JP2000067428A - Magnetic recording medium and magnetic storage device using the same - Google Patents

Magnetic recording medium and magnetic storage device using the same

Info

Publication number
JP2000067428A
JP2000067428A JP10233830A JP23383098A JP2000067428A JP 2000067428 A JP2000067428 A JP 2000067428A JP 10233830 A JP10233830 A JP 10233830A JP 23383098 A JP23383098 A JP 23383098A JP 2000067428 A JP2000067428 A JP 2000067428A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
protective layer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10233830A
Other languages
Japanese (ja)
Inventor
Shigehiko Fujimaki
成彦 藤巻
Yuzuru Hosoe
譲 細江
Hidekazu Kashiwase
英一 柏瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10233830A priority Critical patent/JP2000067428A/en
Publication of JP2000067428A publication Critical patent/JP2000067428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make controllable the bonding state of carbon-nitrogen and to obtain a protective layer having good durability by forming a coating contg. carbon and nitrogen and having a specified Raman spectrum. SOLUTION: The magnetic recording medium comprises a multilayered film formed by successively laminating a Cr underlayer 2 of 28 nm thickness, a CoCr magnetic layer 3 of 23 nm thickness, a protective layer 4 of 10 nm thickness contg. nitrogen and oxygen in carbon and a perfluoro-polyether lubricative layer 5 of 2 nm thickness on a nonmagnetic substrate 1 of a magnetic disk. The protective layer 4 has a Raman spectrum having the main peak at about 1,500 cm-1 and a sub-peak at about 2,210 cm-1, the scattering intensity of the background to the main peak is <=0.25 and the intensity ratio of the sub-peak to the main peak is 0.03-0.07.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記憶装置と、
これに用いる磁気記録媒体に係わり、特に1平方インチ
あたり4ギガビット以上の記録密度を有し、且つ、信頼
性の高い磁気記憶装置とこれを実現するための磁気記録
媒体に関する。
[0001] The present invention relates to a magnetic storage device,
The present invention relates to a magnetic recording medium used therein, and more particularly to a highly reliable magnetic storage device having a recording density of 4 gigabits per square inch or more and a magnetic recording medium for realizing the same.

【0002】[0002]

【従来の技術】従来から知られている磁気ディスク用保
護膜は、主に黒鉛状ターゲットのスパッタリングで形成
した材料から成り、化学的に安定で摩擦係数が小さく、
摺動時に摩耗粉を発生し難いなど保護膜に適した性質を
有するが、黒鉛状の炭素を多く含む欠点があり、このた
め硬度や耐摩耗性を更に高めることは困難であった。こ
れに対して、炭素のみから成る上記保護膜に少なくとも
窒素元素を添加することにより黒鉛状構造の生成を阻止
し、緻密化、高硬度化をはかるなどの対策が特開平1-32
0622、特開平5-225556号各公報に記載されている。
2. Description of the Related Art A conventionally known protective film for a magnetic disk is mainly made of a material formed by sputtering a graphite target, and is chemically stable and has a small friction coefficient.
Although it has properties suitable for a protective film, such as hardly generating abrasion powder during sliding, it has a drawback of containing a large amount of graphite-like carbon, and therefore it has been difficult to further increase the hardness and wear resistance. On the other hand, measures to prevent the formation of a graphite-like structure by adding at least nitrogen element to the protective film made of only carbon, and to increase the density and the hardness are disclosed in JP-A-1-32.
0622 and JP-A-5-225556.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術に述べら
れたものは、窒素の含有濃度に着目して保護層を最適化
したものあるが、同じ窒素濃度であっても炭素-窒素の
結合状態によっては耐摺動特性が劣化するという問題が
ある。とくに問題となるのは、炭素-窒素が三重結合し
たシアノ基であり、これが膜構造の連続性を阻害し、耐
摺動信頼性を劣化させる原因となる。しかも、成膜時の
動作圧力が高く、多重衝突によりエネルギーを失った炭
素と窒素の気相反応でCNラジカルが生成すると、基板の
成長表面に形成されるシアノ基が増え、さらに成膜条件
によっては遊離したニトリル化合物が堆積して保護層の
機械強度が著しく劣化する。
In the above-mentioned prior art, the protective layer is optimized by paying attention to the nitrogen concentration. However, even when the nitrogen concentration is the same, the carbon-nitrogen bonding state is not improved. In some cases, there is a problem that the sliding resistance is deteriorated. A particular problem is a cyano group in which carbon-nitrogen is triple-bonded, which inhibits the continuity of the film structure and causes a deterioration in sliding resistance. In addition, when the operating pressure during film formation is high and CN radicals are generated by a gas-phase reaction between carbon and nitrogen, which have lost energy due to multiple collisions, the number of cyano groups formed on the growth surface of the substrate increases. In this case, the released nitrile compound is deposited and the mechanical strength of the protective layer is significantly deteriorated.

【0004】本発明は、磁気記録媒体製造のこのような
現状を鑑みてなされたものであり、窒素を含むダイヤモ
ンド状カーボン保護膜を最適化するため、含有窒素濃度
に加えて炭素-窒素結合の結合状態を制御し、耐久性が
良好で信頼性の優れた保護膜を提供すること、及びその
磁気記録媒体を組み込んだ信頼性の高い磁気記憶装置を
提供することを目的とする。
[0004] The present invention has been made in view of such a current situation of magnetic recording medium manufacturing. In order to optimize a diamond-like carbon protective film containing nitrogen, in addition to the concentration of nitrogen contained, the carbon-nitrogen bond has to be improved. It is an object of the present invention to provide a protective film having good durability and excellent reliability by controlling a coupling state, and to provide a highly reliable magnetic storage device incorporating the magnetic recording medium.

【0005】[0005]

【課題を解決するための手段】本発明の磁気記録媒体
は、基材上に形成された磁性層と、磁性層上に形成され
た保護膜を備えた磁気記録媒体において、保護層が炭素
と少なくとも窒素を含む皮膜からなり、皮膜のラマンス
ペクトルが1500cm-1付近と2210cm-1付近にそれぞれ主ピ
ークとシアノ基によるサブピークを示し、主ピークに対
するバックグラウンドの散乱強度と、主ピークに対する
シアノ基のサブピークの強度がそれぞれ0.25以下及び0.
03〜0.07であることを特徴とする。さらに、特に保護層
の成膜条件により窒素/炭素の原子数比を0.05〜0.3の
範囲に最適化したことを特徴とする。
The magnetic recording medium of the present invention comprises a magnetic recording medium having a magnetic layer formed on a base material and a protective film formed on the magnetic layer, wherein the protective layer is made of carbon. It is composed of a film containing at least nitrogen, and the Raman spectrum of the film shows a main peak and a subpeak due to a cyano group around 1500 cm-1 and around 2210 cm-1, respectively, the background scattering intensity with respect to the main peak, and the cyano group with respect to the main peak. The intensity of the sub-peak is 0.25 or less and 0.
03 to 0.07. Further, the present invention is characterized in that the atomic ratio of nitrogen / carbon is optimized in the range of 0.05 to 0.3, particularly according to the conditions for forming the protective layer.

【0006】また、本発明の磁気記録媒体は、基材上に
形成された磁性層と、磁性層上に形成された保護膜を備
えた磁気記録媒体において、皮膜のラマンスペクトルが
1500cm-1付近と2210cm-1付近にそれぞれ主ピークとシア
ノ基によるサブピークを示し、主ピークに対するバック
グラウンドの散乱強度と主ピークに対するシアノ基によ
るサブピークの強度がそれぞれ0.25以下及び0.03〜0.07
であり、且つ、X線光電子分光法による電子取出角30度
以下で測定した前記皮膜の表面での酸素/窒素の原子数
比が0.5〜2.0の範囲内にあることを特徴する。
Further, the magnetic recording medium of the present invention has a Raman spectrum of a film in a magnetic recording medium having a magnetic layer formed on a base material and a protective film formed on the magnetic layer.
A main peak and a subpeak due to a cyano group are shown around 1500 cm-1 and around 2210 cm-1, respectively, and the background scattering intensity with respect to the main peak and the intensity of the subpeak with the cyano group with respect to the main peak are 0.25 or less and 0.03 to 0.07, respectively.
And the atomic ratio of oxygen / nitrogen on the surface of the film measured at an electron extraction angle of 30 ° or less by X-ray photoelectron spectroscopy is in the range of 0.5 to 2.0.

【0007】また、本発明の磁気記録媒体は、基材上に
形成された磁性層と、磁性層上に形成された保護膜を備
えた磁気記録媒体において、保護層が炭素と少なくとも
窒素を含む皮膜から成り、皮膜が5〜20at%の水素を含
み、皮膜のラマンスペクトルが1500cm-1付近と2210cm-1
付近にそれぞれ主ピークとシアノ基によるサブピークを
示し、主ピークに対するバックグラウンドの散乱強度と
前記主ピークに対する前記シアノ基のサブピークの強度
がそれぞれ0.25以下及び0.03〜0.07であることを特徴と
する。
Further, the magnetic recording medium of the present invention is a magnetic recording medium comprising a magnetic layer formed on a base material and a protective film formed on the magnetic layer, wherein the protective layer contains carbon and at least nitrogen. The film contains 5-20at% hydrogen, and the Raman spectrum of the film is around 1500cm-1 and 2210cm-1
A main peak and a subpeak due to a cyano group are respectively shown in the vicinity, and the background scattering intensity with respect to the main peak and the intensity of the cyano group subpeak with respect to the main peak are 0.25 or less and 0.03 to 0.07, respectively.

【0008】また、本発明の磁気記録媒体は、基材上に
磁性層と保護層とを順次積層した構造を有し、保護層が
少なくとも炭素、窒素を含む膜厚が10nm以下の皮膜から
なり、皮膜のラマンスペクトルが1500cm-1付近と2210cm
-1付近にそれぞれ主ピークとシアノ基によるサブピーク
を示し、主ピークに対するバックグラウンドの散乱強度
と主ピークに対するシアノ基によるサブピークの強度が
それぞれ0.25以下及び0.03〜0.07であり、且つ、表面の
中心線平均粗さRaが1nm以下であることを特徴とす
る。ここで、中心線平均粗さは原子間力顕微鏡の測定値
とし、その定義は日本工業規格(JIS-B0601)の規
定に準拠しするものとする。
The magnetic recording medium of the present invention has a structure in which a magnetic layer and a protective layer are sequentially laminated on a base material, and the protective layer comprises a film containing at least carbon and nitrogen and having a thickness of 10 nm or less. , The Raman spectrum of the film is around 1500cm-1 and 2210cm
-1 shows a main peak and a sub-peak due to a cyano group, respectively, and the background scattering intensity for the main peak and the intensity of the sub-peak due to the cyano group to the main peak are 0.25 or less and 0.03 to 0.07, respectively, and the center line of the surface. The average roughness Ra is 1 nm or less. Here, the center line average roughness is a value measured by an atomic force microscope, and its definition conforms to the provisions of the Japanese Industrial Standard (JIS-B0601).

【0009】本発明の磁気記憶装置は、磁気記録媒体
と、磁気記録媒体を記録方向に駆動する駆動部と、記録
部と再生部を備える磁気ヘッドと、磁気ヘッドを磁気記
録媒体に対して相対運動させる手段と、磁気ヘッドへの
信号入力と磁気ヘッドからの出力信号再生を行うための
記録再生信号処理手段を有する磁気記憶装置において、
磁気ヘッドは浮上面レールの面積が1.25mm2以下で質量
が2mg以下の磁気ヘッドスライダー上に形成され、且
つ、磁気記録媒体は保護層が炭素と少なくとも窒素を含
む皮膜から成り、皮膜のラマンスペクトルが1500cm-1付
近と2210cm-1付近にそれぞれ主ピークとシアノ基による
サブピークを示し、主ピークに対するバックグラウンド
の散乱強度と主ピークに対するシアノ基によるサブピー
クの強度がそれぞれ0.25以下及び0.03〜0.07であること
を特徴とする。
A magnetic storage device according to the present invention comprises: a magnetic recording medium; a driving unit for driving the magnetic recording medium in a recording direction; a magnetic head having a recording unit and a reproducing unit; A magnetic storage device having a moving means and a recording / reproducing signal processing means for reproducing a signal input to the magnetic head and an output signal from the magnetic head;
The magnetic head is formed on a magnetic head slider having an air bearing surface rail area of 1.25 mm2 or less and a mass of 2 mg or less, and the magnetic recording medium has a protective layer composed of a film containing carbon and at least nitrogen, and has a Raman spectrum of the film. A main peak and a subpeak due to cyano group are shown around 1500 cm-1 and around 2210 cm-1, respectively, and the background scattering intensity for the main peak and the intensity of the cyano group subpeak for the main peak are 0.25 or less and 0.03 to 0.07, respectively. It is characterized by.

【0010】上記構成の磁気記録媒体は、保護層が少な
くとも窒素を含むカーボン膜からなり、とくに保護層に
含まれる窒素の濃度と共に結合状態に着目して成膜方式
及び成膜条件を整えて形成したもので、膜構造の連続性
を阻害し耐摺動信頼性を劣化する原因となるシアノ基及
びその誘導体並びに化合物の形成が抑えられる。保護層
に生成するシアノ基を低減するには、成膜時の基板表面
にイオン衝撃を加えるか、適量の水素と反応させること
などが有効である。イオン衝撃には基板にバイアス電圧
を加えて、イオンを加速するのが最も一般的であるが、
必要以上に加速すると保護層は黒鉛化してかえって機械
強度を低下させる原因となる。とくに、アルゴンをプロ
セスガスとして適量の反応ガスを加えたプラズマ雰囲気
では、質量の大きなアルゴンイオンが反応性スパッタリ
ングの過程で基板に入射するため、イオンの加速電圧を
上げなくてとも、-100〜-300Vの基板バイアスで表面付
近に十分なエネルギーを付与できる。基板バイアスによ
るイオン衝撃を最適化するには、成長速度に応じてイオ
ン電流を制御する方が有効である。バイアス電流は、膜
成長に寄与する反応種の流入密度とほぼ同数のイオンが
入射するように制御することで基板に余分なダメージを
与えることなく効率的にシアノ基を分解できる。一方、
成長表面に水素を反応させてもシアノ基の生成を阻止で
きる。この場合には、過剰の水素が反応して有機化合物
が形成されないように注意する必要がある。過剰の水素
により保護層はポリマー化すると硬度の低下により耐摺
動信頼性が低下する欠点があり、耐摺動信頼性を向上さ
せるには、水素濃度は5〜30at%程度が望ましい。
In the magnetic recording medium having the above structure, the protective layer is formed of a carbon film containing at least nitrogen, and the film formation method and the film forming conditions are adjusted by paying attention to the bonding state together with the concentration of nitrogen contained in the protective layer. This suppresses the formation of cyano groups and their derivatives and compounds, which cause the continuity of the film structure to deteriorate the sliding reliability. In order to reduce the cyano group generated in the protective layer, it is effective to apply ion bombardment to the substrate surface at the time of film formation, or to react with an appropriate amount of hydrogen. The most common method of ion bombardment is to apply a bias voltage to the substrate and accelerate the ions.
If accelerated more than necessary, the protective layer becomes graphitized, which in turn causes a decrease in mechanical strength. Particularly, in a plasma atmosphere in which an appropriate amount of a reaction gas is added using argon as a process gas, large-mass argon ions enter the substrate in the process of reactive sputtering. Sufficient energy can be provided near the surface with a substrate bias of 300V. To optimize the ion bombardment due to the substrate bias, it is more effective to control the ion current according to the growth rate. By controlling the bias current such that ions of substantially the same number as the inflow density of the reactive species contributing to the film growth are incident, the cyano group can be efficiently decomposed without causing extra damage to the substrate. on the other hand,
The reaction of hydrogen on the growth surface can also prevent the formation of cyano groups. In this case, care must be taken to prevent excess hydrogen from reacting to form an organic compound. When the protective layer is polymerized by excessive hydrogen, there is a disadvantage that the sliding resistance decreases due to a decrease in hardness. To improve the sliding resistance, the hydrogen concentration is preferably about 5 to 30 at%.

【0011】以上の方法によりラマンスペクトルにおけ
るニトリル等の窒素化合物に起因する蛍光の放射を弱く
し、1550cm-1付近での主ピークに対するバックグラウン
ドの散乱強度比は0.25以下とした窒素を含むカーボン保
護膜は硬く高い耐ドラッグ性能を示す。
By the above method, the emission of fluorescence caused by nitrogen compounds such as nitriles in the Raman spectrum is weakened, and the ratio of the scattering intensity of the background to the main peak at around 1550 cm-1 is set to 0.25 or less. The film is hard and exhibits high drag resistance.

【0012】また、以上の方法によりシアノ基の分解を
進め、ラマンスペクトルに現れる1550cm-1付近の主ピー
クに対する2210cm-1付近のシアノ基によるサブピークの
強度比を0.03〜0.07とした窒素を含むカーボン保護膜は
弾性的で高い耐スクラッチ性能を示す。
Further, the decomposition of the cyano group is promoted by the above method, and the nitrogen-containing carbon in which the intensity ratio of the cyano group sub-peak near 2210 cm-1 to the main peak near 1550 cm-1 appearing in the Raman spectrum is 0.03 to 0.07. The protective film is elastic and exhibits high scratch resistance.

【0013】また、上記構成の磁気記録媒体を浮上面レ
ールの面積が1.25mm2以下で質量が2mg以下の磁気ヘッド
スライダーと組み合わせれば、30nm以下のヘッド浮上量
でもスクラッチ等の欠陥の発生頻度が著しく低下するの
で、高い信頼性を有する磁気ディスク装置が実現され
る。
When the magnetic recording medium having the above structure is combined with a magnetic head slider having an air bearing surface rail area of 1.25 mm 2 or less and a mass of 2 mg or less, the frequency of occurrence of defects such as scratches is reduced even with a head flying height of 30 nm or less. Since it is significantly reduced, a magnetic disk device having high reliability is realized.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は本発明の特徴を最もよく表
しているハードディスク用磁気記録媒体の構成図、図2
は本発明の特徴的な保護層のラマンスペクトル、図3及
び図4は本発明の実施例に示す減圧下でのシーク試験で
スクラッチが発生するまでのシーク回数と保護層のラマ
ン分光特性の関係図、図5は本発明の磁気記録媒体を備
えた磁気記憶装置の構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a magnetic recording medium for a hard disk, which best illustrates the features of the present invention.
Is the Raman spectrum of the protective layer characteristic of the present invention, and FIGS. 3 and 4 show the relationship between the number of seeks until a scratch occurs in the seek test under reduced pressure and the Raman spectral characteristics of the protective layer according to the examples of the present invention. FIG. 5 and FIG. 5 are configuration diagrams of a magnetic storage device provided with the magnetic recording medium of the present invention.

【0015】図1に、本発明による代表的な磁気記録媒
体の構成を示す。この磁気記録媒体は、非磁性の磁気デ
ィスク基板1上に膜厚が28nmのCr下地層2と、C
oCr系合金からなる膜厚が23nmの磁性層3と、炭
素に少なくとも窒素を含む膜厚が10nmの保護層4
と、パーフロロポリエチル系の膜厚が2nmの潤滑層5
を順次積層した多層膜から構成される。
FIG. 1 shows the configuration of a typical magnetic recording medium according to the present invention. This magnetic recording medium comprises a nonmagnetic magnetic disk substrate 1, a Cr underlayer 2 having a thickness of 28 nm,
a magnetic layer 3 made of an oCr alloy and having a thickness of 23 nm, and a protective layer 4 having a thickness of 10 nm and containing at least nitrogen in carbon.
And a lubricating layer 5 having a perfluoropolyethyl-based film thickness of 2 nm.
Are sequentially laminated.

【0016】この磁気記録媒体における保護層4を、下
記の実施例1〜4及び比較例1に示す方式の各種のスパ
ッタ蒸着により、膜厚がいずれも10nmとなるように
形成した。これらスパッタ蒸着時の雰囲気圧力は5〜1
0mTorrで、投入電力は1〜2kWとした。この各
試料について耐摺動特性及び保護層のラマン分光特性を
測定した。耐摺動特性の比較は、浮上面レールの面積が
3.28mm2で質量が6mgのヘッドスライダーを過
重3gで押し付け、300〜500Torrに減圧した
容器内で5400〜10000rpmで回転する円板に
5〜70Hzの周波数でシーク動作を実行し、15〜3
0nmの高さで浮上したヘッドスライダーとの間欠接触
により生じるスクラッチ及び摩耗を評価した。一方、保
護層のラマン分光特性は、英国Renishaw社製顕微ラマン
分光光度計RamanScope System2000を用いてAr+レー
ザの波長514.5nmのモードを光源にラマン散乱を900
cm−1〜2400cm−1の波数領域で測定した。
The protective layer 4 in this magnetic recording medium was formed by sputtering of various types shown in Examples 1 to 4 and Comparative Example 1 so as to have a thickness of 10 nm. The atmospheric pressure during the sputtering deposition is 5-1.
At 0 mTorr, the input power was 1-2 kW. The sliding resistance and the Raman spectral characteristics of the protective layer were measured for each sample. A comparison of the sliding resistance was made by pressing a head slider with a flying surface rail area of 3.28 mm2 and a mass of 6 mg with an excess weight of 3 g, and rotating the disk at 5400 to 10000 rpm in a container depressurized to 300 to 500 Torr. A seek operation is performed at a frequency of 70 Hz, and 15 to 3
Scratch and abrasion caused by intermittent contact with the head slider floating at a height of 0 nm were evaluated. On the other hand, the Raman spectroscopic characteristics of the protective layer were measured by using a Raman spectrophotometer RamanScope System 2000 manufactured by Renishaw, a UK company, to obtain Raman scattering of 900 using a mode of an Ar + laser at a wavelength of 514.5 nm as a light source.
The measurement was performed in a wave number region of cm-1 to 2400 cm-1.

【0017】図2は本発明の磁気記録媒体で測定した特
徴的なカーボン保護層のラマンスペクトルである。この
ようなカーボン膜のラマンスペクトルは非線型最小二乗
法により複数のガウス型関数のピークとバックグラウン
ドに分離できる。1550cm-1付近と1380cm-1付近を中心と
するピークはそれぞれGピーク、Dピークと呼ばれ、窒
素を含むカーボン膜の2210cm-1付近に現れるピークはシ
アノ基の伸縮振動に帰属される。本実施例ではMarq
uardt−Levenberg法のアルゴリズムによ
る非線型最小二乗法を用いてラマンスペクトルを1550cm
-1付近、1380cm-1付近及び2210cm-1付近を中心波数とす
るガウス型関数のピークと3次関数のバックグラウンド
に分離した。ここで、図中に示すようにB/Aの比率をバ
ックグラウンド散乱強度比とし、D/Cの比率をシアノ基
によるサブピーク強度比と定義した。
FIG. 2 is a characteristic Raman spectrum of the carbon protective layer measured on the magnetic recording medium of the present invention. The Raman spectrum of such a carbon film can be separated into a plurality of Gaussian function peaks and a background by the nonlinear least squares method. Peaks around 1550 cm -1 and 1380 cm -1 are called G peak and D peak, respectively, and the peak appearing around 2210 cm -1 of the nitrogen-containing carbon film is attributed to the stretching vibration of the cyano group. In this embodiment, Marq
Raman spectrum was calculated to be 1550 cm using the nonlinear least squares method according to the algorithm of the ardt-Levenberg method.
The peak was separated into a Gaussian function peak having a center wave number around -1, 1380 cm-1 and around 2210 cm-1 and a background of a cubic function. Here, as shown in the figure, the ratio of B / A was defined as a background scattering intensity ratio, and the ratio of D / C was defined as a subpeak intensity ratio due to a cyano group.

【0018】なお、ガウス型ピークについては、中心波
数、ピークの強度及び半値幅をパラメータにして適当な
初期値からのフィティングを行った。また、図2の縦軸
は単光束式の分光光度計を用いて測定したラマン散乱強
度であり任意単位で表される。
For the Gaussian peak, fitting from an appropriate initial value was performed using the center wave number, peak intensity, and half width as parameters. The vertical axis in FIG. 2 is the Raman scattering intensity measured using a single beam type spectrophotometer and is expressed in arbitrary units.

【0019】(実施例1)本実施例においては、通常の
バランス型スパッタリング電極を用いたアルゴンと窒素
の混合ガスによる黒鉛状ターゲットの反応性マグネトロ
ンスパッタ状着で、20kHzのパルス状バイアスが-250V
加えられた基板に下記[表1]の条件により保護層を形
成した。
(Embodiment 1) In this embodiment, a graphite-like target is reactive magnetron-sputtered with a mixed gas of argon and nitrogen using a normal balanced sputtering electrode.
A protective layer was formed on the added substrate under the conditions shown in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、試料1-1〜1-10についてラマンス
ペクトルを測定した後、パーフロロポリエチル系潤滑剤
を2nmの膜厚で塗布したうえで前記ヘッドを荷重3gで押
し付け、350 Torrに減圧した容器内で6300rpmで回転し
ながら周波数5Hzのシーク動作を行ってスクラッチが発
生するまでの寿命を測定した。その結果、下記[表2]
に示すように、ラマンスペクトルにおける前記のバック
グラウンド散乱強度比及びシアノ基によるサブピーク強
度比がそれぞれ0.2以下及び0.03〜0.07である試料で
は、スクラッチが発生するまでの寿命は10回以上であ
り、条件によっては50k回のシーク動作を繰り返しても
試料表面でスクラッチ等による傷は発生しなかった。
Next, after measuring the Raman spectra of Samples 1-1 to 1-10, a perfluoropolyethyl-based lubricant was applied to a thickness of 2 nm, and the head was pressed with a load of 3 g to 350 Torr. A seek operation at a frequency of 5 Hz was performed while rotating at 6300 rpm in a depressurized container, and the life until scratches were generated was measured. As a result, the following [Table 2]
As shown in the above, the background scattering intensity ratio in the Raman spectrum and the sub-peak intensity ratio due to the cyano group are 0.2 or less and 0.03 to 0.07, respectively, in the sample, the lifetime until scratch occurs 10 times or more, conditions In some cases, even when the seek operation was repeated 50k times, no scratch was generated on the sample surface due to scratches or the like.

【0022】[0022]

【表2】 [Table 2]

【0023】次に、本実施例で形成した保護層の潤滑剤
との結合力強化を目的に、表面における酸素/窒素の原
子数を変化させるため、酸素プラズマ処理及び大気中で
の紫外線処理を行った。酸素プラズマ処理では、酸素ガ
スを100mTorr導入した雰囲気において高周波電源
により150Wの出力でプラズマを発生し、試料を1〜4分
間放置した。紫外線照射では、試料の表面から50mmの
位置に反射鏡を備えた高圧水銀ランプを設け、10kWの
電力で4分間の処理を行った。
Next, in order to change the number of oxygen / nitrogen atoms on the surface, an oxygen plasma treatment and an ultraviolet treatment in the atmosphere are performed in order to change the number of oxygen / nitrogen atoms on the surface in order to strengthen the bonding force between the protective layer formed in this embodiment and the lubricant. went. In the oxygen plasma treatment, plasma was generated at a power of 150 W from a high-frequency power supply in an atmosphere in which oxygen gas was introduced at 100 mTorr, and the sample was left for 1 to 4 minutes. In the ultraviolet irradiation, a high-pressure mercury lamp equipped with a reflecting mirror was provided at a position 50 mm from the surface of the sample, and a treatment was performed at a power of 10 kW for 4 minutes.

【0024】この場合も、パーフロロポリエチル系潤滑
剤を2nmの膜厚で塗布した後、前記ヘッドを荷重3gで
押し付け、350Torrに減圧した容器内で6300rpm
で回転し、周波数5Hzのシーク動作を行った。その結
果、ラマンスペクトルにおける前記のバックグラウンド
散乱強度比及びシアノ基によるサブピーク強度比がそれ
ぞれ0.2以下及び0.03〜0.07であれば、シーク開始から
スクラッチが発生するまでの寿命が無処理の場合に比べ
て2倍以上に延びた。
Also in this case, after applying a perfluoropolyethyl-based lubricant to a thickness of 2 nm, the head is pressed with a load of 3 g, and the pressure is reduced to 350 Torr in a container at 6300 rpm.
To perform a seek operation at a frequency of 5 Hz. As a result, if the background scattering intensity ratio and the sub-peak intensity ratio due to the cyano group in the Raman spectrum are 0.2 or less and 0.03 to 0.07, respectively, the lifetime from the start of seeking to the occurrence of scratches is shorter than in the case of no treatment. More than doubled.

【0025】(実施例2)本実施例においては、実施例
1で用いた通常のバランス型スパッタリング電極の代わ
りにマグネトロン磁界の垂直成分が強くなる磁石配置の
所謂アンバランス型スパッタリング電極を用いて試料2-
1〜2-3の保護層を下記[表3]に示す条件により形成し
た。同じ成膜条件でもアンバランス型マグネトロン電極
を用いることにより同じ-250Vの基板バイアスでもバイ
アス電流密度は上昇し、約2mA/cm2に達した。
(Embodiment 2) In this embodiment, instead of the ordinary balanced sputtering electrode used in Embodiment 1, a so-called unbalanced sputtering electrode having a magnet arrangement in which the perpendicular component of the magnetron magnetic field becomes strong is used. 2-
The protective layers 1-2 were formed under the conditions shown in the following [Table 3]. Using the unbalanced magnetron electrode under the same deposition conditions, the bias current density increased even at the same substrate bias of -250 V, reaching about 2 mA / cm2.

【0026】[0026]

【表3】 [Table 3]

【0027】次に、試料2-1〜試料2-3で保護層のラマン
スペクトルを測定したうえ、実施例1に示す方法でシー
ク試験を行ったところ、下記[表4]に示すようにラマ
ンスペクトルにおける前記のバックグラウンド散乱強度
比及びシアノ基によるサブピーク強度比はそれぞれ0.1
以下及び0.03〜0.06の範囲内にあり、50k回以上のシー
ク動作を繰り返してもすべての面でスクラッチ等による
傷の発生はなかった。とくに、バイアス電流密度が約1m
A/cm2の条件で保護層を形成した試料2-2では100k回以
上のシーク動作を繰り返してもスクラッチ等による傷の
発生はなかった。
Next, the Raman spectra of the protective layers of the samples 2-1 to 2-3 were measured, and a seek test was performed by the method shown in Example 1. As a result, the Raman spectrum was measured as shown in Table 4 below. The background scattering intensity ratio and the subpeak intensity ratio due to the cyano group in the spectrum were each 0.1%.
Below and within the range of 0.03 to 0.06, no scratches or the like were generated on all surfaces even if the seek operation was repeated 50 k times or more. Especially, the bias current density is about 1m
In Sample 2-2 in which the protective layer was formed under the condition of A / cm 2, no scratch was generated even if the seek operation was repeated 100 k times or more.

【0028】[0028]

【表4】 [Table 4]

【0029】アンバランス型スパッタ電極では基板方向
に強く発散したマグネトロン磁界の垂直成分によって高
速電子を電極間に封じ込まれるため基板近傍のプラズマ
密度が上昇し、大きなバイアス電流が流れ、イオン衝撃
によるシアノ基やニトリル化合物の分解など表面改質の
効果が得られた。
In the unbalanced type sputtered electrode, high-speed electrons are trapped between the electrodes by the vertical component of the magnetron magnetic field strongly diverged in the direction of the substrate, so that the plasma density near the substrate increases, a large bias current flows, and the cyano The effect of surface modification such as decomposition of groups and nitrile compounds was obtained.

【0030】(実施例3)実施例1、2においてはアル
ゴンと窒素の混合ガスで保護層をスパッタ蒸着したが、
本実施例では、窒素の代わりに窒素と水素を混合したガ
スを用い、基板バイアスを加えないで下記[表5]に示
す条件で形成した保護層からなる試料3-1〜3-10を作
製した。
Example 3 In Examples 1 and 2, the protective layer was sputter-deposited with a mixed gas of argon and nitrogen.
In the present embodiment, samples 3-1 to 3-10 each comprising a protective layer formed under the conditions shown in the following [Table 5] without using a substrate bias and using a gas obtained by mixing nitrogen and hydrogen instead of nitrogen were prepared. did.

【0031】[0031]

【表5】 [Table 5]

【0032】次に、試料3-1〜3-10の保護層でラマン
スペクトルを測定したうえ、実施例1に示す方法でシー
ク試験を行い、下記[表6]に示す結果が得られた。こ
の結果から、保護層で測定したラマンスペクトルにおけ
る前記のバックグラウンド散乱強度比及びシアノ基によ
るサブピーク強度比がそれぞれ0.25以下及び0.03〜0.07
であれば、スクラッチが発生するまでの寿命は10回以上
であり、試料によっては50k回のシーク動作を繰り返し
てもすべての面でスクラッチ等による傷は発生しなかっ
た。
Next, the Raman spectra of the protective layers of Samples 3-1 to 3-10 were measured, and a seek test was performed by the method shown in Example 1. The results shown in Table 6 below were obtained. From this result, the background scattering intensity ratio and the sub-peak intensity ratio due to the cyano group in the Raman spectrum measured in the protective layer are 0.25 or less and 0.03 to 0.07, respectively.
In this case, the life until the scratch was generated was 10 times or more, and even if the seek operation was repeated 50k times depending on the sample, scratches and the like did not occur on all surfaces.

【0033】[0033]

【表6】 [Table 6]

【0034】(比較例1)実施例1と同じ条件の直流マ
グネトロン方式により基板バイアスを加えないで試料4-
1〜4-10の保護層を下記[表7]に示す条件により形成し
た。
(Comparative Example 1) A DC magnetron method under the same conditions as in Example 1 was applied to the sample 4- without applying a substrate bias.
The protective layers 1 to 4-10 were formed under the conditions shown in the following [Table 7].

【0035】[0035]

【表7】 [Table 7]

【0036】次に、試料4-1〜4-10について保護層のラ
マンスペクトルを測定した後、実施例1に示す方法でシ
ーク試験を行い、下記[表8]に示す結果が得られた。
Next, the Raman spectrum of the protective layer was measured for Samples 4-1 to 4-10, and a seek test was performed by the method shown in Example 1, and the results shown in Table 8 below were obtained.

【0037】[0037]

【表8】 [Table 8]

【0038】この結果、ラマンスペクトルにおけるバッ
クグラウンド散乱強度比及びシアノ基によるサブピーク
強度比がそれぞれ0.25以下及び0.03〜0.07である試料を
除いては、10k回までのシーク動作の繰り返しによりす
べての面でスクラッチ等による傷が発生し、とくにバッ
クグラウンド散乱強度比及びシアノ基によるサブピーク
強度比の大きな試料4-9、4-10などでは5k回以内の繰り
返しシーク動作でスクラッチによる傷が発生した。
As a result, except for the samples in which the background scattering intensity ratio in the Raman spectrum and the sub-peak intensity ratio due to the cyano group were 0.25 or less and 0.03 to 0.07, respectively, the repetition of the seek operation up to 10 k times resulted in all surfaces. Scratches occurred due to scratches and the like, and in particular, samples 4-9, 4-10, etc., having a large background scattering intensity ratio and a sub-peak intensity ratio due to cyano groups, caused scratches due to repeated seek operations within 5k times.

【0039】以上、実施例1〜3に示した保護層で測定
したラマンスペクトルにおけるバックグラウンド散乱強
度比及びシアノ基によるサブピーク強度比がそれぞれ0.
25以下及び0.03〜0.07である試料では、シーク開始から
スクラッチの発生するまでの寿命は10k回以上であっ
た。
As described above, the background scattering intensity ratio and the subpeak intensity ratio due to the cyano group in the Raman spectra measured with the protective layers shown in Examples 1 to 3 were each 0.1.
In the samples of 25 or less and 0.03 to 0.07, the life from the start of seeking to the occurrence of scratch was 10 k times or more.

【0040】一方、保護層のラマンスペクトルにおける
バックグラウンド散乱強度比が0.25を上回りシアノ基に
よるサブピーク強度比が0.03未満あるいは0.07を上回る
比較例1の試料では、シークの開始から10k回以内に
保護層の破壊が起こりスクラッチが発生した。
On the other hand, in the sample of Comparative Example 1 in which the background scattering intensity ratio in the Raman spectrum of the protective layer was more than 0.25 and the subpeak intensity ratio due to the cyano group was less than 0.03 or more than 0.07, the protective layer was within 10 k times from the start of the seek. Was destroyed and scratches occurred.

【0041】図3、図4は、それぞれ実施例1〜3及び比
較例1に示した各試料で前記実施例1に示すシーク試験
によりスクラッチが発生するまでのシーク回数を保護層
のラマンスペクトルにおけるバックグラウンド散乱強度
比及びシアノ基によるサブピーク強度比に対してプロッ
トしたものである。図3、図4で示すように、ラマンス
ペクトルにおける前記のバックグラウンド散乱強度比及
び前記のシアノ基によるサブピーク強度比がそれぞれ0.
25以下及び0.03〜0.07であれば、実施例1に示したシー
ク試験においてヘッドの間欠接触による衝撃で生じる塑
性変形は小さく、スクラッチ等による傷の発生は抑えら
れ、摺動耐力は大幅に向上した。
FIGS. 3 and 4 show the number of seeks until scratches were generated in the respective samples shown in Examples 1 to 3 and Comparative Example 1 by the seek test shown in Example 1 in the Raman spectrum of the protective layer. It is plotted against a background scattering intensity ratio and a subpeak intensity ratio due to a cyano group. As shown in FIGS. 3 and 4, the background scattering intensity ratio in the Raman spectrum and the sub-peak intensity ratio due to the cyano group in the Raman spectrum were each 0.
If it is 25 or less and 0.03 to 0.07, in the seek test shown in Example 1, the plastic deformation caused by the impact due to the intermittent contact of the head was small, the generation of scratches due to scratches etc. was suppressed, and the sliding resistance was greatly improved. .

【0042】さらに、このようにシーク試験に於ける耐
久性の優れたサンプルのもうひとつの特徴は、テクスチ
ャを施していない表面の中心線平均粗さが1nm以下と極
めて平滑なことである。
Further, another characteristic of the sample having excellent durability in the seek test is that the center line average roughness of the untextured surface is extremely smooth at 1 nm or less.

【0043】(実施例5)次に、本発明の磁気記録媒体
を備えた磁気記憶装置の一例について図5を用いて説明
する。この磁気記憶装置は磁気ヘッド6、及びその駆動
部7と、磁気ヘッド6の記録再生信号処理手段8と磁気
記録媒体9とこれを回転させる駆動部10とを備える周
知の構造を持つ磁気記憶装置である。磁気ヘッド6は記
録用の電磁誘導型磁気ヘッドと再生用の磁気抵抗効果型
磁気ヘッドを併せ持つ複合型ヘッドで、浮上面レールの
面積が3.28mm2で質量が6mgのヘッドスライダーとからな
る。
(Embodiment 5) Next, an example of a magnetic storage device provided with the magnetic recording medium of the present invention will be described with reference to FIG. This magnetic storage device has a well-known structure including a magnetic head 6, a drive unit 7 for the magnetic head 6, a recording / reproducing signal processing means 8 for the magnetic head 6, a magnetic recording medium 9, and a drive unit 10 for rotating the medium. It is. The magnetic head 6 is a composite type head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive effect type magnetic head for reproduction, and has a head slider having an air bearing surface rail area of 3.28 mm2 and a mass of 6 mg.

【0044】この磁気記憶装置に、前記実施例1〜3に
示した、保護層のラマンスペクトルにおける前記のバッ
クグラウンド散乱強度比及び前記のシアノ基によるサブ
ピーク強度比がそれぞれ0.2以下及び0.03〜0.07である
磁気記録媒体を組み込んで、ヘッド浮上量30nm、線記録
密度210kBPI、トラック密度9.6kTPIで記録再生評価を行
ったところ、何れの磁気記録媒体においても1平方イン
チ当たり2ギガビットの記録密度に対し、良好な記録再
生特性が得られた。また、内周から外周までのヘッドシ
ーク試験5万回後のビットエラー数は何れの磁気記録媒
体においても10ビット/面以下であり、MTBFで50万時間
が達成できた。
In this magnetic storage device, the background scattering intensity ratio and the sub-peak intensity ratio due to the cyano group in the Raman spectrum of the protective layer shown in Examples 1 to 3 were 0.2 or less and 0.03 to 0.07, respectively. Incorporating a certain magnetic recording medium, the head flying height was 30 nm, the linear recording density was 210 kBPI, the track density was 9.6 kTPI, and the recording and reproduction evaluation was performed.For any magnetic recording medium, for a recording density of 2 gigabits per square inch, Good recording / reproducing characteristics were obtained. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / surface or less in any of the magnetic recording media, and 500,000 MTBF was achieved.

【0045】これに対して、比較例1に示した、保護層
のラマンスペクトルにおける前記のバックグラウンド散
乱強度比が0.25を上回り、前記のシアノ基によるサブピ
ーク強度比が0.03未満あるいは0.07を上回る磁気記録媒
体を組み込んで、ヘッド浮上量30nm、線記録密度210kBP
I、トラック密度9.6kTPIで記録再生評価を行ったとこ
ろ、内周から外周までのヘッドシーク試験5万回後のビ
ットエラー数は何れの磁気記録媒体においても100ビ
ット/面以上であり、MTBFは5万時間以下であっ
た。
On the other hand, in the Raman spectrum of the protective layer, the background scattering intensity ratio in the Raman spectrum of the protective layer exceeded 0.25 and the subpeak intensity ratio due to the cyano group was less than 0.03 or more than 0.07, as shown in Comparative Example 1. Built-in media, head flying height 30nm, linear recording density 210kBP
I, the recording and reproduction evaluation was performed at a track density of 9.6 kTPI. The number of bit errors after 50,000 times of the head seek test from the inner circumference to the outer circumference was 100 bits / surface or more in any magnetic recording medium. It was less than 50,000 hours.

【0046】次に、磁気ヘッド6として浮上面レールの
面積が1.25平方mmで質量が2mgの磁気ヘッドスライダー
上に形成されたものを用いて、ヘッド浮上量23nm、線記
録密度240kBPI、トラック密度16kTPIで記録再生評価を
行った。この場合も、前記実施例1〜3に示した、保護
層のラマンスペクトルにおいて前記のバックグラウンド
散乱強度比及前記のシアノ基によるサブピーク強度比が
それぞれ0.25以下及び0.03〜0.07である本発明による磁
気記録媒体に対しては、1平方インチ当たり3.8ギガビッ
トの記録密度で良好な記録再生特性が得られた。また、
内周から外周までのヘッドシーク試験5万回後のビット
エラー数は何れの磁気記録媒体においても10ビット/面
以下であり、MTBFで70万時間が達成できた。
Next, using a magnetic head 6 formed on a magnetic head slider having an air bearing surface rail area of 1.25 square mm and a mass of 2 mg, a head flying height of 23 nm, a linear recording density of 240 kBPI, and a track density of 16 kTPI The recording / reproduction evaluation was performed. Also in this case, the magnetic field according to the present invention in which the background scattering intensity ratio and the subpeak intensity ratio due to the cyano group are 0.25 or less and 0.03 to 0.07 in the Raman spectrum of the protective layer shown in Examples 1 to 3, respectively. For the recording medium, good recording / reproducing characteristics were obtained at a recording density of 3.8 gigabits per square inch. Also,
The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / surface or less in any of the magnetic recording media, and 700,000 hours could be achieved with MTBF.

【0047】一方、比較例1に示した、保護層のラマン
スペクトルにおいて前記のバックグラウンド散乱強度比
が0.25を上回り前記のシアノ基によるサブピーク強度比
が0.03未満あるいは0.07を上回る磁気記録媒体を組み込
んだ磁気記憶装置は、内周から外周までのヘッドシーク
試験5万回後のビットエラー数は何れの磁気記録媒体に
おいても100ビット/面以上であり、MTBFは5万
時間以下であった。
On the other hand, in the Raman spectrum of the protective layer shown in Comparative Example 1, the magnetic recording medium in which the background scattering intensity ratio was more than 0.25 and the subpeak intensity ratio due to the cyano group was less than 0.03 or more than 0.07 was incorporated. In the magnetic storage device, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 100 bits / surface or more and MTBF was 50,000 hours or less in any of the magnetic recording media.

【0048】以上より、本発明による保護層のラマンス
ペクトルにおいて1550cm-1付近に現れる主ピークに対す
るバックグラウンドの散乱強度比及び2210cm-1付近のシ
アノ基によるサブピーク強度比がそれぞれ0.25以下及び
0.03〜0.07であった磁気記録媒体を組み込んだ磁気記憶
装置では、保護層が薄く高記録密度になっても高い信頼
性が得られた。
As described above, in the Raman spectrum of the protective layer according to the present invention, the ratio of the background scattering intensity to the main peak appearing at around 1550 cm -1 and the ratio of the subpeak intensity due to the cyano group at around 2210 cm -1 are 0.25 or less, respectively.
In a magnetic storage device incorporating a magnetic recording medium of 0.03 to 0.07, high reliability was obtained even when the protective layer was thin and the recording density was high.

【0049】[0049]

【発明の効果】以上のように、本発明による少なくとも
窒素を含むダイヤモンド状カーボンからなる保護層のラ
マンスペクトルにおいて1550cm-1付近に現れる主ピーク
に対するバックグラウンドの散乱強度比及び2210cm-1付
近のシアノ基によるサブピーク強度比がそれぞれ0.25以
下及び0.03〜0.07である磁気記録媒体を組み込んだ磁気
記憶装置では、保護層が薄く高記録密度になっても高い
信頼性が得られた。
As described above, in the Raman spectrum of the protective layer comprising diamond-like carbon containing at least nitrogen according to the present invention, the ratio of the background scattering intensity to the main peak appearing at about 1550 cm-1 and the cyano intensity at about 2210 cm-1 are obtained. In a magnetic storage device incorporating a magnetic recording medium having sub-peak intensity ratios of 0.25 or less and 0.03 to 0.07 respectively, high reliability was obtained even when the protective layer was thin and the recording density was high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気ディスク用記録媒体の構成図。FIG. 1 is a configuration diagram of a recording medium for a magnetic disk.

【図2】保護層のラマンスペクトルを示す図。FIG. 2 is a diagram showing a Raman spectrum of a protective layer.

【図3】保護層のラマンスペクトルにおけるバックグラ
ウンド散乱強度比と減圧下でのシーク試験でスクラッチ
が発生するまでのシーク回数の関係図。
FIG. 3 is a graph showing a relationship between a background scattering intensity ratio in a Raman spectrum of a protective layer and the number of seeks until a scratch occurs in a seek test under reduced pressure.

【図4】保護層のラマンスペクトルにおけるシアノ基に
よるサブピーク強度比と減圧下でのシーク試験でスクラ
ッチが発生するまでのシーク回数の関係図。
FIG. 4 is a diagram showing a relationship between a subpeak intensity ratio due to a cyano group in a Raman spectrum of a protective layer and the number of seeks until a scratch occurs in a seek test under reduced pressure.

【図5】本発明による磁気記録媒体を備えた磁気記憶装
置の構成図。
FIG. 5 is a configuration diagram of a magnetic storage device provided with a magnetic recording medium according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…Cr系下地層、3…CoCr系磁性層、4…炭素に
窒素、酸素を含む保護層、5…潤滑層、6…磁気ヘッド、
7…磁気ヘッド駆動部、8…記録再生信号処理系、9…磁
気記録媒体、10…磁気記録媒体駆動部。
1 ... substrate, 2 ... Cr-based underlayer, 3 ... CoCr-based magnetic layer, 4 ... Protective layer containing nitrogen and oxygen in carbon, 5 ... Lubrication layer, 6 ... Magnetic head,
7: magnetic head drive unit, 8: recording / reproducing signal processing system, 9: magnetic recording medium, 10: magnetic recording medium drive unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏瀬 英一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 AA02 AA05 DA03 FA02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Kashise 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D006 AA02 AA05 DA03 FA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基材上に形成された磁性層と、前記磁性層
上に形成された保護層を備えた磁気記録媒体において、
前記保護層が炭素と少なくとも窒素を含む皮膜からな
り、前記皮膜のラマンスペクトルが1500cm-1付近の主ピ
ークと2210cm-1付近のサブピークを有し、前記主ピーク
に対するバックグラウンドの散乱強度と前記主ピークに
対する前記サブピークの強度比がそれぞれ0.25以下及び
0.03〜0.07であることを特徴とする磁気記録媒体。
1. A magnetic recording medium comprising a magnetic layer formed on a base material and a protective layer formed on the magnetic layer,
The protective layer is composed of a film containing carbon and at least nitrogen, and the Raman spectrum of the film has a main peak near 1500 cm-1 and a sub-peak near 2210 cm-1. The intensity ratio of the sub-peak to peak is 0.25 or less and
A magnetic recording medium having a ratio of 0.03 to 0.07.
【請求項2】前記保護層が炭素と少なくとも窒素を含む
皮膜から成り、前記皮膜の窒素/炭素の原子数比が0.05
〜0.3の範囲内にあることを特徴とする請求項1記載の磁
気記録媒体。
2. The method according to claim 1, wherein the protective layer comprises a film containing carbon and at least nitrogen, wherein the nitrogen / carbon atomic ratio of the film is 0.05.
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is in a range of 0.3 to 0.3.
【請求項3】前記保護層が炭素と少なくとも窒素、酸素
を含む皮膜から成り、X線光電子分光法による電子取出
角30度以下で測定した前記皮膜の表面での酸素/窒素の
原子数比が0.5〜2.0の範囲内にあることを特徴とする請
求項1または2記載の磁気記録媒体。
3. The protective layer comprises a film containing carbon, at least nitrogen and oxygen, and the atomic ratio of oxygen / nitrogen on the surface of the film measured by X-ray photoelectron spectroscopy at an electron extraction angle of 30 ° or less. 3. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is within a range of 0.5 to 2.0.
【請求項4】前記保護層が5〜20at%の水素を含むことを
特徴とする請求項1から3までのいずれかに記載の磁気
記録媒体。
4. The magnetic recording medium according to claim 1, wherein said protective layer contains 5 to 20 at% of hydrogen.
【請求項5】前記保護層の膜厚が10nm以下であり、且
つ、表面の中心線平均粗さRaが1nm以下であることを
特徴とする請求項1から4までのいずれかに記載の磁気
記録媒体。
5. The magnetic device according to claim 1, wherein the thickness of the protective layer is 10 nm or less, and the center line average roughness Ra of the surface is 1 nm or less. recoding media.
【請求項6】磁気記録媒体と、前記磁気記録媒体を記録
方向に駆動する駆動部と、記録部と再生部を備える磁気
ヘッドと、前記磁気ヘッドを上記磁気記録媒体に対して
相対運動させる手段と、上記磁気ヘッドへの信号入力と
該磁気ヘッドからの出力信号再生を行うための記録再生
信号処理手段を有する磁気記憶装置であり、前記磁気ヘ
ッドの再生部が磁気抵抗効果型磁気ヘッドで構成され、
前記磁気記録媒体は請求項1から5までのいずれかに記載
の磁気記録媒体であることを特徴とする磁気記憶装置。
6. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and means for moving the magnetic head relative to the magnetic recording medium. And a recording / reproducing signal processing unit for reproducing a signal input to the magnetic head and reproducing an output signal from the magnetic head, wherein a reproducing unit of the magnetic head comprises a magnetoresistive effect type magnetic head. And
6. A magnetic storage device, wherein the magnetic recording medium is the magnetic recording medium according to claim 1.
【請求項7】磁気記録媒体と、前記磁気記録媒体を記録
方向に駆動する駆動部と、記録部と再生部を備える磁気
ヘッドと、上記磁気ヘッドを上記磁気記録媒体に対して
相対運動させる手段と、上記磁気ヘッドへの信号入力と
該磁気ヘッドからの出力信号再生を行うための記録再生
信号処理手段を有する磁気記憶装置であり、前記磁気ヘ
ッドが浮上面レールの面積が1.25mm2以下で質量が2mg以
下の磁気ヘッドスライダー上に形成され、前記磁気記録
媒体は請求項1から5までのいずれかに記載の磁気記録媒
体。
7. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and means for moving the magnetic head relative to the magnetic recording medium. A magnetic storage device having recording / reproducing signal processing means for performing signal input to the magnetic head and reproducing output signals from the magnetic head, wherein the magnetic head has an air bearing surface rail area of 1.25 mm 2 or less. 6. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is formed on a magnetic head slider having a mass of 2 mg or less.
JP10233830A 1998-08-20 1998-08-20 Magnetic recording medium and magnetic storage device using the same Pending JP2000067428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10233830A JP2000067428A (en) 1998-08-20 1998-08-20 Magnetic recording medium and magnetic storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10233830A JP2000067428A (en) 1998-08-20 1998-08-20 Magnetic recording medium and magnetic storage device using the same

Publications (1)

Publication Number Publication Date
JP2000067428A true JP2000067428A (en) 2000-03-03

Family

ID=16961239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10233830A Pending JP2000067428A (en) 1998-08-20 1998-08-20 Magnetic recording medium and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JP2000067428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974642B2 (en) 2000-03-15 2005-12-13 Fujitsu Limited Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
US7597973B2 (en) 2003-05-28 2009-10-06 Hoya Corporation Magnetic disk and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974642B2 (en) 2000-03-15 2005-12-13 Fujitsu Limited Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
US7597973B2 (en) 2003-05-28 2009-10-06 Hoya Corporation Magnetic disk and method of producing the same

Similar Documents

Publication Publication Date Title
US5567512A (en) Thin carbon overcoat and method of its making
JP5452928B2 (en) Method for manufacturing magnetic recording medium and method for manufacturing laminate
JP2005149553A (en) Magnetic disk, method for manufacturing the magnetic disk, and method for evaluating the magnetic disk
KR940002327B1 (en) Metallic thin film magnetic recording medium having a hard protective layer
US4865916A (en) Magnetic recording medium method for producing the same, and method for recording and reproduction using the same and magnetic head
JP2005158092A (en) Magnetic recording medium, magnetic storage device, and manufacturing method for magnetic recording medium
JPH06195691A (en) Magnetic recording medium and its production
US7175926B2 (en) Dual-layer carbon-based protective overcoats for recording media by filtered cathodic ARC deposition
US20060029806A1 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JP2006221782A (en) Magnetic recording medium
US7147943B2 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
US6974642B2 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JP2000067428A (en) Magnetic recording medium and magnetic storage device using the same
JPH1139647A (en) Magnetic recording medium, its production and magnetic storage device
US5013583A (en) Method of producing a magnetic recording medium
JPH11149631A (en) Magnetic record medium and magnetic storage device using same
JP2006085890A (en) Magnetic recording medium and production method thereof
US20060153975A1 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JPH11306539A (en) Magnetic storage device
JP2008276912A (en) Vertical magnetic recording medium and its manufacturing method
JP2003223710A (en) Magnetic recording medium, lubrication film and magnetic recording device
JPH07192254A (en) Magnetic disk and its manufacture
JPH06267063A (en) Magnetic disk and manufacture thereof
JPS58182129A (en) Magnetic recording medium
JP2004054991A (en) Magnetic recording medium, its manufacturing method, and magnetic storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224