-29 Eaton Intelligent Power Limited Apparatus and methods for battery monitoring using discharge pulse measurements
CN111919355A (en) * 2018-03-28 2020-11-10 古河电气工业株式会社 Power storage system and measurement method
CN111919355B (en) * 2018-03-28 2024-02-20 古河电气工业株式会社 Power storage system and measurement method
JP2021035119A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Controller
JP7136048B2 (en) 2019-08-21 2022-09-13 トヨタ自動車株式会社 Control device
CN114814588A (en) * 2021-06-30 2022-07-29 南京地铁运营有限责任公司 Method for quickly estimating capacity of storage battery
CN114814588B (en) * 2021-06-30 2024-05-17 南京地铁运营有限责任公司 Method for rapidly estimating capacity of storage battery
CN113884918A (en) * 2021-09-09 2022-01-04 欣旺达电动汽车电池有限公司 Method and device for predicting battery capacity
CN114487885A (en) * 2022-02-11 2022-05-13 国网河南省电力公司电力科学研究院 Quality estimation method and screening method for storage batteries for transformer substation
CN114487885B (en) * 2022-02-11 2024-01-19 国网河南省电力公司电力科学研究院 Storage battery quality estimation method and screening method for transformer substation
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery
CN116581402B (en) * 2023-07-13 2023-11-17 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery

Also Published As

Publication number Publication date
JP3641367B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP2000067932A (en) Alkaline storage battery remaining capacity estimation method and capacity estimation device
US6281683B1 (en) Rapid determination of present and potential battery capacity
KR101786900B1 (en) Battery monitoring apparatus and battery monitoring method
CN108663621B (en) Charge state calculation method and system for power battery pack
JP3121732B2 (en) Secondary battery parameter measurement method, secondary battery charge / discharge control method and life prediction method using the same, secondary battery charge / discharge control device, and power storage device using the same
JP4052418B2 (en) Battery capacity detection method and apparatus, and battery pack
US7443140B2 (en) Method and apparatus for operating a battery to avoid damage and maximize use of battery capacity by terminating battery discharge
US8054045B2 (en) Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
US7062390B2 (en) Method for evaluating capacity of secondary battery using mathematical calculation of specific resistance components of equivalent circuit model fitted from impedance spectrum
US5160880A (en) Method and apparatus for charging and testing batteries
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
US7693671B2 (en) Battery control device, battery control method, battery pack, electronic apparatus and control circuit for calculating charging-discharging count of battery
KR20090082374A (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
WO2002033773A1 (en) Battery operable device with battery state-of-charge indicator
Lu et al. Modeling discharge characteristics for predicting battery remaining life
CN117222904A (en) Battery state estimating device and power system
JP2019211248A (en) Secondary battery parameter estimating device, secondary battery parameter estimating method, and program
CN113075558B (en) Battery SOC estimation method, device and system
JP2002162451A (en) Capacity estimating method, deterioration determination method and deterioration determination device of lithium ion battery and lithium ion battery pack having deterioration determining function
GB2600129A (en) Pro-active battery management system (BMS) with lossless active buck balancing and method thereof
CN111707947A (en) Method and device for identifying battery capacity on line and iteratively calibrating
JP7173492B2 (en) DETERMINATION DEVICE, POWER SUPPLY SYSTEM INCLUDING DETERMINATION DEVICE, AND DETERMINATION METHOD
JP2023032183A (en) Correction method, computer program, correction device, and power storage device
JPH0980130A (en) Storage battery capacity measurement method
DeSando Universal Programmable Battery Charger with Optional Battery Management System

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees