JP2000066739A - Voltage adjustment device - Google Patents

Voltage adjustment device

Info

Publication number
JP2000066739A
JP2000066739A JP10237886A JP23788698A JP2000066739A JP 2000066739 A JP2000066739 A JP 2000066739A JP 10237886 A JP10237886 A JP 10237886A JP 23788698 A JP23788698 A JP 23788698A JP 2000066739 A JP2000066739 A JP 2000066739A
Authority
JP
Japan
Prior art keywords
circuit
transformer
secondary winding
current
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10237886A
Other languages
Japanese (ja)
Other versions
JP3338655B2 (en
Inventor
Nagataka Seki
長隆 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP23788698A priority Critical patent/JP3338655B2/en
Publication of JP2000066739A publication Critical patent/JP2000066739A/en
Application granted granted Critical
Publication of JP3338655B2 publication Critical patent/JP3338655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage adjustment device capable of protecting an AC switch without fusing a fuse by an excess voltage at the time of lightning, a surge voltage and the temporary excess current of malfunction or the like and performing restoration in an early stage. SOLUTION: In this voltage adjustment device for switching a tap, the optional tap voltage of an excitation transformer secondary winding 5b is defined as V. Then, total short-circuit impedance Ze is selected so as to make a value (V/Ze) for which the tap voltage V is divided by the total short-circuit impedance Ze of the fuses 31 and 32 connected to the tap circuit, the closing circuit of the AC switch and reactors 51 and 52 be smaller than a thyristor allowable surge on current ITH and a fuse fusing current IF within several cycles from short-circuit generation and be smaller than the thyristor allowable surge on current ITH and be larger than the fuse fusing current IF between several cycles and several tens cycles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は配電線や負荷の電源
線に設けられる電圧調整装置の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a voltage regulator provided on a power line of a distribution line or a load.

【0002】[0002]

【従来の技術】一般に配電線などの電源線には、負荷の
増大による電圧降下や、負荷を切離した後、残ったコン
デンサによる電圧上昇などの電圧変動に対応するため電
源線の途中に電圧調整装置が設けられている。
2. Description of the Related Art Generally, a power supply line such as a distribution line has a voltage adjustment in the middle of the power supply line in order to cope with a voltage drop due to an increase in a load or a voltage change such as a voltage increase due to a remaining capacitor after the load is disconnected. A device is provided.

【0003】従来の電圧調整装置3(1相分)は、図3
に示すように電源線1、2の間に設けられている。電圧
調整装置3の構成は電源線1に直列的に直列変圧器4が
接続され、また電源線1、2間に並列的に励磁変圧器5
が接続されている。励磁変圧器5の二次巻線5bはタッ
プA、B、Cが設けられ、この端子と前記直列変圧器4
の二次巻線4bとは、それぞれ交流スイッチ11、1
2、13、14、15、16を介して接続され、これら
の交流スイッチ11〜16は、逆並列接続された逆阻止
3端子型サイリスタが用いられている。
A conventional voltage regulator 3 (for one phase) is shown in FIG.
Are provided between the power supply lines 1 and 2 as shown in FIG. The voltage regulator 3 has a configuration in which a series transformer 4 is connected in series to a power line 1, and an exciting transformer 5 is connected in parallel between the power lines 1 and 2.
Is connected. The secondary winding 5b of the exciting transformer 5 is provided with taps A, B, and C.
And the secondary winding 4b of the AC switch 11, 1
2, 13, 14, 15, and 16, and these AC switches 11 to 16 use reverse-blocking three-terminal thyristors connected in anti-parallel.

【0004】またこれら交流スイッチ11〜16と並列
に、抵抗器7と交流スイッチ17とで構成されたバイパ
ス回路6が接続されている。8は直列変圧器4の二次巻
線4bに直列に接続された限流リアクトルである。また
9は検出用変圧器で、これは制御装置10に接続されて
いる。この制御装置10は、前記検出用変圧器9に接続
された電圧検出部20、基準電圧部21、これらに接続
された電圧比較器22、およびタイマを内蔵したタップ
選択器23とから構成されている。
[0004] A bypass circuit 6 composed of a resistor 7 and an AC switch 17 is connected in parallel with the AC switches 11 to 16. Reference numeral 8 denotes a current limiting reactor connected in series to the secondary winding 4b of the series transformer 4. Reference numeral 9 denotes a detection transformer, which is connected to the control device 10. The control device 10 includes a voltage detection unit 20, a reference voltage unit 21, a voltage comparator 22 connected thereto, and a tap selector 23 having a built-in timer connected to the detection transformer 9. I have.

【0005】この電圧調整装置3において、電源線1、
2間の電圧を6.6kV、直列変圧器4の一次側と二次
側の巻数比を1、励磁変圧器5の二次巻線5bのタップ
AB間電圧100V、タップBC間電圧を200Vとす
る。この状態で電圧を上げる場合には、交流スイッチ1
2、16の対をオンして、残りの交流スイッチ11、1
3〜15はオフのままにすると、直列変圧器4の二次巻
線4bには、励磁変圧器5のタップBC間電圧の電圧2
00Vが印加され、これが6.6kVに加算されて電源
線1の出側電圧は6.8kVとなる。
In this voltage regulator 3, the power supply lines 1,
The voltage between 6.6 kV, the turns ratio between the primary side and the secondary side of the series transformer 4 is 1, the voltage between the taps AB of the secondary winding 5b of the exciting transformer 5 is 100V, and the voltage between the taps BC is 200V. I do. When increasing the voltage in this state, the AC switch 1
Turn on the pairs 2 and 16 and switch the remaining AC switches 11 and 1
When 3 to 15 are kept off, the secondary winding 4 b of the series transformer 4 has the voltage 2 between the tap BC and the voltage of the exciting transformer 5.
00V is applied, which is added to 6.6 kV, and the output voltage of the power supply line 1 becomes 6.8 kV.

【0006】次に出側電圧を6.9kVに上げる場合に
は、交流スイッチ11、16をオンし、残りの交流スイ
ッチ12〜15をオフにするとタップAC間電圧は30
0Vなので、直列変圧器4の二次巻線4bには、励磁変
圧器5の二次巻線5bの電圧300Vが加算されて電源
線1の出側電圧は6.9kVに上がる。
When the output voltage is increased to 6.9 kV, the AC switches 11 and 16 are turned on, and the remaining AC switches 12 to 15 are turned off.
Since the voltage is 0 V, the voltage 300V of the secondary winding 5b of the exciting transformer 5 is added to the secondary winding 4b of the series transformer 4, and the output voltage of the power supply line 1 rises to 6.9 kV.

【0007】電圧調整装置は、交流スイッチ11〜16
の半導体デバイスとして逆阻止三端子型サイリスタを逆
並列接続して使用しているので、サイリスタの特性とし
てターンオフ(オンからオフへの切換え)から完全にオ
フ能力を回復させるのは、サイリスタを流れる電流が0
になってから、ある時間(百マイクロ秒〜数百マイクロ
秒)逆電圧を印加することが必要である。これはもし交
流スイッチ15と16が同時にオン状態になると、タッ
プBC間が短絡されてサイリスタが破損するおそれがあ
るからである。このタップ間短絡を防止するためにタッ
プ切換時には一旦、交流スイッチに流れている電流をバ
イパス回路6に移して交流スイッチがオフするのに十分
な時間を経てから、次に選択された交流スイッチに電流
を流すようにしている。
[0007] The voltage adjusting device comprises AC switches 11 to 16
Because a reverse blocking three-terminal thyristor is connected in anti-parallel as a semiconductor device of the type described above, the characteristic of the thyristor is that the current that flows through the thyristor completely recovers the off-capability from turn-off (switching from on to off). Is 0
After that, it is necessary to apply a reverse voltage for a certain time (one hundred microseconds to several hundred microseconds). This is because if the AC switches 15 and 16 are turned on at the same time, the tap BC may be short-circuited and the thyristor may be damaged. In order to prevent the short circuit between taps, at the time of tap switching, a current flowing in the AC switch is temporarily transferred to the bypass circuit 6 and a sufficient time has elapsed for the AC switch to be turned off. The current flows.

【0008】この1過程を図4に基づいて説明すると、
交流スイッチ12と交流スイッチ16がオンして直列変
圧器4の二次巻線4bと励磁変圧器5の二次巻線5bが
接続されている状態で、直列変圧器4の一次巻線4a側
に負荷電流ILが流れていると、その二次巻線4b側に
は一次電流による磁束を打ち消す向きに電流IL2 が流
れる。従ってこの電流IL2 は励磁変圧器5の二次巻線
5bと交流スイッチ12、16にも流れる。この状態で
バイパス回路6の交流スイッチ17のゲートに制御装置
10から制御信号を時刻t1 で与えると交流スイッチ1
7がオンする。この後、やや遅れて時刻t2 で交流スイ
ッチ12と16のゲート信号を停止する。
This one process will be described with reference to FIG.
When the AC switch 12 and the AC switch 16 are turned on and the secondary winding 4b of the series transformer 4 and the secondary winding 5b of the exciting transformer 5 are connected, the primary winding 4a side of the series transformer 4 When a load current IL flows through the secondary winding 4b, a current IL2 flows in a direction to cancel the magnetic flux due to the primary current. Therefore, this current IL2 also flows through the secondary winding 5b of the exciting transformer 5 and the AC switches 12 and 16. In this state, when a control signal is applied from the control device 10 to the gate of the AC switch 17 of the bypass circuit 6 at time t1, the AC switch 1
7 turns on. Thereafter, the gate signals of the AC switches 12 and 16 are stopped at time t2 with a slight delay.

【0009】交流スイッチ12、16が導通している状
態では、直列変圧器4の二次巻線4bには200Vが印
加されているので、バイパス回路6の交流スイッチ17
がオンすると抵抗器7にも200Vが印加される。この
結果、抵抗器7にはIr=200/R(但しRは抵抗器
7の抵抗値)の電流が流れ、励磁変圧器5にはIL2+
Irの電流が流れる。交流スイッチ12、16は時刻t
2 以降にその電流が0になった時点t3 でオフに転じ
る。その後、直列変圧器4の二次電流IL2 はバイパス
回路6を介して流れる。
When the AC switches 12 and 16 are conducting, since 200 V is applied to the secondary winding 4b of the series transformer 4, the AC switch 17 of the bypass circuit 6 is turned on.
Is turned on, 200 V is also applied to the resistor 7. As a result, a current of Ir = 200 / R (where R is the resistance value of the resistor 7) flows through the resistor 7, and IL2 + flows through the exciting transformer 5.
Ir current flows. AC switches 12 and 16 are at time t
After that, the current turns off at time t3 when the current becomes zero. Thereafter, the secondary current IL2 of the series transformer 4 flows through the bypass circuit 6.

【0010】次に選択する交流スイッチ11、16に時
刻t4 でゲート信号を与えた後、バイパス回路6の交流
スイッチ17のゲート信号を時刻t5 で止める。この交
流スイッチ17はそのゲート信号を止めた直後に電流が
0となる時刻t6 でオフする。それ以降、負荷電流IL
2 は、交流スイッチ11、16を経て励磁変圧器5に流
れる。交流スイッチ11、16が導通することにより直
列変圧器4の二次巻線4bには300Vが印加されて電
源線1、2の出側電圧は6.9kVに上がる。
After a gate signal is supplied to the selected AC switches 11 and 16 at time t4, the gate signal of the AC switch 17 of the bypass circuit 6 is stopped at time t5. The AC switch 17 is turned off at time t6 when the current becomes 0 immediately after the gate signal is stopped. Thereafter, the load current IL
2 flows to the exciting transformer 5 via the AC switches 11 and 16. When the AC switches 11 and 16 conduct, 300 V is applied to the secondary winding 4 b of the series transformer 4, and the output voltages of the power lines 1 and 2 rise to 6.9 kV.

【0011】このように、タップ切換えを行なう場合に
は、サイリスタで形成された交流スイッチ11〜16の
うちオンしている2つの交流スイッチを流れる電流をバ
イパス回路6に一旦移して、全ての交流スイッチ11〜
16をオフした後、次に選択された2つの交流スイッチ
をオンにするという過程を経ることによりタップの切換
を確実に行なうようになっている。
As described above, when the tap switching is performed, the current flowing through the two AC switches that are turned on among the AC switches 11 to 16 formed by the thyristors is temporarily transferred to the bypass circuit 6, and all the AC currents are switched. Switches 11 to
After turning off the switch 16, the two selected AC switches are turned on, so that the taps can be reliably switched.

【0012】ここでタップ切換え時の限流リアクトル8
の作用を考える。バイパス回路6に電流が流れている際
には、直列変圧器4の二次巻線4bにはIL2 ・Zs の
電圧が印加される。ここでZs は直列変圧器4の二次巻
線4b、限流リアクトル8およびバイパス回路6の内部
の合成インピーダンスである。この場合、図4に矢印で
示すように次の交流スイッチ11、16がオンすると、
直列変圧器4の二次巻線4bには再び同一方向の電圧が
印加されることがある。
Here, the current limiting reactor 8 at the time of tap switching
Consider the action of When a current flows through the bypass circuit 6, a voltage of IL2.Zs is applied to the secondary winding 4b of the series transformer 4. Here, Zs is a combined impedance inside the secondary winding 4b of the series transformer 4, the current limiting reactor 8, and the bypass circuit 6. In this case, when the next AC switches 11 and 16 are turned on as indicated by arrows in FIG.
A voltage in the same direction may be applied to the secondary winding 4b of the series transformer 4 again.

【0013】直列変圧器4はタップ電圧の最高値(この
場合は300V)に合わせて鉄心のサイズを決めている
ので、続けて同一方向の電圧が印加されると鉄心は飽和
する。そのため、励磁変圧器5の二次巻線5bから見た
インピーダンスが低下し、交流スイッチ、限流リアクト
ル8および直列変圧器4の二次巻線4bを通る電流はI
L2 よりはるかに大きな電流が流れる可能性があり、そ
の電流を制御するのが限流リアクトル8の役割である。
Since the size of the core of the series transformer 4 is determined in accordance with the maximum value of the tap voltage (300 V in this case), the core is saturated when a voltage is continuously applied in the same direction. Therefore, the impedance seen from the secondary winding 5b of the exciting transformer 5 decreases, and the current passing through the AC switch, the current limiting reactor 8, and the secondary winding 4b of the series transformer 4 becomes I
A current much larger than L2 may flow, and the role of the current limiting reactor 8 is to control the current.

【0014】限流リアクトル8は、大電流が流れる際に
飽和してインピーダンスが低下することがないように、
通常は空心リアクトルを使用している。このため必然的
に外形は大きく、巻線長は増大し、電圧調整装置全体の
外形が大きくなり、コストアップや損失増加の要因とな
っていた。
The current limiting reactor 8 is designed to prevent the impedance from lowering due to saturation when a large current flows.
Usually, an air-core reactor is used. For this reason, the outer shape is inevitably large, the winding length is increased, and the outer shape of the entire voltage regulator is increased, resulting in an increase in cost and loss.

【0015】[0015]

【発明が解決しようとする課題】本発明は上記欠点を除
去し、装置の小型化、低コスト化を図ることができる電
圧調整装置を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a voltage regulator capable of eliminating the above-mentioned disadvantages and reducing the size and cost of the device.

【0016】[0016]

【課題を解決するための手段】本発明の請求項1記載の
電圧調整装置は、電源線に直列的に接続された直列変圧
器の二次巻線と、電源線間に並列的に接続された励磁変
圧器のタップ付き二次巻線とを、サイリスタで形成され
た複数の交流スイッチを介して接続し、これら交流スイ
ッチにバイパス回路を並列に接続して、タップ切換え時
にタップ選択器から切換信号を出力して交流スイッチに
流れる電流を、一旦、バイパス回路に流してから次に選
択される交流スイッチをオンさせてタップの切換えを行
なう電圧調整装置において、前記励磁変圧器の二次巻線
最大タップ電圧Vを,前記直列変圧器二次巻線側短絡イ
ンピーダンスZs2と励磁変圧器最大タップ間短絡イン
ピーダンスZeとの和で除した値(V/(Zs2+Z
e) )が、交流電源の少なくとも数サイクル以内におけ
るサイリスタ許容サージオン電流ITH、ヒューズ溶断
電流IFまたは配線用遮断器トリップ電流ICBのいず
れよりも十分小さくなるように、直列変圧器二次巻線側
短絡インピーダンスZs2と励磁変圧器最大タップ間短
絡インピーダンスZeを選定したことを特徴とするもの
である。
According to a first aspect of the present invention, there is provided a voltage regulator connected in parallel between a power supply line and a secondary winding of a series transformer connected in series to a power supply line. Connected to the secondary winding with a tap of the exciting transformer via a plurality of AC switches formed of thyristors, and a bypass circuit is connected in parallel to these AC switches, and the tap is switched from the tap selector when switching taps. In a voltage regulator for outputting a signal and flowing a current flowing through an AC switch to a bypass circuit, and then switching on a tap by turning on a next selected AC switch, a secondary winding of the exciting transformer is provided. The value (V / (Zs2 + Z) obtained by dividing the maximum tap voltage V by the sum of the series transformer secondary winding side short-circuit impedance Zs2 and the exciting transformer maximum inter-tap short-circuit impedance Ze.
e) The series transformer secondary winding side short circuit so that) is sufficiently smaller than the thyristor allowable surge-on current ITH, the fuse blowing current IF or the wiring breaker trip current ICB within at least several cycles of the AC power supply. An impedance Zs2 and a short-circuit impedance Ze between the maximum taps of the exciting transformer are selected.

【0017】また請求項2記載の電圧調整装置は、前記
励磁変圧器二次巻線の中間タップ部に短絡電流制御リア
クトルを挿入したことを特徴とするものである。
According to a second aspect of the present invention, a short-circuit current control reactor is inserted into an intermediate tap portion of the secondary winding of the exciting transformer.

【0018】[0018]

【発明の実施の形態】以下本発明の実施の一形態を図1
を参照して詳細に説明する。図1において40は直列変
圧器、40bはその二次巻線、50は励磁変圧器、50
bはその二次巻線である。励磁変圧器50と直列変圧器
40は、それぞれ図3に示す従来の励磁変圧器5と直列
変圧器4の漏れインダクタンスより大きくして、短絡イ
ンピーダンスを大としたものである。また図3に示す装
置では限流リアクトル8が直列変圧器4の飽和時に交流
スイッチに流れる過電流値を規定しているが、図1の装
置ではこの限流リアクトル8を除いた構成となってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIG.
This will be described in detail with reference to FIG. In FIG. 1, 40 is a series transformer, 40b is its secondary winding, 50 is an exciting transformer, 50
b is the secondary winding. The exciting transformer 50 and the series transformer 40 are respectively larger than the leakage inductance of the conventional exciting transformer 5 and the series transformer 4 shown in FIG. Further, in the device shown in FIG. 3, the current limiting reactor 8 regulates an overcurrent value flowing through the AC switch when the series transformer 4 is saturated, but the device of FIG. 1 has a configuration excluding the current limiting reactor 8. I have.

【0019】前記励磁変圧器二次巻線50bの最大タッ
プ電圧Vとし、前記直列変圧器二次巻線40bの短絡イ
ンピーダンスZs2とし、励磁変圧器50の最大タップ
間短絡インピーダンスZeとすると、最大タップ電圧V
を短絡インピーダンスZs2と最大タップ間短絡インピ
ーダンスZeの和で除した値(V/(Zs2+Ze))
が、交流電源の少なくとも数サイクル以内におけるサイ
リスタ許容サージオン電流ITHまたはヒューズ31、
32の溶断電流IFのいずれよりも十分小さくなるよう
に、直列変圧器二次巻線40b側の短絡インピーダンス
Zs2と励磁変圧器50の最大タップ間短絡インピーダ
ンスZeが選定されている。
Assuming that the maximum tap voltage V of the exciting transformer secondary winding 50b, the short-circuit impedance Zs2 of the series transformer secondary winding 40b, and the maximum inter-tap short-circuit impedance Ze of the exciting transformer 50, Voltage V
Divided by the sum of short-circuit impedance Zs2 and maximum short-circuit impedance Ze between taps (V / (Zs2 + Ze))
Is the thyristor allowable surge-on current ITH or fuse 31 within at least several cycles of the AC power supply.
The short-circuit impedance Zs2 on the series transformer secondary winding 40b side and the maximum inter-tap short-circuit impedance Ze of the exciting transformer 50 are selected so as to be sufficiently smaller than any of the fusing currents IF of the 32.

【0020】直列変圧器40と励磁変圧器50の漏れイ
ンダクタンスは、一次巻線と二次巻線の磁束が互いに相
手側の巻線に鎖交しないことから生ずるものであり、例
えばコイル間の距離を大きく離すことにより、漏れイン
ダクタンスを増加させて短絡インピーダンスZs2+Z
eを大きく形成し、この結果、交流スイッチ11〜16
に流れる短絡電流を小さくすることができる。なお電圧
調整装置の他の構成は図3に示す従来のものと同じであ
るため説明は省略する。
The leakage inductance of the series transformer 40 and the exciting transformer 50 is caused by the fact that the magnetic fluxes of the primary winding and the secondary winding do not interlink with each other's windings. Greatly increases the leakage inductance to increase the short-circuit impedance Zs2 + Z
e is formed large, and as a result, the AC switches 11 to 16
The short-circuit current flowing through the circuit can be reduced. The other configuration of the voltage regulator is the same as the conventional one shown in FIG.

【0021】従って上記構成をなす電圧調整装置は、直
列変圧器二次巻線40bと励磁変圧器50の短絡インダ
クタンスZs2、Zeを増やすことにより、二つの変圧
器は多少大型化するが、従来の限流リアクトル8を省略
できるため、全体として装置が小型化され経済的効果も
得られる。
Therefore, in the voltage regulator having the above configuration, the two transformers are slightly enlarged by increasing the short-circuit inductances Zs2 and Ze of the series transformer secondary winding 40b and the exciting transformer 50. Since the current limiting reactor 8 can be omitted, the size of the apparatus can be reduced as a whole, and an economic effect can be obtained.

【0022】なお上記説明では直列変圧器40の二次巻
線40bと励磁変圧器50の短絡インピーダンスの和を
規定したが、励磁変圧器50の短絡インピーダンスZe
の方を最初に規定し、残りのインピーダンスを直列変圧
器40の二次巻線40bに分担させても良い。この理由
は、交流スイッチ11〜16のうち交流スイッチ11と
13が誤って同時にオンしたとする。その場合は、励磁
変圧器2次巻線のAC間が短絡されたことになり、大電
流が交流スイッチ11と13に流れる。
In the above description, the sum of the short-circuit impedance of the secondary winding 40b of the series transformer 40 and the short-circuit impedance of the exciting transformer 50 is specified.
May be defined first, and the remaining impedance may be shared by the secondary winding 40b of the series transformer 40. The reason is that the AC switches 11 and 13 among the AC switches 11 to 16 are erroneously turned on at the same time. In this case, the AC between the secondary windings of the exciting transformer is short-circuited, and a large current flows through the AC switches 11 and 13.

【0023】これによる過電流で交流スイッチ11と1
3のサイリスタが破損することがないように、励磁変圧
器50の短絡インピーダンスの割合を更に高くして、短
絡電流をサージオン電流以下に下げれば、交流スイッチ
11と13の誤ターンオンなどで短絡が生じた場合に保
護することができる。
As a result, the AC switches 11 and 1
If the ratio of the short-circuit impedance of the exciting transformer 50 is further increased and the short-circuit current is reduced to the surge-on current or less so that the thyristor No. 3 is not damaged, a short-circuit occurs due to erroneous turn-on of the AC switches 11 and 13. Can be protected.

【0024】図2は本発明の他の実施の形態を示すもの
で、励磁変圧器50の二次巻線タップのB点に短絡電流
制御リアクトル51を挿入したものである。これは励磁
変圧器50の各タップ間から見た短絡インピーダンスは
最大タップAC間のインピーダンスZeが最大になり、
AB間の短絡インピーダンスZABは最小になるのが普
通である。そのため、直列変圧器40の二次巻線40b
側のインピーダンスZs2で定まる電流値よりも、タッ
プAB間あるいはタップBC間を介して流れる電流が大
きくなる場合は、励磁変圧器の外に短絡電流制御リアク
トル51を追加するのが効果的である。
FIG. 2 shows another embodiment of the present invention, in which a short-circuit current control reactor 51 is inserted at a point B of a secondary winding tap of an exciting transformer 50. This means that the short circuit impedance viewed from between the taps of the exciting transformer 50 is such that the impedance Ze between the maximum taps AC becomes maximum,
Normally, the short-circuit impedance ZAB between AB is minimized. Therefore, the secondary winding 40b of the series transformer 40
If the current flowing between the taps AB and between the taps BC becomes larger than the current value determined by the impedance Zs2 on the side, it is effective to add the short-circuit current control reactor 51 outside the excitation transformer.

【0025】この際、必要な短絡電流制御リアクトル5
1の大きさは、限流リアクトル8の1/10ないし1/
20程度の小さなリアクトルでよい。なお、サイリスタ
の保護用に10μH前後のリアクトルを入れることがあ
る。これはサイリスタのスナバ用として用いるので、本
発明が目的とするタップ切換え時の過電流抑制としては
実質的な効果はない。
At this time, the necessary short-circuit current control reactor 5
The size of 1 is 1/10 to 1 / of the current limiting reactor 8
A small reactor of about 20 is sufficient. In some cases, a reactor of about 10 μH may be inserted to protect the thyristor. Since this is used for a snubber of a thyristor, it has no substantial effect as an object of the present invention to suppress overcurrent at the time of tap switching.

【0026】なお上記説明では励磁変圧器50の二次巻
線タップにヒューズ31、32を接続した場合について
示したが、この代わりに配線用遮断器を取付けても良
い。この場合、最大タップ電圧Vを短絡インピーダンス
Zs2と最大タップ間短絡インピーダンスZeの和で除
した値(V/(Zs2+Ze) )より、数サイクル以内
における配線用遮断器のトリップ電流ICBが十分に小
さくなるように選定する。
In the above description, the case where the fuses 31 and 32 are connected to the secondary winding tap of the exciting transformer 50 has been described. However, a wiring breaker may be attached instead. In this case, the trip current ICB of the circuit breaker within several cycles is sufficiently smaller than a value (V / (Zs2 + Ze)) obtained by dividing the maximum tap voltage V by the sum of the short-circuit impedance Zs2 and the maximum inter-tap short-circuit impedance Ze. Select as follows.

【0027】上記図面では単相回路の場合について説明
したが、3相などの多相回路にも適用できることは明ら
かである。また励磁変圧器50は配電線1、2の入り側
1aに設ける必要はなく、出側1bに設けてもよい。更
に本発明は配電線の電圧調整装置に適用した例で説明し
ているが、一般の負荷を対象とした電源において、電源
または負荷電圧の調整用にも広く適用することができ
る。
In the above drawings, the case of a single-phase circuit has been described, but it is clear that the present invention can be applied to a multi-phase circuit such as a three-phase circuit. Excitation transformer 50 does not need to be provided on entrance side 1a of distribution lines 1 and 2, and may be provided on exit side 1b. Furthermore, although the present invention has been described with reference to an example in which the present invention is applied to a voltage adjusting device for a distribution line, the present invention can be widely applied to power supply or load voltage adjustment in power supplies for general loads.

【0028】[0028]

【発明の効果】以上説明した如く本発明の請求項1記載
の電圧調整装置によれば、限流リアクトルを省くことが
できるので装置全体を小形化、低コスト化することがで
きる。また請求項2記載の電圧調整装置は、励磁変圧器
の二次巻線タップに短絡電流制御リアクトルを挿入する
ことにより、タップ間を流れる電流が大きい場合に効果
的である。
As described above, according to the voltage regulator according to the first aspect of the present invention, since the current limiting reactor can be omitted, the entire device can be reduced in size and cost. The voltage regulator according to claim 2 is effective when a current flowing between the taps is large by inserting a short-circuit current control reactor into the secondary winding tap of the exciting transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態による単相回路で示した
電圧調整装置の回路図である。
FIG. 1 is a circuit diagram of a voltage regulator shown as a single-phase circuit according to an embodiment of the present invention.

【図2】本発明の他の実施の形態による短絡電流制御リ
アクトルを設けた電圧調整装置の回路図である。
FIG. 2 is a circuit diagram of a voltage regulator provided with a short-circuit current control reactor according to another embodiment of the present invention.

【図3】従来使用されている配電線用の電圧調整装置の
回路例である。
FIG. 3 is a circuit example of a conventionally used voltage adjusting device for distribution lines.

【図4】タップ切換え時の各部波形の1例を示す波形図
である。
FIG. 4 is a waveform chart showing one example of waveforms of respective parts at the time of tap switching.

【符合の説明】[Description of sign]

1 電源線 3 電圧調整装置 4 直列変圧器 4b 二次巻線 5 励磁変圧器 5b 二次巻線 6 バイパス回路 7 抵抗器 8 限流リアクトル 10 制御装置 11 交流スイッチ 20 電圧検出部 21 基準電圧部 23 タップ選択器 31 ヒューズ 33 非線形抵抗器 40 直列変圧器 40b 二次巻線 50 励磁変圧器 50b 二次巻線 51 短絡電流制御リアクトル DESCRIPTION OF SYMBOLS 1 Power supply line 3 Voltage regulator 4 Series transformer 4b Secondary winding 5 Exciting transformer 5b Secondary winding 6 Bypass circuit 7 Resistor 8 Current limiting reactor 10 Controller 11 AC switch 20 Voltage detector 21 Reference voltage unit 23 Tap selector 31 Fuse 33 Non-linear resistor 40 Series transformer 40b Secondary winding 50 Exciting transformer 50b Secondary winding 51 Short-circuit current control reactor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源線に直列的に接続された直列変圧器
の二次巻線と、電源線間に並列的に接続された励磁変圧
器のタップ付き二次巻線とを、サイリスタで形成された
複数の交流スイッチを介して接続し、これら交流スイッ
チにバイパス回路を並列に接続して、タップ切換え時に
タップ選択器から切換信号を出力して交流スイッチに流
れる電流を、一旦、バイパス回路に流してから次に選択
される交流スイッチをオンさせてタップの切換えを行な
う電圧調整装置において、前記励磁変圧器の二次巻線最
大タップ電圧Vを,前記直列変圧器二次巻線側短絡イン
ピーダンスZs2と励磁変圧器最大タップ間短絡インピ
ーダンスZeとの和で除した値(V/(Zs2+Ze)
)が、交流電源の少なくとも数サイクル以内における
サイリスタ許容サージオン電流ITH、ヒューズ溶断電
流IFまたは配線用遮断器トリップ電流ICBのいずれ
よりも十分小さくなるように、直列変圧器二次巻線側短
絡インピーダンスZs2と励磁変圧器最大タップ間短絡
インピーダンスZeを選定したことを特徴とする電圧調
整装置。
1. A thyristor forms a secondary winding of a series transformer connected in series to a power supply line and a tapped secondary winding of an excitation transformer connected in parallel between the power supply lines. Connected through a plurality of AC switches, a bypass circuit is connected to these AC switches in parallel, a switching signal is output from the tap selector at the time of tap switching, and a current flowing through the AC switch is once passed to the bypass circuit. In the voltage regulator for switching the tap by turning on an AC switch selected next after flowing, the maximum tap voltage V of the secondary winding of the exciting transformer is changed to the short-circuit impedance on the secondary winding side of the series transformer. The value (V / (Zs2 + Ze) divided by the sum of Zs2 and the short-circuit impedance Ze between the exciting transformer and the maximum tap.
) Is sufficiently smaller than any of the thyristor allowable surge-on current ITH, the fuse blowing current IF and the circuit breaker trip current ICB within at least several cycles of the AC power supply, and the short-circuit impedance Zs2 on the secondary winding of the series transformer. And a maximum impedance short-circuit impedance Ze between the transformer and the exciting transformer.
【請求項2】 励磁変圧器二次巻線の中間タップ部に短
絡電流制御リアクトルを挿入したことを特徴とする請求
項1記載の電圧調整装置。
2. The voltage adjusting device according to claim 1, wherein a short-circuit current control reactor is inserted into an intermediate tap portion of the exciting transformer secondary winding.
JP23788698A 1998-08-25 1998-08-25 Voltage regulator Expired - Lifetime JP3338655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23788698A JP3338655B2 (en) 1998-08-25 1998-08-25 Voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23788698A JP3338655B2 (en) 1998-08-25 1998-08-25 Voltage regulator

Publications (2)

Publication Number Publication Date
JP2000066739A true JP2000066739A (en) 2000-03-03
JP3338655B2 JP3338655B2 (en) 2002-10-28

Family

ID=17021887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23788698A Expired - Lifetime JP3338655B2 (en) 1998-08-25 1998-08-25 Voltage regulator

Country Status (1)

Country Link
JP (1) JP3338655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165638A (en) * 2011-02-08 2012-08-30 General Electric Co <Ge> Dynamic voltage restoration system and method
CN104124691A (en) * 2013-08-20 2014-10-29 朱晓云 System electricity saving optimization, electric energy automatic adjustment and voltage stabilization device and device group thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165638A (en) * 2011-02-08 2012-08-30 General Electric Co <Ge> Dynamic voltage restoration system and method
US9634490B2 (en) 2011-02-08 2017-04-25 General Electric Company Dynamic voltage restoration system and method
CN104124691A (en) * 2013-08-20 2014-10-29 朱晓云 System electricity saving optimization, electric energy automatic adjustment and voltage stabilization device and device group thereof

Also Published As

Publication number Publication date
JP3338655B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US6075684A (en) Method and arrangement for direct current circuit interruption
Dubey Thyristorised power controllers
US8830647B2 (en) Fault current limiter
US3600664A (en) Overcurrent protection for solid-state voltage regulator
JP4756046B2 (en) Voltage control device
US3959695A (en) Circuit interrupter with ground fault trip control
US6104106A (en) Solid state circuit breaker
US8207716B2 (en) Useful improvements in the art of 3-phase electronic tap changer commutation device
US5786684A (en) Apparatus and methods for minimizing over voltage in a voltage regulator
US4686618A (en) Fault protection for GTO voltage-source inverters
JPH1195846A (en) Voltage regulator
JPH05176445A (en) Three-phase short circuit suppressor
CA2106504C (en) Conversion apparatus
KR20220069116A (en) transformer device
JP3338655B2 (en) Voltage regulator
US7737667B2 (en) 3-phase electronic tap changer commutation and device
GB2307803A (en) Static VAR compensator with capacitor energy dissipation
JP3338656B2 (en) Voltage regulator
Wang et al. Low-loss bidirectional solid-state circuit breakers with reliable breaking capability for protecting DC microgrids
JP2002165454A (en) Ac voltage regulator
JP2000164441A (en) Potential transformer device
KR20040005462A (en) Apparatus for generating voltage sag and voltage swell
JP2003050638A (en) Voltage controller
JP3231374B2 (en) Earth leakage breaker
SU845219A1 (en) Controllable reactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term