JP2000061599A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP2000061599A
JP2000061599A JP10239741A JP23974198A JP2000061599A JP 2000061599 A JP2000061599 A JP 2000061599A JP 10239741 A JP10239741 A JP 10239741A JP 23974198 A JP23974198 A JP 23974198A JP 2000061599 A JP2000061599 A JP 2000061599A
Authority
JP
Japan
Prior art keywords
mold
molten metal
flow
molten steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239741A
Other languages
Japanese (ja)
Inventor
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10239741A priority Critical patent/JP2000061599A/en
Publication of JP2000061599A publication Critical patent/JP2000061599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of molten metal, with which a cast slab excellent in the surface quality and the inner quality can be obtd. SOLUTION: In the continuous casting method of molten metal, the molten metal is circularly fluidized in the horizontal direction by giving the molten metal near the meniscus in a mold the electro-magnetic force with an electro- magnetic stirring device 7, and the electro-magnetic force is given to spouting flow 6a from an immersion nozzle 1 dipped into the molten metal in the mold with the electro-magnetic stirring devices 8a, 8b to fluidize the spouted flow 6a of the molten metal upward. The direction of the electro-magnetic force acting on the molten metal near the meniscus in the mold can be the same direction at the faced positions in two long sides of the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面品質および内
部品質ともに優れた鋳片を得る溶融金属の連続鋳造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal continuous casting method for obtaining a slab having excellent surface quality and internal quality.

【0002】[0002]

【従来の技術】鋼の連続鋳造では、鋳片の表面品質およ
び内部品質の確保の観点から、吐出方向が下向きである
2つの吐出孔を有する浸漬ノズルが一般的に用いられ
る。
2. Description of the Related Art In continuous casting of steel, an immersion nozzle having two discharge holes whose discharge directions are downward is generally used from the viewpoint of ensuring the surface quality and internal quality of the slab.

【0003】図4は、吐出方向が下向きの2つの吐出孔
を有する浸漬ノズルを用いたときの鋳型内の溶鋼の流動
状況を模式的に示す図である。浸漬ノズル1の吐出孔2
から鋳型3に鋳込まれた溶鋼6の吐出流6aは、鋳型の
短辺3aに衝突し、上昇流6bと下降流6cに分岐す
る。上昇流6bは、さらにメニスカス近傍において、鋳
型の短辺から長辺中央部近傍へ向かう水平流6dとな
る。
FIG. 4 is a diagram schematically showing a flow state of molten steel in a mold when an immersion nozzle having two discharge holes whose discharge directions are downward is used. Discharge hole 2 of immersion nozzle 1
The discharge flow 6a of the molten steel 6 cast into the mold 3 collides with the short side 3a of the mold and is branched into an upflow 6b and a downflow 6c. The upward flow 6b becomes a horizontal flow 6d in the vicinity of the meniscus from the short side of the mold toward the center of the long side.

【0004】水平流6dの流速が遅い場合は、溶鋼中に
存在する酸化物や気泡がメニスカス近傍で凝固殻5に捕
捉されやすい。また、流速が速い場合は、溶鋼の表面上
に添加された未溶融のモールドパウダ4aや溶融したモ
ールドパウダー4bが溶鋼中に巻き込まれやすい。この
ように凝固殻に捕捉された酸化物や気泡、さらに溶鋼中
に巻き込まれたこれらのパウダなどが、鋳片の欠陥とな
りやすい。
When the flow velocity of the horizontal flow 6d is low, the oxides and bubbles present in the molten steel are easily trapped by the solidified shell 5 near the meniscus. When the flow velocity is high, unmelted mold powder 4a and molten mold powder 4b added on the surface of the molten steel are likely to be caught in the molten steel. The oxides and bubbles trapped in the solidified shell as described above, and the powders caught in the molten steel are likely to cause defects in the cast slab.

【0005】これらの鋳片の欠陥を防止するため、鋳型
内のメニスカス近傍の溶鋼に鋳造方向と直角な方向に電
磁撹拌力を付与し、溶鋼の流速を調整する方法が一般的
に採られてきた。たとえば、メニスカス近傍の溶鋼に、
水平な旋回流動を付与したり、鋳型長辺中央部近傍から
短辺方向への流動、またはその逆の方向の流動を付与し
たり、あるいは方向を時間的に変化させて流動を付与す
る方法などが提案されている。
In order to prevent the defects of these cast pieces, a method of applying an electromagnetic stirring force to the molten steel near the meniscus in the mold in a direction perpendicular to the casting direction to adjust the flow rate of the molten steel has been generally adopted. It was For example, for molten steel near the meniscus,
Horizontal swirling flow, flow from the center of the long side of the mold to the direction of the short side, or flow in the opposite direction, or by changing the direction with time to give flow Is proposed.

【0006】しかし、これらの方法は、メニスカス近傍
の溶鋼の撹拌による溶鋼の流速の調整を行うだけであ
り、とくに鋳片の内部品質は、十分とは言えない。
However, these methods only adjust the flow rate of the molten steel by stirring the molten steel in the vicinity of the meniscus, and in particular, the internal quality of the cast piece cannot be said to be sufficient.

【0007】特開平6−226409号公報および特開
平7−112247号公報では、鋳型内のメニスカス近
傍の溶鋼に電磁撹拌装置による電磁力を付与して水平方
向の撹拌を起こし、かつ浸漬ノズルからの溶鋼の吐出流
に静磁場方式の電磁力を付与して吐出流の流速を減衰さ
せる方法が提案されている。
In JP-A-6-226409 and JP-A-7-112247, an electromagnetic force is applied to molten steel near a meniscus in a mold to cause horizontal stirring, and a dipping nozzle is used. A method has been proposed in which a static magnetic field type electromagnetic force is applied to the molten steel discharge flow to attenuate the flow velocity of the discharge flow.

【0008】これらの公報の方法によれば、浸漬ノズル
からの吐出流が鋳型の下方に深く侵入することを防止で
きるので、溶鋼中の酸化物、気泡、未溶融のモールドパ
ウダなどが鋳片の内部に混入することを防止できる。
According to the methods of these publications, it is possible to prevent the discharge flow from the dipping nozzle from deeply penetrating below the mold, so that oxides, bubbles, unmelted mold powder, etc. in the molten steel form a slab. It can be prevented from mixing inside.

【0009】しかし、吐出流の流速を減衰させるため、
高温の溶鋼の吐出流が、鋳型短辺に衝突した後に分岐し
てメニスカス近傍に達することもない。そのため、鋳型
内の溶鋼表面に添加されたモールドパウダが溶融しにく
くなり、溶鋼表面に浮上してきた酸化物が溶融したモー
ルドパウダに吸着されにくくなる。その結果、凝固殻、
すなわち鋳片の表面近傍に溶鋼中の酸化物などが捕捉さ
れやすくなり、鋳片の表面品質が低下する場合がある。
However, in order to attenuate the flow velocity of the discharge flow,
The high-temperature molten steel discharge flow does not branch to reach the vicinity of the meniscus after colliding with the short side of the mold. Therefore, the mold powder added to the surface of the molten steel in the mold is less likely to be melted, and the oxide floating on the surface of the molten steel is less likely to be adsorbed by the molten mold powder. As a result, the solidified shell,
That is, oxides and the like in the molten steel are likely to be captured near the surface of the slab, which may deteriorate the surface quality of the slab.

【0010】[0010]

【発明が解決しようとする課題】本発明は、表面品質お
よび内部品質ともに優れた鋳片を得ることが可能な溶融
金属の連続鋳造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a molten metal continuous casting method capable of obtaining a slab having excellent surface quality and internal quality.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記の
(1)および(2)に示す溶融金属の連続鋳造方法にあ
る。
The gist of the present invention resides in the continuous casting method for molten metal described in (1) and (2) below.

【0012】(1)鋳型内のメニスカス近傍の溶融金属
に電磁力を作用させることにより、溶融金属を水平方向
に旋回流動させ、かつ鋳型内の溶融金属中に浸漬された
浸漬ノズルからの吐出流に電磁力を作用させて、溶融金
属の吐出流に上向きの力を作用させる溶融金属の連続鋳
造方法。
(1) An electromagnetic force is applied to the molten metal near the meniscus in the mold to swirl the molten metal in the horizontal direction, and the discharge flow from the dipping nozzle immersed in the molten metal in the mold. A continuous casting method for molten metal in which an electromagnetic force is applied to the molten metal to exert an upward force on the discharge flow of the molten metal.

【0013】(2)鋳型内のメニスカス近傍の溶融金属
に電磁力を作用させることにより、溶融金属を水平方向
で、2つの長辺の相対する位置で同じ方向に流動させ、
かつ鋳型内の溶融金属中に浸漬された浸漬ノズルからの
吐出流に電磁力を作用させて、溶融金属の吐出流に上向
きの力を作用させる溶融金属の連続鋳造方法。
(2) By applying an electromagnetic force to the molten metal in the vicinity of the meniscus in the mold, the molten metal is caused to flow in the horizontal direction in the same direction at the positions where the two long sides face each other.
A continuous casting method for molten metal, in which an electromagnetic force is applied to a discharge flow from a dipping nozzle immersed in the molten metal in a mold so that an upward force is applied to the discharge flow of the molten metal.

【0014】本発明では、溶融金属、とくに鋼の連続鋳
造において、溶鋼中の酸化物や気泡、未溶融のモールド
パウダ(以下、単にパウダと記す)などによる鋳片の表
面および内部の欠陥の発生を、次の手段によって防止し
た。
In the present invention, in continuous casting of molten metal, particularly steel, defects on the surface and inside of the slab due to oxides and bubbles in molten steel, unmelted mold powder (hereinafter simply referred to as powder), etc. are generated. Was prevented by the following means.

【0015】溶鋼に電磁力を付与して、鋳型内のメニス
カス近傍の溶鋼を水平方向に旋回流動させる。これによ
り、メニスカス近傍の凝固殻に溶鋼中の酸化物や気泡ま
たは未溶融のパウダなどが付着することを防止する。
An electromagnetic force is applied to the molten steel to cause the molten steel near the meniscus in the mold to swirl in the horizontal direction. This prevents oxides, bubbles, or unmelted powder in the molten steel from adhering to the solidified shell near the meniscus.

【0016】それと同時に、浸漬ノズルの吐出孔からの
吐出流に電磁力を付与する。このとき、電磁力により吐
出流の流速を減衰させるのではなく、吐出流に上向きの
力を作用させ、吐出流が下向きに流動するのを防止す
る。これによって、鋳型の短辺に衝突した吐出流に上向
きの流れを生じさせる。
At the same time, an electromagnetic force is applied to the discharge flow from the discharge hole of the immersion nozzle. At this time, instead of attenuating the flow velocity of the discharge flow by the electromagnetic force, an upward force is applied to the discharge flow to prevent the discharge flow from flowing downward. This causes an upward flow in the discharge flow that collides with the short side of the mold.

【0017】溶鋼の流動を上述のようにコントロールす
ることにより、溶鋼中の酸化物や気泡または溶鋼表面の
未溶融のパウダなどが、鋳片の内部に浸入しにくくな
る。そのために、鋳片の内部品質を改善できる。また、
鋳型内のメニスカス近傍の溶鋼の温度を高温に保持する
ことができるので、鋳型内に添加されたパウダの溶融が
促進され、鋳片の表面品質が改善される。
By controlling the flow of the molten steel as described above, it becomes difficult for oxides and bubbles in the molten steel or unmelted powder on the surface of the molten steel to penetrate into the slab. Therefore, the internal quality of the slab can be improved. Also,
Since the temperature of the molten steel near the meniscus in the mold can be maintained at a high temperature, melting of the powder added in the mold is promoted and the surface quality of the slab is improved.

【0018】鋳型内のメニスカス近傍の溶鋼の流動方向
が、2つの長辺の相対する位置で同じ方向となるように
してもよい。すなわち、鋳型長辺の中央部付近からの両
側の短辺方向に向かう流動、または鋳型の両側の短辺か
ら長辺の中央部付近に向かう流動、鋳型の片側の短辺か
ら他の短辺に向かう流動などでもよい。
The flowing directions of the molten steel in the vicinity of the meniscus in the mold may be the same at the positions where the two long sides face each other. That is, the flow from the vicinity of the central part of the long side of the mold to the direction of the short sides on both sides, or the flow from the short sides on both sides of the mold to the vicinity of the central part of the long side, from the short side on one side of the mold to the other short side. It may be a flowing flow.

【0019】本発明の方法は、鋼の連続鋳造だけでな
く、Al等の溶融金属の連続鋳造による鋳片の表面およ
び内部の品質改善に対しても有効である。
The method of the present invention is effective not only for continuous casting of steel but also for quality improvement of the surface and the inside of a slab by continuous casting of molten metal such as Al.

【0020】[0020]

【発明の実施の形態】図1は、本発明の方法を説明する
ための図であり、とくに2つの吐出孔を有する浸漬ノズ
ルを用いて鋼を連続鋳造する場合の例である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining the method of the present invention, and is an example in which steel is continuously cast using an immersion nozzle having two discharge holes.

【0021】鋳型内のメニスカス近傍の溶鋼6に、紙面
に対して垂直方向に配置された相対する1組の電磁撹拌
装置7により電磁力を付与し、かつ吐出孔2からの溶鋼
の吐出流6aに、紙面に対して垂直方向に配置された相
対する2組の電磁撹拌装置8a、8bにより電磁力を付
与する場合を示す。
An electromagnetic force is applied to the molten steel 6 in the vicinity of the meniscus in the mold by a pair of opposing electromagnetic stirring devices 7 arranged in the direction perpendicular to the paper surface, and a molten steel discharge flow 6a from the discharge hole 2 is provided. 2 shows a case where an electromagnetic force is applied by two opposing sets of electromagnetic stirring devices 8a and 8b arranged in the direction perpendicular to the paper surface.

【0022】図1に示したように、吐出流6aには、電
磁撹拌装置8a、8bにより、鋳型の中心方向に電磁力
を作用させる。これにより、吐出流の鋳型の下方への下
向きの流動を少なくし、吐出流を鋳型の両側の短辺に衝
突させた後に、メニスカス近傍に向かうようにする。
As shown in FIG. 1, an electromagnetic force is applied to the discharge flow 6a toward the center of the mold by electromagnetic stirring devices 8a and 8b. As a result, the downward flow of the discharge flow downwardly of the mold is reduced, and after the discharge flow collides with the short sides on both sides of the mold, the discharge flow is directed toward the vicinity of the meniscus.

【0023】図2は、鋳型内のメニスカス近傍の溶鋼
に、電磁力を付与する例を示す図で、鋳型の上部より見
た図である。電磁撹拌装置7とメニスカス近傍の溶鋼の
流れ6eを模式的に示す。図中の(イ)は、ほぼ鋳型の
全幅を覆う1組の電磁撹拌装置7を用いた場合の例を示
した図である。溶鋼の流動6eが、鋳型内で1つの水平
方向の旋回流動になっている例である。図中の(ロ)
は、鋳型の幅の約1/2の幅の電磁撹拌装置7a、7b
を2組用いた例で、溶鋼の流動6eが、紙面上で左右の
2つの旋回流動になっている例である。図中の(ハ)
は、上述のような2組の電磁撹拌装置7a、7bを用い
て、溶鋼の流動6eが、2つの長辺の相対する位置で同
じ方向になるようにした例である。溶鋼の流動6eが、
鋳型長辺の中央部付近から両側の短辺に向かう流動の例
である。図中の(ニ)は、(ハ)に示した例で、溶鋼の
流動6eが、鋳型の両側の短辺から長辺中央部付近に向
かう流動の例である。これら図2の(イ)〜(ニ)に示
すいずれの方法であってもよい。
FIG. 2 is a view showing an example in which an electromagnetic force is applied to the molten steel in the vicinity of the meniscus in the mold, as seen from above the mold. The electromagnetic stirrer 7 and the molten steel flow 6e near the meniscus are schematically shown. (A) in the figure is a view showing an example in the case of using one set of the electromagnetic stirring device 7 which covers almost the entire width of the mold. This is an example in which the molten steel flow 6e is one horizontal swirling flow in the mold. (B) in the figure
Is an electromagnetic stirrer 7a, 7b having a width of about half the width of the mold.
This is an example in which the molten steel flow 6e is two left and right swirling flows on the paper surface. (C) in the figure
Is an example in which the molten steel flow 6e is made to have the same direction at the positions where the two long sides face each other by using the two sets of electromagnetic stirring devices 7a and 7b as described above. The flow of molten steel 6e
This is an example of the flow from near the center of the long side of the mold to the short sides on both sides. (D) in the figure is an example shown in (c), in which the molten steel flow 6e flows from the short sides on both sides of the mold to the vicinity of the central portion of the long side. Any of the methods shown in FIGS. 2A to 2D may be used.

【0024】図3は、底部に下向きの吐出孔1つのみを
有する浸漬ノズルを用いる場合の説明図である。メニス
カス近傍の電磁撹拌装置7および吐出孔の下方の電磁撹
拌装置8により、それぞれの吐出流に上向きの力を作用
させることにより、2つの吐出孔を有する浸漬ノズルの
場合と同じ効果を得ることができる。
FIG. 3 is an explanatory view in the case of using an immersion nozzle having only one downward discharge hole at the bottom. The electromagnetic stirrer 7 near the meniscus and the electromagnetic stirrer 8 below the discharge hole exert an upward force on each discharge flow, so that the same effect as in the case of the immersion nozzle having two discharge holes can be obtained. it can.

【0025】[0025]

【実施例】垂直部長さ3mを有する垂直曲げ型連続鋳造
機を用いて、図1または図3に示した構成の電磁撹拌装
置を配置し、断面形状が厚み250mm、幅1600m
mの低炭素鋼のスラブを鋳造した。鋳造速度は、1.8
m/分とした。
EXAMPLE A vertical bending type continuous casting machine having a vertical portion length of 3 m was used to arrange an electromagnetic stirrer having the configuration shown in FIG. 1 or 3, and the cross-sectional shape was 250 mm thick and 1600 m wide.
m low carbon steel slab was cast. Casting speed is 1.8
m / min.

【0026】浸漬ノズルには、鋳型の両側の短辺方向に
開口し、水平方向に対して下向きに角度をもった吐出孔
2つまたは底部に下向きの吐出孔1つのみを有する浸漬
ノズルを用いた。
For the immersion nozzle, use is made of an immersion nozzle which is open on both sides of the mold in the direction of the short side and has only two discharge holes downwardly angled with respect to the horizontal direction or one discharge hole downward at the bottom. I was there.

【0027】いずれの試験も、鋳型内のメニスカス近傍
には、図2(イ)に示した構成の1組の電磁撹拌装置
を、コイルの上端と溶鋼のメニスカスが一致するように
設置し、鋳型内の溶鋼が水平方向に旋回流動するように
電磁力を付与した。このとき、溶鋼の水平方向の最大流
速が、約30cm/秒になるように電磁力の強さを調整
した。
In each of the tests, a set of electromagnetic stirrer having the structure shown in FIG. 2 (a) was installed near the meniscus in the mold so that the upper end of the coil and the meniscus of molten steel were aligned with each other. An electromagnetic force was applied so that the molten steel inside could swirl horizontally. At this time, the strength of the electromagnetic force was adjusted so that the maximum horizontal flow velocity of the molten steel was about 30 cm / sec.

【0028】鋳造速度が一定となった状態で鋳造された
鋳片から、鋳造方向で長さ1mの鋳片のサンプルを採取
し、鋳片の表面の気泡性欠陥および鋳片の表面から内部
にかけての清浄度を調査した。
A sample of a slab having a length of 1 m in the casting direction was sampled from a slab cast at a constant casting speed, and foamed defects on the surface of the slab and from the surface to the inside of the slab. Was investigated.

【0029】鋳片の表面の気泡性欠陥の調査方法は、次
のとおりである。得られた鋳片のサンプルから一辺が5
0mmの正方形の鋳片表面を含む試料を切り出し、鋳片
表面から1mm深さまで研削した。その研磨した表面
を、光学顕微鏡にて100倍の倍率で、100μm以上
の穴あき状の気泡性欠陥の個数を調査した。
The method for investigating the bubble defects on the surface of the slab is as follows. 5 pieces per side from the obtained slab sample
A sample including a 0 mm square slab surface was cut out and ground to a depth of 1 mm from the slab surface. The polished surface was examined under an optical microscope at a magnification of 100 times for the number of perforated bubble-like defects of 100 μm or more.

【0030】鋳片の表面から内部にかけての清浄度の調
査は、次のようにして行った。鋳片の幅方向の1/4の
位置で、縦10mm、横50mmの長方形の鋳片表面を
含む鋳片全厚の試料を採取した。この試料から、鋳片の
厚み方向に10mmの間隔で、サイコロ状の試料を切り
出した。この試料の鋳片表面を向いた断面について、J
IS G 0555で規定する試験方法により、光学顕
微鏡により400倍の倍率で清浄度を調査した。もっと
も清浄度が悪かった断面の清浄度を、その鋳片の清浄度
とした。
The cleanliness of the slab from the surface to the inside was investigated as follows. A sample of the entire thickness of the slab including a rectangular slab surface having a length of 10 mm and a width of 50 mm was sampled at a position ¼ of the width of the slab. From this sample, dice-shaped samples were cut out at intervals of 10 mm in the thickness direction of the slab. Regarding the cross section of this sample facing the slab surface, J
The cleanliness was examined by an optical microscope at a magnification of 400 times according to the test method specified in IS G 0555. The cleanliness of the section where the cleanliness was the worst was taken as the cleanliness of the slab.

【0031】表1に、浸漬ノズルの形状、電磁撹拌装置
などの試験条件および試験結果を示す。
Table 1 shows the shape of the immersion nozzle, the test conditions for the electromagnetic stirrer, and the test results.

【0032】[0032]

【表1】 [Table 1]

【0033】本発明例の試験No.1では、吐出角度が
水平方向から20゜下向きで、鋳型の両側の短辺方向に
開口する吐出孔2つを有する浸漬ノズルを用いた。2つ
の吐出孔の下方に、図1に示した構成の2組の電磁撹拌
装置8a、8bを設置した。このとき、電磁撹拌装置の
コイルの鋳造方向の高さの中心と浸漬ノズルの下端とを
一致させた。得られた鋳片の表面の気泡性欠陥は少な
く、また鋳片の清浄度も良好であった。この試験No.
1の試験結果の気泡性欠陥の個数および鋳片の清浄度の
値を、それぞれ指数1.0として、その他の試験結果を
評価した。
Test No. of the present invention example In No. 1, a dipping nozzle having a discharge angle of 20 ° downward from the horizontal direction and having two discharge holes opening in the short side direction on both sides of the mold was used. Two sets of electromagnetic stirring devices 8a and 8b having the configuration shown in FIG. 1 were installed below the two discharge holes. At this time, the center of the height of the coil of the electromagnetic stirrer in the casting direction was aligned with the lower end of the immersion nozzle. The obtained slab had few bubble defects and the slab had good cleanliness. This test No.
The other test results were evaluated by setting the number of bubble defects and the cleanliness value of the slab in the test result of No. 1 to 1.0, respectively.

【0034】本発明例の試験No.2では、底部に吐出
孔1つのみを有する浸漬ノズルを用いた。図3に示した
構成の1組の電磁撹拌装置を吐出流に相当する位置に設
置した。このとき、電磁撹拌装置のコイルの上端を、浸
漬ノズルの下端から100mmの位置に合わせた。得ら
れた鋳片表面の気泡性欠陥の指数は1.1、また鋳片の
清浄度の指数は0.9であり、ともに良好な結果であっ
た。
Test No. of the present invention example In No. 2, an immersion nozzle having only one discharge hole at the bottom was used. One set of electromagnetic stirrer having the structure shown in FIG. 3 was installed at a position corresponding to the discharge flow. At this time, the upper end of the coil of the electromagnetic stirrer was aligned with the position of 100 mm from the lower end of the immersion nozzle. The index of bubble defects on the surface of the obtained slab was 1.1, and the index of cleanliness of the slab was 0.9, which were both good results.

【0035】本発明例の試験No.1およびNo.2と
もに、吐出流が鋳型の下方へ流動することを防止し、か
つ吐出流が鋳型の短辺に衝突した後に、メニスカス近傍
に向かうこと、すなわち、上向きの流動を確保した。こ
れにより、鋳片の内部に溶鋼中の酸化物、気泡などが混
入することを防止でき、鋳片の清浄度が良好であった。
また、鋳型内のメニスカス近傍の溶鋼の温度を高温に保
持できたことから、パウダの溶融が促進され、溶鋼中の
酸化物、未溶融のパウダなどが鋳片表面に捕捉されるこ
となく、表面の健全な鋳片が得られた。
Test No. of the present invention example 1 and No. In both cases, the discharge flow was prevented from flowing downward in the mold, and after the discharge flow collided with the short side of the mold, it was directed toward the vicinity of the meniscus, that is, upward flow was secured. As a result, it was possible to prevent oxides, bubbles, etc. in the molten steel from entering the inside of the slab, and the slab had good cleanliness.
Further, since the temperature of the molten steel near the meniscus in the mold could be maintained at a high temperature, the melting of the powder was promoted, the oxide in the molten steel, the unmelted powder, etc. were not captured on the surface of the slab, A sound slab was obtained.

【0036】比較例の試験No.3では、吐出角度が水
平方向から50゜下向きの2つの吐出孔を有する浸漬ノ
ズルを用いた。吐出孔の下方の電磁撹拌装置は用いなか
った。鋳片表面の気泡性欠陥の指数は2.5、また鋳片
の清浄度の指数は3.2であり、ともに悪かった。
Test No. of the comparative example. In No. 3, a dipping nozzle having two discharge holes whose discharge angle was 50 ° downward from the horizontal direction was used. No electromagnetic stirrer below the discharge holes was used. The index of bubble defects on the surface of the slab was 2.5, and the index of cleanliness of the slab was 3.2, both of which were poor.

【0037】比較例の試験No.4では、底部に吐出孔
1つのみを有する浸漬ノズルを用いた。吐出孔の下方の
電磁撹拌装置は用いなかった。鋳片表面の気泡性欠陥の
指数は3.5、また鋳片の清浄度の指数は5.2とな
り、気泡性欠陥が顕著に発生するとともに、清浄度も悪
かった。
Test No. of the comparative example. In No. 4, an immersion nozzle having only one discharge hole at the bottom was used. No electromagnetic stirrer below the discharge holes was used. The index of bubble defects on the surface of the slab was 3.5, and the index of cleanliness of the slab was 5.2, which markedly caused bubble defects and was poor in cleanliness.

【0038】比較例の試験No.3およびNo.4とも
に、溶鋼の吐出流の下方への流動を防止しなかったた
め、鋳片の清浄度が悪かった。とくに、浸漬ノズルの底
部に吐出孔を有する試験No.4の清浄度が悪かった。
溶鋼中の酸化物、気泡などが鋳片の内部深くまで浸入し
たことによる。また、試験No.3およびNo.4とも
に、メニスカス近傍の溶鋼の温度を高温に保持すること
ができず、凝固殻に溶鋼中の酸化物や未溶融のパウダが
捕捉されたため、鋳片の表面品質も悪かった。
Test No. of the comparative example. 3 and No. In No. 4, since the downward flow of the molten steel discharge flow was not prevented, the cleanliness of the slab was poor. In particular, test No. 1 having a discharge hole at the bottom of the immersion nozzle. The cleanliness of 4 was bad.
This is because oxides, bubbles, etc. in the molten steel penetrated deep inside the slab. In addition, the test No. 3 and No. In both cases, the temperature of the molten steel in the vicinity of the meniscus could not be maintained at a high temperature, and the oxide in the molten steel and unmelted powder were trapped in the solidified shell, so the surface quality of the slab was also poor.

【0039】[0039]

【発明の効果】本発明の方法の適用により、表面品質お
よび内部品質ともに優れた鋳片を得ることが可能であ
る。
By applying the method of the present invention, it is possible to obtain a slab having excellent surface quality and internal quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】2つの吐出孔を有する浸漬ノズルを用いる場合
の本発明の方法を説明する図である。
FIG. 1 is a diagram illustrating a method of the present invention when an immersion nozzle having two discharge holes is used.

【図2】鋳型内のメニスカス近傍の溶鋼に電磁力を作用
させることによって生じる溶鋼の流動の例を示す図であ
る。
FIG. 2 is a diagram showing an example of the flow of molten steel caused by applying an electromagnetic force to the molten steel near the meniscus in the mold.

【図3】底部に下向きの吐出孔1つのみを有する浸漬ノ
ズルを用いる場合の本発明の方法を説明する図である。
FIG. 3 is a diagram illustrating a method of the present invention when using a submerged nozzle having only one downward discharge hole on the bottom.

【図4】2つの吐出孔を有する浸漬ノズルを用いる場合
の鋳型内の溶鋼の流動状況を模式的に示す図である。
FIG. 4 is a diagram schematically showing a flow state of molten steel in a mold when an immersion nozzle having two discharge holes is used.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル 2 吐出孔 3 鋳型 3a 鋳型の短辺 4a 未溶融のモールドパウダ 4b 溶融したモ
ールドパウダ 5 凝固殻 6 溶鋼 6a 吐出流 6b 上昇流 6c 下降流 6d 水平流 6e 溶鋼の流れ 7 メニスカス近傍の電磁撹拌装置 8 吐出流の電磁撹拌装置
1 Immersion Nozzle 2 Discharge Hole 3 Mold 3a Short Side 4a of Mold 4a Unmelted Mold Powder 4b Melted Mold Powder 5 Solidified Shell 6 Molten Steel 6a Discharge Flow 6b Upflow 6c Downflow 6d Horizontal Flow 6e Molten Steel Flow 7 Electromagnetic Near Meniscus Stirrer 8 Electromagnetic stirrer for discharge flow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋳型内のメニスカス近傍の溶融金属に電磁
力を作用させることにより、溶融金属を水平方向に旋回
流動させ、かつ鋳型内の溶融金属中に浸漬された浸漬ノ
ズルからの吐出流に電磁力を作用させて、溶融金属の吐
出流に上向きの力を作用させることを特徴とする溶融金
属の連続鋳造方法。
1. An electromagnetic force is applied to molten metal in the vicinity of a meniscus in a mold to swirl the molten metal in a horizontal direction, and a discharge flow from a dipping nozzle immersed in the molten metal in the mold. A continuous casting method for molten metal, which comprises applying an electromagnetic force to exert an upward force on a molten metal discharge flow.
【請求項2】鋳型内のメニスカス近傍の溶融金属に電磁
力を作用させることにより、溶融金属を水平方向で、2
つの長辺の相対する位置で同じ方向に流動させ、かつ鋳
型内の溶融金属中に浸漬された浸漬ノズルからの吐出流
に電磁力を作用させて、溶融金属の吐出流に上向きの力
を作用させることを特徴とする溶融金属の連続鋳造方
法。
2. The molten metal is horizontally moved in the mold by applying an electromagnetic force to the molten metal near the meniscus in the mold.
Flow in the same direction at the positions where the two long sides face each other, and apply an electromagnetic force to the discharge flow from the immersion nozzle immersed in the molten metal in the mold to apply an upward force to the discharge flow of the molten metal. A method for continuously casting molten metal, comprising:
JP10239741A 1998-08-26 1998-08-26 Continuous casting method Pending JP2000061599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239741A JP2000061599A (en) 1998-08-26 1998-08-26 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239741A JP2000061599A (en) 1998-08-26 1998-08-26 Continuous casting method

Publications (1)

Publication Number Publication Date
JP2000061599A true JP2000061599A (en) 2000-02-29

Family

ID=17049251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239741A Pending JP2000061599A (en) 1998-08-26 1998-08-26 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2000061599A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123485A1 (en) * 2006-04-25 2007-11-01 Abb Ab A stirrer
JP5040999B2 (en) * 2007-06-06 2012-10-03 住友金属工業株式会社 Steel continuous casting method and flow control device for molten steel in mold
JP2014213327A (en) * 2013-04-22 2014-11-17 Jfeスチール株式会社 Continuous casting method of steel
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method
CN108500227A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 Crystallizer flow field Electromagnetic Control method for sheet billet continuous casting production
WO2019164004A1 (en) 2018-02-26 2019-08-29 日本製鉄株式会社 Molding facility

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123485A1 (en) * 2006-04-25 2007-11-01 Abb Ab A stirrer
EP2010346A1 (en) * 2006-04-25 2009-01-07 Abb Ab A stirrer
JP2009535216A (en) * 2006-04-25 2009-10-01 アーベーベー・アーベー Stirrer
EP2010346A4 (en) * 2006-04-25 2013-02-20 Abb Ab A stirrer
JP5040999B2 (en) * 2007-06-06 2012-10-03 住友金属工業株式会社 Steel continuous casting method and flow control device for molten steel in mold
JP2014213327A (en) * 2013-04-22 2014-11-17 Jfeスチール株式会社 Continuous casting method of steel
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method
CN108500227A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 Crystallizer flow field Electromagnetic Control method for sheet billet continuous casting production
WO2019164004A1 (en) 2018-02-26 2019-08-29 日本製鉄株式会社 Molding facility
KR20200051724A (en) 2018-02-26 2020-05-13 닛폰세이테츠 가부시키가이샤 Molding equipment
CN111194247A (en) * 2018-02-26 2020-05-22 日本制铁株式会社 Casting mould equipment
US11027331B2 (en) 2018-02-26 2021-06-08 Nippon Steel Corporation Molding facility
CN111194247B (en) * 2018-02-26 2021-12-10 日本制铁株式会社 Casting mould equipment

Similar Documents

Publication Publication Date Title
KR101220767B1 (en) Device for continuously casting steel
TW466145B (en) Continuous casting method, and device therefor
JP5014934B2 (en) Steel continuous casting method
JP2000061599A (en) Continuous casting method
EP1195211A1 (en) Production method for continuous casting cast billet
JP2008055431A (en) Method of continuous casting for steel
JP2610741B2 (en) Continuous casting method and apparatus
JP3096879B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JPH09108793A (en) Continuous casting method and straight immersion nozzle
JP3527122B2 (en) Slab with few nonmetallic inclusions
JP2000135549A (en) Continuous casting method
JPH10166120A (en) Method for continuously castingmolten metal
JP3257546B2 (en) Steel continuous casting method
JPH01289543A (en) Continuous casting method for steel
JPH10109145A (en) Method for controlling fluidity of molten steel in continuous casting mold for steel
JP2000033463A (en) Tundish for molten metal and continuous casting method
JPH06226409A (en) Method for continuously casting high clean steel
JPS6272458A (en) Electromagnetic stirring method
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP2010110766A (en) Continuous casting apparatus for steel and continuous casting method for steel
JP2007268578A (en) Electromagnetic stirring method for molten steel in casting mold
JPH05154620A (en) Continuous casting method
JPH10305358A (en) Continuous molding of steel
JPH0518743U (en) Immersion nozzle for continuous casting with shield cylinder