JP2000065436A - Waste heat utilizing absorption type water heater/cooler refrigerating machine with load variation controlling function - Google Patents

Waste heat utilizing absorption type water heater/cooler refrigerating machine with load variation controlling function

Info

Publication number
JP2000065436A
JP2000065436A JP10231472A JP23147298A JP2000065436A JP 2000065436 A JP2000065436 A JP 2000065436A JP 10231472 A JP10231472 A JP 10231472A JP 23147298 A JP23147298 A JP 23147298A JP 2000065436 A JP2000065436 A JP 2000065436A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
waste heat
absorber
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10231472A
Other languages
Japanese (ja)
Other versions
JP3245116B2 (en
Inventor
Shuzo Takahata
修蔵 高畠
Tadafumi Ochi
忠文 越智
Kenichi Saito
健一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP23147298A priority Critical patent/JP3245116B2/en
Publication of JP2000065436A publication Critical patent/JP2000065436A/en
Application granted granted Critical
Publication of JP3245116B2 publication Critical patent/JP3245116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a continuously stable operation without excessively cooling cold water or overheating hot water in a waste heat utilizing absorption type water cooler/heater refrigerating machine. SOLUTION: A waste heat (exhaust gas) supply pipe 3 is inserted through a high temperature regenerator 14 to allow introduction of a combustion waste heat from a combustion waste heat generation source 66 into a high temperature regenerator 14 to be used for the heating and concentration of an absorbing solution and a temperature sensor 82 is provided on a cold/hot water outlet pipe 70 of an evaporator 50 while an outlet of a solution pump 74 of an absorber 52 is connected to the evaporator 50 through an absorbing solution mixing pipe 86 having a flow control valve 84. The temperature sensor 82 is connected to the flow control valve 84 through a control board 88 so as to allow controlling of the amount of the absorbing solution which flows into the evaporator 50 depending on the temperature detected by the temperature sensor 82 and moreover, the evaporator 50 is connected to the absorber 52 through an overflow pipe 90.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷水温度の低過ぎ
や温水温度の高過ぎを起こさずに、連続的かつ安定な運
転を行うことができる負荷変動制御機能を備えた廃熱
(排ガス)利用吸収式冷温水機・冷凍機に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to waste heat (exhaust gas) having a load fluctuation control function capable of performing continuous and stable operation without causing a cold water temperature to be too low or a hot water temperature to be too high. It relates to a water absorption type chiller / heater and a refrigerator.

【0002】[0002]

【従来の技術】従来から、吸収剤として、例えば臭化リ
チウムを用い、冷媒として、例えば水を用い、蒸発器、
吸収器、凝縮器、低温再生器、高温再生器、低温熱交換
器、高温熱交換器及びこれらの機器を接続する溶液管
路、冷媒管路で構成された吸収式冷凍機・冷温水機が知
られている(例えば、特開平7−174430号公報参
照)。また、高温再生器と低温再生器を備え、ガスエン
ジン等からなる発電装置から排出された排ガスの熱を高
温再生器の熱源として用いるコージェネ型吸収冷凍機に
おいて、ガスエンジン等からなる発電装置から排出され
た冷却水(温水)を低温再生器に導いて循環させ冷却水
の熱を低温再生器の熱源として用いることにより、発電
装置の冷却水の保有熱量の有効利用を図り、冷凍能力の
向上を図るようにしたコージェネ型吸収冷凍機が提案さ
れている(例えば、特開平8−296922号公報参
照)。
2. Description of the Related Art Conventionally, for example, lithium bromide is used as an absorbent and water is used as a refrigerant, for example.
Absorption chillers and chiller / heaters composed of absorbers, condensers, low-temperature regenerators, high-temperature regenerators, low-temperature heat exchangers, high-temperature heat exchangers, and solution lines and refrigerant lines connecting these devices This is known (for example, see Japanese Patent Application Laid-Open No. 7-174430). Also, in a cogeneration absorption chiller that includes a high-temperature regenerator and a low-temperature regenerator and uses the heat of exhaust gas discharged from a power generator composed of a gas engine, etc. The cooling water (warm water) is guided to the low-temperature regenerator and circulated, and the heat of the cooling water is used as a heat source of the low-temperature regenerator. A cogeneration-type absorption refrigerator having been designed has been proposed (for example, see Japanese Patent Application Laid-Open No. 8-296922).

【0003】上記のように、蒸発器、吸収器、凝縮器、
低温再生器、高温再生器等で構成される吸収式冷温水機
において、ガスエンジン等の燃焼廃熱(排ガス)を高温
再生器へ直接投入して、吸収液の加熱、濃縮に使用し、
他の加熱エネルギーの節約を行って冷房又は暖房を行う
システムがすでに知られている。この場合、ガスエンジ
ン以外に、ガスタービン、脱臭炉、焼却炉等の燃焼排ガ
スを使用することも考えられる。この燃焼廃熱(排ガ
ス)を利用する吸収式冷温水機では、例えば、図5に示
すように、一般的に廃熱(排ガス)側の熱量はほぼ一定
となる場合が多く、この吸収式冷温水機10の冷温水発
生部12からでる冷水又は温水を利用する冷暖房負荷1
6側は用途により変動するのが通常である。14は高温
再生器である。
As described above, evaporators, absorbers, condensers,
In an absorption-type chiller / heater consisting of a low-temperature regenerator and a high-temperature regenerator, the combustion waste heat (exhaust gas) from a gas engine or the like is directly injected into the high-temperature regenerator and used to heat and concentrate the absorbing solution.
Other heating energy saving and cooling or heating systems are already known. In this case, it is conceivable to use combustion exhaust gas from a gas turbine, a deodorizing furnace, an incinerator and the like in addition to the gas engine. In an absorption chiller / heater using this combustion waste heat (exhaust gas), for example, as shown in FIG. 5, for example, the amount of heat on the waste heat (exhaust gas) side is generally almost constant in many cases. Cooling / heating load 1 using cold or hot water from cold / hot water generating section 12 of water machine 10
The 6 side usually varies depending on the application. 14 is a high-temperature regenerator.

【0004】特開平7−174430号公報に示される
ような従来の吸収式冷温水機では、負荷変動により冷水
温度又は温水温度が変動すると、その温度変化に応じて
加熱エネルギー(ガス、油等の燃料)を増減し、エネル
ギーの節約と冷え過ぎ又は暖か過ぎを調節している。図
5に示すような廃熱(排ガス)利用の吸収式冷温水機の
場合には、加熱源となる廃熱(排ガス)は本来捨てられ
るはずのエネルギーであるため、無理に増減(調節)す
る必要がない。しかし、吸収式冷温水機10からでる冷
水又は温水は、負荷変動により温度が下がり過ぎたり、
上がり過ぎたりして、そのまま利用するには具合が悪
く、何か制御をする必要が生じてくる。そのため、従来
は廃熱(排ガス)のバイパス制御、疑似負荷による容量
制御により、冷水又は温水の温度制御が行われている。
In a conventional absorption chiller / heater as disclosed in JP-A-7-174430, when a cold water temperature or a hot water temperature fluctuates due to a load fluctuation, heating energy (such as gas, oil, etc.) is changed according to the temperature change. Fuel) to adjust for energy savings and too cold or too warm. In the case of an absorption chiller / heater using waste heat (exhaust gas) as shown in FIG. 5, the waste heat (exhaust gas) serving as a heating source is energy that should be originally discarded, and is forcibly increased or decreased (adjusted). No need. However, the cold or hot water flowing out of the absorption chiller / heater 10 has a temperature that is too low due to a load change,
It is too bad to use it as it is, and it is necessary to control it. Therefore, conventionally, temperature control of cold water or hot water is performed by bypass control of waste heat (exhaust gas) and capacity control by a pseudo load.

【0005】すなわち、図5において、排ガスの一部は
自動ダンパ18により制御されて高温再生器14に導入
され、吸収液を加熱・濃縮した後、自動ダンパ20を経
て煙突22から排出される。排ガスの残部は自動ダンパ
24により制御されて高温再生器14をバイパスし、バ
イパス管26を通って煙突22から排出される。28は
パージ用送風機で、高温再生器14入口の排ガス供給管
30に設けられた温度調節器32により制御される。一
方、冷温水発生部12からの冷水又は温水は冷暖房負荷
16に導入されて冷房又は暖房に使用された後、疑似負
荷調整用の熱交換器34に導入され、ここで冷却水によ
り冷却又は加温された後、冷温水ポンプ36により冷温
水発生部12に循環される。熱交換器34を出た冷却水
は冷却塔38に導入されて冷却された後、冷却水ポンプ
40により冷温水発生部12に導入される。冷却水ポン
プ40からの冷却水は、冷温水発生部12を通って熱交
換器34に導入される。44は冷却塔ファンモータであ
る。なお、黒塗りの手動弁は、通常閉で、メンテナンス
時に開として使用される。
[0005] That is, in FIG. 5, a part of the exhaust gas is introduced into the high-temperature regenerator 14 under the control of the automatic damper 18, heats and concentrates the absorbent, and is discharged from the chimney 22 through the automatic damper 20. The remainder of the exhaust gas is controlled by the automatic damper 24 and bypasses the high temperature regenerator 14, and is discharged from the chimney 22 through the bypass pipe 26. A purge blower 28 is controlled by a temperature controller 32 provided in an exhaust gas supply pipe 30 at the inlet of the high-temperature regenerator 14. On the other hand, the cold or hot water from the cold / hot water generator 12 is introduced into the cooling / heating load 16 and used for cooling or heating, and then is introduced into the pseudo load adjusting heat exchanger 34, where it is cooled or heated by the cooling water. After being heated, the water is circulated to the cold / hot water generator 12 by the cold / hot water pump 36. The cooling water exiting the heat exchanger 34 is introduced into the cooling tower 38 and cooled, and then introduced into the cold / hot water generating unit 12 by the cooling water pump 40. Cooling water from the cooling water pump 40 is introduced into the heat exchanger 34 through the cold / hot water generating unit 12. 44 is a cooling tower fan motor. The black painted manual valve is normally closed and used during maintenance.

【0006】[0006]

【発明が解決しようとする課題】図5に示す方式は過去
の実績もありよく知られているが、吸収式冷温水機の他
に排ガスのバイパス制御装置及び/又は疑似負荷調整用
熱交換器とその制御装置などの装備が必要となり、設備
コストの増加要因となったり、保守メンテナンス項目の
追加要因となったりして利用者の負担が増えることにな
る。
The system shown in FIG. 5 is well known because of its past achievements. In addition to the absorption type chiller / heater, it has a bypass control device for exhaust gas and / or a heat exchanger for pseudo load adjustment. In addition, equipment such as a control device and the like is required, which causes an increase in equipment costs and an additional factor in maintenance items, thereby increasing the burden on the user.

【0007】本発明は上記の点に鑑みなされたもので、
本発明の目的は、廃熱(排ガス)のバイパス制御、疑似
負荷による容量制御など廃熱側の制御無し(成り行き)
で運転する廃熱(排ガス)利用の吸収式冷温水機・冷凍
機において、冷水温度の低過ぎや温水温度の高過ぎを起
こさず連続的に安定して運転する機能を有する吸収式冷
温水機・冷凍機を提供することにある。また、本発明の
目的は、加熱量一定運転時に負荷変動を吸収式冷温水機
・冷凍機内の制御装置で調整(吸収)して、冷水、温水
の過大な温度変動を起こらなくし、安全装置が作動して
運転停止に至ることがないように調整する機能を有する
吸収式冷温水機・冷凍機を提供することにある。
[0007] The present invention has been made in view of the above points,
An object of the present invention is to eliminate waste heat (exhaust gas) by-pass control, and to control the capacity by a pseudo load without waste heat control (event).
Absorption chiller / heater with waste heat (exhaust gas) that operates continuously and has a function to operate continuously and stably without causing the chilled water temperature to be too low or the hot water temperature to be too high.・ To provide a refrigerator. Further, an object of the present invention is to adjust (absorb) load fluctuations during a constant heating operation with a control device in an absorption type chiller / heater / refrigerator so that excessive temperature fluctuations of cold water and hot water do not occur. It is an object of the present invention to provide an absorption type chiller / heater having a function of adjusting the operation so that the operation is not stopped.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の負荷変動制御機能を備えた廃熱利用吸収
式冷温水機・冷凍機は、蒸発器、吸収器、凝縮器、低温
再生器、高温再生器、低温熱交換器、高温熱交換器及び
これらの機器を接続する溶液管路、冷媒管路で構成さ
れ、吸収液が吸収器から低温再生器へ汲み上げられ、さ
らに高温再生器へ汲み上げられるように接続・配置され
たリバースフロータイプの吸収式冷温水機・冷凍機にお
いて、燃焼廃熱発生源からの燃焼廃熱を高温再生器に導
入して吸収液の加熱・濃縮に使用できるように、高温再
生器内に廃熱供給管を挿通させ、かつ、蒸発器の冷温水
出口管に温度センサーを設けるとともに、吸収器の溶液
ポンプの出口と蒸発器とを流量調節弁を有する吸収液混
合管を介して接続し、前記温度センサーとこの流量調節
弁とを制御盤を介して、温度センサーで検出された温度
により蒸発器に流入させる吸収液量を制御可能に接続
し、さらに、蒸発器と吸収器とをオーバーフロー管を介
して接続して構成されている(図1参照)。蒸発器内の
冷媒液、又は吸収液と冷媒液との混合液がオーバーフロ
ー管を通って吸収器に流入する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a waste heat absorption type chiller-heater / refrigerator having a load fluctuation control function, which comprises an evaporator, an absorber, a condenser, It consists of a low-temperature regenerator, a high-temperature regenerator, a low-temperature heat exchanger, a high-temperature heat exchanger, and a solution line and a refrigerant line connecting these devices.The absorbent is pumped from the absorber to the low-temperature regenerator, In a reverse flow type absorption chiller / heater / refrigerator connected and arranged so that it can be pumped to the regenerator, the combustion waste heat from the source of combustion waste heat is introduced into the high-temperature regenerator to heat and concentrate the absorbent. A waste heat supply pipe is inserted into the high-temperature regenerator and a temperature sensor is provided on the cold / hot water outlet pipe of the evaporator, and the outlet of the solution pump of the absorber and the evaporator are connected to a flow rate control valve. Connected via an absorbent mixing tube with The temperature sensor and the flow control valve are connected via a control panel so as to control the amount of the absorbing liquid flowing into the evaporator according to the temperature detected by the temperature sensor, and furthermore, the evaporator and the absorber are connected to an overflow pipe. (See FIG. 1). The refrigerant liquid in the evaporator or the mixed liquid of the absorption liquid and the refrigerant liquid flows into the absorber through the overflow pipe.

【0009】また、本発明の負荷変動制御機能を備えた
廃熱利用吸収式冷温水機・冷凍機は、蒸発器、吸収器、
凝縮器、低温再生器、高温再生器、低温熱交換器、高温
熱交換器及びこれらの機器を接続する溶液管路、冷媒管
路で構成され、吸収液が吸収器から高温再生器及び低温
再生器へ同時に汲み上げられるように接続・配置された
パラレルフロータイプの吸収式冷温水機・冷凍機におい
て、燃焼廃熱発生源からの燃焼廃熱を高温再生器に導入
して吸収液の加熱・濃縮に使用できるように、高温再生
器内に廃熱供給管を挿通させ、かつ、蒸発器の冷温水出
口管に温度センサーを設けるとともに、吸収器の溶液ポ
ンプの出口と蒸発器とを流量調節弁を有する吸収液混合
管を介して接続し、前記温度センサーとこの流量調節弁
とを制御盤を介して、温度センサーで検出された温度に
より蒸発器に流入させる吸収液量を制御可能に接続し、
さらに、蒸発器と吸収器とをオーバーフロー管を介して
接続したことを特徴としている(図2参照)。
[0009] Further, an absorption type chiller / heater / refrigerator utilizing waste heat provided with a load variation control function of the present invention comprises an evaporator, an absorber,
It consists of a condenser, a low temperature regenerator, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, and a solution line and a refrigerant line connecting these devices. In the parallel flow type absorption chiller / heater / refrigerator connected and arranged so that they can be simultaneously pumped to the heater, the combustion waste heat from the combustion waste heat generation source is introduced into the high temperature regenerator to heat and concentrate the absorption liquid A waste heat supply pipe is inserted into the high-temperature regenerator and a temperature sensor is provided on the cold / hot water outlet pipe of the evaporator, and the outlet of the solution pump of the absorber and the evaporator are connected to a flow rate control valve. The temperature sensor and the flow rate control valve are connected via a control panel so as to control the amount of the absorbent flowing into the evaporator according to the temperature detected by the temperature sensor. ,
Further, the present invention is characterized in that the evaporator and the absorber are connected via an overflow pipe (see FIG. 2).

【0010】さらに、本発明の負荷変動制御機能を備え
た廃熱利用吸収式冷温水機・冷凍機は、蒸発器、吸収
器、凝縮器、低温再生器、高温再生器、低温熱交換器、
高温熱交換器及びこれらの機器を接続する溶液管路、冷
媒管路で構成され、吸収液が吸収器から高温再生器へ汲
み上げられた後、低温再生器へ流れるように接続・配置
されたシリーズフロータイプの吸収式冷温水機・冷凍機
において、燃焼廃熱発生源からの燃焼廃熱を高温再生器
に導入して吸収液の加熱・濃縮に使用できるように、高
温再生器内に廃熱供給管を挿通させ、かつ、蒸発器の冷
温水出口管に温度センサーを設けるとともに、吸収器の
溶液ポンプの出口と蒸発器とを流量調節弁を有する吸収
液混合管を介して接続し、前記温度センサーとこの流量
調節弁とを制御盤を介して、温度センサーで検出された
温度により蒸発器に流入させる吸収液量を制御可能に接
続し、さらに、蒸発器と吸収器とをオーバーフロー管を
介して接続したことを特徴としている(図3参照)。
Further, according to the present invention, there is provided an absorption type chiller / heater / refrigerator utilizing a waste heat having a load variation control function, comprising: an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a low temperature heat exchanger,
A series consisting of a high-temperature heat exchanger, a solution pipeline connecting these devices, and a refrigerant pipeline, and connected and arranged so that the absorbent is pumped from the absorber to the high-temperature regenerator and then flows to the low-temperature regenerator. In a flow type absorption chiller / heater / refrigerator, the waste heat from the combustion waste heat source is introduced into the high-temperature regenerator so that it can be used for heating and concentrating the absorbing solution. The supply pipe is inserted, and a temperature sensor is provided at the cold / hot water outlet pipe of the evaporator, and the outlet of the solution pump of the absorber and the evaporator are connected via an absorbing liquid mixing pipe having a flow rate control valve, The temperature sensor and the flow control valve are connected via a control panel so that the amount of the absorbing liquid flowing into the evaporator can be controlled according to the temperature detected by the temperature sensor.Furthermore, an overflow pipe is connected between the evaporator and the absorber. Connected via It is characterized (see Figure 3).

【0011】これらの負荷変動制御機能を備えた廃熱利
用吸収式冷温水機・冷凍機において、温度センサーで検
出した温度により、蒸発器の冷媒液循環ポンプのオン・
オフ制御、又はこの冷媒液循環ポンプからの冷媒液循環
量の流量制御を行えるように構成することが好ましい。
また、燃焼廃熱発生源がガスタービンであり、蒸発器か
ら得られる冷水をガスタービンの吸気冷却に利用するこ
とができるように、蒸発器の冷水出口とガスタービンと
を冷水管路を介して接続するように構成することが好ま
しい。
In the waste-heat-absorption absorption chiller / heater / refrigerator equipped with these load fluctuation control functions, the temperature of the refrigerant liquid circulation pump of the evaporator is turned on / off by the temperature detected by the temperature sensor.
It is preferable to configure so that off control or flow rate control of the refrigerant liquid circulation amount from the refrigerant liquid circulation pump can be performed.
Further, the combustion waste heat generation source is a gas turbine, and the chilled water outlet of the evaporator and the gas turbine are connected through a chilled water pipe so that the chilled water obtained from the evaporator can be used for cooling the intake air of the gas turbine. It is preferable to configure the connection.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を吸収
式冷温水機の場合について説明するが、本発明は吸収式
冷温水機の場合に限定されるものではなく、吸収式冷凍
機の場合にも適用できるものである。図1は、本発明の
実施の第1形態によるリバースフロータイプの廃熱利用
吸収式冷温水機を示している。本実施形態では、蒸発器
50、吸収器52、凝縮器54、低温再生器56、高温
再生器14、低温熱交換器60、高温熱交換器62及び
これらの機器を接続する溶液管路、冷媒管路を備え、吸
収液が吸収器52から低温再生器56へ汲み上げられ、
さらに高温再生器14へ汲み上げられるように接続・配
置されたリバースフロータイプの吸収式冷温水機におい
て、ガスタービン、ガスエンジン、脱臭炉、焼却炉等の
燃焼廃熱(排ガス)発生源66からの燃焼排ガスを高温
再生器14に導入して吸収液の加熱・濃縮に使用できる
ように、高温再生器14内に排ガス供給管30を挿通さ
せている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment of the present invention will be described below with reference to an absorption type chiller / heater, but the present invention is not limited to an absorption type chiller / heater. It can be applied to the case. FIG. 1 shows a reverse flow type waste heat absorption absorption chiller / heater according to a first embodiment of the present invention. In the present embodiment, the evaporator 50, the absorber 52, the condenser 54, the low-temperature regenerator 56, the high-temperature regenerator 14, the low-temperature heat exchanger 60, the high-temperature heat exchanger 62, the solution pipe connecting these devices, the refrigerant A pipe line, and the absorbent is pumped from the absorber 52 to the low-temperature regenerator 56;
Further, in a reverse flow type absorption chiller / heater connected and arranged so as to be pumped to the high temperature regenerator 14, a waste heat (exhaust gas) source 66 from a gas turbine, a gas engine, a deodorizing furnace, an incinerator and the like is generated. An exhaust gas supply pipe 30 is inserted into the high-temperature regenerator 14 so that the combustion exhaust gas is introduced into the high-temperature regenerator 14 and used for heating and concentrating the absorbent.

【0013】蒸発器50の冷温水出口管70には温度セ
ンサー82が設けられ、吸収器52の溶液ポンプ74の
出口と、蒸発器50とが流量調節弁84を有する吸収液
混合管86を介して接続されている。そして、温度セン
サー82と流量調節弁84とが制御盤88を介して接続
され、温度センサー82で検出された冷温水の温度によ
り、吸収器52から蒸発器50に流入・混合させる吸収
液の流量を制御できるように構成されている。さらに、
蒸発器50の冷媒液溜り部の上部近傍と吸収器52と
が、オーバーフロー管90を介して接続され、蒸発器5
0の冷媒液溜り部でオーバーフローした冷媒液、又は吸
収液と冷媒液との混合液が吸収器52へ流入するように
構成されている。
A temperature sensor 82 is provided at the cold / hot water outlet pipe 70 of the evaporator 50. The outlet of the solution pump 74 of the absorber 52 and the evaporator 50 are connected via an absorbing liquid mixing pipe 86 having a flow rate control valve 84. Connected. The temperature sensor 82 and the flow rate control valve 84 are connected via a control panel 88, and the flow rate of the absorbent flowing into and mixed from the absorber 52 into the evaporator 50 based on the temperature of the cold / hot water detected by the temperature sensor 82. Is configured to be controlled. further,
The vicinity of the upper portion of the refrigerant liquid reservoir of the evaporator 50 and the absorber 52 are connected via an overflow pipe 90, and the evaporator 5
The refrigerant liquid overflowing in the refrigerant liquid reservoir of 0, or a mixed liquid of the absorption liquid and the refrigerant liquid flows into the absorber 52.

【0014】高温再生器14内の排ガス伝熱管30a
は、蛇管状に形成したり、複数本の小径管としたり、さ
らにはフィンチューブ等にして伝熱面積を大きくするよ
うに構成することが望ましい。また、燃焼廃熱発生源6
6がガスタービンである場合は、蒸発器50から得られ
る冷水をガスタービンの吸気冷却に利用できるように、
蒸発器50の冷水出口とガスタービンとを冷水管路72
を介して接続することが望ましい。
Exhaust gas heat transfer tube 30a in high temperature regenerator 14
It is preferable that the heat transfer area be increased by forming a snake tube, a plurality of small diameter tubes, or a fin tube or the like. The combustion waste heat source 6
When 6 is a gas turbine, the cold water obtained from the evaporator 50 can be used for cooling the intake of the gas turbine.
The cold water outlet of the evaporator 50 and the gas turbine are connected to the cold water line 72.
It is desirable to connect via.

【0015】上記のように構成された廃熱利用吸収式冷
温水機において、吸収器52内の吸収液(稀液、例えば
臭化リチウム水溶液)は溶液ポンプ(低温ポンプ)74
により低温熱交換器60を経て低温再生器56に送ら
れ、高温再生器14から流入してきた高温の冷媒蒸気
(例えば水蒸気)によって加熱されて中間濃度まで濃縮
される。この中間濃度の液は二分され、二分された液の
一方は溶液ポンプ(高温ポンプ)76により高温熱交換
器62を経て高温再生器14に送られ、ここで燃焼廃熱
発生源66からの排ガスによって加熱されて冷媒蒸気と
濃液とに分離される。この濃液(吸収液)は高温熱交換
器62を経て二分された中間濃度の液の他方と混合し、
混合濃液となって低温熱交換器60に送られた後、吸収
器52に導入され冷却水により冷却されるとともに、蒸
発器50からの冷媒水と混合して稀液となる。
In the absorption type chiller / heater using waste heat configured as described above, the absorbing liquid (dilute solution, for example, aqueous lithium bromide solution) in the absorber 52 is a solution pump (low temperature pump) 74.
Is sent to the low-temperature regenerator 56 via the low-temperature heat exchanger 60, and is heated by the high-temperature refrigerant vapor (for example, steam) flowing from the high-temperature regenerator 14 to be concentrated to an intermediate concentration. This intermediate-concentration liquid is divided into two, and one of the divided liquids is sent to the high-temperature regenerator 14 via the high-temperature heat exchanger 62 by the solution pump (high-temperature pump) 76, where the exhaust gas from the combustion waste heat generation source 66 is discharged. And is separated into a refrigerant vapor and a concentrated liquid. This concentrated liquid (absorbing liquid) is mixed with the other of the intermediate-concentration liquids divided through the high-temperature heat exchanger 62,
After being sent to the low-temperature heat exchanger 60 as a mixed concentrated liquid, it is introduced into the absorber 52, cooled by the cooling water, and mixed with the refrigerant water from the evaporator 50 to become a diluted liquid.

【0016】一方、高温再生器14からの冷媒蒸気は低
温再生器56に入り、ここで吸収液を加熱することで凝
縮・液化して凝縮器54に入り、また、低温再生器56
において吸収液が中間濃度に濃縮されるときに発生した
冷媒蒸気が凝縮器54に入って冷却水により冷却されて
凝縮した後、冷媒液(例えば水)は蒸発器50に入り、
この凝縮した冷媒水が冷媒液循環ポンプ78により蒸発
器50の伝熱管(水が流通している)に散布されて冷水
が得られる。80は冷暖切替弁で、冷水運転時は閉状態
となっている。なお、冷暖切替弁80を開き、さらに吸
収器及び凝縮器の冷却水の供給を止めることにより、冷
水の代わりに温水を得ることができる。従来、負荷変動
は冷水(温水)出口温度、冷水(温水)出入口温度差、
冷却水入口温度などを検知して判断している。通常は、
これらの温度を検知して加熱用熱源の増減を行って温度
制御をしている。
On the other hand, the refrigerant vapor from the high-temperature regenerator 14 enters the low-temperature regenerator 56, where it condenses and liquefies by heating the absorbing liquid and enters the condenser 54.
After the refrigerant vapor generated when the absorbing liquid is concentrated to the intermediate concentration enters the condenser 54 and is cooled and condensed by the cooling water, the refrigerant liquid (for example, water) enters the evaporator 50,
The condensed coolant water is sprayed by the coolant circulation pump 78 to the heat transfer tubes (through which water flows) of the evaporator 50 to obtain cold water. A cooling / heating switching valve 80 is in a closed state during the cold water operation. By opening the cooling / heating switching valve 80 and further stopping the supply of the cooling water to the absorber and the condenser, hot water can be obtained instead of the cold water. Conventionally, load fluctuations are the cold water (hot water) outlet temperature, the cold water (hot water) inlet / outlet temperature difference,
Judgment is made by detecting the cooling water inlet temperature, etc. Normally,
The temperature is controlled by detecting these temperatures and increasing or decreasing the heating heat source.

【0017】本実施形態では、冷房運転時においては、
温度センサー82で上記の冷水出口温度を検知し、冷水
出口温度が下がり過ぎの場合に、吸収液の一部を吸収液
混合管86を通じて流量調節弁84で適正流量に制御し
つつ、蒸発器50内の冷媒液側に混入させて冷房効果を
低減させ、同時に蒸発器50内の冷媒の蒸発が抑制され
ることにより冷媒液溜り部を満杯にして、冷媒液、又は
吸収液と冷媒液との混合液をオーバーフロー管90を通
じて吸収液側にオーバーフローさせ、運転中の吸収液の
濃度(運転サイクル濃度)を下げる。このことにより、
吸収液の結晶化が起こりにくくなり、かつ、冷水の冷え
過ぎを防止することができる。同時に冷媒液循環ポンプ
78の発停、又は冷媒液循環配管92を流れる冷媒液の
流量制御(制御弁、回転数制御などによる)を行って冷
水温度制御をより効果的なものにする。
In this embodiment, during the cooling operation,
The temperature of the chilled water outlet is detected by the temperature sensor 82, and when the chilled water outlet temperature is too low, a part of the absorbing liquid is controlled to an appropriate flow rate by the flow control valve 84 through the absorbing liquid mixing pipe 86, and the evaporator 50 is controlled. To reduce the cooling effect by being mixed into the refrigerant liquid side in the inside, and at the same time, to suppress the evaporation of the refrigerant in the evaporator 50, thereby filling the refrigerant liquid pool portion, and allowing the refrigerant liquid or the absorbing liquid and the refrigerant liquid to mix. The mixed solution is caused to overflow toward the absorbing solution through the overflow pipe 90 to reduce the concentration of the absorbing solution during operation (operation cycle concentration). This allows
Crystallization of the absorbing liquid is less likely to occur, and it is possible to prevent the cooling water from being too cold. At the same time, the start / stop of the refrigerant liquid circulation pump 78 or the flow rate control of the refrigerant liquid flowing through the refrigerant liquid circulation pipe 92 (by a control valve, rotation speed control, etc.) is performed to make the cold water temperature control more effective.

【0018】廃熱(排ガス)利用の冷温水機では、加熱
側の熱は通常の運転時では大きな変動が少なく一定量が
供給されるために、再生器14、56では常に冷媒が蒸
発している。同様に凝縮器54では蒸発した冷媒が冷却
され凝縮しているので、冷媒配管94内は凝縮した冷媒
が常に流動している。このため、低負荷時や低冷却水時
でも冷媒配管94の冷媒は、流量が大幅に減少したり流
動停止したりすることはなくて凍結に至るおそれはな
く、冷媒の流動が阻害されることはない。本実施形態で
は、この機能が追加されているので、従来必要とされた
排ガスのバイパス制御や疑似負荷による制御が不要にな
り、利用者の経済効果は大きいものとなる。一方、暖房
運転時に、温水温度が上がり過ぎた場合も、廃熱(排ガ
ス)側の制御は無いもの(成り行き)とし、吸収式冷温
水機内の冷媒と吸収液混合管86からの吸収液とを混合
させて吸収液の濃度を下げ、同時に図4に示す冷却水ポ
ンプ40(又は/及び冷却塔ファンモータ44)の発停
を行って、冷却水により吸収器52内の圧力と吸収液の
温度を下げ、温水温度の上がり過ぎを防止する。
In a chiller / heater using waste heat (exhaust gas), since the heat on the heating side is supplied with a constant amount with little fluctuation during normal operation, the regenerators 14 and 56 always evaporate the refrigerant. I have. Similarly, since the evaporated refrigerant is cooled and condensed in the condenser 54, the condensed refrigerant always flows in the refrigerant pipe 94. For this reason, even at the time of low load or low cooling water, the refrigerant in the refrigerant pipe 94 does not drastically decrease in flow rate or does not stop flowing, there is no possibility of freezing, and the flow of the refrigerant is hindered. There is no. In this embodiment, since this function is added, the conventionally required bypass control of the exhaust gas and the control by the pseudo load become unnecessary, and the economic effect of the user becomes large. On the other hand, even if the hot water temperature rises too much during the heating operation, it is assumed that there is no control on the waste heat (exhaust gas) side, and the refrigerant in the absorption chiller / heater and the absorption liquid from the absorption liquid mixing pipe 86 are separated. The concentration of the absorbing solution is reduced by mixing, and at the same time, the cooling water pump 40 (and / or the cooling tower fan motor 44) shown in FIG. To prevent the hot water temperature from rising too high.

【0019】図4は、本実施形態による廃熱利用吸収式
冷温水機まわりの配管例を示している。排ガスの一部は
手動ダンパ18aを通って高温再生器14に導入され、
吸収液を加熱・濃縮した後、手動ダンパ20aを経て煙
突22から排出される。排ガスの残部又は停止時は排ガ
スの全量を手動ダンパ24aを通って高温再生器14を
バイパスさせ、バイパス管26を通って煙突22から排
出する。28はパージ用送風機で、高温再生器14入口
の排ガス供給管30に接続されていて、停止時、メンテ
ナンス時に高温再生器14のパージ用、冷却用に使用す
る。一方、冷温水発生部12からの冷水又は温水は冷暖
房負荷16に導入されて冷房又は暖房に使用された後、
冷温水ポンプ36により冷温水発生部12に循環され
る。冷温水発生部12からの冷却水は冷却塔38に導入
されて冷却された後、冷却水ポンプ40により冷温水発
生部12に導入される。なお、黒塗りの手動弁は、通常
閉で、メンテナンス時に開として使用される。このよう
に、本実施形態では、従来必要とされた排ガスの自動ダ
ンパによるバイパス制御や疑似負荷による制御(図5参
照)が不要になるという利点がある。
FIG. 4 shows an example of piping around an absorption type chiller / heater using waste heat according to the present embodiment. Part of the exhaust gas is introduced into the high-temperature regenerator 14 through the manual damper 18a,
After the absorption liquid is heated and concentrated, it is discharged from the chimney 22 via the manual damper 20a. When the remaining portion of the exhaust gas is exhausted or stopped, the entire amount of the exhaust gas is bypassed through the high temperature regenerator 14 through the manual damper 24a and discharged from the chimney 22 through the bypass pipe 26. Reference numeral 28 denotes a purging blower, which is connected to an exhaust gas supply pipe 30 at the inlet of the high-temperature regenerator 14 and is used for purging and cooling the high-temperature regenerator 14 at the time of stoppage and maintenance. On the other hand, the cold or hot water from the cold / hot water generator 12 is introduced into the cooling / heating load 16 and used for cooling or heating.
The water is circulated to the cold / hot water generator 12 by the cold / hot water pump 36. The cooling water from the cold / hot water generating section 12 is introduced into the cooling tower 38 and cooled, and then introduced into the cold / hot water generating section 12 by the cooling water pump 40. The black painted manual valve is normally closed and used during maintenance. As described above, in the present embodiment, there is an advantage that the bypass control by the automatic damper and the control by the pseudo load (see FIG. 5) which are conventionally required are unnecessary.

【0020】図2は、本発明の実施の第2形態によるパ
ラレルフロータイプの廃熱利用吸収式冷温水機を示して
いる。本実施形態は、吸収液が吸収器52から高温再生
器14及び低温再生器56へ同時に汲み上げられるよう
に接続・配置されたパラレルフロータイプの吸収式冷温
水機において、図1の場合と同様に、高温再生器への排
ガス供給管30、温度センサー82、制御盤88、吸収
液混合管86、吸収液の流量調節弁84、オーバーフロ
ー管90等を設置したものである。吸収器52内の吸収
液(稀液)は溶液ポンプ74により低温熱交換器60に
送られて加熱された後、二分され、二分された一方の吸
収液は高温熱交換器62で加熱された後、高温再生器1
4へ送られて燃焼廃熱発生源66からの排ガスで加熱・
濃縮され、二分された他方の吸収液は低温再生器56に
送られ、高温再生器14から流入してきた高温の冷媒蒸
気によって加熱されて中間濃度まで濃縮される。そし
て、低温再生器56からの中間濃度の吸収液の全量は、
高温再生器14から高温熱交換器62を経由してきた濃
液と混合し、混合濃液となって低温熱交換器60に送ら
れた後、吸収器52に導入され、冷却水により間接的に
冷却されるとともに、蒸発器50からの冷媒水と混合し
て稀液となる。他の構成及び作用は、実施の第1形態の
場合と同様である。
FIG. 2 shows a parallel flow type waste heat absorption type chiller / heater according to a second embodiment of the present invention. This embodiment is similar to the case of FIG. 1 in a parallel flow type absorption chiller / heater connected and arranged so that the absorbing liquid is simultaneously pumped from the absorber 52 to the high temperature regenerator 14 and the low temperature regenerator 56. The exhaust gas supply pipe 30, the temperature sensor 82, the control panel 88, the absorption liquid mixing pipe 86, the absorption liquid flow control valve 84, the overflow pipe 90, and the like are installed. The absorbing solution (dilute solution) in the absorber 52 is sent to the low-temperature heat exchanger 60 by the solution pump 74 and heated, and then is divided into two. One of the two absorbing solutions is heated in the high-temperature heat exchanger 62. After, high temperature regenerator 1
4 and heated by the exhaust gas from the combustion waste heat generation source 66
The other absorption liquid that has been concentrated and divided into two is sent to the low-temperature regenerator 56 and is heated by the high-temperature refrigerant vapor flowing from the high-temperature regenerator 14 to be concentrated to an intermediate concentration. Then, the total amount of the intermediate concentration absorbent from the low temperature regenerator 56 is
After being mixed with the concentrated liquid from the high-temperature regenerator 14 and passing through the high-temperature heat exchanger 62, the mixed liquid is sent to the low-temperature heat exchanger 60, then introduced into the absorber 52, and indirectly by the cooling water. While being cooled, it is mixed with the refrigerant water from the evaporator 50 to become a diluted liquid. Other configurations and operations are the same as those of the first embodiment.

【0021】図3は、本発明の実施の第3形態によるシ
リーズフロータイプの廃熱利用吸収式冷温水機を示して
いる。本実施形態は、吸収液が吸収器52から高温再生
器14へ汲み上げられた後、低温再生器56へ流れるよ
うに接続・配置されたシリーズフロータイプの吸収式冷
温水機において、図1の場合と同様に、高温再生器への
排ガス供給管30、温度センサー82、制御盤88、吸
収液混合管86、吸収液の流量調節弁84、オーバーフ
ロー管90等を設置したものである。吸収器52内の吸
収液(稀液)は溶液ポンプ74により低温熱交換器6
0、ついで高温熱交換器62に送られて加熱された後、
高温再生器14へ送られて燃焼廃熱発生源66からの排
ガスで加熱・濃縮される。高温再生器14からの吸収液
は高温熱交換器62を経て低温再生器56へ送られ、こ
こで高温再生器14から流入してきた高温の冷媒蒸気に
よって加熱されて濃縮される。そして、低温再生器56
からの吸収液(濃液)は低温熱交換器60に送られた
後、吸収器52に導入され、冷却水により間接的に冷却
されるとともに、蒸発器50からの冷媒水と混合して稀
液となる。他の構成及び作用は、実施の第1形態の場合
と同様である。
FIG. 3 shows a series flow type waste heat absorption type water chiller / heater according to a third embodiment of the present invention. This embodiment relates to a series flow type absorption chiller / heater connected and arranged so that the absorbent is pumped from the absorber 52 to the high-temperature regenerator 14 and then flows to the low-temperature regenerator 56. In the same manner as described above, an exhaust gas supply pipe 30, a temperature sensor 82, a control panel 88, an absorption liquid mixing pipe 86, an absorption liquid flow control valve 84, an overflow pipe 90, and the like are provided to the high temperature regenerator. The absorption liquid (dilute liquid) in the absorber 52 is supplied to the low-temperature heat exchanger 6 by the solution pump 74.
0, and then sent to the high-temperature heat exchanger 62 and heated,
It is sent to the high-temperature regenerator 14 and is heated and concentrated by exhaust gas from the combustion waste heat generation source 66. The absorbing liquid from the high-temperature regenerator 14 is sent to the low-temperature regenerator 56 via the high-temperature heat exchanger 62, where it is heated and concentrated by the high-temperature refrigerant vapor flowing from the high-temperature regenerator 14. And the low-temperature regenerator 56
After being sent to the low-temperature heat exchanger 60, the absorbing liquid (concentrated liquid) is introduced into the absorber 52, is indirectly cooled by the cooling water, and is mixed with the refrigerant water from the evaporator 50. It becomes a liquid. Other configurations and operations are the same as those of the first embodiment.

【0022】[0022]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 冷房運転時においては、冷水出口温度を温度セ
ンサーで検出し、冷水出口温度が下がり過ぎの場合は、
吸収器の吸収液の一部を吸収液混合管を通して流量調節
弁で適正流量に制御しつつ、蒸発器内の冷媒液に混入さ
せ冷水出口温度を上昇させて冷房効果を低減させ、同時
に蒸発器内の冷媒の蒸発が抑制されることにより冷媒液
溜り部が満杯になり、冷媒液、又は吸収液と冷媒液との
混合液がオーバーフロー管を通って吸収器内にオーバー
フローして、運転中の吸収液の濃度(運転サイクル濃
度)を下げることができるように構成されているので、
吸収液が結晶することによる運転トラブルが起こりにく
くなり、かつ、冷水の冷え過ぎを確実に防止することが
できる。 (2) 暖房運転時においては、温水出口温度を温度セ
ンサーで検出し、温水出口温度が上がり過ぎの場合は、
冷媒液と吸収液とを混合させて吸収液の濃度を下げ、同
時に冷却水ポンプ40(又は/及び冷却塔ファンモータ
44)の発停を行って冷却水により吸収器内の圧力と吸
収液の温度を下げて、暖め過ぎを確実に防止することが
できる。 (3) 廃熱(排ガス)利用の吸収式冷温水機・冷凍機
では、加熱側の熱(排ガス)の制御は行わず成り行きで
供給され、通常の運転では大きな変動が少なくほぼ一定
量の熱量が供給されるので、高温再生器及び低温再生器
では常に冷媒が蒸発している。このため、凝縮器では、
常に蒸発した冷媒が冷却され凝縮しているので、凝縮器
からの冷媒配管内は凝縮した冷媒が常に流動している。
したがって、低負荷時や低冷却水時でも、冷媒配管内の
冷媒は流量が減少したり流動停止したりすることはな
く、凍結に至るおそれがないので、冷媒の流動が阻害さ
れることはない。 (4) 上記(1)〜(3)により、従来必要とされた
排ガスのバイパス制御や疑似負荷による制御が不要にな
り、コストの低減を図ることができる。 (5) 高温再生器に燃焼廃熱発生源からの廃熱(排ガ
ス)を導入して吸収液を加熱・濃縮するように構成され
ているので、廃熱(排ガス)の保有熱が十分に回収・利
用されて熱効率が向上し、用途の拡大に大きく貢献でき
るとともに、吸収式冷温水機・冷凍機の高効率な運転が
可能となる。 (6) 燃焼廃熱発生源としてガスタービンを用い、廃
熱利用吸収式冷温水機の蒸発器から得られる冷水をガス
タービンの吸気冷却に利用するように構成する場合は、
さらに熱効率の向上、用途の拡大を図ることができる。
As described above, the present invention has the following effects. (1) During cooling operation, the chilled water outlet temperature is detected by a temperature sensor, and if the chilled water outlet temperature is too low,
While controlling a part of the absorption liquid of the absorber through the absorption liquid mixing pipe to the appropriate flow rate by the flow control valve, it is mixed with the refrigerant liquid in the evaporator to raise the temperature of the chilled water outlet to reduce the cooling effect, and at the same time reduce the cooling effect. The evaporation of the refrigerant inside is suppressed, the refrigerant liquid reservoir becomes full, and the refrigerant liquid, or the mixed liquid of the absorption liquid and the refrigerant liquid overflows into the absorber through the overflow pipe, and the operation during operation is performed. Since it is configured so that the concentration of the absorbent (operating cycle concentration) can be reduced,
An operation trouble due to the crystallization of the absorbing liquid is less likely to occur, and the cold water can be reliably prevented from being too cold. (2) During the heating operation, the hot water outlet temperature is detected by the temperature sensor, and if the hot water outlet temperature is too high,
The refrigerant liquid and the absorbing liquid are mixed to lower the concentration of the absorbing liquid, and at the same time, the cooling water pump 40 (or / and the cooling tower fan motor 44) is started and stopped, and the pressure in the absorber and the absorption liquid are controlled by the cooling water. By lowering the temperature, overheating can be reliably prevented. (3) In absorption-type water heaters / chillers utilizing waste heat (exhaust gas), heat (exhaust gas) on the heating side is supplied without being controlled, and in normal operation, there is little large fluctuation and almost constant amount of heat Is supplied, the refrigerant is always evaporated in the high-temperature regenerator and the low-temperature regenerator. For this reason, in the condenser,
Since the evaporated refrigerant is always cooled and condensed, the condensed refrigerant always flows in the refrigerant pipe from the condenser.
Therefore, even at the time of low load or low cooling water, the refrigerant in the refrigerant pipe does not decrease in flow rate or stop flowing, and there is no possibility of freezing, so that the flow of the refrigerant is not hindered. . (4) According to the above (1) to (3), the bypass control of the exhaust gas and the control by the pseudo load which are conventionally required become unnecessary, and the cost can be reduced. (5) Since waste heat (exhaust gas) from the source of combustion waste heat is introduced into the high-temperature regenerator to heat and concentrate the absorbing solution, the retained heat of the waste heat (exhaust gas) is sufficiently recovered.・ The thermal efficiency is improved when used, which can greatly contribute to the expansion of applications, and the high-efficiency operation of absorption chillers / chillers becomes possible. (6) When a gas turbine is used as a combustion waste heat generation source and cold water obtained from an evaporator of a waste heat utilizing absorption chiller / heater is used for cooling the intake of the gas turbine,
Further, it is possible to improve the thermal efficiency and expand the application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態によるリバースフロー
タイプの廃熱利用吸収式冷温水機の概略構成図である。
FIG. 1 is a schematic configuration diagram of a reverse flow type waste heat absorption type water chiller / heater according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態によるパラレルフロー
タイプの廃熱利用吸収式冷温水機の概略構成図である。
FIG. 2 is a schematic configuration diagram of a parallel flow type waste heat absorption type water chiller / heater according to a second embodiment of the present invention.

【図3】本発明の実施の第3形態によるシリーズフロー
タイプの廃熱利用吸収式冷温水機の概略構成図である。
FIG. 3 is a schematic configuration diagram of a series flow type waste heat absorption type water chiller / heater according to a third embodiment of the present invention.

【図4】本発明の廃熱利用吸収式冷温水機まわりの配管
例を示す系統的説明図である。
FIG. 4 is a systematic explanatory diagram showing an example of piping around a waste heat utilization absorption chiller / heater of the present invention.

【図5】従来の廃熱利用吸収式冷温水機まわりの配管例
を示す系統的説明図である。
FIG. 5 is a systematic explanatory view showing an example of piping around a conventional waste heat utilization absorption chiller / heater.

【符号の説明】[Explanation of symbols]

10 吸収式冷温水機 12 冷温水発生部 14 高温再生器 16 冷暖房負荷 18、20、24 自動ダンパ 18a、20a、24a 手動ダンパ 22 煙突 26 バイパス管 28 パージ用送風機 30 排ガス供給管 30a 排ガス伝熱管 32 温度調節器 34 疑似負荷調整用の熱交換器 36 冷温水ポンプ 38 冷却塔 40 冷却水ポンプ 42 バイパス管 44 冷却塔ファンモータ 50 蒸発器 52 吸収器 54 凝縮器 56 低温再生器 60 低温熱交換器 62 高温熱交換器 66 燃焼廃熱発生源 70 冷温水出口管 72 冷水管路 74、76 溶液ポンプ 78 冷媒液循環ポンプ 80 冷暖切替弁 82 温度センサー 84 流量調節弁 86 吸収液混合管 88 制御盤 90 オーバーフロー管 92 冷媒液循環配管 94 冷媒配管 DESCRIPTION OF SYMBOLS 10 Absorption type chiller / heater 12 Cooling / heating water generator 14 High temperature regenerator 16 Cooling / heating load 18, 20, 24 Automatic damper 18a, 20a, 24a Manual damper 22 Chimney 26 Bypass pipe 28 Purging blower 30 Exhaust gas supply pipe 30a Exhaust gas heat transfer pipe 32 Temperature controller 34 Heat exchanger for dummy load adjustment 36 Cold / hot water pump 38 Cooling tower 40 Cooling water pump 42 Bypass pipe 44 Cooling tower fan motor 50 Evaporator 52 Absorber 54 Condenser 56 Low temperature regenerator 60 Low temperature heat exchanger 62 High-temperature heat exchanger 66 Combustion waste heat generation source 70 Cold / hot water outlet pipe 72 Cold water pipe 74, 76 Solution pump 78 Refrigerant liquid circulation pump 80 Cooling / heating switching valve 82 Temperature sensor 84 Flow control valve 86 Absorbing liquid mixing pipe 88 Control panel 90 Overflow Pipe 92 Refrigerant liquid circulation pipe 94 Refrigerant pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 健一 滋賀県草津市青地町1000番地 川重冷熱工 業株式会社本社工場内 Fターム(参考) 3L093 AA05 BB11 BB26 BB29 BB38 BB42 CC00 DD08 DD09 DD10 EE17 GG02 HH02 HH16 JJ02 KK03 LL03 MM03 MM06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Saito 1000 Aomachi-cho, Kusatsu-shi, Shiga F-term inside the headquarters factory of Kawaju Cooling Industrial Co., Ltd. 3L093 AA05 BB11 BB26 BB29 BB38 BB42 CC00 DD08 DD09 DD10 EE17 GG02 HH02 HH16 JJ02 KK03 LL03 MM03 MM06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、高温熱交換器及びこれらの
機器を接続する溶液管路、冷媒管路で構成され、吸収液
が吸収器から低温再生器へ汲み上げられ、さらに高温再
生器へ汲み上げられるように接続・配置されたリバース
フロータイプの吸収式冷温水機・冷凍機において、 燃焼廃熱発生源からの燃焼廃熱を高温再生器に導入して
吸収液の加熱・濃縮に使用できるように、高温再生器内
に廃熱供給管を挿通させ、かつ、蒸発器の冷温水出口管
に温度センサーを設けるとともに、吸収器の溶液ポンプ
の出口と蒸発器とを流量調節弁を有する吸収液混合管を
介して接続し、前記温度センサーとこの流量調節弁とを
制御盤を介して、温度センサーで検出された温度により
蒸発器に流入させる吸収液量を制御可能に接続し、さら
に、蒸発器と吸収器とをオーバーフロー管を介して接続
したことを特徴とする負荷変動制御機能を備えた廃熱利
用吸収式冷温水機・冷凍機。
1. An evaporator, an absorber, a condenser, a low-temperature regenerator,
It consists of a high-temperature regenerator, low-temperature heat exchanger, high-temperature heat exchanger, and a solution line and a refrigerant line connecting these devices. Absorbent is pumped from the absorber to the low-temperature regenerator, and further to the high-temperature regenerator. In the reverse flow type absorption chiller / chiller / refrigerator connected and arranged so that it can be used, the combustion waste heat from the combustion waste heat generation source can be introduced into the high-temperature regenerator and used for heating and concentrating the absorbent. A waste heat supply pipe is inserted into the high-temperature regenerator, and a temperature sensor is provided in the cold / hot water outlet pipe of the evaporator, and the outlet of the solution pump of the absorber and the evaporator are connected to the absorption liquid having a flow control valve. The temperature sensor and the flow control valve are connected via a control panel via a control panel so that the amount of the absorbing liquid flowing into the evaporator can be controlled based on the temperature detected by the temperature sensor. Vessel and absorber Is connected via an overflow pipe to a waste heat utilization absorption chiller / heater / refrigerator having a load fluctuation control function.
【請求項2】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、高温熱交換器及びこれらの
機器を接続する溶液管路、冷媒管路で構成され、吸収液
が吸収器から高温再生器及び低温再生器へ同時に汲み上
げられるように接続・配置されたパラレルフロータイプ
の吸収式冷温水機・冷凍機において、燃焼廃熱発生源か
らの燃焼廃熱を高温再生器に導入して吸収液の加熱・濃
縮に使用できるように、高温再生器内に廃熱供給管を挿
通させ、かつ、蒸発器の冷温水出口管に温度センサーを
設けるとともに、吸収器の溶液ポンプの出口と蒸発器と
を流量調節弁を有する吸収液混合管を介して接続し、前
記温度センサーとこの流量調節弁とを制御盤を介して、
温度センサーで検出された温度により蒸発器に流入させ
る吸収液量を制御可能に接続し、さらに、蒸発器と吸収
器とをオーバーフロー管を介して接続したことを特徴と
する負荷変動制御機能を備えた廃熱利用吸収式冷温水機
・冷凍機。
2. An evaporator, an absorber, a condenser, a low-temperature regenerator,
It consists of a high-temperature regenerator, a low-temperature heat exchanger, a high-temperature heat exchanger, and a solution line and a refrigerant line connecting these devices so that the absorbent can be pumped from the absorber to the high-temperature regenerator and the low-temperature regenerator at the same time. In the connected and arranged parallel flow type absorption chiller / heater / refrigerator, the high-temperature regenerator introduces the combustion waste heat from the combustion waste heat generation source into a high-temperature regenerator so that it can be used for heating and concentrating the absorbent. A waste heat supply pipe is inserted into the regenerator, and a temperature sensor is provided on a cold / hot water outlet pipe of the evaporator, and an outlet of the solution pump of the absorber and the evaporator are connected to an absorption liquid mixing pipe having a flow control valve. Via the control panel, the temperature sensor and the flow control valve,
Equipped with a load fluctuation control function characterized in that the amount of absorbing liquid flowing into the evaporator can be controlled in accordance with the temperature detected by the temperature sensor, and the evaporator and the absorber are connected via an overflow pipe. Waste heat absorption and absorption chiller / heater.
【請求項3】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、高温熱交換器及びこれらの
機器を接続する溶液管路、冷媒管路で構成され、吸収液
が吸収器から高温再生器へ汲み上げられた後、低温再生
器へ流れるように接続・配置されたシリーズフロータイ
プの吸収式冷温水機・冷凍機において、 燃焼廃熱発生源からの燃焼廃熱を高温再生器に導入して
吸収液の加熱・濃縮に使用できるように、高温再生器内
に廃熱供給管を挿通させ、かつ、蒸発器の冷温水出口管
に温度センサーを設けるとともに、吸収器の溶液ポンプ
の出口と蒸発器とを流量調節弁を有する吸収液混合管を
介して接続し、前記温度センサーとこの流量調節弁とを
制御盤を介して、温度センサーで検出された温度により
蒸発器に流入させる吸収液量を制御可能に接続し、さら
に、蒸発器と吸収器とをオーバーフロー管を介して接続
したことを特徴とする負荷変動制御機能を備えた廃熱利
用吸収式冷温水機・冷凍機。
3. An evaporator, an absorber, a condenser, a low-temperature regenerator,
It consists of a high-temperature regenerator, a low-temperature heat exchanger, a high-temperature heat exchanger, and a solution line and a refrigerant line that connect these devices. After the absorbent is pumped from the absorber to the high-temperature regenerator, it goes to the low-temperature regenerator. In a series flow type absorption chiller / heater / refrigerator that is connected and arranged in a flowable manner, the combustion waste heat from the combustion waste heat generation source is introduced into the high-temperature regenerator so that it can be used for heating and concentrating the absorbent. A waste heat supply pipe is inserted into the high-temperature regenerator, and a temperature sensor is provided in the cold / hot water outlet pipe of the evaporator, and the outlet of the solution pump of the absorber and the evaporator are connected to the absorption liquid having a flow control valve. The temperature sensor and the flow control valve are connected via a control panel via a control panel so that the amount of the absorbing liquid flowing into the evaporator can be controlled based on the temperature detected by the temperature sensor. Over the vessel and absorber An absorption-type water / heater / refrigerator utilizing waste heat and having a load fluctuation control function, which is connected via a flow pipe.
【請求項4】 温度センサーで検出した温度により、蒸
発器の冷媒液循環ポンプのオン・オフ制御、又はこの冷
媒液循環ポンプからの冷媒液循環量の流量制御を行える
ように構成した請求項1、2又は3記載の負荷変動制御
機能を備えた廃熱利用吸収式冷温水機・冷凍機。
4. A system according to claim 1, wherein on / off control of a refrigerant liquid circulation pump of the evaporator or flow rate control of a refrigerant liquid circulation amount from the refrigerant liquid circulation pump can be performed based on a temperature detected by the temperature sensor. A waste-heat-utilization absorption chiller-heater / refrigerator provided with the load fluctuation control function according to item 2 or 3.
【請求項5】 燃焼廃熱発生源がガスタービンであり、
蒸発器から得られる冷水をガスタービンの吸気冷却に利
用することができるように、蒸発器の冷水出口とガスタ
ービンとを冷水管路を介して接続した請求項1〜4のい
ずれかに記載の負荷変動制御機能を備えた廃熱利用吸収
式冷温水機・冷凍機。
5. The combustion waste heat generation source is a gas turbine,
The chilled water outlet of the evaporator and the gas turbine are connected via a chilled water pipe so that the chilled water obtained from the evaporator can be used for cooling the intake air of the gas turbine. Waste heat absorption chiller / heater / refrigerator with load fluctuation control function.
JP23147298A 1998-08-18 1998-08-18 Waste heat absorption chiller / heater with load fluctuation control function Expired - Lifetime JP3245116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23147298A JP3245116B2 (en) 1998-08-18 1998-08-18 Waste heat absorption chiller / heater with load fluctuation control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23147298A JP3245116B2 (en) 1998-08-18 1998-08-18 Waste heat absorption chiller / heater with load fluctuation control function

Publications (2)

Publication Number Publication Date
JP2000065436A true JP2000065436A (en) 2000-03-03
JP3245116B2 JP3245116B2 (en) 2002-01-07

Family

ID=16924040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23147298A Expired - Lifetime JP3245116B2 (en) 1998-08-18 1998-08-18 Waste heat absorption chiller / heater with load fluctuation control function

Country Status (1)

Country Link
JP (1) JP3245116B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010310A (en) * 2006-08-16 2007-01-18 Osaka Gas Co Ltd Gas turbine-incorporated absorption refrigerator
CN104454232A (en) * 2013-09-22 2015-03-25 洛阳中懋环保设备有限公司 Fuel gas generator set waste heat utilization device
CN104654658A (en) * 2014-01-27 2015-05-27 李华玉 Combined thermal dynamic system
CN104748439A (en) * 2014-01-27 2015-07-01 李华玉 Heat and power combined supplying system
KR101914812B1 (en) * 2014-03-05 2018-11-05 현대중공업 주식회사 Engine waste heat recovery charge air cooling control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010310A (en) * 2006-08-16 2007-01-18 Osaka Gas Co Ltd Gas turbine-incorporated absorption refrigerator
CN104454232A (en) * 2013-09-22 2015-03-25 洛阳中懋环保设备有限公司 Fuel gas generator set waste heat utilization device
CN104654658A (en) * 2014-01-27 2015-05-27 李华玉 Combined thermal dynamic system
CN104748439A (en) * 2014-01-27 2015-07-01 李华玉 Heat and power combined supplying system
CN104748439B (en) * 2014-01-27 2017-07-21 李华玉 The dynamic co-feeding system of heat
CN104654658B (en) * 2014-01-27 2017-07-21 李华玉 The dynamic co-feeding system of heat
KR101914812B1 (en) * 2014-03-05 2018-11-05 현대중공업 주식회사 Engine waste heat recovery charge air cooling control system

Also Published As

Publication number Publication date
JP3245116B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
KR100343845B1 (en) Absorption Chiller
KR100475972B1 (en) Absorption refrigerator
KR100445616B1 (en) Absorbed refrigerator
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP2005003312A (en) Triple effect absorption refrigerating plant
KR100441923B1 (en) Control method for absorption refrigerator
JP3241550B2 (en) Double effect absorption chiller / heater
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP4283633B2 (en) Double-effect absorption chiller / heater with exhaust heat recovery unit
KR100512827B1 (en) Absorption type refrigerator
JP4308076B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP2002061983A (en) Absorption refrigerating machine
JP3585890B2 (en) Heating operation control method of triple effect absorption chiller / heater
JP3999893B2 (en) Absorption chiller / heater controller
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP3138164B2 (en) Absorption refrigerator
JP3639885B2 (en) Control method of absorption refrigerator
JP3824441B2 (en) Absorption refrigeration equipment
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP2744034B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

EXPY Cancellation because of completion of term