JP2000055749A - Web part stress measuring device for steel structure with shaped section - Google Patents

Web part stress measuring device for steel structure with shaped section

Info

Publication number
JP2000055749A
JP2000055749A JP10227885A JP22788598A JP2000055749A JP 2000055749 A JP2000055749 A JP 2000055749A JP 10227885 A JP10227885 A JP 10227885A JP 22788598 A JP22788598 A JP 22788598A JP 2000055749 A JP2000055749 A JP 2000055749A
Authority
JP
Japan
Prior art keywords
stress
head
steel structure
measuring
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227885A
Other languages
Japanese (ja)
Inventor
Sadaaki Sakai
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10227885A priority Critical patent/JP2000055749A/en
Publication of JP2000055749A publication Critical patent/JP2000055749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly and accurately measure the load stress of the web part of an I-steel structure by using a stress-measuring head with a magnetostriction sensor. SOLUTION: A stress-measuring head 1 is provided with a magnetostriction sensor 11 for obtaining the load stress of an object to be measured by utilizing magnetic anisotropy due to magnetostriction effect, while U-shaped yokes in that an excitation coil and a detection coil are wound are arranged orthogonally at the center of a yoke saddle part each other, a motor 12 for rotating the sensor 11, and an encoder 13 for measuring the rotary angle of the sensor 11. Further, a demagnetization head 2 for demagnetizing the object to be measured, a head-supporting stand 3 for mounting a stress-measuring head 1 and the demagnetization head 2, scanning mechanisms 4 and 5 that are fixed to an I-steel structure and scan the head-supporting stand 3 on its web surface 61, and a control device for controlling the scanning mechanisms, are provided, thus constituting the stress-measuring device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪効果によって
生じる磁気異方性を利用して鋼構造物、特にI型断面を
有する鋼構造物のウェブ部に負荷されている応力を非破
壊的に測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a magnetic anisotropy generated by a magnetostrictive effect to non-destructively reduce stress applied to a web portion of a steel structure, particularly a steel structure having an I-shaped cross section. It relates to a device for measuring.

【0002】[0002]

【従来の技術】保守診断の観点から構造物の安全性を評
価するには、その構造物に作用している応力状態を把握
することが有効である。
2. Description of the Related Art In order to evaluate the safety of a structure from the viewpoint of maintenance diagnosis, it is effective to grasp the state of stress acting on the structure.

【0003】応力測定の代表的な測定法として、「ひず
みゲージ」と呼ばれる小型センサーを被測定物に貼り付
け、被測定物の相対的なひずみを電気抵抗の変化によっ
て検出して応力を求める「ひずみゲージ法」がある。し
かし、この方法では、ひずみゲージを既設構造物に貼り
付け構造物にかかる絶対的な応力を測定するには、構造
物を破壊して応力開放を行う必要があるので、実際の橋
梁や鉄骨などに適用できない。
As a typical stress measurement method, a small sensor called a "strain gauge" is attached to an object to be measured, and the relative strain of the object to be measured is detected by a change in electric resistance to obtain the stress. Strain gauge method ". However, in this method, it is necessary to destroy the structure and release the stress in order to attach the strain gauge to the existing structure and measure the absolute stress applied to the structure. Not applicable to

【0004】最近、鉄鋼材料などの強磁性材料に負荷さ
れている応力を測定する方法として、磁歪効果によって
生じる磁気異方性を利用し、鋼構造物や機械部品に負荷
されている応力を非破壊で、しかも比較的簡便に測定で
きる方法が、特開昭62ー121325号公報、実開平
1ー135338号公報、特開平7ー110270号公
報、特開平9ー257598号公報あるいは文献1〔境
等:土木学会第50回年次学術講演会予稿集、P662
〜663(1995.9)〕などに紹介されている。
Recently, as a method of measuring the stress applied to a ferromagnetic material such as a steel material, the magnetic anisotropy caused by the magnetostriction effect is used to measure the stress applied to a steel structure or a mechanical part. Methods that are destructive and can be measured relatively easily are described in JP-A-62-121325, JP-A-1-135338, JP-A-7-110270, JP-A-9-257598 or Reference 1 Etc .: Proceedings of the 50th Annual Meeting of the Japan Society of Civil Engineers, P662
663 (1995. 9)].

【0005】この方法は次のような原理に基づいてい
る。図7に、磁歪効果によって生じる磁気異方性を利用
する応力測定方法の原理図を示す。
[0005] This method is based on the following principle. FIG. 7 shows a principle diagram of a stress measurement method using magnetic anisotropy generated by the magnetostriction effect.

【0006】磁歪効果によって生じる磁気異方性を利用
する応力測定には、互いにヨーク鞍部の中央部で直交す
る励磁用コイルを巻いたコの字型のヨーク111と検出
用コイルを巻いたコの字型のヨーク112、交流電源1
13、電圧計114で構成される磁歪センサー11で行
われる。
For stress measurement utilizing magnetic anisotropy caused by the magnetostrictive effect, a U-shaped yoke 111 having an exciting coil wound orthogonally to the center of the yoke saddle and a U-shaped yoke having the detecting coil wound thereon are used. -Shaped yoke 112, AC power supply 1
13. The measurement is performed by the magnetostrictive sensor 11 including the voltmeter 114.

【0007】いま、被測定物6のX軸方向に引張応力σ
Xが作用すると、磁性材料である被測定物6のX、Y軸
方向の透磁率μX、μYには、磁歪効果により下記の式
(2)の関係、すなわち磁気異方性が生じる μX>μY・・・(2)
Now, the tensile stress σ in the X-axis direction of the DUT 6 is
When X acts, the magnetic permeability μ X and μ Y in the X and Y axis directions of the DUT 6 which is a magnetic material have a relationship represented by the following expression (2) due to the magnetostrictive effect, that is, a magnetic anisotropy occurs μ X> μ Y ··· (2)

【0008】このような状態にある被測定物6に磁歪セ
ンサー11を接近させ、この磁歪センサー11のヨーク
111に巻かれた励磁用コイルに交流電源113から電
流を流して被測定物6を励磁すると、ヨーク111の開
口端111aから出た磁束の大部分は直接ヨーク111
の開口端111bへ向かうが、被測定物6には引張応力
σXにより式(2)のような磁気異方性が生じているた
め、磁束の一部115はヨーク112を経由してヨーク
111の開口端111bへ流れる。そのため、ヨーク1
12に巻かれた検出用コイルには下記の式(3)に示す
出力波形の起電力Vが誘起され、電圧計114に表示さ
れる。 V=M0・(μX−μY)・COS[2・(θ−π/4)]・・・(3)
[0008] The magnetostrictive sensor 11 is brought close to the DUT 6 in such a state, and a current is supplied from an AC power supply 113 to an excitation coil wound around the yoke 111 of the magnetostriction sensor 11 to excite the DUT 6. Then, most of the magnetic flux emitted from the opening end 111a of the yoke 111 is directly transferred to the yoke 111.
However, a part 115 of the magnetic flux passes through the yoke 112 because the magnetic anisotropy as shown in the equation (2) is generated in the DUT 6 by the tensile stress σ X. To the open end 111b. Therefore, yoke 1
An electromotive force V having an output waveform represented by the following equation (3) is induced in the detection coil wound around 12, and is displayed on the voltmeter 114. V = M 0 · (μ X -μ Y) · COS [2 · (θ-π / 4)] ··· (3)

【0009】ここで、Vは検出用コイルに誘起される交
流起電力の整流値、M0は励磁条件、コイルの条件、被
測定物6の磁気的特性などにより定まる定数、COS[2・
(θ−π/4)]は余弦関数、θはヨーク112の開口端
112aと112bを結ぶ直線とX軸のなす角である。
Here, V is a rectified value of the AC electromotive force induced in the detection coil, M 0 is a constant determined by excitation conditions, coil conditions, magnetic characteristics of the DUT 6, and COS [2 ·
(Θ−π / 4)] is a cosine function, and θ is an angle between a straight line connecting the open ends 112a and 112b of the yoke 112 and the X axis.

【0010】透磁率の差(μX−μY)は応力の差(σX
−σY)に比例するので、式(3)は下記の式(4)の
ように書換えできる。 V=M・(σX−σY)・COS[2・(θ−π/4)]・・・(4)
The difference in magnetic permeability (μ X −μ Y ) is the difference in stress (σ X
−σ Y ), the equation (3) can be rewritten as the following equation (4). V = M · (σ X −σ Y ) · COS [2 · (θ−π / 4)] (4)

【0011】ここで、Mは励磁条件、コイルの条件、被
測定物6の磁気的特性などにより定まる定数である。
Here, M is a constant determined by excitation conditions, coil conditions, magnetic characteristics of the DUT 6, and the like.

【0012】実際の測定では、式(4)を下記の式
(5)に書換え、測定データからパラメータA、B、C
を回帰して求め、Bから主応力差、Cから主応力方向が
決定される。 V=A+B・COS[2・(X−C)]・・・(5)
In an actual measurement, the equation (4) is rewritten into the following equation (5), and parameters A, B, C
Is regressed, the principal stress difference is determined from B, and the principal stress direction is determined from C. V = A + B · COS [2 · (X−C)] (5)

【0013】特に、橋梁の主桁に用いられるI型断面や
箱型断面のウェブやフランジ部では1軸応力場に近い
(σX−σYの絶対値が大)ので高い出力が得られ、高精
度の測定が可能になる。
Particularly, in the web or flange portion of the I-shaped section or the box-shaped section used for the main girder of the bridge, a high output is obtained because it is close to the uniaxial stress field (the absolute value of σ XY is large), High-precision measurement becomes possible.

【0014】また、特開平9ー257598号公報に
は、上記磁歪センサーと、磁歪センサーを回転させるモ
ーターと、回転角を計測するエンコーダーとを備えた応
力測定ヘッドが開示されている。
Japanese Patent Application Laid-Open No. 9-257598 discloses a stress measuring head including the magnetostrictive sensor, a motor for rotating the magnetostrictive sensor, and an encoder for measuring a rotation angle.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、特開平
9ー257598号公報に記載の応力測定ヘッドを用い
て、I型断面の橋梁や鉄骨などの長大な鋼構造物にかか
る応力を測定するには、測定すべき箇所に応力測定ヘッ
ドを人手により設置して測定する必要があり、膨大な時
間がかかるとともに、応力測定ヘッドで鋼構造物を磁化
したときに生じる残留磁気の影響で精度良く測定できな
いといった問題があった。
However, in order to measure the stress applied to a long steel structure such as a bridge or a steel frame having an I-shaped cross section using a stress measuring head described in Japanese Patent Application Laid-Open No. 9-257598. It is necessary to manually install and measure the stress measurement head at the location to be measured, and it takes an enormous amount of time, and it is not possible to measure accurately due to the effect of residual magnetism generated when the steel structure is magnetized by the stress measurement head There was such a problem.

【0016】本発明はこのような課題を解決するために
なされたもので、磁歪効果によって生じる磁気異方性を
利用して応力測定する磁歪センサーを備えた応力測定ヘ
ッドを用い、I型断面を有する鋼構造物のウェブ部に負
荷されている応力を短時間に精度良く測定できる装置を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and uses an I-shaped cross section by using a stress measuring head provided with a magnetostrictive sensor for measuring stress utilizing magnetic anisotropy generated by a magnetostrictive effect. It is an object of the present invention to provide an apparatus capable of accurately measuring stress applied to a web portion of a steel structure having a short time.

【0017】[0017]

【課題を解決するための手段】上記課題は、励磁用コイ
ルを巻いたコの字型のヨークと検出用コイルを巻いたコ
の字型のヨークが互いにヨーク鞍部の中央部で直交する
ように配置されており、磁歪効果によって生じる磁気異
方性を利用して被測定物に負荷されている応力を求める
磁歪センサーと、前記磁歪センサーを回転させるモータ
ーと、前記磁歪センサーの回転角を計測するエンコーダ
ーとを備えた応力測定ヘッドと、前記被測定物を脱磁す
る脱磁ヘッドと、前記応力測定ヘッドと前記脱磁ヘッド
を搭載するヘッド支持台と、I型断面鋼構造物に固定さ
れ前記ヘッド支持台を前記I型断面鋼構造物のウェブ面
上で走査する走査機構と、前記走査機構を制御する制御
装置と、を有してなるI型断面鋼構造物のウェブ部応力
測定装置により解決される。
The object of the present invention is to provide a U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detection coil is wound so as to be orthogonal to each other at the center of the yoke saddle. Magnetostrictive sensors that are arranged and determine the stress applied to the object using magnetic anisotropy generated by the magnetostrictive effect, a motor that rotates the magnetostrictive sensor, and measure a rotation angle of the magnetostrictive sensor A stress measurement head having an encoder, a demagnetization head for demagnetizing the object to be measured, a head support for mounting the stress measurement head and the demagnetization head, and fixed to an I-shaped cross-section steel structure; A scanning mechanism for scanning the head support on the web surface of the I-shaped steel structure, and a control device for controlling the scanning mechanism; and a web stress measuring device for the I-shaped steel structure. Solution It is.

【0018】磁歪効果によって生じる磁気異方性を利用
して被測定物に負荷されている応力を求める磁歪センサ
ーと磁歪センサーを回転させるモーターとその回転角を
計測するエンコーダーとを備えた応力測定ヘッドと、被
測定物を脱磁する脱磁ヘッドとを共用することにより、
被測定物の測定点を脱磁してから応力測定が可能になる
ので残留磁気の影響を取り除くことができ、測定精度が
向上する。
A stress measuring head having a magnetostrictive sensor for obtaining a stress applied to an object to be measured by utilizing magnetic anisotropy caused by a magnetostrictive effect, a motor for rotating the magnetostrictive sensor, and an encoder for measuring a rotation angle of the sensor. And a demagnetizing head that demagnetizes the DUT,
Since the stress can be measured after demagnetizing the measurement point of the object to be measured, the influence of residual magnetism can be eliminated, and the measurement accuracy can be improved.

【0019】また、応力測定ヘッドと脱磁ヘッドをヘッ
ド支持台に搭載し、このヘッド支持台をI型断面鋼構造
物のウェブ面上で走査する走査機構を設け、走査機構を
制御装置によりコントロールすれば、任意の測定点に脱
磁ヘッドと応力測定ヘッドを迅速に設定でき、測定時間
を大幅に短縮できる。
A stress measuring head and a demagnetizing head are mounted on a head support, and a scanning mechanism for scanning the head support on the web surface of the I-shaped steel structure is provided, and the scanning mechanism is controlled by a controller. Then, the demagnetizing head and the stress measuring head can be quickly set at an arbitrary measuring point, and the measuring time can be greatly reduced.

【0020】[0020]

【発明の実施の形態】図1に、本発明の1実施の形態で
あるI型断面鋼構造物のウェブ部応力測定装置の平面図
を示す。図2に、図1の正面図を示す。図3に、図2の
AA矢視図を示す。
FIG. 1 is a plan view of a web stress measuring apparatus for an I-shaped steel structure according to an embodiment of the present invention. FIG. 2 shows a front view of FIG. FIG. 3 is a view taken in the direction of the arrows AA in FIG.

【0021】本発明であるI型断面鋼構造物のウェブ部
応力測定装置は大きく分けて、磁歪センサー11と磁歪
センサー回転用モーター12とエンコーダー13を備え
た応力測定ヘッド1と脱磁ヘッド2が搭載されたヘッド
支持台3と、このヘッド支持台3をウェブ長手方向へ走
査するウェブ長手方向走査機構5と、このウェブ長手方
向走査機構5をウェブ深さ方向へ走査するウェブ深さ方
向走査機構4と、走査機構4、5を制御する制御装置
(図示されてない)とから構成されており、ヘッド支持
台3を両走査機構4、5によりウェブ部の任意の点に設
定して、ヘッド支持台3上に搭載された応力測定ヘッド
1と脱磁ヘッド2により応力測定を迅速かつ高精度に行
う装置である。
The web stress measuring device for an I-shaped steel structure according to the present invention is roughly divided into a stress measuring head 1 having a magnetostrictive sensor 11, a magnetostrictive sensor rotating motor 12, and an encoder 13, and a demagnetizing head 2. A mounted head support 3, a web longitudinal scanning mechanism 5 for scanning the head support 3 in the web longitudinal direction, and a web depth scanning mechanism for scanning the web longitudinal scanning mechanism 5 in the web depth direction. And a control device (not shown) for controlling the scanning mechanisms 4 and 5. The head support 3 is set at an arbitrary point on the web portion by the scanning mechanisms 4 and 5, This is a device for quickly and accurately measuring stress using a stress measuring head 1 and a demagnetizing head 2 mounted on a support 3.

【0022】応力測定ヘッド1と脱磁ヘッド2はヘッド
押し付け用リンク14により被測定物であるウェブ面に
押し付けられ、また、測定面上を円滑に走査できるよう
に両ヘッドの先端には走査用ガイドボール15、21が
設けられている。
The stress measuring head 1 and the demagnetizing head 2 are pressed against a web surface as an object to be measured by a head pressing link 14, and scanning ends are provided at the tips of both heads so that the measuring surface can be smoothly scanned. Guide balls 15 and 21 are provided.

【0023】ヘッド支持台3には、ウェブ長手方向走査
機構5の駆動用ボールネジシャフト53とスライダー5
0が結合されており、駆動用ボールネジシャフト53を
駆動用モーター52で回転させスライダー50をリニア
ウエイ51に沿って移動させることにより、ヘッド支持
台3はウェブ長手方向に走査される。
The head support 3 has a ball screw shaft 53 for driving the web longitudinal scanning mechanism 5 and a slider 5.
The head support 3 is scanned in the longitudinal direction of the web by rotating the ball screw shaft 53 for driving by the motor 52 for driving and moving the slider 50 along the linear way 51.

【0024】ウェブ長手方向走査機構5には、ウェブ深
さ方向走査機構4のスライダー41が結合されており、
ウェブ深さ方向走査機構4の駆動用モーター42を回転
させ駆動用ラック46と駆動用ピニオンギア47を介し
てスライダー41をリニアウエイ45に沿って移動させ
ることにより、ウェブ長手方向走査機構5はウェブ深さ
方向に走査される。なお、ウェブ深さ方向走査機構4
は、被測定物取り付け用アジャスター43と固定ネジ4
4によりウェブ面上に固定される。被測定物取り付け用
アジャスター43を伸長させてI型鋼構造物の上下フラ
ンジ間に納まるよう長さを調整し、すなわち「突っ張り
棒方式」で固定用ネジ44により固定される。
The slider 41 of the web depth direction scanning mechanism 4 is coupled to the web longitudinal direction scanning mechanism 5,
By rotating the driving motor 42 of the web depth direction scanning mechanism 4 and moving the slider 41 along the linear way 45 via the driving rack 46 and the driving pinion gear 47, the web longitudinal direction scanning mechanism 5 Scanning is performed in the depth direction. In addition, the web depth direction scanning mechanism 4
Are the adjuster 43 for mounting the measured object and the fixing screw 4
4 secures on the web surface. The object-to-be-measured object adjuster 43 is extended to adjust the length so as to fit between the upper and lower flanges of the I-shaped steel structure, that is, fixed by the fixing screw 44 by the "stretch rod method".

【0025】図4に、図1のI型断面鋼構造物のウェブ
部応力測定装置を被測定物にセットしたときの状態を示
す。
FIG. 4 shows a state in which the apparatus for measuring the stress of the web portion of the I-shaped steel structure shown in FIG. 1 is set on an object to be measured.

【0026】このように、ウェブ深さ方向走査機構4
を、被測定物取り付け用アジャスター43を伸長させて
I型鋼構造物の上下フランジ62の間に納まるよう長さ
を調整し、固定用ネジ44により固定することにより、
本発明であるI型断面鋼構造物のウェブ部応力測定装置
はウェブ61面上にセットされる。
As described above, the web depth direction scanning mechanism 4
By adjusting the length so that the adjuster 43 for mounting the object to be measured is extended between the upper and lower flanges 62 of the I-shaped steel structure, and fixed by the fixing screw 44,
The web stress measuring apparatus for an I-shaped steel structure according to the present invention is set on the web 61 surface.

【0027】図5に、図1のI型断面鋼構造物のウェブ
部応力測定装置を用いて応力分布を測定するフローチャ
ートを示す。
FIG. 5 shows a flow chart for measuring the stress distribution using the apparatus for measuring the stress of the web portion of the I-shaped steel structure shown in FIG.

【0028】まず、図4に示すように本装置をアジャス
ターによりウェブ面にセット(S1)後、測定位置情報
を入力(S2)する。
First, as shown in FIG. 4, the apparatus is set on a web surface by an adjuster (S1), and measurement position information is input (S2).

【0029】次に、脱磁ヘッドを計測点に移動し(S
3)、計測点を脱磁(S4)する。そして、脱磁箇所に
応力計測ヘッドを移動し(S5)、磁歪センサーを回転
しながら出力を収集し(S6)、V=A+B・COS[2・
(X−C)]に回帰してパラメータBとCを求め、主応力
差と主応力方向を決定する。
Next, the demagnetizing head is moved to the measuring point (S
3) Demagnetize the measurement point (S4). Then, the stress measuring head is moved to the demagnetized portion (S5), and the output is collected while rotating the magnetostrictive sensor (S6), and V = A + B · COS [2 ·
(X-C)], parameters B and C are obtained, and the main stress difference and the main stress direction are determined.

【0030】このような測定を設定した測定点の数だけ
行い、測定位置を次の位置へ移動し(S9)同様なこと
を行えば、ウェブ部全体としての応力分布が得られ(S
10)、設計上想定される応力分布と比較することによ
りウェブ部の安全性を評価できる(S11)。
If such a measurement is performed for the set number of measurement points, the measurement position is moved to the next position (S9), and the same operation is performed, the stress distribution of the entire web portion is obtained (S9).
10) The safety of the web part can be evaluated by comparing with the stress distribution assumed in the design (S11).

【0031】図6に、図1のI型断面鋼構造物のウェブ
部応力測定装置を用いて応力分布を測定した結果の1例
を示す。
FIG. 6 shows one example of the result of measuring the stress distribution using the web stress measuring apparatus of the I-section steel structure shown in FIG.

【0032】図6の矢印の方向は主応力方向、長さは主
応力差を表しているが、ウェブ長手方向に平行に、深さ
方向の上半分では圧縮力、下半分では引張力の1軸応力
が負荷されていることがわかる。
The direction of the arrow in FIG. 6 represents the principal stress direction, and the length represents the principal stress difference. In parallel with the longitudinal direction of the web, the upper half of the depth direction has a compressive force and the lower half has a tensile force of one. It can be seen that axial stress is applied.

【0033】[0033]

【発明の効果】本発明は以上説明したように構成されて
いるので、磁歪効果によって生じる磁気異方性を利用し
て応力測定する磁歪センサーを備えた応力測定ヘッドを
用い、I型断面を有する鋼構造物のウェブ部に負荷され
ている応力を短時間に精度良く測定できる装置を提供で
きる。
Since the present invention is constructed as described above, it has an I-shaped cross section using a stress measuring head provided with a magnetostrictive sensor for measuring stress utilizing magnetic anisotropy caused by the magnetostrictive effect. It is possible to provide a device capable of accurately measuring the stress applied to the web portion of the steel structure in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施の形態であるI型断面鋼構造物
のウェブ部応力測定装置の平面図である。
FIG. 1 is a plan view of a web stress measuring apparatus of an I-shaped steel structure according to an embodiment of the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】図2のAA矢視図である。FIG. 3 is a view taken in the direction of arrows AA in FIG. 2;

【図4】図1のI型断面鋼構造物のウェブ部応力測定装
置を被測定物にセットしたときの状態を示す図である。
FIG. 4 is a view showing a state in which the web stress measuring device of the I-shaped steel structure of FIG. 1 is set on an object to be measured.

【図5】図1のI型断面鋼構造物のウェブ部応力測定装
置を用いて応力分布を測定するフローチャートである
FIG. 5 is a flowchart for measuring a stress distribution by using the web stress measuring apparatus of the I-shaped steel structure of FIG. 1;

【図6】図1のI型断面鋼構造物のウェブ部応力測定装
置を用いて応力分布を測定した結果の1例を示す図であ
る。
FIG. 6 is a view showing one example of a result of measuring a stress distribution by using a web stress measuring apparatus for an I-shaped cross-section steel structure of FIG. 1;

【図7】磁歪効果によって生じる磁気異方性を利用する
応力測定方法の原理図である。
FIG. 7 is a principle diagram of a stress measurement method using magnetic anisotropy generated by a magnetostriction effect.

【符号の説明】[Explanation of symbols]

1 応力測定ヘッド 2 脱磁ヘッド 3 ヘッド支持台 4 ウェブ深さ方向走査機構 5 ウェブ長手方向走査機構 6 被測定物 11 磁歪センサー 12 磁歪センサー回転用モーター 13 エンコーダー 14 ヘッド押し付け用リング 15 応力測定ヘッド1の走査用ガイドボール 21 脱磁ヘッド2の走査用ガイドボール 41 走査機構4のスライダー 42 走査機構4の駆動用モーター 43 走査機構4の被測定物取り付け用アジャスター 44 アジャスター43の固定用ネジ 45 走査機構4のリニアウエイ 46 走査機構4の駆動用ラック 47 走査機構4の駆動用ピニオンギア 50 走査機構5のスライダー 51 走査機構5のリニアウエイ 52 走査機構5の駆動用モーター 53 走査機構5の駆動用ボールネジシャフト 54 ボールネジシャフト53のスライダー 61 I型鋼構造物のウェブ 62 I型鋼構造物のフランジ 111 励磁用コイルを巻いたコの字型のヨーク 111a、b ヨーク111の開口端 112 検出用コイルを巻いたコの字型のヨーク 112a、b ヨーク112の開口端 113 交流電源 114 電圧計 115 磁束 DESCRIPTION OF SYMBOLS 1 Stress measuring head 2 Demagnetizing head 3 Head support 4 Web depth direction scanning mechanism 5 Web longitudinal direction scanning mechanism 6 DUT 11 Magnetostrictive sensor 12 Magnetostrictive sensor rotating motor 13 Encoder 14 Head pressing ring 15 Stress measuring head 1 Scanning guide ball 21 of the demagnetizing head 2 scanning guide ball 41 slider of the scanning mechanism 4 42 driving motor of the scanning mechanism 4 43 adjuster for mounting an object to be measured of the scanning mechanism 4 44 fixing screw of the adjuster 43 45 scanning mechanism 4 Linear Way 46 Drive Rack of Scanning Mechanism 4 47 Drive Pinion Gear of Scanning Mechanism 4 50 Slider of Scanning Mechanism 5 51 Linear Way of Scanning Mechanism 5 52 Drive Motor of Scanning Mechanism 5 53 Ball Screw for Driving of Scanning Mechanism 5 Shaft 54 Ball screw shaft Slider 3 61 Web of I-shaped steel structure 62 Flange of I-shaped steel structure 111 U-shaped yoke 111a, b Open end of yoke 111 with U-shaped coil 112 U-shaped U-shaped with detection coil Yoke 112a, b Open end of yoke 112 113 AC power supply 114 Voltmeter 115 Magnetic flux

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】励磁用コイルを巻いたコの字型のヨークと
検出用コイルを巻いたコの字型のヨークが互いにヨーク
鞍部の中央部で直交するように配置されており、磁歪効
果によって生じる磁気異方性を利用して被測定物に負荷
されている応力を求める磁歪センサーと、前記磁歪セン
サーを回転させるモーターと、前記磁歪センサーの回転
角を計測するエンコーダーとを備えた応力測定ヘッド
と、前記被測定物を脱磁する脱磁ヘッドと、前記応力測
定ヘッドと前記脱磁ヘッドを搭載するヘッド支持台と、
I型断面鋼構造物に固定され前記ヘッド支持台を前記I
型断面鋼構造物のウェブ面上で走査する走査機構と、前
記走査機構を制御する制御装置と、を有してなるI型断
面鋼構造物のウェブ部応力測定装置。
A U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detection coil is wound are arranged so as to be orthogonal to each other at the center of the yoke saddle portion. A stress measuring head comprising: a magnetostrictive sensor for determining a stress applied to an object to be measured by using generated magnetic anisotropy; a motor for rotating the magnetostrictive sensor; and an encoder for measuring a rotation angle of the magnetostrictive sensor. And a demagnetization head for demagnetizing the object to be measured, a head support for mounting the stress measurement head and the demagnetization head,
The head support is fixed to an I-shaped steel structure and
A web part stress measuring device for an I-section steel structure, comprising: a scanning mechanism that scans on a web surface of a mold section steel structure; and a control device that controls the scanning mechanism.
JP10227885A 1998-08-12 1998-08-12 Web part stress measuring device for steel structure with shaped section Pending JP2000055749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227885A JP2000055749A (en) 1998-08-12 1998-08-12 Web part stress measuring device for steel structure with shaped section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227885A JP2000055749A (en) 1998-08-12 1998-08-12 Web part stress measuring device for steel structure with shaped section

Publications (1)

Publication Number Publication Date
JP2000055749A true JP2000055749A (en) 2000-02-25

Family

ID=16867869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227885A Pending JP2000055749A (en) 1998-08-12 1998-08-12 Web part stress measuring device for steel structure with shaped section

Country Status (1)

Country Link
JP (1) JP2000055749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729767A (en) * 2015-03-30 2015-06-24 华侨大学 Device and method for testing distribution of shearing stress on box girder section
CN116380311A (en) * 2023-05-11 2023-07-04 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729767A (en) * 2015-03-30 2015-06-24 华侨大学 Device and method for testing distribution of shearing stress on box girder section
CN116380311A (en) * 2023-05-11 2023-07-04 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method
CN116380311B (en) * 2023-05-11 2023-09-29 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method

Similar Documents

Publication Publication Date Title
Wang et al. Development of a remote coil magnetoelastic stress sensor for steel cables
US20190285586A1 (en) Method and apparatus for evaluating damage to magnetic linear body
US20130221950A1 (en) Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces
KR102122092B1 (en) Multi-measurement apparatus capable of simultaneously measuring tensile and sectional damage for a tendon
EP1436604B1 (en) Method for measuring material properties and lift-off components of an object using a magnetic probe
JP2000055749A (en) Web part stress measuring device for steel structure with shaped section
JP3191726B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2000074756A (en) Apparatus for measuring stress at flange part of steel structure having i-shaped cross section
JP2017134013A (en) Method and apparatus for measuring non-contact stress by complex resonance method
JPH0331377B2 (en)
US5720140A (en) Reinforcement for building elements under tension and installations provided therewith
JPH06138094A (en) Device for inspecting reinforcing bar for corrosion
JP2733009B2 (en) Tube demagnetization method
JP3173365B2 (en) Stress measurement method using magnetostriction effect
JPH09304346A (en) Magnetic head device
JPH06308092A (en) Material deterioration inspection device
RU2210786C2 (en) Permanent magnet coercimeter
JPH1130554A (en) Method for measuring stress of steel pipe
JP4634628B2 (en) Degradation diagnosis method for steel
Delage et al. Measurement of magnetic characteristics of ferromagnetic materials along arbitrary directions under mechanical stress
JP2000002600A (en) Method for measuring stress
JPH09329584A (en) Magnetic head equipment
JP2004264176A (en) Stress field measuring apparatus and program thereof
SU949355A1 (en) Method of determination of stresses in steel structures
JPS59147253A (en) On-line hardness measurement of steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees