JP2000065455A - Ebullient cooler - Google Patents

Ebullient cooler

Info

Publication number
JP2000065455A
JP2000065455A JP10233732A JP23373298A JP2000065455A JP 2000065455 A JP2000065455 A JP 2000065455A JP 10233732 A JP10233732 A JP 10233732A JP 23373298 A JP23373298 A JP 23373298A JP 2000065455 A JP2000065455 A JP 2000065455A
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
refrigerant tank
tank
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10233732A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osakabe
長賀部  博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10233732A priority Critical patent/JP2000065455A/en
Priority to US09/333,151 priority patent/US6257324B1/en
Priority to EP99111978A priority patent/EP0969261B1/en
Priority to DE69914675T priority patent/DE69914675T2/en
Priority to KR1019990025393A priority patent/KR100330398B1/en
Publication of JP2000065455A publication Critical patent/JP2000065455A/en
Priority to US09/779,141 priority patent/US6857466B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ebullient cooler in which burn-out can be prevented on a heater fixing plane close to a radiator without requiring undue increase in the quantity of refrigerant. SOLUTION: Arefrigerant tank 3 is shaped flatly such that the thickness dimensions are smaller than the breadthwise dimensions and is fixed while inclining against a radiator 4 substantially in the horizontal direction. The refrigerant tank 3 has the upper wall face 3b in the thickness direction inclining upward toward the radiator 4 side while being tapered such that the distance to the substantially horizontal lower wall face 3a (i.e., the thickness dimension of the refrigerant tank 3) increases gradually from the forward end side of the refrigerant tank 3 toward the radiator 4 side. A refrigerant chamber and a liquid return passage are formed in the refrigerant tank 3 by means of two baffle plates 5. The two baffle plates 5 are arranged on the opposite sides of a heater 2 being fixed to the refrigerant tank 3 and a specified interval 8 is ensured between the baffle plates 5 and the bottom face of the refrigerant tank 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の沸騰と凝縮
の繰り返しによる熱輸送によって発熱体を冷却する沸騰
冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element by heat transport by repeated boiling and condensation of a refrigerant.

【0002】[0002]

【従来の技術】従来技術として、特開平9−12661
7号公報に開示された沸騰冷却装置がある。この沸騰冷
却装置は、電気自動車用の放熱装置に使用され、ボンネ
ット内部に配置される。このため、設置スペースが限ら
れているボンネット内部での搭載性を考慮して、図9に
示すように、放熱器100と冷媒槽110とが略直角に
組み付けられ、冷媒槽110が水平方向に対し若干傾き
を有して配置される。
2. Description of the Related Art As a prior art, Japanese Patent Laid-Open No. 9-12661 is known.
Patent Document 7 discloses a boiling cooling device. This boiling cooling device is used in a heat radiating device for an electric vehicle, and is disposed inside a hood. Therefore, in consideration of the mountability inside the hood where the installation space is limited, as shown in FIG. 9, the radiator 100 and the refrigerant tank 110 are assembled at substantially right angles, and the refrigerant tank 110 is In contrast, they are arranged with a slight inclination.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の沸騰
冷却装置は、冷媒槽110の長さ方向に複数の発熱体1
20を取り付けるため、それぞれの発熱体取付け面で発
生した気泡が順次下流(放熱器100側)へ流れると、
放熱器100に近くなるほど冷媒槽110内の気泡が多
くなる。このため、放熱器100に近い方の発熱体取付
け面ほどバーンアウトを生じ易くなる。これに対し、放
熱器100に近い方の発熱体取付け面でのバーンアウト
を防ぐためには、冷媒槽110の厚み寸法を大きくして
内容量を増大させる必要があるが、この場合、冷媒槽1
10に貯留される冷媒量が増加するため、コストアップ
を招くという問題があった。本発明は、上記事情に基づ
いて成されたもので、その目的は、過度に冷媒量を増量
することなく、放熱器に近い発熱体取付け面でのバーン
アウトを防止できる沸騰冷却装置を提供することにあ
る。
However, the above-mentioned boiling cooling device has a plurality of heating elements 1 in the longitudinal direction of the refrigerant tank 110.
When the air bubbles generated at the respective heating element mounting surfaces sequentially flow downstream (toward the radiator 100) in order to mount the heating elements 20,
The closer to the radiator 100, the more bubbles in the refrigerant tank 110. For this reason, burnout is more likely to occur on the heating element mounting surface closer to the radiator 100. On the other hand, in order to prevent burnout on the heating element mounting surface closer to the radiator 100, it is necessary to increase the thickness of the refrigerant tank 110 to increase the internal capacity.
There is a problem that the cost increases because the amount of refrigerant stored in the fuel cell 10 increases. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a boiling cooling device that can prevent burnout on a heating element mounting surface close to a radiator without excessively increasing the amount of refrigerant. It is in.

【0004】[0004]

【課題を解決するための手段】(請求項1の手段)冷媒
槽は、厚み方向の両壁面が放熱器に対し垂直方向から水
平方向へ所定角度傾斜して設けられるとともに、厚み方
向の下側壁面に発熱体が取り付けられ、且つ冷媒槽の長
さ方向で少なくとも発熱体が取り付けられる範囲では、
放熱器に近くなる程、冷媒槽の厚み寸法が次第に大きく
なる形状に設けられている。この構成によれば、例えば
冷媒槽の長さ方向に複数の発熱体を取り付けた場合に、
それぞれの発熱体取付け面で発生した気泡が順次下流
(放熱器側)へ流れても、冷媒槽の厚み寸法が次第に大
きくなっているため、放熱器に近い方の発熱体取付け面
に気泡が充満することを防止できる。また、放熱器から
遠くなる程、冷媒槽内を流れる気泡の量が少なくなるた
め、放熱器に近い方より放熱器から遠い方で冷媒槽の厚
み寸法を小さくする(テーパ形状)ことにより、過度に
冷媒量を増量することなく、放熱器に近い発熱体取付け
面でのバーンアウトを防止できる。
Means for Solving the Problems In the refrigerant tank, both wall surfaces in the thickness direction are provided at a predetermined angle from the vertical direction to the horizontal direction with respect to the radiator, and the lower side in the thickness direction is provided. A heating element is attached to the wall surface, and at least in a range in which the heating element is attached in the length direction of the refrigerant tank,
The coolant tank is provided in such a shape that the thickness dimension of the coolant tank gradually increases toward the radiator. According to this configuration, for example, when a plurality of heating elements are attached in the length direction of the refrigerant tank,
Even if the air bubbles generated on each heating element mounting surface flow sequentially downstream (to the radiator side), since the thickness of the coolant tank is gradually increasing, the air bubbles fill the heating element mounting surface closer to the radiator. Can be prevented. In addition, as the distance from the radiator decreases, the amount of bubbles flowing in the refrigerant tank decreases. Therefore, by reducing the thickness of the refrigerant tank farther from the radiator than closer to the radiator (tapered shape), Burnout on the heating element mounting surface close to the radiator can be prevented without increasing the amount of refrigerant.

【0005】(請求項2の手段)冷媒槽は、発熱体が取
り付けられる下側壁面が略水平方向に設けられている。
この場合、冷媒槽内で発生した気泡が冷媒槽内を厚み方
向へ上昇しながら放熱器へ向かって略水平方向へ流れる
ため、発生した気泡が冷媒槽内を垂直方向に上昇する場
合と比較して、気泡の流れが緩やかである(気泡が抜け
難くなる)。このため、従来のように冷媒槽の厚み寸法
が一定であると、冷媒槽の発熱体取付け面で気泡が充満
しやすくなるが、請求項1に記載したように、放熱器に
近くなる程、冷媒槽の厚み寸法を次第に大きくすること
により、気泡を抜け易くでき、発熱体取付け面でのバー
ンアウトを防止できる。
[0005] (Means of the second aspect) In the refrigerant tank, the lower wall surface to which the heating element is attached is provided in a substantially horizontal direction.
In this case, since the bubbles generated in the refrigerant tank flow in the refrigerant tank in the horizontal direction toward the radiator while rising in the thickness direction, compared with the case where the generated bubbles rise in the refrigerant tank in the vertical direction. Therefore, the flow of the bubbles is gentle (the bubbles are difficult to escape). For this reason, when the thickness dimension of the refrigerant tank is constant as in the related art, the air bubbles are easily filled on the heating element mounting surface of the refrigerant tank, but as closer to the radiator, as described in claim 1, By gradually increasing the thickness of the coolant tank, bubbles can be easily removed, and burnout on the heating element mounting surface can be prevented.

【0006】(請求項3の手段)冷媒槽は、内部に貯留
された液冷媒が発熱体の熱を受けて沸騰する沸騰領域を
形成する冷媒室と、放熱器で液化した凝縮液が流れ込む
液戻り通路とを有し、冷媒室と液戻り通路とが冷媒槽内
の下部で連通して設けられている。この構成によれば、
放熱器から液戻り通路へ流入した凝縮液を冷媒槽内の下
部で液戻り通路から冷媒室へ供給できるため、発熱体取
付け面で発生した気泡と凝縮液とが干渉することなく、
良好な冷媒循環流を形成できるため、高い放熱性能を確
保できる。
(Means of Claim 3) The refrigerant tank has a refrigerant chamber forming a boiling region in which the liquid refrigerant stored therein receives heat from the heating element and boils, and a liquid into which condensed liquid liquefied by the radiator flows. A return passage, and the refrigerant chamber and the liquid return passage are provided so as to communicate with each other at a lower portion in the refrigerant tank. According to this configuration,
Since the condensed liquid flowing from the radiator to the liquid return passage can be supplied from the liquid return passage to the refrigerant chamber at the lower part in the refrigerant tank, the bubbles generated on the heating element mounting surface do not interfere with the condensed liquid.
Since a good refrigerant circulation flow can be formed, high heat radiation performance can be secured.

【0007】[0007]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて説明する。 (第1実施例)図1は沸騰冷却装置1の側面図、図2は
沸騰冷却装置1の正面図である。沸騰冷却装置1は、冷
媒の沸騰及び凝縮作用を利用して発熱体2を冷却するも
ので、図1及び図2に示すように、内部に液冷媒を溜め
る冷媒槽3と、この冷媒槽3の上部に設けられる放熱器
4とを備える。発熱体2は、例えば電気自動車のインバ
ータ回路を構成するIGBTモジュールであり、冷媒槽
3の下側壁面3aに密着して固定される。
Next, an embodiment of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a side view of a boiling cooling device 1 and FIG. 2 is a front view of the boiling cooling device 1. The boiling cooling device 1 cools the heating element 2 by utilizing the boiling and condensing action of the refrigerant. As shown in FIGS. 1 and 2, a refrigerant tank 3 for storing a liquid refrigerant therein; And a radiator 4 provided on the upper part of the radiator. The heating element 2 is, for example, an IGBT module that constitutes an inverter circuit of an electric vehicle, and is fixed in close contact with the lower wall surface 3a of the refrigerant tank 3.

【0008】冷媒槽3は、横幅寸法(図2の左右方向の
寸法)より厚み寸法(図1の上下方向の寸法)が小さい
偏平形状に設けられ、図1に示すように、放熱器4に対
して略水平方向に傾いて組み付けられている。また、こ
の冷媒槽3は、厚み方向の上側壁面3bが冷媒槽3の長
さ方向(図1の左右方向)で放熱器4側が高くなる傾斜
面として設けられ、略水平な下側壁面3aとの距離(つ
まり冷媒槽3の厚み寸法)が、冷媒槽3の先端側から放
熱器4側へ向かって次第に大きくなるテーパ形状に設け
られている。
The coolant tank 3 is provided in a flat shape having a smaller thickness dimension (dimension in the vertical direction in FIG. 1) than a lateral dimension (dimension in the horizontal direction in FIG. 2), and as shown in FIG. On the other hand, it is inclined almost horizontally. The coolant tank 3 has an upper wall surface 3b in the thickness direction provided as an inclined surface in which the radiator 4 side is higher in the length direction of the coolant tank 3 (the left-right direction in FIG. 1), and a substantially horizontal lower wall surface 3a. (That is, the thickness dimension of the refrigerant tank 3) is provided in a tapered shape that gradually increases from the distal end side of the refrigerant tank 3 toward the radiator 4.

【0009】冷媒槽3の内部には、図2に示すように、
2枚の仕切り板5によって冷媒室6と液戻り通路7とが
形成されている。2枚の仕切り板5は、図2に示すよう
に、冷媒槽3の下側壁面3aに取り付けられる発熱体2
の両外側に設置され、冷媒槽3の側面形状(図1に示す
形状)に相当する略三角形状に設けられている。但し、
仕切り板5と冷媒槽3の底面との間には所定の隙間8が
確保されている。この仕切り板5の形状を図3{(a)
は側面図、(b)は正面図}に示す。冷媒室6は、2枚
の仕切り板5間に設けられ、内部に貯留された液冷媒が
発熱体2の熱を受けて沸騰する沸騰領域を形成してい
る。液戻り通路7は、放熱器4で凝縮した凝縮液が流れ
込む通路で、冷媒室6の左右両側に形成されている(図
2参照)。なお、冷媒室6と液戻り通路7は、仕切り板
5の下部隙間8を通じて連通している。
[0009] As shown in FIG.
A refrigerant chamber 6 and a liquid return passage 7 are formed by the two partition plates 5. As shown in FIG. 2, the two partition plates 5 are provided with a heating element 2 attached to the lower wall surface 3 a of the refrigerant tank 3.
And is provided in a substantially triangular shape corresponding to the side surface shape of the refrigerant tank 3 (the shape shown in FIG. 1). However,
A predetermined gap 8 is provided between the partition plate 5 and the bottom surface of the refrigerant tank 3. The shape of the partition plate 5 is shown in FIG.
Is a side view, and (b) is a front view. The refrigerant chamber 6 is provided between the two partition plates 5 and forms a boiling region in which the liquid refrigerant stored therein receives heat from the heating element 2 and boils. The liquid return passage 7 is a passage through which the condensed liquid condensed by the radiator 4 flows, and is formed on both left and right sides of the refrigerant chamber 6 (see FIG. 2). Note that the refrigerant chamber 6 and the liquid return passage 7 communicate with each other through a lower gap 8 of the partition plate 5.

【0010】放熱器4は、コア部9、上部タンク10、
及び下部タンク11より構成され、下部タンク11の内
部に冷媒流制御板12が設置されている。コア部9は、
発熱体2の熱を受けて沸騰した冷媒蒸気を外部流体(例
えば空気)との熱交換によって凝縮液化させる放熱部で
あり、図2に示すように、複数本の偏平チューブ13
(13A、13B)と放熱フィン14とを交互に配置
し、各偏平チューブ13を垂直方向に立てた状態で使用
される。偏平チューブ13は、1本の蒸気用チューブ1
3Aと複数本の凝縮用チューブ13Bとから成り、それ
ぞれアルミニウム製の偏平な管を所定の長さに切断して
使用される。
The radiator 4 includes a core 9, an upper tank 10,
And a lower tank 11, and a refrigerant flow control plate 12 is installed inside the lower tank 11. The core unit 9
This is a heat radiating unit that condenses and liquefies the refrigerant vapor that has boiled by receiving heat from the heating element 2 by heat exchange with an external fluid (for example, air). As shown in FIG.
(13A, 13B) and the radiating fins 14 are alternately arranged, and the flat tubes 13 are used in a state of standing upright. The flat tube 13 is one steam tube 1
3A and a plurality of condensing tubes 13B, each of which is obtained by cutting a flat aluminum tube into a predetermined length.

【0011】蒸気用チューブ13Aは、コア部9の中央
部に配され、冷媒槽3(冷媒室6)で沸騰した冷媒蒸気
が流入する。凝縮用チューブ13Bは、蒸気用チューブ
13Aの両側に配され、上部タンク10を通じて蒸気用
チューブ13Aに連通している。但し、蒸気用チューブ
13Aは、図1に示すように、凝縮用チューブ13Bよ
り幅広(図1の左右方向の幅)に設けられ、通路断面積
が大きく形成されている。なお、凝縮用チューブ13B
の内部には、凝縮面積を拡大するためにインナフィン
(図示しない)を挿入しても良いが、冷媒蒸気が通過す
る蒸気用チューブ13Aの内部にインナフィンを挿入す
ると圧損が増大するため、蒸気用チューブ13Aの内部
にはインナフィンを挿入しない方が良い。放熱フィン1
4は、熱伝導性に優れる薄い金属板(例えばアルミニウ
ム板)を交互に折り曲げて波状に成形したコルゲートフ
ィンであり、各凝縮用チューブ13Bの外表面にろう付
け等により接合されている。
The steam tube 13A is arranged at the center of the core portion 9 and the refrigerant vapor boiling in the refrigerant tank 3 (the refrigerant chamber 6) flows into the tube. The condensation tubes 13B are arranged on both sides of the steam tube 13A, and communicate with the steam tube 13A through the upper tank 10. However, as shown in FIG. 1, the steam tube 13A is provided wider (width in the left-right direction in FIG. 1) than the condensation tube 13B, and has a large passage cross-sectional area. The condensation tube 13B
The inner fin may be inserted with an inner fin (not shown) in order to increase the condensation area. However, when the inner fin is inserted into the steam tube 13A through which the refrigerant vapor passes, the pressure loss increases. It is better not to insert the inner fin into 13A. Heat radiation fin 1
Reference numeral 4 denotes corrugated fins formed by alternately bending thin metal plates (for example, aluminum plates) having excellent thermal conductivity and forming them in a wavy shape, and is joined to the outer surface of each condensation tube 13B by brazing or the like.

【0012】上部タンク10は、例えばアルミニウム製
のコアプレート15とタンクプレート16とを組み合わ
せて構成され、各偏平チューブ13の上端部に連結され
て、上部タンク10内で各偏平チューブ13を連通して
いる。下部タンク11は、上部タンク10と同様に、例
えばアルミニウム製のコアプレート17とタンクプレー
ト18とを組み合わせて構成され、各偏平チューブ13
の下端部に連結されて、下部タンク11内で各偏平チュ
ーブ13を連通している。
The upper tank 10 is constructed by combining, for example, a core plate 15 and a tank plate 16 made of aluminum, is connected to the upper end of each flat tube 13, and communicates each flat tube 13 in the upper tank 10. ing. Like the upper tank 10, the lower tank 11 is constituted by combining an aluminum core plate 17 and a tank plate 18, for example.
The flat tubes 13 are connected to each other in the lower tank 11.

【0013】冷媒流制御板12は、冷媒室6で沸騰した
冷媒蒸気をコア部9の蒸気用チューブ13Aへ導くとと
もに、コア部9で冷却されて液化した凝縮液を冷媒槽3
の液戻り通路7へ導くもので、図1に示すように、2枚
一組で構成され、冷媒室6の上方を両側から覆うように
配置されている。冷媒流制御板12の形状を図4
{(a)は正面図、(b)は側面図}に示す。なお、こ
の冷媒流制御板12は、コア部9より滴下した凝縮液が
液戻り通路7へ流れるように傾斜面12aを有してい
る。また、冷媒流制御板12と仕切り板5を一体で形成
しても良い。
The refrigerant flow control plate 12 guides the refrigerant vapor boiled in the refrigerant chamber 6 to the vapor tube 13A of the core portion 9 and transmits the condensed liquid cooled and liquefied by the core portion 9 to the refrigerant tank 3.
As shown in FIG. 1, the liquid return passage 7 is configured as a pair of two, and is disposed so as to cover the upper part of the refrigerant chamber 6 from both sides. FIG. 4 shows the shape of the refrigerant flow control plate 12.
{(A) is a front view, and (b) is a side view. The coolant flow control plate 12 has an inclined surface 12 a so that the condensed liquid dropped from the core portion 9 flows to the liquid return passage 7. Further, the refrigerant flow control plate 12 and the partition plate 5 may be formed integrally.

【0014】次に、本実施例の作動を説明する。発熱体
2から発生した熱が冷媒室6の液冷媒に伝達されて液冷
媒が沸騰する。沸騰した冷媒は、蒸気となって冷媒室6
を上昇しながら冷媒槽3の上側壁面3bに沿って放熱器
4側へ流れる。冷媒室6から放熱器4の下部タンク11
内へ流入した冷媒蒸気は、2枚の冷媒流制御板12に沿
ってコア部9の蒸気用チューブ13Aへ流入し、蒸気用
チューブ13Aを通り抜けた後、上部タンク10を通じ
て各凝縮用チューブ13Bへ分配される。凝縮用チュー
ブ13Bを流れる蒸気冷媒は、外気との熱交換によって
冷却され、潜熱を放出して凝縮用チューブ13Bの内壁
面に凝縮する。この冷媒蒸気が凝縮する際に放出された
潜熱は、凝縮用チューブ13Bの壁面から放熱フィン1
4へ伝達され、その放熱フィン14を通じて外気に放出
される。
Next, the operation of this embodiment will be described. The heat generated from the heating element 2 is transmitted to the liquid refrigerant in the refrigerant chamber 6, and the liquid refrigerant boils. The boiling refrigerant turns into vapor and becomes a refrigerant chamber 6.
And flows toward the radiator 4 along the upper wall surface 3b of the refrigerant tank 3 while rising. From the refrigerant chamber 6 to the lower tank 11 of the radiator 4
The refrigerant vapor flowing into the inside flows into the vapor tube 13A of the core portion 9 along the two refrigerant flow control plates 12, passes through the vapor tube 13A, and passes through the upper tank 10 to each of the condensation tubes 13B. Be distributed. The vapor refrigerant flowing through the condensing tube 13B is cooled by heat exchange with the outside air, releases latent heat, and condenses on the inner wall surface of the condensing tube 13B. The latent heat released when the refrigerant vapor condenses is applied to the radiation fins 1 from the wall surface of the condensation tube 13B.
And transmitted to the outside air through the radiation fins 14.

【0015】一方、凝縮用チューブ13B内で凝縮して
液滴となった凝縮液は、凝縮用チューブ13Bの内壁面
を伝って下方へ流れ、一部の凝縮液は凝縮用チューブ1
3Bから直接冷媒槽3の液戻り通路7へ滴下する。残り
の凝縮液は、下部タンク11内に配された冷媒流制御板
12上に滴下した後、冷媒流制御板12の傾斜面12a
を伝って流れ落ち、液戻り通路7へと流れ込む。液戻り
通路7に流入した凝縮液は、図2に矢印で示すように、
冷媒槽3内に配された仕切り板5の下部隙間8を通って
冷媒室6へ供給される。
On the other hand, the condensed liquid condensed in the condensing tube 13B to form droplets flows downward along the inner wall surface of the condensing tube 13B, and a part of the condensed liquid is condensed.
3B directly drops into the liquid return passage 7 of the refrigerant tank 3. The remaining condensate is dropped onto the refrigerant flow control plate 12 disposed in the lower tank 11, and then the inclined surface 12a of the refrigerant flow control plate 12
And flows down into the liquid return passage 7. The condensed liquid flowing into the liquid return passage 7 is, as shown by an arrow in FIG.
The refrigerant is supplied to the refrigerant chamber 6 through the lower gap 8 of the partition plate 5 arranged in the refrigerant tank 3.

【0016】(本実施例の効果)本実施例の沸騰冷却装
置1は、例えば冷媒槽3の長さ方向に複数の発熱体2を
取り付けた場合に、それぞれの発熱体取付け面で発生し
た気泡が順次放熱器4側へ流れても、冷媒槽3の厚み寸
法が放熱器4側へ向かって次第に大きくなっているた
め、放熱器4に近い方の発熱体取付け面近くに気泡が充
満することを防止できる。なお、発熱体2が1個の場合
でも、発熱体取付け面の上流側(放熱器4から遠い側)
より下流側(放熱器4に近い側)の方が気泡が多くなる
ため、上記の複数個の発熱体2を取り付けた場合と同様
の効果が得られる。
(Effects of the present embodiment) In the boiling cooling device 1 of the present embodiment, for example, when a plurality of heating elements 2 are mounted in the longitudinal direction of the refrigerant tank 3, air bubbles generated on the respective heating element mounting surfaces. Even if the air flows sequentially to the radiator 4 side, since the thickness dimension of the refrigerant tank 3 gradually increases toward the radiator 4 side, bubbles may fill up near the heating element mounting surface closer to the radiator 4. Can be prevented. In addition, even when the number of the heating elements 2 is one, the upstream side of the heating element mounting surface (the side far from the radiator 4).
Since the air bubbles are more downstream (closer to the radiator 4), the same effect as in the case where the plurality of heating elements 2 are attached can be obtained.

【0017】また、本実施例の冷媒槽3は、放熱器4に
対してほぼ水平方向に傾いて組み付けられているため、
発生した気泡が冷媒槽3内を垂直方向に上昇する場合
(つまり冷媒槽3が垂直に配置されている場合)と比較
して、気泡の流れが緩やかであり、気泡が抜け難くな
る。このため、従来技術で示したように冷媒槽3の厚み
寸法が一定であると、冷媒槽3の発熱体取付け面近くで
気泡が充満しやすくなるが、放熱器4に近くなる程、冷
媒槽3の厚み寸法を次第に大きくすることにより、気泡
を抜け易くでき、発熱体取付け面でのバーンアウトを防
止できる。更に、放熱器4から遠くなる程、気泡の量が
少なくなるため、放熱器4に近い方より放熱器4から遠
い方で冷媒槽3の厚み寸法を小さくする(テーパ形状)
ことにより、冷媒量の適正化を図ることができ、過度な
冷媒量を封入することによるコストアップを防止でき
る。
Further, since the refrigerant tank 3 of the present embodiment is assembled with the radiator 4 inclined substantially horizontally,
Compared to the case where the generated bubbles rise in the refrigerant tank 3 in the vertical direction (that is, the case where the refrigerant tank 3 is arranged vertically), the flow of the bubbles is gentler and the bubbles are hard to escape. For this reason, as shown in the prior art, when the thickness of the refrigerant tank 3 is constant, bubbles are easily filled in the vicinity of the heating element mounting surface of the refrigerant tank 3. By gradually increasing the thickness dimension of 3, the air bubbles can be easily released, and burnout on the heating element mounting surface can be prevented. Furthermore, since the amount of bubbles decreases as the distance from the radiator 4 increases, the thickness of the refrigerant tank 3 is reduced in a direction farther from the radiator 4 than in a direction closer to the radiator 4 (tapered shape).
This makes it possible to optimize the amount of the refrigerant, thereby preventing an increase in cost due to sealing the excessive amount of the refrigerant.

【0018】(第2実施例)図5は沸騰冷却装置1の側
面図、図6は沸騰冷却装置1の正面図である。本実施例
は、第1実施例と放熱器4の構造が異なる場合の一例を
示している。第1実施例の放熱器4は、水平送風(放熱
器4に対して水平方向に送風される)に対応して構成さ
れているが、本実施例の放熱器4は、垂直送風に対応し
て構成されている。冷媒槽3は、第1実施例と同じく放
熱器4に対して略水平方向に組み付けられて、図6に示
すように、内部が1枚の仕切り板5によって冷媒室6と
液戻り通路7とに仕切られ、仕切り板5の下部隙間8を
通じて冷媒室6と液戻り通路7とが連通している。仕切
り板5の形状は、第1実施例と同じである。
(Second Embodiment) FIG. 5 is a side view of the boiling cooling device 1, and FIG. 6 is a front view of the boiling cooling device 1. This embodiment shows an example in which the structure of the radiator 4 is different from that of the first embodiment. The radiator 4 of the first embodiment is configured to support horizontal ventilation (blows in a horizontal direction with respect to the radiator 4), but the radiator 4 of this embodiment corresponds to vertical ventilation. It is configured. The refrigerant tank 3 is assembled in a substantially horizontal direction with respect to the radiator 4 similarly to the first embodiment, and as shown in FIG. The refrigerant chamber 6 and the liquid return passage 7 communicate with each other through the lower gap 8 of the partition plate 5. The shape of the partition plate 5 is the same as in the first embodiment.

【0019】以下に、放熱器4の構成について簡単に説
明する。放熱器4は、所謂ドロンカップタイプの熱交換
器で、図5に示すように、連結管19、放熱管20、及
び放熱フィン14より構成される。連結管19は、冷媒
槽3との連結部であり、冷媒槽3の上端開口部に組み付
けられている。この連結管19は、プレス成形された2
枚の成形プレートを互いの外周縁部で接合して形成さ
れ、長手方向(図6の左右方向)の両端部に円形の連通
口21が開口している。連結管19の内部には、仕切り
板22が配され、この仕切り板22によって冷媒槽3の
冷媒室6と連通する第1の連通室(図6では仕切り板2
2より右側)と、冷媒室6の液戻り通路7と連通する第
2の連通室(図6では仕切り板22より左側)とに仕切
られている。また、第1の連通室には、インナフィン2
3が挿入されている。
Hereinafter, the configuration of the radiator 4 will be briefly described. The radiator 4 is a so-called Dron cup type heat exchanger, and includes a connecting pipe 19, a radiating pipe 20, and a radiating fin 14, as shown in FIG. The connection pipe 19 is a connection part with the refrigerant tank 3 and is assembled to an upper end opening of the refrigerant tank 3. The connecting pipe 19 is made of a press-formed 2
It is formed by joining two forming plates at their outer peripheral edges, and circular communication ports 21 are opened at both ends in the longitudinal direction (left-right direction in FIG. 6). A partition plate 22 is disposed inside the connection pipe 19, and a first communication chamber (in FIG. 6, the partition plate 2 is connected to the refrigerant chamber 6 of the refrigerant tank 3 by the partition plate 22).
2) and a second communication chamber (the left side of the partition plate 22 in FIG. 6) communicating with the liquid return passage 7 of the refrigerant chamber 6. Also, the inner fin 2 is provided in the first communication chamber.
3 is inserted.

【0020】放熱管20は、プレス成形された2枚の成
形プレートを互いの外周縁部で接合して偏平な中空管に
形成され、長手方向(図6の左右方向)の両端部に円形
の連通口21が開口している。各放熱管20は、図5に
示すように、連結管19の両側にそれぞれ複数個ずつ積
み重ねられ、互いの連通口21を通じて相互に連通して
いる。この放熱管20は、凝縮液が流れ易いように、若
干傾斜した状態で連結管19に組み付けられている(図
6参照)。放熱フィン14は、連結管19と放熱管20
との間、及び積層された各放熱管20の間に介在され、
連結管19及び放熱管20の表面にろう付け等により接
合されている。
The heat radiating tube 20 is formed into a flat hollow tube by joining two press-formed forming plates at their outer peripheral edges, and has circular ends at both ends in the longitudinal direction (left and right directions in FIG. 6). Communication port 21 is open. As shown in FIG. 5, a plurality of the heat radiation tubes 20 are stacked on both sides of the connection tube 19, respectively, and communicate with each other through the communication ports 21. The heat radiating pipe 20 is attached to the connecting pipe 19 in a slightly inclined state so that the condensate flows easily (see FIG. 6). The radiating fins 14 are connected to the connecting pipe 19 and the radiating pipe 20.
And between the laminated heat radiation tubes 20,
It is joined to the surfaces of the connecting pipe 19 and the heat radiating pipe 20 by brazing or the like.

【0021】次に、本実施例の作動を説明する。発熱体
2の熱を受けて沸騰した冷媒蒸気は、冷媒室6から連結
管19の第1の連通室を通って各放熱管20へ流入し、
放熱管20を流れる際に外気との熱交換によって冷却さ
れ、放熱管20の内壁面に凝縮する。凝縮して液滴とな
った凝縮液は、放熱管20内を傾斜方向(図6の右側か
ら左側)に流れ、連結管19の第2の連通室を通って冷
媒室6の液戻り通路7へ滴下した後、液戻り通路7から
仕切り板5の下部隙間8を通って冷媒室6へ還流する。
Next, the operation of this embodiment will be described. The refrigerant vapor that has been boiled by receiving the heat of the heating element 2 flows from the refrigerant chamber 6 through the first communication chamber of the connection pipe 19 to each of the heat radiating pipes 20,
When flowing through the radiator tube 20, it is cooled by heat exchange with the outside air and condenses on the inner wall surface of the radiator tube 20. The condensed liquid that has been condensed into droplets flows in the heat radiation pipe 20 in the inclined direction (from right to left in FIG. 6), passes through the second communication chamber of the connection pipe 19, and returns to the liquid return passage 7 of the refrigerant chamber 6. Then, the liquid flows from the liquid return passage 7 to the refrigerant chamber 6 through the lower gap 8 of the partition plate 5.

【0022】本実施例の沸騰冷却装置1においても、第
1実施例と同様に、冷媒槽3の厚み寸法が放熱器4側へ
向かって次第に大きくなっているため、放熱器4に近い
方の発熱体取付け面に気泡が充満することを防止でき
る。また、放熱器4に近くなる程、冷媒槽3の厚み寸法
を次第に大きくすることにより、気泡を抜け易くでき、
発熱体取付け面でのバーンアウトを防止できる。更に、
冷媒量の適正化を図ることができ、過度な冷媒量を封入
することによるコストアップを防止できる。
In the boiling cooling device 1 of this embodiment, as in the first embodiment, the thickness of the refrigerant tank 3 is gradually increased toward the radiator 4 side. Bubbles can be prevented from filling the heating element mounting surface. In addition, as the distance from the radiator 4 increases, the thickness of the refrigerant tank 3 is gradually increased, so that bubbles can easily escape.
Burnout on the heating element mounting surface can be prevented. Furthermore,
It is possible to optimize the amount of the refrigerant, and it is possible to prevent an increase in cost due to enclosing an excessive amount of the refrigerant.

【0023】(第3実施例)図7は沸騰冷却装置1の側
面図、図8は沸騰冷却装置1の正面図である。本実施例
の冷媒槽3は、図1に示すように、放熱器4に対し斜め
に傾いた状態で組み付けられ、且つ冷媒槽3の先端側か
ら放熱器4側へ向かって次第に厚み寸法が大きくなるテ
ーパ形状に設けられている。なお、この場合も、発熱体
2は、冷媒槽3の下側壁面3aに取り付けられる。ま
た、冷媒槽3の内部は、複数の支柱部24によって冷媒
室6と液戻り通路7とが形成され、且つ冷媒槽3の底部
に冷媒室6と液戻り通路7とを連通する還流通路25が
形成されている。これにより、放熱器4から液戻り通路
7へ流入した凝縮液は、還流通路25を通って冷媒室6
へ供給される。放熱器4は第1実施例と同一構造である
(第2実施例と同一構造でも良い)。この本実施例にお
いても、第1実施例と同様の効果を得ることができる。
(Third Embodiment) FIG. 7 is a side view of the boiling cooling device 1, and FIG. 8 is a front view of the boiling cooling device 1. As shown in FIG. 1, the refrigerant tank 3 of this embodiment is assembled in a state of being obliquely inclined with respect to the radiator 4, and has a gradually increasing thickness from the front end of the refrigerant tank 3 toward the radiator 4. It is provided in a tapered shape. In this case as well, the heating element 2 is attached to the lower wall surface 3a of the refrigerant tank 3. In the inside of the refrigerant tank 3, the refrigerant chamber 6 and the liquid return passage 7 are formed by the plurality of columns 24, and a reflux passage 25 communicating the refrigerant chamber 6 and the liquid return passage 7 at the bottom of the refrigerant tank 3. Are formed. As a result, the condensate flowing from the radiator 4 into the liquid return passage 7 passes through the return passage 25 and is
Supplied to The radiator 4 has the same structure as in the first embodiment (may have the same structure as in the second embodiment). In this embodiment, the same effects as in the first embodiment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の側面図である(第1実施例)。FIG. 1 is a side view of a boiling cooling device (first embodiment).

【図2】沸騰冷却装置の正面図である(第1実施例)。FIG. 2 is a front view of a boiling cooling device (first embodiment).

【図3】冷媒槽内に設けられる仕切り板の形状を示す図
面である。
FIG. 3 is a drawing showing a shape of a partition plate provided in a refrigerant tank.

【図4】下部タンク内に設けられる冷媒流制御板の形状
を示す図面である。
FIG. 4 is a drawing showing a shape of a refrigerant flow control plate provided in a lower tank.

【図5】沸騰冷却装置の側面図である(第2実施例)。FIG. 5 is a side view of a boiling cooling device (second embodiment).

【図6】沸騰冷却装置の正面図である(第2実施例)。FIG. 6 is a front view of a boiling cooling device (second embodiment).

【図7】沸騰冷却装置の側面図である(第3実施例)。FIG. 7 is a side view of a boiling cooling device (third embodiment).

【図8】沸騰冷却装置の正面図である(第3実施例)。FIG. 8 is a front view of a boiling cooling device (third embodiment).

【図9】沸騰冷却装置の断面図である(従来技術)。FIG. 9 is a sectional view of a boiling cooling device (prior art).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 発熱体 3 冷媒槽 3a 冷媒槽の下側壁面 4 放熱器 6 冷媒室 7 液戻り通路 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Heating element 3 Refrigerant tank 3a Lower wall surface of refrigerant tank 4 Radiator 6 Refrigerant chamber 7 Liquid return passage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】横幅寸法より厚み寸法が小さい偏平形状に
設けられ、内部に液冷媒を貯留する冷媒槽と、 この冷媒槽で発熱体の熱を受けて沸騰した冷媒蒸気を外
部流体との熱交換によって凝縮液化させる放熱器とを備
えた沸騰冷却装置であって、 前記冷媒槽は、厚み方向の両壁面が前記放熱器に対し垂
直方向から水平方向へ所定角度傾斜して設けられるとと
もに、厚み方向の下側壁面に前記発熱体が取り付けら
れ、且つ前記冷媒槽の長さ方向で少なくとも前記発熱体
が取り付けられる範囲では、前記放熱器に近くなる程、
前記冷媒槽の厚み寸法が次第に大きくなる形状に設けら
れていることを特徴とする沸騰冷却装置。
1. A refrigerant tank provided in a flat shape having a thickness smaller than a lateral dimension and storing a liquid refrigerant therein, and a refrigerant vapor boiled by receiving heat of a heating element in the refrigerant tank and communicating with an external fluid. A radiator that condenses and liquefies by replacement, wherein the refrigerant tank is provided with both wall surfaces in the thickness direction inclined at a predetermined angle from the vertical direction to the horizontal direction with respect to the radiator, and has a thickness. In the range in which the heating element is attached to the lower wall surface in the direction, and at least the heating element is attached in the length direction of the refrigerant tank, the closer to the radiator,
A boiling cooling device, wherein the thickness dimension of the refrigerant tank is gradually increased.
【請求項2】前記冷媒槽は、前記発熱体が取り付けられ
る下側壁面が略水平方向に設けられていることを特徴と
する請求項1に記載した沸騰冷却装置。
2. The boiling cooling device according to claim 1, wherein the refrigerant tank has a lower wall surface to which the heating element is attached is provided in a substantially horizontal direction.
【請求項3】前記冷媒槽は、内部に貯留された液冷媒が
前記発熱体の熱を受けて沸騰する沸騰領域を形成する冷
媒室と、前記放熱器で液化した凝縮液が流れ込む液戻り
通路とを有し、前記冷媒室と前記液戻り通路とが前記冷
媒槽内の下部で連通して設けられていることを特徴とす
る請求項1及び2に記載した沸騰冷却装置。
3. The refrigerant tank has a refrigerant chamber forming a boiling region in which a liquid refrigerant stored therein receives heat from the heating element to boil, and a liquid return passage into which condensed liquid liquefied by the radiator flows. 3. The boiling cooling device according to claim 1, wherein the cooling chamber and the liquid return passage are provided so as to communicate with each other at a lower portion in the cooling bath.
JP10233732A 1998-06-30 1998-08-20 Ebullient cooler Pending JP2000065455A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10233732A JP2000065455A (en) 1998-08-20 1998-08-20 Ebullient cooler
US09/333,151 US6257324B1 (en) 1998-06-30 1999-06-14 Cooling apparatus boiling and condensing refrigerant
EP99111978A EP0969261B1 (en) 1998-06-30 1999-06-28 Cooling apparatus using boiling and condensing refrigerant
DE69914675T DE69914675T2 (en) 1998-06-30 1999-06-28 Cooling device with boiling and condensing coolant
KR1019990025393A KR100330398B1 (en) 1998-06-30 1999-06-29 Cooling apparatus boiling and condensing refrigerant
US09/779,141 US6857466B2 (en) 1998-06-30 2001-02-08 Cooling apparatus boiling and condensing refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10233732A JP2000065455A (en) 1998-08-20 1998-08-20 Ebullient cooler

Publications (1)

Publication Number Publication Date
JP2000065455A true JP2000065455A (en) 2000-03-03

Family

ID=16959715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10233732A Pending JP2000065455A (en) 1998-06-30 1998-08-20 Ebullient cooler

Country Status (1)

Country Link
JP (1) JP2000065455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
CN113649775A (en) * 2021-08-20 2021-11-16 江苏山源热工技术有限公司 Manufacturing method of condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
CN113649775A (en) * 2021-08-20 2021-11-16 江苏山源热工技术有限公司 Manufacturing method of condenser
CN113649775B (en) * 2021-08-20 2022-10-21 江苏山源热工技术有限公司 Manufacturing method of condenser

Similar Documents

Publication Publication Date Title
US6527045B1 (en) Cooling apparatus boiling and condensing refrigerant
US6341646B1 (en) Cooling device boiling and condensing refrigerant
JP2000065456A (en) Ebullient cooler
US6279649B1 (en) Cooling apparatus using boiling and condensing refrigerant
JP2000065455A (en) Ebullient cooler
JPH1098142A (en) Boiling cooler
JP3924674B2 (en) Boiling cooler for heating element
JP4026038B2 (en) Boiling cooler
JP3810119B2 (en) Boiling cooler
JP2006229102A (en) Boiling cooler
JP3890795B2 (en) Boiling cooler
JP3975252B2 (en) Boiling cooler for electric vehicles
JP2000236055A (en) Cooling device through heat release
JP2000065454A (en) Ebullient cooler
JPH08186208A (en) Boiling cooling device
JP2000183259A (en) Boiling and cooling device
JP2000156445A (en) Boiling cooling device
JP4284853B2 (en) Boiling cooler
JP2000049265A (en) Boiling cooler
JP4026249B2 (en) Boiling cooler
JP3656607B2 (en) Boiling cooler
JP2001116474A (en) Ebullient cooling device
JP2001339027A (en) Boiling cooling device
JPH09205167A (en) Boiling cooling device
JP2000269393A (en) Boiling/cooling device