JP2000064001A - Powder mixture for high strength sintered parts - Google Patents

Powder mixture for high strength sintered parts

Info

Publication number
JP2000064001A
JP2000064001A JP10233766A JP23376698A JP2000064001A JP 2000064001 A JP2000064001 A JP 2000064001A JP 10233766 A JP10233766 A JP 10233766A JP 23376698 A JP23376698 A JP 23376698A JP 2000064001 A JP2000064001 A JP 2000064001A
Authority
JP
Japan
Prior art keywords
powder
strength
high strength
alloy steel
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10233766A
Other languages
Japanese (ja)
Other versions
JP3663929B2 (en
Inventor
Shigeru Unami
繁 宇波
Satoshi Uenosono
聡 上ノ薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23376698A priority Critical patent/JP3663929B2/en
Publication of JP2000064001A publication Critical patent/JP2000064001A/en
Application granted granted Critical
Publication of JP3663929B2 publication Critical patent/JP3663929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high strength in as-sintered state even after low temperature sintering heat treatment in a weakly oxidizing atmosphere by mixing specific amounts of Ni powder, Cu powder, and graphite powder with an alloy steel powder containing partially alloyed Ni and Mo. SOLUTION: The powder mixture for sintered parts has a composition consisting of, by weight, 0.5-4% of partially alloyed Ni, 0.5-5% of partially alloyed Mo, 1-5% of Ni powder, 0.5-4% of Cu powder, 0.2-0.9% of graphite powder, and the balance Fe with inevitable impurities. If necessary, a lubricant such as zinc stearate and oleic acid, in an amount of about 0.3 to 1 pts.wt. is added to 100 pts.wt. of the powder mixture where the alloy steel powder, the Ni powder, the Cu powder, and the graphite powder are mixed. Even if low temperature sintering heat treatment at about 1100 to 1200 deg.C is applied to the powder mixture in a weakly oxidizing RX atmosphere, a sintered compact having a high strength of the order of 800 MPa or above can be obtained. By this method, high strength sintered parts can be economically manufactured without heat treatment.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、粉末冶金用混合粉
に係わり,特に自動車用高強度焼結部品の製造に好適な
合金鋼粉との混合粉に関する。 【0002】 【従来の技術】金属粉を金型内で加圧して成形体とした
のち、焼結して焼結体となる粉末冶金法は、機械部品等
の製造に利用されている。金属粉として鉄粉を用いる場
合には、鉄粉にCu粉、黒鉛粉等を混合し、成形、焼結し
て、5.0 〜7.2 g/cm3程度の密度を有する焼結体として
いる。このような粉末冶金法を利用すると、かなりの複
雑な形状の機械部品を寸法精度良く製造できるため、高
い寸法精度を要求されるギヤ等の自動車用部品の製造に
広く利用されている。 【0003】これら自動車用部品には、高強度であるこ
とが要求されているが、強度の向上のためには合金元素
を添加した焼結体に、さらに焼入焼戻等の熱処理を施し
て製品化することが一般的に行われている。さらに、最
近では、製造コストの低減のために、高強度焼結部品を
RXガスなどの弱酸化性雰囲気中で、焼結温度を低下さ
せた低温焼結により製造する製造方法が指向され、さら
に焼結後の熱処理をも省略することが指向されている。
このような低温焼結を施し、しかもその後の熱処理を省
略した焼結部品において、高強度となる原料粉が要望さ
れている。 【0004】しかし、弱酸化性雰囲気中で焼結を行う場
合には、特公昭58-10962号公報に開示されたCr、Mnなど
の易酸化性合金元素を溶鋼の状態で予合金した予合金化
合金鋼粉を用いると、予合金された合金元素が酸化され
て所望の強度向上が得られないという問題があった。ま
た、特公昭45-9649 号公報や特開平1-215904号公報に開
示された、Ni、Mo、Cu等の合金元素を鉄粉に部分合金化
させた部分合金化合金鋼粉を用いた場合には、合金元素
の酸化という問題はないが、この合金鋼粉は、圧縮性が
低いことと、さらに焼結後に熱処理することを目的とし
ているため、焼結のままでは引張強さ800MPa以上の高強
度を達成できないという問題が残されていた。 【0005】 【発明が解決しようとする課題】本発明は、上記した状
況に鑑み、低温焼結、望ましくは弱酸化性雰囲気中での
低温焼結を施し、焼結後の熱処理を行わない焼結のまま
での強度が、引張強さ800MPa以上が可能で、高強度焼結
部品を製造できる混合粉を提供することを目的とする。 【0006】 【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、焼結体への合金元素の添加方法
を鋭意検討した結果、強度を向上させる合金元素として
焼結中に酸化されにくいNi、MoおよびCuを選択し、Ni
は、部分合金化したNiとNi粉との両方で添加し、Moは、
部分合金化したMoとして添加し、CuおよびCはCu粉及び
黒鉛粉として添加することにより、弱酸化性雰囲気中で
の低温焼結熱処理を施しても引張強さ800MPa以上の高強
度を有する焼結部品の製造が可能であることを見いだ
し、本発明を構成した。 【0007】本発明は、NiおよびMoを部分合金化した合
金鋼粉に、Ni粉、Cu粉および黒鉛粉を混合した混合粉で
あって、該混合粉は、部分合金化したNi:0.5〜4wt%およ
びMo:0.5〜5wt%、Ni粉: 1 〜5wt%、Cu粉: 0.5 〜4wt%お
よび黒鉛粉: 0.2 〜0.9wt%並びに残部Feおよび不可避的
不純物からなることを特徴とする高強度焼結部品用混合
粉である。 【0008】 【発明の実施の形態】本発明では、鉄粉に、所定量の合
金化用粉を添加・混合した後、熱処理を施し、部分合金
化したNiおよびMoを含む合金鋼粉とする。部分合金化
は、公知の方法で行えばよく、特に限定しないが、熱処
理温度は700 〜1000℃とするのが好ましい。例えば、Ni
およびMoを部分合金化するには、金属Ni粉、NiO 粉、お
よびFe-Ni粉などの公知の合金化用粉の群から選ばれた
1種または2種以上の合金化用粉と、金属Mo粉、Mo0
3粉、およびFe- Mo粉などの公知の合金化用粉の群から
選ばれた1種または2種以上の合金化用粉とを、添加・
混合したのち前記温度で熱処理することで行うことがで
きる。 【0009】先ず、合金鋼粉の組成の限定理由について
説明する。 本発明では、部分合金化して含む合金元素
としてNiとMoを選択する。NiとMoは、RXガス(炭化水
素変成ガス)の様な弱酸化性雰囲気での焼結を行っても
酸化することがなく、効率よく強度の向上が可能とな
る。 部分合金化Mo:0.5〜5 wt% Moは、固溶強化、変態強化により強度を向上させる元素
であり、強度を高くするために添加する。Moは拡散しに
くい元素であるので、Mo粉末として添加したのでは焼結
時の拡散が不十分となる。一方、Moを予合金化したので
は合金鋼粉の圧縮性の低下が著しいので、あらかじめMo
は部分合金化する。 【0010】部分合金化したMoの含有量が0.5 wt%未満
では、強度を向上させる効果が十分でなく、一方、5 wt
%を超えて含有すると、圧縮性が低下し強度、靱性が低
下する。このため、部分合金化して含むMoの含有量は0.
5 〜5wt%の範囲に限定した。好ましくは、部分合金化し
て含むMoの含有量は0.5 〜3 wt%である。部分合金化N
i:0.5〜4 wt%Niは、少量であっても予合金化したので
は合金鋼粉の圧縮性の低下が著しいので、あらかじめ部
分合金化する。Niを部分合金化して添加すると、焼結時
に鉄粉中に拡散し、ベイナイトまたはマルテンサイト相
変態開始温度を低温側へ移行させ、組織を微細化し基地
を強化して、強度を高くする。 【0011】部分合金化して含むNiの含有量が、0.5 wt
%未満では、強度を向上させる効果が十分でなく、4 wt
%を超えると圧縮性が低下することと残留オーステナイ
トが増加することによって、強度が低下する。このた
め、部分合金化して含むNiの含有量は、0.5 〜4 wt%の
範囲とした。 好ましくは、部分合金化して含むNiの含
有量は、0.5 〜3 wt%である。 【0012】前記合金鋼粉を製造するための鉄粉として
は、公知のミルスケール還元鉄粉、鉱石還元鉄粉、電解
鉄粉、アトマイズ鉄粉のいずれを用いてもよいが、コス
トの点と不可避的不純物が少ない点から水アトマイズ鉄
粉やミルスケール還元鉄粉が好ましい。次に、合金鋼粉
に添加するNi粉、Cu粉および黒鉛粉の組成の限定理由に
ついて説明する。前記したようにNiは弱酸化性雰囲気で
の焼結を行っても酸化することがなく、Cuも同様である
ので、効率よく強度の向上が可能となる合金元素であ
る。 【0013】Ni粉:1〜5 wt% Ni粉は、焼結を活性化し、空孔を微細化して、強度を高
くするので添加する。Ni粉の含有量が1 wt%未満では、
焼結を活性化させる効果が十分でなく、一方、5 wt%を
超えると残留オーステナイトが増加し強度が低下する。
このため、Ni粉の含有量は1 〜5 wt%の範囲に限定し
た。好ましくは、Ni粉の含有量は、2 〜4wt%である。 【0014】Ni粉としては、熱分解法によって作ったカ
ルボニルニッケル粉、Ni酸化物を還元したNi粉、など公
知のものを用いればよい。 Cu粉:0.5〜4 wt% Cu粉は、焼結時に液相を形成し、焼結を促進して空孔を
球状化し、強度を向上させる元素である。Cuは、予合金
化するかまたは部分合金化すると、圧縮性が低下するこ
とと、焼結時に発生する液相量が少なることにより、強
度が低下するので、Cu粉として添加する。Cu粉の含有量
が、0.5 wt%未満では強度を向上させる効果が、十分で
なく、4 wt%を超えると脆化する。このため、Cuの含有
量は、0.5 〜4 wt%の範囲とした。好ましくは、Cu粉の
含有量は、1 〜3 wt%である。 【0015】Cu粉としては、電解Cu粉やアトマイズCu粉
等の公知のものを用いればよい。 黒鉛粉:0.2〜0.9 wt% 黒鉛粉は、焼結時に鉄粉中に容易に拡散し、固溶強化に
より強度を高くする元素である。黒鉛粉の含有量が、0.
2 wt%未満では強度を向上させる効果が十分でなく、0.
9 wt%を超えると、初析セメンタイトが粒界に析出し、
強度が低下する。このため、黒鉛の含有量は、0.2 〜0.
9 wt%の範囲とした。 【0016】以上に記載したwt%は、部分合金化した合
金鋼粉、Ni粉、Cu粉および黒鉛粉黒鉛粉を混合した混合
粉に対する重量%であり、残部はFeおよび不可避的不純
物である。また、本発明では、上記した合金鋼粉、Ni
粉、Cu粉および黒鉛粉を混合した混合粉100 重量部に対
して、潤滑剤0.3 〜1 重量部を、必要に応じて添加す
る。潤滑剤としては、成形時の粉末どうしあるいは粉末
と金型間の摩擦を低減するステアリン酸亜鉛、オレイン
酸などの公知の潤滑剤を、添加することができる。 【0017】あるいは、潤滑剤を合金鋼粉に添加した
後、加熱・冷却して、前記合金鋼粉に前記潤滑剤を付着
させたものとしてもよい。それに、さらに粉末の潤滑剤
を添加することもできる。あるいは、上記の合金鋼粉、
Ni粉、Cu粉および黒鉛粉並びに潤滑剤を混合後、加熱・
冷却して、合金鋼粉に、潤滑剤をバインダーとして、Ni
粉、Cu粉および黒鉛粉を付着させてもよい。このように
すると、Ni粉、Cu粉および黒鉛粉の偏析を防止すること
ができる。それに、さらに粉末の潤滑剤を添加すること
もできる。 【0018】なお、本発明の混合粉は、弱酸化性である
RXガス雰囲気中での1100〜1200℃の低温焼結熱処理を
施しても、焼結のままでの強度が、800MPa以上の高強度
を有する焼結体とすることができるが、この条件に限定
されるものではなく、N2 、AXガス等他の雰囲気中で
高温焼結を行うこともできることは言うまでもない。 【0019】 【実施例】水アトマイズ法で製造した実質的にFeおよび
不可避的不純物からなる鉄粉に、金属Ni粉とMo03粉を、
それぞれ所定量添加混合した。混合した混合粉に、水素
雰囲気中で880 ℃×1hr の熱処理を施し、Moおよび/ま
たはNiを部分合金化した合金鋼粉を作成した。次いで、
それらの合金鋼粉に、Ni粉とCu粉の内の1種または2
種、黒鉛粉およびステアリン酸亜鉛をブレンダーで混合
して、表1に示した発明例と比較例の混合粉とした。そ
の際、ステアリン酸亜鉛は、合金鋼粉、Ni粉、Cu粉およ
び黒鉛粉の合計100 重量部に対して、0.8 重量部を添加
した。 【0020】得られた混合粉を、日本粉末冶金工業会(J
PMA)のM 04-1992 に準拠して、成形圧力490MPaで引張試
験片の成形体に成形し、これら成形体に、RXガス雰囲
気中で1130℃×20min の条件で低温焼結を施し、焼結体
とした。得られた焼結体について、引張り速度5mm/min
で引張強さを調査した。それらの結果を、表1に示す。 【0021】 【表1】【0022】表1から、本発明例は、引張強さが800MPa
以上の高強度の焼結体となっていることがわかる。一
方、本発明を外れた比較例は、800MPa未満であって、高
強度の焼結体が得られていない。さらに、Cr、Mo、V を
予合金として含む合金鋼粉(従来例1)では、弱酸化性
の焼結雰囲気のため、高強度が得られていない。また、
Mo、Ni、Cuを部分合金化した合金鋼粉(従来例2)で
は、低温焼結、熱処理省略のため、引張強さ800MPa未満
で高強度が得られていない。 【0023】 【発明の効果】本発明によれば、弱酸化性雰囲気での低
温焼結を施すことが可能となり、しかも熱処理を施さず
に高強度の焼結部品が製造でき、経済的に安価な焼結部
品を提供できるという、産業上格段の効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder mixture for powder metallurgy, and more particularly to a powder mixture with alloy steel powder suitable for manufacturing high-strength sintered parts for automobiles. . 2. Description of the Related Art Powder metallurgy, in which a metal powder is pressed in a mold to form a compact and then sintered to form a sintered compact, is used in the manufacture of mechanical parts and the like. When iron powder is used as the metal powder, Cu powder, graphite powder and the like are mixed with the iron powder, molded and sintered to obtain a sintered body having a density of about 5.0 to 7.2 g / cm 3 . When such a powder metallurgy method is used, a mechanical part having a considerably complicated shape can be manufactured with high dimensional accuracy, so that it is widely used for manufacturing automotive parts such as gears that require high dimensional accuracy. [0003] These automobile parts are required to have high strength, but in order to improve strength, a sintered body to which an alloy element is added is further subjected to heat treatment such as quenching and tempering. It is common practice to commercialize. Furthermore, recently, in order to reduce the manufacturing cost, a manufacturing method for manufacturing a high-strength sintered part by low-temperature sintering with a reduced sintering temperature in a weakly oxidizing atmosphere such as RX gas has been proposed. It is intended to omit the heat treatment after sintering.
There is a demand for a raw material powder having high strength in a sintered part that has been subjected to such low-temperature sintering and that has been omitted from the subsequent heat treatment. [0004] However, when sintering is performed in a weakly oxidizing atmosphere, a pre-alloy disclosed in Japanese Patent Publication No. 58-10962 is pre-alloyed in a molten steel state with an easily oxidizable alloy element such as Cr and Mn. When the alloyed steel powder is used, there is a problem that a pre-alloyed alloy element is oxidized and a desired improvement in strength cannot be obtained. Further, disclosed in JP-B-45-9649 and JP-A-1-215904, when using a partially alloyed alloy steel powder obtained by partially alloying an alloy element such as Ni, Mo, Cu, etc. into iron powder. Does not have the problem of oxidation of alloying elements, but since this alloy steel powder has low compressibility and is intended for heat treatment after sintering, it has a tensile strength of 800 MPa or more as it is sintered There remains a problem that high strength cannot be achieved. SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a low-temperature sintering, preferably a low-temperature sintering in a weakly oxidizing atmosphere, and a sintering without heat treatment after sintering. It is an object of the present invention to provide a mixed powder capable of producing a high-strength sintered part in which the strength as it is can be a tensile strength of 800 MPa or more. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on a method of adding an alloy element to a sintered body. Select Ni, Mo and Cu, which are not easily oxidized during sintering.
Is added in both partially alloyed Ni and Ni powder, and Mo is
By adding as partially alloyed Mo and adding Cu and C as Cu powder and graphite powder, high-strength sintering with a tensile strength of 800 MPa or more even when subjected to low-temperature sintering heat treatment in a weakly oxidizing atmosphere. The present inventors have found that it is possible to manufacture a bonded part and configured the present invention. The present invention is a mixed powder in which Ni powder, Cu powder and graphite powder are mixed with alloy steel powder in which Ni and Mo are partially alloyed, wherein the mixed powder is partially alloyed Ni: 0.5 to 0.5%. 4 wt% and Mo: 0.5-5 wt%, Ni powder: 1-5 wt%, Cu powder: 0.5-4 wt% and graphite powder: 0.2-0.9 wt%, with high strength characterized by the balance of Fe and unavoidable impurities It is a mixed powder for sintered parts. According to the present invention, a predetermined amount of alloying powder is added to and mixed with iron powder, and then heat-treated to obtain a partially alloyed alloy steel powder containing Ni and Mo. . The partial alloying may be performed by a known method and is not particularly limited, but the heat treatment temperature is preferably set to 700 to 1000 ° C. For example, Ni
To partially alloy with Mo and Mo, one or more alloying powders selected from the group of known alloying powders such as metal Ni powder, NiO powder, and Fe-Ni powder, Mo powder, Mo0
3 powder and one or more alloying powders selected from the group of known alloying powders such as Fe-Mo powder.
After mixing, heat treatment can be performed at the above temperature. First, the reasons for limiting the composition of the alloy steel powder will be described. In the present invention, Ni and Mo are selected as alloy elements to be partially alloyed. Ni and Mo are not oxidized even when sintered in a weakly oxidizing atmosphere such as RX gas (hydrocarbon-converted gas), and the strength can be efficiently improved. Partially alloyed Mo: 0.5 to 5 wt% Mo is an element that improves strength by solid solution strengthening and transformation strengthening, and is added to increase strength. Since Mo is an element that is difficult to diffuse, if it is added as Mo powder, diffusion during sintering will be insufficient. On the other hand, when Mo is pre-alloyed, the compressibility of the alloy steel powder is significantly reduced.
Is partially alloyed. [0010] When the content of partially alloyed Mo is less than 0.5 wt%, the effect of improving the strength is not sufficient.
%, The compressibility decreases, and the strength and toughness decrease. For this reason, the content of Mo included in the partial alloying is 0.
It was limited to the range of 5 to 5 wt%. Preferably, the content of Mo, which is partially alloyed, is 0.5 to 3 wt%. Partially alloyed N
i: 0.5 to 4 wt% Ni is pre-alloyed even if it is in a small amount, since pre-alloying significantly reduces the compressibility of the alloy steel powder. When Ni is partially alloyed and added, it diffuses into the iron powder during sintering, shifts the bainite or martensite phase transformation onset temperature to a lower temperature side, refines the structure, strengthens the matrix, and increases the strength. [0011] The content of Ni contained as a partial alloy is 0.5 wt.
%, The effect of improving strength is not sufficient, and 4 wt.
%, The strength decreases due to a decrease in compressibility and an increase in retained austenite. For this reason, the content of Ni, which is partially alloyed, is set in the range of 0.5 to 4 wt%. Preferably, the content of Ni contained in the partially alloyed alloy is 0.5 to 3 wt%. As the iron powder for producing the alloy steel powder, any of known mill-scale reduced iron powder, ore-reduced iron powder, electrolytic iron powder, and atomized iron powder may be used. Water atomized iron powder and mill-scale reduced iron powder are preferred because they have few unavoidable impurities. Next, the reasons for limiting the compositions of the Ni powder, Cu powder and graphite powder added to the alloy steel powder will be described. As described above, Ni does not oxidize even when it is sintered in a weakly oxidizing atmosphere, and Cu does the same, so that it is an alloy element that can efficiently improve the strength. Ni powder: 1 to 5 wt% Ni powder is added because it activates sintering, refines pores, and increases strength. If the content of Ni powder is less than 1 wt%,
The effect of activating sintering is not sufficient. On the other hand, if it exceeds 5 wt%, retained austenite increases and strength decreases.
For this reason, the content of Ni powder was limited to the range of 1 to 5 wt%. Preferably, the content of Ni powder is 2-4 wt%. As the Ni powder, known ones such as a carbonyl nickel powder produced by a thermal decomposition method and a Ni powder obtained by reducing a Ni oxide may be used. Cu powder: 0.5 to 4 wt% Cu powder is an element that forms a liquid phase at the time of sintering, promotes sintering, makes pores spherical, and improves strength. When Cu is pre-alloyed or partially alloyed, the compressibility is reduced and the strength of the liquid phase generated during sintering is reduced, whereby the strength is reduced. Therefore, Cu is added as Cu powder. If the content of Cu powder is less than 0.5 wt%, the effect of improving the strength is not sufficient, and if it exceeds 4 wt%, it becomes brittle. Therefore, the content of Cu is set in the range of 0.5 to 4 wt%. Preferably, the content of Cu powder is 1-3 wt%. Known Cu powders such as electrolytic Cu powder and atomized Cu powder may be used. Graphite powder: 0.2 to 0.9 wt% Graphite powder is an element that easily diffuses into iron powder during sintering and increases the strength by solid solution strengthening. The content of graphite powder is 0.
If it is less than 2 wt%, the effect of improving the strength is not sufficient, and
If it exceeds 9 wt%, proeutectoid cementite precipitates at the grain boundaries,
Strength decreases. For this reason, the graphite content should be between 0.2 and 0.
The range was 9 wt%. The above-mentioned wt% is a weight% based on a mixed powder obtained by mixing partially alloyed alloy steel powder, Ni powder, Cu powder and graphite powder, and the balance is Fe and inevitable impurities. Further, in the present invention, the above alloy steel powder, Ni
If necessary, 0.3 to 1 part by weight of a lubricant is added to 100 parts by weight of a mixed powder obtained by mixing powder, Cu powder and graphite powder. As the lubricant, a known lubricant such as zinc stearate or oleic acid, which reduces friction between powders during molding or between a powder and a mold, can be added. Alternatively, the lubricant may be added to the alloy steel powder, and then heated and cooled to make the lubricant adhere to the alloy steel powder. In addition, a powdered lubricant can be added. Alternatively, the above alloy steel powder,
After mixing Ni powder, Cu powder, graphite powder and lubricant,
Cool to alloy steel powder, use lubricant as binder, Ni
Powder, Cu powder and graphite powder may be attached. By doing so, segregation of the Ni powder, Cu powder and graphite powder can be prevented. In addition, a powdered lubricant can be added. The mixed powder of the present invention has a high strength of 800 MPa or more even when subjected to a low-temperature sintering heat treatment at 1100 to 1200 ° C. in a weakly oxidizing RX gas atmosphere. Although a sintered body having strength can be obtained, the present invention is not limited to this condition, and it goes without saying that high-temperature sintering can be performed in another atmosphere such as N 2 or AX gas. [0019] Iron powder essentially consisting of Fe and unavoidable impurities produced in EXAMPLES water atomization, the metal Ni powder and MO0 3 powder,
A predetermined amount was added and mixed. The mixed powder was heat-treated at 880 ° C. × 1 hr in a hydrogen atmosphere to prepare an alloy steel powder in which Mo and / or Ni were partially alloyed. Then
In these alloy steel powders, one or two of Ni powder and Cu powder
The seed, graphite powder and zinc stearate were mixed with a blender to obtain a mixed powder of the inventive examples and comparative examples shown in Table 1. At that time, 0.8 parts by weight of zinc stearate was added to the total of 100 parts by weight of the alloy steel powder, Ni powder, Cu powder and graphite powder. The obtained powder mixture is used as powder in Japan Powder Metallurgy Association (J
In accordance with M 04-1992 of PMA), molded into tensile test specimens at a molding pressure of 490 MPa, these compacts were sintered at a low temperature of 1130 ° C for 20 min in an atmosphere of RX gas and fired. It was united. About the obtained sintered body, the tensile speed is 5 mm / min.
Was used to investigate the tensile strength. Table 1 shows the results. [Table 1] From Table 1, it can be seen that the example of the present invention has a tensile strength of 800 MPa.
It can be seen that the above sintered body has high strength. On the other hand, in Comparative Examples which deviated from the present invention, the sintered body was less than 800 MPa, and a high-strength sintered body was not obtained. Furthermore, alloy steel powder containing Cr, Mo, and V as pre-alloys (conventional example 1) cannot obtain high strength because of a weakly oxidizing sintering atmosphere. Also,
In the case of alloy steel powder obtained by partially alloying Mo, Ni, and Cu (Conventional Example 2), high strength was not obtained at a tensile strength of less than 800 MPa because of low-temperature sintering and heat treatment omitted. According to the present invention, low-temperature sintering in a weakly oxidizing atmosphere can be performed, and a high-strength sintered part can be manufactured without performing heat treatment, and it is economically inexpensive. This provides an industrially remarkable effect of providing a highly sintered part.

Claims (1)

【特許請求の範囲】 【請求項1】 NiおよびMoを部分合金化した合金鋼粉
に、Ni粉、Cu粉および黒鉛粉を混合した混合粉であっ
て、該混合粉は、部分合金化したNi:0.5〜4wt%およびM
o:0.5〜5wt%、Ni粉: 1 〜5wt%、Cu粉: 0.5 〜4wt%およ
び黒鉛粉: 0.2 〜0.9wt%並びに残部Feおよび不可避的不
純物からなることを特徴とする高強度焼結部品用混合
粉。
Claims 1. A mixed powder obtained by mixing Ni powder, Cu powder and graphite powder with alloy steel powder obtained by partially alloying Ni and Mo, wherein the mixed powder is partially alloyed. Ni: 0.5-4 wt% and M
o: High strength sintered parts characterized by comprising 0.5 to 5 wt%, Ni powder: 1 to 5 wt%, Cu powder: 0.5 to 4 wt% and graphite powder: 0.2 to 0.9 wt%, with the balance being Fe and unavoidable impurities. For mixed powder.
JP23376698A 1998-08-20 1998-08-20 Mixed powder for high strength sintered parts Expired - Fee Related JP3663929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23376698A JP3663929B2 (en) 1998-08-20 1998-08-20 Mixed powder for high strength sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23376698A JP3663929B2 (en) 1998-08-20 1998-08-20 Mixed powder for high strength sintered parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005033792A Division JP4151654B2 (en) 2005-02-10 2005-02-10 Mixed powder for high strength sintered parts

Publications (2)

Publication Number Publication Date
JP2000064001A true JP2000064001A (en) 2000-02-29
JP3663929B2 JP3663929B2 (en) 2005-06-22

Family

ID=16960245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23376698A Expired - Fee Related JP3663929B2 (en) 1998-08-20 1998-08-20 Mixed powder for high strength sintered parts

Country Status (1)

Country Link
JP (1) JP3663929B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323840A1 (en) * 2000-09-12 2003-07-02 Kawasaki Steel Corporation Iron base mixed powder for high strength sintered parts
WO2005102564A1 (en) * 2004-04-22 2005-11-03 Jfe Steel Corporation Mixed powder for powder metallurgy
JP2006257539A (en) * 2004-04-22 2006-09-28 Jfe Steel Kk Mixed powder for powder metallurgy
WO2014196123A1 (en) * 2013-06-07 2014-12-11 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and production method for iron-based sintered body
JP2015014048A (en) * 2013-06-07 2015-01-22 Jfeスチール株式会社 Alloy steel powder for powder metallurgy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222189B2 (en) 2014-12-05 2017-11-01 Jfeスチール株式会社 Alloy steel powder and sintered body for powder metallurgy
JP6146548B1 (en) 2015-09-11 2017-06-14 Jfeスチール株式会社 Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body
KR102097956B1 (en) 2015-09-18 2020-04-07 제이에프이 스틸 가부시키가이샤 Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323840A1 (en) * 2000-09-12 2003-07-02 Kawasaki Steel Corporation Iron base mixed powder for high strength sintered parts
EP1323840A4 (en) * 2000-09-12 2006-05-31 Jfe Steel Corp Iron base mixed powder for high strength sintered parts
WO2005102564A1 (en) * 2004-04-22 2005-11-03 Jfe Steel Corporation Mixed powder for powder metallurgy
JP2006257539A (en) * 2004-04-22 2006-09-28 Jfe Steel Kk Mixed powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP4556755B2 (en) * 2004-04-22 2010-10-06 Jfeスチール株式会社 Powder mixture for powder metallurgy
WO2014196123A1 (en) * 2013-06-07 2014-12-11 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and production method for iron-based sintered body
JP2014237878A (en) * 2013-06-07 2014-12-18 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and manufacturing method of iron-based sintered body
JP2015014048A (en) * 2013-06-07 2015-01-22 Jfeスチール株式会社 Alloy steel powder for powder metallurgy
CN105263653A (en) * 2013-06-07 2016-01-20 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
US10265766B2 (en) 2013-06-07 2019-04-23 Jfe Steel Corporation Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Also Published As

Publication number Publication date
JP3663929B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP3853362B2 (en) Manganese-containing material with high tensile strength
JP2000064001A (en) Powder mixture for high strength sintered parts
JP4069506B2 (en) Alloy steel powder and mixed powder for high strength sintered parts
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
US6652618B1 (en) Iron based mixed power high strength sintered parts
JP4151654B2 (en) Mixed powder for high strength sintered parts
JP4013395B2 (en) Iron-based mixed powder for high-strength sintered parts
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP4093070B2 (en) Alloy steel powder
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JPS61183444A (en) High strength sintered alloy and its manufacture
JPH11229001A (en) Production of high strength sintered parts
JP4054649B2 (en) Method for producing ferrous sintered alloy exhibiting quenched structure
JPH11303847A (en) Connecting rod having high fatigue strength and excellent toughness and manufacture thereof
JP3314596B2 (en) Iron-based sintered alloy with excellent fatigue strength
JPH0561339B2 (en)
JPS61139602A (en) Manufacture of low-alloy iron powder
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPS62167843A (en) Production of high-strength sintered alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees