JP2000058956A - Light semiconductor device - Google Patents

Light semiconductor device

Info

Publication number
JP2000058956A
JP2000058956A JP10222506A JP22250698A JP2000058956A JP 2000058956 A JP2000058956 A JP 2000058956A JP 10222506 A JP10222506 A JP 10222506A JP 22250698 A JP22250698 A JP 22250698A JP 2000058956 A JP2000058956 A JP 2000058956A
Authority
JP
Japan
Prior art keywords
capacitor
optical
soa
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222506A
Other languages
Japanese (ja)
Inventor
Toshio Ito
敏夫 伊藤
Katsuaki Magari
克明 曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10222506A priority Critical patent/JP2000058956A/en
Publication of JP2000058956A publication Critical patent/JP2000058956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the speed of operation without forming any separation groove by connecting a capacitor in parallel with a termination resistor. SOLUTION: In an equivalent circuit, a capacitor 4 is connected in parallel with a termination resistor 3 of a semiconductor light amplification element (SOA element) 1. The value of the capacitor 4 may preferably be set to a value being selected from a range of 10 pF-100 pF. The SOA element 1 has a parasitic capacity of 500 pF, the capacitor 4 of 40 pF is connected to both the ends, and the SOA element 1 is driven by a bias current of 40 mA and 10 mA when it is on and off, respectively, thus increasing the speed of operation without forming any separation groove, namely without deteriorating the yield and polarization dependency of the semiconductor element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、終端抵抗と、該終
端抵抗を介して駆動電圧が印加され若しくは駆動電流が
注入される半導体発光素子、半導体光増幅素子等の半導
体光素子を含む光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor including a semiconductor optical device such as a semiconductor light emitting device or a semiconductor optical amplifier device to which a driving voltage is applied or a driving current is injected via the terminating resistor. It concerns the device.

【0002】[0002]

【従来の技術】上記した半導体光素子は光通信、光交
換、光情報処理等の光伝送システムに使用される。例え
ば、半導体光増幅素子(SOA)は、小型でオン/オフ
比が高く、広帯域で利得を持つことから、光情報処理用
のゲートデバイスとして有効である。
2. Description of the Related Art The above-mentioned semiconductor optical devices are used in optical transmission systems such as optical communication, optical switching, and optical information processing. For example, a semiconductor optical amplifying element (SOA) is effective as a gate device for optical information processing because it is small, has a high on / off ratio, and has gain over a wide band.

【0003】図4の(a)はこのSOA素子1の構造を示
す図である。素子長は1200μmで、そのうち活性層領域
11の長さが600μm、両端のスポットサイズ変換領域
(SS)12の長さがそれぞれ300μmである。活性層
領域11は厚さ0.4μm、バンドギャップ波長1.55μm
のInGaAsPバルク層で形成され、スポットサイズ変換領
域12はバンドギャップ波長1.3μm、射出先端部で厚
さ0.2μmの垂直テーパ層で形成されている。0.5μmの
メサ形成は、メタン/水素のドライエッチングを用い、
pn層により埋め込んでいる。SOA素子1の両端面に
は、SiO2/TiO2の多層膜により反射防止層を形成し、平
面ファイバを結合してモジュールに構成される。
FIG. 4A is a view showing the structure of this SOA element 1. As shown in FIG. The element length is 1200 μm, of which the length of the active layer region 11 is 600 μm and the length of the spot size conversion regions (SS) 12 at both ends is 300 μm. The active layer region 11 has a thickness of 0.4 μm and a band gap wavelength of 1.55 μm.
The spot size conversion region 12 is formed of a vertical taper layer having a band gap wavelength of 1.3 μm and a thickness of 0.2 μm at the emission tip. The formation of a 0.5 μm mesa uses methane / hydrogen dry etching,
It is embedded with a pn layer. On both end surfaces of the SOA element 1, an anti-reflection layer is formed by a multilayer film of SiO 2 / TiO 2 , and a planar fiber is combined to constitute a module.

【0004】このSOA素子1では、典型的な静特性と
して、波長1550nm、-10dBmの入力光に対して、注
入電流0〜10mAで30dB以上のファイバ間損失、20m
Aでファイバ間無損失、40mAで10dBのゲインが得ら
れる。このSOA素子は本質的に偏波依存性が小さく
(0.2dB以下)、使用波長帯域が広い(1530nm〜160
0nm)という優れた特徴をもつ。
The SOA element 1 has typical static characteristics as follows: input light having a wavelength of 1550 nm and -10 dBm has a fiber-to-fiber loss of 30 dB or more at an injection current of 0 to 10 mA;
At A, no loss between fibers is obtained, and at 40 mA, a gain of 10 dB is obtained. This SOA element has essentially small polarization dependence (0.2 dB or less) and a wide wavelength band (1530 nm to 160 nm).
0 nm).

【0005】このSOA素子を駆動するには、図4の
(b)に示すように、SOA素子1の直近に終端抵抗3
(通常45Ω程度)を実装した上で、駆動端子2から電流
を注入することで行われる。
In order to drive this SOA element, FIG.
As shown in FIG.
(Usually about 45Ω), and then injecting current from the drive terminal 2.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来では、
SOA素子の寄生容量が500pF程度と高いことがネッ
クになって、そのSOA素子の立ち上がり応答に数ns
もかかってしまうという問題があった。
However, in the prior art,
The bottleneck is that the parasitic capacitance of the SOA element is as high as about 500 pF, and the rise response of the SOA element takes several ns.
There was a problem that it also took.

【0007】図5はこれを説明するための駆動波形を示
す図であり、SOA素子に波長1550nm、強度−10dB
mのDC光を入力し、オン時に10dBのゲインを与え、
オフ時に30dBの損失を与えるいわゆる光ゲートとして
動作させたときのものである。
FIG. 5 is a diagram showing driving waveforms for explaining this. The SOA element has a wavelength of 1550 nm and an intensity of -10 dB.
m DC light is input and a gain of 10 dB is given at the time of ON,
This is when the device is operated as a so-called optical gate that gives a loss of 30 dB when turned off.

【0008】このSOA素子は寄生容量500pFであ
り、終端抵抗3を45Ωとして、オン時にバイアス電流40
mA、オフ時に10mAで駆動している。このとき、入力
の電流波形は図5の(a)に示すようになり、出力の光波
形は図5の(b)に示すようになる。図5の(c)は(b)の破
線で囲んだ部分の拡大図である。この図5の(c)に示す
ように、光出力の立ち上がりが遅く、9nm程度の時間
がかかっていた。
This SOA element has a parasitic capacitance of 500 pF, the terminating resistance 3 is set to 45Ω, and the bias current 40
The motor is driven at 10 mA at off time. At this time, the input current waveform is as shown in FIG. 5A, and the output optical waveform is as shown in FIG. 5B. FIG. 5C is an enlarged view of a portion surrounded by a broken line in FIG. As shown in FIG. 5C, the rise of the optical output was slow, and it took about 9 nm.

【0009】そこで、寄生容量を低減するために、SO
A素子に分離溝を形成する方法があるが、この方法では
素子の歩留まりが低下し、また偏波依存性の劣化を引き
起こすという別の問題が生じていた。
Therefore, in order to reduce the parasitic capacitance, SO
There is a method of forming an isolation groove in the A element, but this method has another problem that the yield of the element is reduced and the polarization dependence is deteriorated.

【0010】本発明は以上のような点に鑑みてなされた
ものであり、その目的は、分離溝を形成することなく動
作の高速化を図った光半導体装置を提供することであ
る。
[0010] The present invention has been made in view of the above points, and an object of the present invention is to provide an optical semiconductor device in which the operation speed is increased without forming a separation groove.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、終端抵抗と、該終端抵抗を介して駆
動電圧が印加され若しくは駆動電流が注入される半導体
発光素子、半導体光増幅素子等の半導体光素子から成る
光半導体装置において、前記終端抵抗に並列にコンデン
サを接続して構成した。
According to a first aspect of the present invention, there is provided a semiconductor light emitting device in which a driving voltage is applied or a driving current is injected through the terminating resistor. In an optical semiconductor device including a semiconductor optical element such as an optical amplifier, a capacitor is connected in parallel to the terminating resistor.

【0012】第2の発明は、第1の発明において、前記
コンデンサの値を、10pFから100pFの範囲で設定す
るようにした。
In a second aspect based on the first aspect, the value of the capacitor is set in a range of 10 pF to 100 pF.

【0013】[0013]

【発明の実施の形態】図1は本発明の実施の形態を示す
等価回路であり、SOA素子1の終端抵抗3に並列にコ
ンデンサ4を接続したものである。このコンデンサ4の
値としては、10pF〜100pFの範囲から選択した値に
設定することが好ましい。
FIG. 1 is an equivalent circuit showing an embodiment of the present invention, in which a capacitor 4 is connected in parallel with a terminating resistor 3 of an SOA element 1. The value of the capacitor 4 is preferably set to a value selected from the range of 10 pF to 100 pF.

【0014】図2はこれを説明するための駆動波形を示
す図であり、図5に示した場合と同様に、SOA素子に
波長1550nm、強度−10dBmのDC光を入力し、オン
時に10dBのゲインを与え、オフ時に30dBの損失を与
えるいわゆる光ゲートとして動作させたときのものであ
る。
FIG. 2 is a diagram showing driving waveforms for explaining this. As in the case shown in FIG. 5, a DC light having a wavelength of 1550 nm and an intensity of -10 dBm is input to the SOA element, and a 10 dB power is turned on when it is turned on. This is a case where the device is operated as a so-called optical gate which gives a gain and gives a loss of 30 dB when turned off.

【0015】このSOA素子は寄生容量500pFであ
り、終端抵抗3を45Ωとして、その両端に40pFのコン
デンサ4を接続して、オン時にバイアス電流40mA、オ
フ時に10mAで駆動している。このとき、入力の電流波
形は図2の(a)に示すようになり、出力の光波形は図2
の(b)に示すようになる。図2の(c)は(b)の破線で囲ん
だ部分の拡大図である。この図2の(c)に示すように、
光出力の立ち上がりが速くなり、0.5nm程度の時間で
立ち上がっている。
This SOA element has a parasitic capacitance of 500 pF, a terminating resistor 3 of 45 Ω, a capacitor 4 of 40 pF connected to both ends thereof, and is driven with a bias current of 40 mA when on and 10 mA when off. At this time, the input current waveform is as shown in FIG. 2A, and the output optical waveform is as shown in FIG.
(B). FIG. 2C is an enlarged view of a portion surrounded by a broken line in FIG. As shown in FIG. 2 (c),
The light output rises quickly and rises in about 0.5 nm.

【0016】図3は並列コンデンサ4の値により応答時
間がどのように変化するかを調べた特性図である。まず
図3の(a)はSOA素子1の寄生容量が500pFのときの
特性である。並列コンデンサ4の容量が大きくなるに従
って応答速度が上がっていることが分かる。特に、コン
デンサ容量が15pF以上では立ち上がり時間も1ns以
下となり、光ゲート素子として有効であることがわか
る。
FIG. 3 is a characteristic diagram for examining how the response time changes depending on the value of the parallel capacitor 4. First, FIG. 3A shows characteristics when the parasitic capacitance of the SOA element 1 is 500 pF. It can be seen that the response speed increases as the capacity of the parallel capacitor 4 increases. In particular, when the capacitance of the capacitor is 15 pF or more, the rise time is also 1 ns or less, which indicates that the capacitor is effective as an optical gate element.

【0017】ただ、コンデンサ4の容量をあまり大きく
すると、ピーク値がそれだけ大きくなるので、過大に流
れる電流が増加し、素子や駆動回路の破壊をもたらす恐
れがある。例えば、コンデンサ容量を100pFを超える
値にすると、最大ピークは定常状態の2.5倍〜3倍にも
達し、また定常状態に落ち着くまでに10ns以上かかる
ので、適切ではない。したがって、コンデンサの容量は
10〜100pFの範囲から設定することが適当である。
However, if the capacitance of the capacitor 4 is made too large, the peak value becomes so large that the current flowing excessively increases, and there is a possibility that the element and the drive circuit may be destroyed. For example, if the capacitance of the capacitor is set to a value exceeding 100 pF, the maximum peak reaches 2.5 to 3 times of the steady state, and it takes 10 ns or more to reach the steady state. Therefore, the capacitance of the capacitor is
It is appropriate to set from the range of 10 to 100 pF.

【0018】図3の(b)はSOA素子1の寄生容量が30
pFのときの同様な特性である。この場合でも、コンデ
ンサ容量を10pF以上とすると有効なことが分かる。
FIG. 3B shows that the SOA element 1 has a parasitic capacitance of 30.
Similar characteristics at the time of pF. Even in this case, it is found that setting the capacitor capacity to 10 pF or more is effective.

【0019】なお、以上では、光増幅素子を例にとって
説明したが、半導体レーザやLED(発光ダイオード)
等の半導体発光素子に対しても、終端抵抗にコンデンサ
を並列接続することにより、その動作を高速化させるこ
とができる。
In the above description, the optical amplifying element has been described as an example, but a semiconductor laser or an LED (light emitting diode)
For a semiconductor light emitting device such as that described above, the operation can be sped up by connecting a capacitor in parallel to the terminating resistor.

【0020】[0020]

【発明の効果】以上から本発明によれば、分離溝を形成
することなく、つまり半導体光素子の歩留まりや偏波依
存性の劣化を引き起こすことなく、動作の高速化を実現
することができる。
As described above, according to the present invention, high-speed operation can be realized without forming isolation grooves, that is, without deteriorating the yield and polarization dependence of semiconductor optical devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のSOA素子とその駆動回路の回路図
である。
FIG. 1 is a circuit diagram of an SOA element of the present invention and a driving circuit thereof.

【図2】 図1の駆動回路をもつSOA素子の駆動波形
図であり、(a)は入力の電流波形図、(b)は出力の光波形
図、(c)は(b)の破線で囲んだ部分の拡大図である。
2A and 2B are drive waveform diagrams of an SOA element having the drive circuit of FIG. 1; FIG. 2A is an input current waveform diagram, FIG. 2B is an output optical waveform diagram, and FIG. It is an enlarged view of the enclosed part.

【図3】 並列コンデンサの容量値に対する応答時間の
特性図で、(a)はSOA素子の寄生容量が500pFのと
き、(b)は30pFのときの特性図である。
3A and 3B are characteristic diagrams of response time with respect to a capacitance value of a parallel capacitor, wherein FIG. 3A is a characteristic diagram when the parasitic capacitance of the SOA element is 500 pF, and FIG.

【図4】 (a)はSOA素子の構造の説明図、(b)はその
従来の駆動回路の回路図である。
FIG. 4A is an explanatory diagram of a structure of an SOA element, and FIG. 4B is a circuit diagram of a conventional driving circuit thereof.

【図5】 図4の駆動回路をもつSOA素子の駆動波形
図であり、(a)は入力の電流波形図、(b)は出力の光波形
図、(c)は(b)の破線で囲んだ部分の拡大図である。
5A and 5B are drive waveform diagrams of the SOA element having the drive circuit of FIG. 4, wherein FIG. 5A is an input current waveform diagram, FIG. 5B is an output optical waveform diagram, and FIG. It is an enlarged view of the enclosed part.

【符号の説明】[Explanation of symbols]

1:SOA素子、11:活性層、12:スポットサイズ
変換領域、2:駆動端子、3:終端抵抗、4:コンデン
サ。
1: SOA element, 11: active layer, 12: spot size conversion region, 2: drive terminal, 3: termination resistance, 4: capacitor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】終端抵抗と、該終端抵抗を介して駆動電圧
が印加され若しくは駆動電流が注入される半導体発光素
子、半導体光増幅素子等の半導体光素子を含む光半導体
装置において、前記終端抵抗に並列にコンデンサを接続
したことを特徴とする光半導体装置。
1. An optical semiconductor device including a termination resistor and a semiconductor optical device such as a semiconductor light emitting device or a semiconductor optical amplifier device to which a drive voltage is applied or a drive current is injected via the termination resistor. An optical semiconductor device characterized in that a capacitor is connected in parallel to the optical semiconductor device.
【請求項2】前記コンデンサの値を、10pFから100p
Fの範囲で設定したことを特徴とする請求項1に記載の
光半導体装置。
2. The method according to claim 1, wherein the value of said capacitor is 10 pF to 100 pF.
2. The optical semiconductor device according to claim 1, wherein the optical semiconductor device is set in a range of F.
JP10222506A 1998-08-06 1998-08-06 Light semiconductor device Pending JP2000058956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222506A JP2000058956A (en) 1998-08-06 1998-08-06 Light semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222506A JP2000058956A (en) 1998-08-06 1998-08-06 Light semiconductor device

Publications (1)

Publication Number Publication Date
JP2000058956A true JP2000058956A (en) 2000-02-25

Family

ID=16783505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222506A Pending JP2000058956A (en) 1998-08-06 1998-08-06 Light semiconductor device

Country Status (1)

Country Link
JP (1) JP2000058956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252251A (en) * 2004-02-19 2005-09-15 Sumitomo Electric Ind Ltd Optical transmission assembly
WO2016175301A1 (en) * 2015-04-30 2016-11-03 株式会社トプコン Light-emitting device and distance measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252251A (en) * 2004-02-19 2005-09-15 Sumitomo Electric Ind Ltd Optical transmission assembly
JP4687133B2 (en) * 2004-02-19 2011-05-25 住友電気工業株式会社 Optical transmission assembly
WO2016175301A1 (en) * 2015-04-30 2016-11-03 株式会社トプコン Light-emitting device and distance measurement device
JPWO2016175301A1 (en) * 2015-04-30 2018-02-22 株式会社トプコン Light emitting device and distance measuring device
US10277006B2 (en) 2015-04-30 2019-04-30 Topcon Corporation Light-emitting device and distance measurement device

Similar Documents

Publication Publication Date Title
US7639719B2 (en) Thermal shunt for active devices on silicon-on-insulator wafers
JP4789608B2 (en) Semiconductor optical communication device
JPH0422254B2 (en)
US6646317B2 (en) High power photodiode
JP2000058956A (en) Light semiconductor device
JPH1051069A (en) Optical semiconductor device
CN116014558A (en) Semiconductor modulation laser amplifier chip and preparation method thereof
Dorgeuille et al. First array of 8 CG-SOA gates for large-scale WDM space switches
KR20060089740A (en) Surface-emitting semiconductor laser comprising a structured waveguide
JP4013394B2 (en) Semiconductor laser device
KR100471379B1 (en) Optical signal processor using saturable absorber and optical amplifier
Brenot et al. High modulation bandwidth reflective SOA for optical access networks
US5325387A (en) Method of operating a semiconductor laser as a bistable opto-electronic component
JP2004327992A (en) Semiconductor laser
JPS6126278A (en) Photoelectronic ic
JPH05291694A (en) Low-chirp light source
JPH0661526A (en) Method for controlling output of semiconductor light emitting element and integrated semiconductor light emitting element
JP3441385B2 (en) Optical coupling device
JP2003101147A (en) Semiconductor laser device and short-wavelength laser light source
KR100398748B1 (en) Waveguide-type optical thyristor operating for vertical input power and method for manufacturing the same, and switching method of said optical thyristor
JP2996260B2 (en) Ring laser
WO2019102604A1 (en) Semiconductor optical transmitter
JP2004072011A (en) Optical transmitting apparatus and semiconductor laser apparatus
KR100319762B1 (en) Polarization-controllable vertical-cavity surface-emitting semiconductor lasers using electro-optic effect
JPS6356983A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031021