JP2000058128A - Gel electrolyte battery - Google Patents

Gel electrolyte battery

Info

Publication number
JP2000058128A
JP2000058128A JP10226788A JP22678898A JP2000058128A JP 2000058128 A JP2000058128 A JP 2000058128A JP 10226788 A JP10226788 A JP 10226788A JP 22678898 A JP22678898 A JP 22678898A JP 2000058128 A JP2000058128 A JP 2000058128A
Authority
JP
Japan
Prior art keywords
gel electrolyte
polymer
formula
integer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226788A
Other languages
Japanese (ja)
Other versions
JP4238386B2 (en
JP2000058128A5 (en
Inventor
Seijiro Ochiai
誠二郎 落合
Shuichi Ido
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Yuasa Corp
Original Assignee
Mitsui Chemicals Inc
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Yuasa Corp, Yuasa Battery Corp filed Critical Mitsui Chemicals Inc
Priority to JP22678898A priority Critical patent/JP4238386B2/en
Priority to EP99937020A priority patent/EP1026767A4/en
Priority to PCT/JP1999/004339 priority patent/WO2000010213A1/en
Priority to US09/529,273 priority patent/US6569572B1/en
Publication of JP2000058128A publication Critical patent/JP2000058128A/en
Publication of JP2000058128A5 publication Critical patent/JP2000058128A5/ja
Application granted granted Critical
Publication of JP4238386B2 publication Critical patent/JP4238386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery superior in reliability, safety and charging/ discharging characteristic by providing a positive electrode capable of storing/ discharging lithium ions, a negative electrode capable of storing/discharging or depositing/dissolving lithium ions and gel electrolyte, and using a polycarbonate gel electrolyte made of at least a solvent, a solute and a polymer for the gel electrolyte. SOLUTION: A polymer of compounds expressed by the formula I and formula II is used for the polymer of a gel electrode, where (1) is 0 or an integer of 1 or above, (m) is an integer of 1 or above, R1=CpH2p, R2=CqH2q, p≠q, (p) and (q) are integers of 1 or above, A is CH2=CH-CO- or CH2=C(CH3)-CO-, X is an n-valent link group ((n) is an integer of 1-4), (r) is 0 or an integer of 1 or larger, (s) is an integer of 1 or larger, R3=CtH2t, R4=CuH2u, t≠u, where (t) and (u) are integers of 1 or larger. The molecular weight of the compound expressed by the formula I is set to 160-100,000, and the molecular weight of the compound expressed by the formula II is set to 228-100,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池、リ
チウムイオン電池においてゲル電解質を用いた電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery and a lithium ion battery using a gel electrolyte.

【0002】[0002]

【従来の技術】近年の携帯用電子機器の小型化に伴い、
高エネルギー密度を有するリチウム二次電池の需要が増
大している。また、電気自動車用等の大型電池への応用
も期待されており、これらの研究開発において、高エネ
ルギー密度化や大容量化の技術および安全性向上の技術
の確立は不可欠である。高分子固体電解質を用いた電池
は、従来の電解液を用いた電池に比べて液漏れがないた
め、電池の信頼性、安全性が向上するとともに薄膜化や
パッケージの簡略化、軽量化等が可能となる。しかしな
がら、高分子とリチウム塩の複合体である高分子固体電
解質のイオン伝導機構は高分子の分子運動を利用するた
め、電解液を用いた電池と比較して充放電電流密度が限
定されるなどの問題点を有する。このため、高いイオン
伝導度を有する高分子固体電解質材料の開発が要求され
ている。
2. Description of the Related Art With the recent miniaturization of portable electronic devices,
Demand for lithium secondary batteries having high energy density is increasing. In addition, application to large batteries for electric vehicles and the like is also expected, and in these research and development, establishment of technologies for increasing energy density and increasing capacity and technologies for improving safety are indispensable. Batteries using solid polymer electrolytes do not leak as compared with batteries using conventional electrolytes, so battery reliability and safety are improved, as well as thinning, simplification of packages, and weight reduction. It becomes possible. However, the ion conduction mechanism of the polymer solid electrolyte, which is a composite of a polymer and a lithium salt, uses the molecular motion of the polymer, so the charge / discharge current density is limited compared to batteries using an electrolyte. Problem. Therefore, development of a solid polymer electrolyte material having high ionic conductivity is required.

【0003】この様な中で、高橋らはポリアルキレンオ
キシドとアルカリ金属塩との複合体に有機溶媒を含有す
ることにより比較的高いイオン伝導度を達成している
(特開昭63ー94563号公報)。このような有機溶
媒を含む高分子電解質はゲル電解質と呼ばれ、現在盛ん
にリチウム電池あるいはリチウムイオン電池への応用が
検討されている。
Under such circumstances, Takahashi et al. Achieved relatively high ionic conductivity by containing an organic solvent in a complex of a polyalkylene oxide and an alkali metal salt (JP-A-63-94563). Gazette). Such a polymer electrolyte containing an organic solvent is called a gel electrolyte, and its application to a lithium battery or a lithium ion battery is being studied actively.

【0004】高分子材料としてはポリアルキレンオキシ
ド以外にも、ポリアクリロニトリル(PAN)やポリフ
ッ化ビニリデン(PVdF)あるいはそれらの類似品等
が検討されている。しかしながら、PAN系ゲル電解質
は温度の上昇に伴い高分子が流動性を示すため、高温で
はフィルム状態を維持できない。また、PVdF系ゲル
電解質においては、PVdFが電解液に対して難溶性を
示すために、電解液の保持性に問題を生じる。
In addition to polyalkylene oxides, polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), and similar products have been studied as polymer materials. However, the PAN-based gel electrolyte cannot maintain a film state at a high temperature because the polymer exhibits fluidity with an increase in temperature. Further, in the PVdF-based gel electrolyte, since PVdF shows poor solubility in the electrolytic solution, a problem occurs in the retention of the electrolytic solution.

【0005】我々はこれまで、保液性およびフィルム形
成性の点より架橋性ポリアルキレンオキシドを用いたゲ
ル電解質について、リチウム電池あるいはリチウムイオ
ン電池への応用を検討してきた。このタイプのゲル電解
質においてはポリアルキレンオキシドが電解液と相溶性
を示すため高い液保持性を示し、架橋構造を有すること
により幅広い温度範囲においてフィルム状態を維持する
ことが可能である。そのため、信頼性および安全性に優
れたリチウム電池あるいはリチウムイオン電池を提供で
きる。
[0005] We have studied the application of a gel electrolyte using a crosslinkable polyalkylene oxide to a lithium battery or a lithium ion battery from the viewpoints of liquid retention and film forming properties. In this type of gel electrolyte, the polyalkylene oxide exhibits high liquid retention because it is compatible with the electrolytic solution, and can maintain a film state in a wide temperature range by having a crosslinked structure. Therefore, a lithium battery or a lithium ion battery excellent in reliability and safety can be provided.

【0006】[0006]

【発明が解決しようとする課題】しかし、ポリアルキレ
ンオキシド系ゲル電解質を用いた電池では、他の高分子
を用いたゲル電解質電池に比べ、充放電における低温特
性あるいはハイレート特性が優れず、電池性能が問題で
あった。
However, batteries using a polyalkylene oxide-based gel electrolyte do not have excellent low-temperature characteristics or high-rate characteristics in charge / discharge compared to gel electrolyte batteries using other polymers, and the battery performance is poor. Was a problem.

【0007】ポリアルキレンオキシド系ゲル電解質は、
アルキレンオキシド/リチウム塩複合体である高分子固
体電解質の有機溶媒による可塑化より発展した材料であ
り、ポリアルキレンオキシド自体がリチウム塩を溶解で
きる。さらに、ポリアルキレンオキシドと同様の構造を
有するエーテル系溶媒は、リチウム電池あるいはリチウ
ムイオン電池用電解液溶媒として一般的に用いれる環状
炭酸エステルおよび鎖状炭酸エステルに比べ、ドナー数
が高いため、優先的にリチウムイオンと配位する可能性
がある。
The polyalkylene oxide gel electrolyte is
It is a material developed by plasticizing a polymer solid electrolyte, which is an alkylene oxide / lithium salt composite, with an organic solvent. Polyalkylene oxide itself can dissolve a lithium salt. Furthermore, ether solvents having a structure similar to that of polyalkylene oxide have a higher number of donors than cyclic carbonates and chain carbonates generally used as electrolyte solvents for lithium batteries or lithium ion batteries. May potentially coordinate with lithium ions.

【0008】このため、ポリアルキレンオキシド系ゲル
電解質において、リチウムイオンはポリアルキレンオキ
シド、有機溶媒あるいはその両方と錯体を形成する可能
性があるが、優先的にポリアルキレンオキシドと錯体を
形成していると予想される。有機溶媒に比べ極端に運動
性の低いポリアルキレンオキシドにリチウムイオンが配
位することにより、ポリアルキレンオキシド系ゲル電解
質ではリチウムイオンの移動性が低下していると考えら
れる。
For this reason, in the polyalkylene oxide-based gel electrolyte, lithium ions may form a complex with the polyalkylene oxide, the organic solvent, or both, but the lithium ions are preferentially complexed with the polyalkylene oxide. It is expected to be. It is considered that the mobility of lithium ions is reduced in the polyalkylene oxide-based gel electrolyte due to the coordination of lithium ions to the polyalkylene oxide having extremely low mobility as compared with the organic solvent.

【0009】これに対し、PAN系あるいはPVdF系
ゲル電解質において、リチウム塩は高分子自体には難溶
あるいは不溶性を示す。このため、リチウムイオンは高
分子に拘束されず、リチウムイオンの移動性の低下が抑
えられていると考えられる。しかし、PAN系ゲル電解
質では高温安定性、PVdF系においては液保持性とい
った問題点がある。本発明は、保液性およびフィルム形
成性に優れ、電池の充放電における低温特性およびハイ
レート特性に優れるゲル電解質を用い、信頼性、安全性
および充放電特性に優れたた電池を提供することを目的
とする。
On the other hand, in the PAN-based or PVdF-based gel electrolyte, the lithium salt is hardly soluble or insoluble in the polymer itself. For this reason, it is considered that the lithium ions are not restricted by the polymer, and a decrease in the mobility of the lithium ions is suppressed. However, PAN-based gel electrolytes have problems such as high-temperature stability, and PVdF-based gel electrolytes have problems such as liquid retention. The present invention provides a battery excellent in reliability, safety and charge / discharge characteristics by using a gel electrolyte having excellent liquid retention properties and film forming properties, and excellent low temperature characteristics and high rate characteristics in charge / discharge of the battery. Aim.

【0010】[0010]

【課題を解決するための手段】上記問題を解決するため
に、本発明は、リチウイオンを吸蔵・放出可能な正極
と、リチウムイオンを吸蔵・放出あるいは析出・溶解可
能な負極、およびゲル電解質を有する電池において、該
ゲル電解質が少なくとも溶媒、溶質および高分子で構成
されており、該高分子が化1および/または化2の化合
物の重合体であることを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention comprises a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions or depositing and dissolving lithium ions, and a gel electrolyte. In the battery, the gel electrolyte is composed of at least a solvent, a solute, and a polymer, and the polymer is a polymer of the compound of Formula 1 and / or Formula 2.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【化2】 Embedded image

【0013】ここで、lは0あるいは1以上の数、mは
1以上の数、R1 =Cp 2p、R2=Cq 2q、p≠q、
pおよびqは1以上の整数、AはCH2 =CH−CO−
あるいはCH2 =C(CH3 )−CO−,Xはn価の連
結基(nは1〜4の整数)であり、rは0あるいは1以
上の数、sは1以上の数、R3 =Ct 2t、R4 =Cu
2u、t≠u、tおよびuは1以上の整数である。Xの
例としては以下のものが挙げられるが、これに限定され
るものではない。
[0013] Here, l is 0 or a number of 1 or more, m is a number of 1 or more, R 1 = C p H 2p , R 2 = C q H 2q, p ≠ q,
p and q are integers of 1 or more, and A is CH 2 CHCH—CO—
Alternatively, CH 2 CC (CH 3 ) —CO—, X is an n-valent linking group (n is an integer of 1 to 4), r is 0 or 1 or more, s is 1 or more, R 3 = C t H 2t , R 4 = C u
H 2u , t ≠ u, t and u are integers of 1 or more. Examples of X include, but are not limited to:

【0014】[0014]

【化3】 Embedded image

【0015】[0015]

【化4】 Embedded image

【0016】[0016]

【化5】 Embedded image

【0017】[0017]

【化6】 Embedded image

【0018】[0018]

【化7】 Embedded image

【0019】[0019]

【化8】 Embedded image

【0020】[0020]

【化9】 Embedded image

【0021】[0021]

【化10】 Embedded image

【0022】[0022]

【化11】 Embedded image

【0023】化1および化2は、リチウム電池あるいは
リチウムイオン電池で用いられる有機溶媒と類似する構
造であり、リチウムイオンの選択的配位性は有機溶媒と
同程度であると予想される。リチウムイオンが高分子に
選択的に配位しないため、化1および/または化2の重
合体からなるゲル電解質は、ポリアルキレンオキシド系
ゲル電解質に比べ、高いリチウムイオン移動性を有す
る。また、化1および/または化2の重合体は電池用有
機溶媒と相溶性も良好であるため、保液性の優れたゲル
電解質を形成可能である。本発明では、化1および/ま
たは化2の重合体からなるゲル電解質をポリカーボネー
ト系ゲル電解質と呼ぶ。
Chemical formulas 1 and 2 have structures similar to organic solvents used in lithium batteries or lithium ion batteries, and the selective coordination of lithium ions is expected to be similar to that of organic solvents. Since lithium ions do not selectively coordinate to the polymer, the gel electrolyte composed of the polymer of Chemical Formula 1 and / or Chemical Formula 2 has higher lithium ion mobility than a polyalkylene oxide gel electrolyte. In addition, the polymer of Chemical Formula 1 and / or Chemical Formula 2 has good compatibility with the organic solvent for batteries, and thus can form a gel electrolyte having excellent liquid retention properties. In the present invention, a gel electrolyte composed of the polymer of Chemical Formula 1 and / or Chemical Formula 2 is referred to as a polycarbonate-based gel electrolyte.

【0024】ゲル電解質に用いる有機溶媒にはエチレン
カーボネートやプロピレンカーボネート等の環状炭酸エ
ステル、γーブチロラクトン等の環状カルボン酸エステ
ル、テトラヒドロフランや1,3−ジオキソラン等の環
状エーテル、1,2−ジメトキシエタン等の鎖状エーテ
ル、ジメチルカーボネートやエチルメチルカーボネート
等の鎖状炭酸エステル、プロピオン酸メチル等の鎖状カ
ルボン酸エステルなどが挙げられるが、これに限定され
るものではなく、また、2種類以上の混合溶媒を用いる
ことも可能である。また、リチウム塩としては、LiP
6 、LiBF4 、LiN(SO2 CF3 )、LiOS
2 CF3 等が挙げられるが、これに限定されるもので
はない。
Examples of the organic solvent used for the gel electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, cyclic carboxylic esters such as γ-butyrolactone, cyclic ethers such as tetrahydrofuran and 1,3-dioxolan, and 1,2-dimethoxyethane. Chain ethers such as dimethyl carbonate and ethyl methyl carbonate, and chain carboxylic esters such as methyl propionate, but are not limited thereto. It is also possible to use a mixed solvent. As the lithium salt, LiP
F 6 , LiBF 4 , LiN (SO 2 CF 3 ), LiOS
O 2 CF 3 and the like, but are not limited thereto.

【0025】化1および化2の分子量は、化1で160
〜100000、化2で228〜100000が適当で
ある。分子量が低すぎると重合体である高分子の架橋密
度が高くなり、高分子膜の柔軟性が低くなる。また、分
子量が高くなりすぎると重合後の高分子の架橋密度が低
くなり、高分子膜の強度が低下する。
The molecular weight of Chemical Formula 1 and Chemical Formula 2 is 160
100100,000, and 228000100,000 in Chemical Formula 2 are suitable. If the molecular weight is too low, the crosslinking density of the polymer, which is a polymer, becomes high, and the flexibility of the polymer film becomes low. On the other hand, if the molecular weight is too high, the crosslink density of the polymer after polymerization will be low, and the strength of the polymer film will be low.

【0026】化1および/または化2と共重合体を形成
する他のモノマーとしては以下の化合物等が挙げられる
が、これに限定されるものではない。
Other monomers forming a copolymer with Chemical Formula 1 and / or Chemical Formula 2 include, but are not limited to, the following compounds.

【0027】[0027]

【化12】 Embedded image

【0028】[0028]

【化13】 Embedded image

【0029】[0029]

【化14】 Embedded image

【0030】[0030]

【化15】 Embedded image

【0031】[0031]

【化16】 Embedded image

【0032】[0032]

【化17】 Embedded image

【0033】ここで、vおよびwは1以上の整数を示
す。含有率については、化1および/または化2が共重
合体に対し重量部で50%以上含有することにより本発
明の効果が得られる。
Here, v and w each represent an integer of 1 or more. Regarding the content, the effect of the present invention can be obtained by containing 50% by weight or more of Chemical Formula 1 and / or Chemical Formula 2 with respect to the copolymer.

【0034】化1および/または化2の重合体とポリマ
ーアロイを形成する他の高分子としてはポリフッ化ビニ
リデン、ポリアクリロニトリル、ポリビニルアルコー
ル、シリコーン樹脂、メタクリル樹脂等が挙げられる
が、これに限定されるものではない。また、含有率にお
いては化1および/または化2がポリマーアロイに対し
重量部で50%以上含有することにより本発明の効果が
得られる。
Other polymers that form a polymer alloy with the polymer of Chemical Formula 1 and / or Chemical Formula 2 include, but are not limited to, polyvinylidene fluoride, polyacrylonitrile, polyvinyl alcohol, silicone resin, methacrylic resin and the like. Not something. Further, with respect to the content, the effect of the present invention can be obtained by containing 50% or more by weight of Chemical Formula 1 and / or Chemical Formula 2 with respect to the polymer alloy.

【0035】[0035]

【実施例】以下、本発明の実施例について説明する。図
1にゲル電解質におけるリチウムイオン移動性評価用セ
ルの断面図を示す。1および5はステンレス綱集電体で
あり、2および4は4cm2 のリチウム箔である。3は
評価するゲル電解質であり、6は外装である。2と4の
間に電流値の異なる電流を流した場合の二極間電圧の変
化を測定することにより、ゲル電解質中のリチウムイオ
ンの移動性を評価する。測定は20℃雰囲気で行った。
Embodiments of the present invention will be described below. FIG. 1 shows a cross-sectional view of a cell for evaluating lithium ion mobility in a gel electrolyte. 1 and 5 are stainless steel current collectors, and 2 and 4 are 4 cm 2 lithium foils. Reference numeral 3 denotes a gel electrolyte to be evaluated, and reference numeral 6 denotes an exterior. The mobility of lithium ions in the gel electrolyte is evaluated by measuring the change in the voltage between the two electrodes when a current having a different current value flows between 2 and 4. The measurement was performed in a 20 ° C. atmosphere.

【0036】(実施例1)化18で示される平均分子量
約4600のマクロモノマー、エチレンカーボネート
(EC)およびγーブチロラクトン(γBL)を重量比
21.2:34.8:44.0の割合で混合した後、1
mol/リットルとなるようにLiBF4 を溶解した。
(Example 1) A macromonomer having an average molecular weight of about 4600, ethylene carbonate (EC) and γ-butyrolactone (γBL) represented by Chemical Formula 18 were mixed at a weight ratio of 21.2: 34.8: 44.0. After mixing, 1
LiBF 4 was dissolved so as to be mol / liter.

【0037】[0037]

【化18】 Embedded image

【0038】このマクロモノマー/EC/γBL/Li
BF4 混合溶媒を不織布に含浸し、2枚のPETフィル
ムで挟んだ後、電子線照射することによりマクロモノマ
ーを重合してゲル電解質を調製した。ゲル電解質の厚み
は150μmとした。今回、ゲル電解質の支持体として
不織布を用いたが、必ずしも不織布や微多孔性膜等を用
いる必要はない。また、PVdF等の高分子をブレンド
することも可能である。 (比較例1)化19で示される平均分子量約8000の
マクロモノマー、ECおよびγBLを重量比21.2:
34.8:44.0の割合で混合した後、1mol/l
となるようにLiBF4 を溶解した。
This macromonomer / EC / γBL / Li
The non-woven fabric was impregnated with the BF 4 mixed solvent, sandwiched between two PET films, and irradiated with an electron beam to polymerize the macromonomer to prepare a gel electrolyte. The thickness of the gel electrolyte was 150 μm. In this case, a nonwoven fabric was used as a support for the gel electrolyte, but it is not always necessary to use a nonwoven fabric or a microporous membrane. It is also possible to blend polymers such as PVdF. (Comparative Example 1) A macromonomer having an average molecular weight of about 8000 represented by Chemical Formula 19, EC and γBL were mixed at a weight ratio of 21.2:
After mixing at a ratio of 34.8: 44.0, 1 mol / l
LiBF 4 was dissolved such that

【0039】[0039]

【化19】 Embedded image

【0040】このマクロモノマー/EC/γBL/Li
BF4 混合溶媒を不織布に含浸し、2枚のPETフィル
ムで挟んだ後、電子線照射することによりマクロモノマ
ーを重合してゲル電解質を調製した。ゲル電解質の厚み
は150μmとした。
This macromonomer / EC / γBL / Li
The non-woven fabric was impregnated with the BF 4 mixed solvent, sandwiched between two PET films, and irradiated with an electron beam to polymerize the macromonomer to prepare a gel electrolyte. The thickness of the gel electrolyte was 150 μm.

【0041】実施例1および比較例1で調製したゲル電
解質を図1のセルを用いて評価した結果を図2に示す。
横軸は電流密度、縦軸は二極間電圧である。比較例1で
用いたポリアルキレンオキシド系ゲル電解質に比べ、実
施例1で用いたポリカーボネート系ゲル電解質では高い
電流密度においても二極間電圧は低い。このような二極
間電圧変化の違いはリチウムイオンの移動性を反映して
おり、ポリアルキレンオキシド系ゲル電解質に比べ、ポ
リカーボネート系ゲル電解質の高いリチウムイオン移動
性を示唆している。よって、ポリカーボネート系ゲル電
解質を用いた電池ではより高い電流密度での充放電が可
能であると予想される。
FIG. 2 shows the results of evaluating the gel electrolytes prepared in Example 1 and Comparative Example 1 using the cell shown in FIG.
The horizontal axis represents the current density, and the vertical axis represents the voltage between the two electrodes. Compared with the polyalkylene oxide gel electrolyte used in Comparative Example 1, the polycarbonate gel electrolyte used in Example 1 has a lower voltage between the two electrodes even at a high current density. Such a difference in the voltage change between the two electrodes reflects the mobility of lithium ions, and suggests a higher lithium ion mobility of the polycarbonate gel electrolyte than the polyalkylene oxide gel electrolyte. Therefore, it is expected that a battery using a polycarbonate gel electrolyte can be charged and discharged at a higher current density.

【0042】(実施例2)実施例1で調製したゲル電解
質を用いて電池(電池容量約9.45mAh)を作製
し、放電特性を評価した。ゲル電解質の厚みは30μm
とした。この時用いた電池の断面図を図3に示す。ここ
で、7はAl集電体、8は正極活物質であり、11はC
u集電体、10は負極活物質である。9は評価するゲル
電解質であり、12は外装である。正極はLiCoO2
活物質、アセチレンブラック(AB)導電剤およびPV
dF結着剤からなり、負極はカーボンおよび結着剤から
なる。ここでは電極中に実施例1と異なるゲル電解質を
用いたが、実施例1と同じゲル電解質を用いても良い。
Example 2 Using the gel electrolyte prepared in Example 1, a battery (battery capacity: 9.45 mAh) was manufactured, and the discharge characteristics were evaluated. Gel electrolyte thickness is 30μm
And FIG. 3 shows a sectional view of the battery used at this time. Here, 7 is an Al current collector, 8 is a positive electrode active material, and 11 is C
The u current collector 10 is a negative electrode active material. 9 is a gel electrolyte to be evaluated, and 12 is an exterior. The positive electrode is LiCoO 2
Active material, acetylene black (AB) conductive agent and PV
It consists of a dF binder, and the negative electrode consists of carbon and a binder. Here, a gel electrolyte different from that of Example 1 was used in the electrode, but the same gel electrolyte as that of Example 1 may be used.

【0043】(比較例2)図3で示される電池を用い
て、比較例1で調製したゲル電解質を用いた電池(電池
容量約9.45mAh)の放電特性を評価した。ゲル電
解質の厚みは30μmとした。正極はLiCoO2 活物
質、アセチレンブラック(AB)導電剤およびPVdF
結着剤からなり、負極はカーボンおよび結着剤からな
る。電極中には実施例1と同じゲル電解質を用いた。
Comparative Example 2 Using the battery shown in FIG. 3, the discharge characteristics of a battery (battery capacity: about 9.45 mAh) using the gel electrolyte prepared in Comparative Example 1 were evaluated. The thickness of the gel electrolyte was 30 μm. The positive electrode is made of LiCoO 2 active material, acetylene black (AB) conductive agent and PVdF
It consists of a binder, and a negative electrode consists of carbon and a binder. The same gel electrolyte as in Example 1 was used in the electrode.

【0044】実施例2および比較例2で作製した電池を
用いて行った放電試験結果を図4に示す。横軸に放電電
流値、縦軸に放電容量を示す。5mAまでの放電電流値
においては実施例2、比較例2ともに同程度の放電容量
が得られたのに対し、10mA放電では放電容量に差が
見られ、ポリカーボネート系ゲル電解質がポリアルキレ
ンオキシド系ゲル電解質に比べハイレート放電に適して
いることがわかる。
FIG. 4 shows the results of a discharge test performed using the batteries prepared in Example 2 and Comparative Example 2. The horizontal axis shows the discharge current value, and the vertical axis shows the discharge capacity. At a discharge current value of up to 5 mA, the same discharge capacity was obtained in both Example 2 and Comparative Example 2, whereas a difference was observed in the discharge capacity at 10 mA discharge, and the polycarbonate-based gel electrolyte was replaced with a polyalkylene oxide-based gel. It turns out that it is more suitable for high-rate discharge than the electrolyte.

【0045】[0045]

【発明の効果】以上のように本発明によれば、電解液用
溶媒に対し相溶性を示し、さらにリチウムイオンの移動
性を抑制しにくい高分子からなるゲル電解質を用いるこ
とにより、信頼性、安全性および充放電特性に優れたた
電池を提供できる。
As described above, according to the present invention, the use of a gel electrolyte made of a polymer which is compatible with a solvent for an electrolytic solution and which hardly suppresses the mobility of lithium ions makes it possible to improve reliability and reliability. A battery excellent in safety and charge / discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例で用いた、ゲル電
解質におけるリチウムイオンの移動性を評価するための
セルの断面図である。
FIG. 1 is a cross-sectional view of a cell for evaluating the mobility of lithium ions in a gel electrolyte used in Examples and Comparative Examples of the present invention.

【図2】本発明の実施例および比較例の各種電流密度の
電流を流したときの二極間電圧をプロットした図であ
る。
FIG. 2 is a diagram in which voltages between two electrodes are plotted when currents of various current densities are applied in Examples and Comparative Examples of the present invention.

【図3】本発明の実施例および比較例で用いた電池の断
面図である。
FIG. 3 is a sectional view of a battery used in Examples of the present invention and Comparative Examples.

【図4】本発明の実施例および比較例の電池における放
電容量を放電電流値に対してプロットした図である。
FIG. 4 is a diagram in which discharge capacities of batteries of Examples and Comparative Examples of the present invention are plotted against discharge current values.

【符号の説明】[Explanation of symbols]

1 ステンレス集電体 2 リチウム箔 3 ゲル電解質 4 リチウム箔 5 ステンレス綱集電体 6 外装 7 Al集電体 8 正極活物質 9 ゲル電解質 10 負極活物質 11 Cu集電体 12 外装 REFERENCE SIGNS LIST 1 stainless steel current collector 2 lithium foil 3 gel electrolyte 4 lithium foil 5 stainless steel current collector 6 exterior 7 Al current collector 8 positive electrode active material 9 gel electrolyte 10 negative electrode active material 11 Cu current collector 12 exterior

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井土 秀一 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 Fターム(参考) 4J002 CG011 FD206 GQ00 5H029 AJ02 AJ12 AK03 AL06 AL08 AM00 AM03 AM04 AM05 AM07 AM16 BJ04 EJ14 HJ01 HJ02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Ido 6-6 Josaicho, Takatsuki-shi, Osaka F-term in Yuasa Corporation (reference) 4J002 CG011 FD206 GQ00 5H029 AJ02 AJ12 AK03 AL06 AL08 AM00 AM03 AM04 AM05 AM07 AM16 BJ04 EJ14 HJ01 HJ02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な正極
と、リチウムイオンを吸蔵・放出あるいは析出・溶解可
能な負極、およびゲル電解質を有する電池において、該
ゲル電解質が少なくとも溶媒、溶質および高分子で構成
されており、該高分子が化1および/または化2の化合
物の重合体であることを特徴とするゲル電解質電池。 【化1】 【化2】 (ここで、lは0あるいは1以上の数、mは1以上の
数、R1 =Cp 2p、R2=Cq 2q、p≠q、pおよ
びqは1以上の整数、AはCH2 =CH−CO−あるい
はCH2 =C(CH3 )−CO−,Xはn価の連結基
(nは1〜4の整数)であり、rは0あるいは1以上の
数、sは1以上の数、R3 =Ct 2t、R4 =C
u 2u、t≠u、tおよびuは1以上の整数である。)
1. A battery having a positive electrode capable of occluding / releasing lithium ions, a negative electrode capable of occluding / releasing or depositing / dissolving lithium ions, and a gel electrolyte, wherein the gel electrolyte comprises at least a solvent, a solute and a polymer. A gel electrolyte battery, which is constituted, wherein the polymer is a polymer of the compound of Chemical Formula 1 and / or Chemical Formula 2. Embedded image Embedded image (Where, l is 0 or a number of 1 or more, m is a number of 1 or more, R 1 = C p H 2p , R 2 = C q H 2q, p ≠ q, p and q is an integer of 1 or more, A Is CH 2 CHCH—CO— or CH 2 CC (CH 3 ) —CO—, X is an n-valent linking group (n is an integer of 1 to 4), r is 0 or a number of 1 or more, and s Is a number of 1 or more, R 3 = C t H 2t , R 4 = C
u H 2u , t ≠ u, t and u are integers of 1 or more. )
【請求項2】 前記化1の化合物の分子量が、160〜
100000であることを特徴とする請求項1記載のゲ
ル電解質電池。
2. The compound of formula 1 having a molecular weight of 160 to
The gel electrolyte battery according to claim 1, wherein the number is 100,000.
【請求項3】 前記化2の化合物の分子量が、228〜
100000であることを特徴とする請求項1記載のゲ
ル電解質電池。
3. The compound of formula 2 having a molecular weight of 228 to
The gel electrolyte battery according to claim 1, wherein the number is 100,000.
【請求項4】 前記高分子が化1および/または化2の
化合物と他のモノマーとの共重合体であり、化1および
/または化2の該高分子中における含有率が重量部で5
0%以上であることを特徴とする請求項1記載のゲル電
解質電池。
4. The polymer is a copolymer of a compound of the formula 1 and / or 2 with another monomer, and the content of the compound 1 and / or 2 in the polymer is 5 parts by weight.
The gel electrolyte battery according to claim 1, wherein the content is 0% or more.
【請求項5】 前記高分子が化1および/または化2の
化合物と他の高分子とのポリマーアロイであり、化1お
よび/または化2の該高分子中における含有率が重量部
で50%以上であることを特徴とする請求項1記載のゲ
ル電解質電池。
5. The polymer is a polymer alloy of a compound of the formula 1 and / or 2 and another polymer, and the content of the compound of the formula 1 and / or 2 in the polymer is 50 parts by weight. % Or more.
JP22678898A 1998-08-11 1998-08-11 Gel electrolyte battery Expired - Fee Related JP4238386B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22678898A JP4238386B2 (en) 1998-08-11 1998-08-11 Gel electrolyte battery
EP99937020A EP1026767A4 (en) 1998-08-11 1999-08-11 Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
PCT/JP1999/004339 WO2000010213A1 (en) 1998-08-11 1999-08-11 Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
US09/529,273 US6569572B1 (en) 1998-08-11 1999-08-11 Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22678898A JP4238386B2 (en) 1998-08-11 1998-08-11 Gel electrolyte battery

Publications (3)

Publication Number Publication Date
JP2000058128A true JP2000058128A (en) 2000-02-25
JP2000058128A5 JP2000058128A5 (en) 2004-08-19
JP4238386B2 JP4238386B2 (en) 2009-03-18

Family

ID=16850634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22678898A Expired - Fee Related JP4238386B2 (en) 1998-08-11 1998-08-11 Gel electrolyte battery

Country Status (1)

Country Link
JP (1) JP4238386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428977B1 (en) * 2001-11-24 2004-04-29 삼성에스디아이 주식회사 Polymer electrolyte composition for improving overcharge safety and lithium battery using the same
WO2022181460A1 (en) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Resin composition, coating film using same, and electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428977B1 (en) * 2001-11-24 2004-04-29 삼성에스디아이 주식회사 Polymer electrolyte composition for improving overcharge safety and lithium battery using the same
WO2022181460A1 (en) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Resin composition, coating film using same, and electrolyte

Also Published As

Publication number Publication date
JP4238386B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3085532B2 (en) Homogeneous solid polymer alloy electrolyte, method for producing the same, composite electrode using the same, lithium polymer battery, lithium ion polymer battery, and method for producing the same
CN101512824B (en) Gel polymer electrolyte and electrochemical device comprising the same
JP3565861B2 (en) Compound polymer gel electrode
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JP5048341B2 (en) Electrochemical device development method
US7252908B2 (en) Organic electrolytic solution and lithium battery using the same
JP2001093573A (en) Lithium battery
JP2005142141A (en) Organic electrolyte and lithium battery using the same
CN113906589B (en) Electrolyte, lithium-sulfur secondary battery and assembly
JP2006066298A (en) Lithium secondary battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP2000299129A (en) Gel polyelectrolyte
US6617077B1 (en) Polymer electrolyte battery and method of fabricating the same
JP4238386B2 (en) Gel electrolyte battery
KR102488679B1 (en) Aqueous binder for a lithium-ion secondary battery, anode comprising the same, lithium-ion secondary battery comprising the anode, and method for polymerizing copolymer comprised in the binder
JPH1145725A (en) Lithium battery
WO2020017630A1 (en) Secondary battery using radical polymer in electrode
JPH08124597A (en) Solid electrolytic secondary cell
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP4624589B2 (en) Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same
JP4266054B2 (en) Polymer electrolyte and non-aqueous battery using the same
WO2020158555A1 (en) Secondary battery which uses radical polymer for electrode
JP2003157832A (en) Nonaqueous electrolyte secondary battery
KR101950706B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080623

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees