JP2000049331A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2000049331A
JP2000049331A JP21466098A JP21466098A JP2000049331A JP 2000049331 A JP2000049331 A JP 2000049331A JP 21466098 A JP21466098 A JP 21466098A JP 21466098 A JP21466098 A JP 21466098A JP 2000049331 A JP2000049331 A JP 2000049331A
Authority
JP
Japan
Prior art keywords
layer
quantum well
gaas
buffer layer
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21466098A
Other languages
Japanese (ja)
Inventor
Ken Watanuki
憲 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21466098A priority Critical patent/JP2000049331A/en
Publication of JP2000049331A publication Critical patent/JP2000049331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the design rule of an epitaxial film structure essential for satisfying both large current drive capacity and good pinch-off characteristics. SOLUTION: In a field effect transistor formed by laminating a buffer layer and a channel layer of compound semiconductor on a GaAs substrate or an Si substrate, the buffer layer and a channel layer are formed of a layer, including III-V compound semiconductor layer comprising one group III element A and a group V element B. An n-type quantum well layer comprising CxA1-x, having band gap smaller than that of III-V compound semiconductor and containing other element C, is formed on the buffer layer side of a channel layer. Composition ratio x of the n-type quantum well layer is varied continuously as a function of a film thickness d from the buffer layer, so that the relation x=cdn is satisfied, moreover with n>=1. The n-type quantum well layer is formed thinner than a critical thickness which causes misfit dislocation of between lattices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電界効果トランジス
タの構造に関し、特に格子歪量子井戸層を有するシュー
ドモルフィック電界効果トランジスタ(Pseudomorphic
Metal Semiconductor Field Effect Transistor)の構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor structure, and more particularly to a pseudomorphic field effect transistor having a lattice strained quantum well layer.
Metal Semiconductor Field Effect Transistor).

【0002】[0002]

【従来の技術】化合物半導体を用いた半導体装置は、一
般にSi半導体に比ベ、高速、高周波域で動作すること
が可能であり、高速ディジタル信号処理用、あるいはマ
イクロ波増幅用などの高速、高周波トランジスタとし
て、MES(Metal Semiconductor )FETや、HEM
T(High Electron Mobility Transistor )などの電界
効果トランジスタとして用いられ、その利用は次第に広
がっている。
2. Description of the Related Art Semiconductor devices using compound semiconductors can generally operate at higher speeds and higher frequencies than Si semiconductors, and can operate at high speeds and high frequencies for high-speed digital signal processing or microwave amplification. MES (Metal Semiconductor) FET, HEM
It is used as a field effect transistor such as T (High Electron Mobility Transistor), and its use is gradually spreading.

【0003】MESFETはHEMTと比較して広いゲ
ート電圧にわたる相互コンダクタンスの均一性が優れて
おり、大きな耐圧が得られるという利点があるが、一方
では相互コンダクタンスと電流利得遮断周波数が小さい
という欠点がある。
[0003] MESFETs are superior to HEMTs in that they have excellent transconductance uniformity over a wide gate voltage, and have the advantage that a large breakdown voltage can be obtained. .

【0004】そこで、さらに大きな電流駆動能力と電流
利得遮断周波数を得るため、チャネル層にn−InGa
As量子井戸層を挿入したPseudomorphic MESFET
が提案されている。GaAs層にInGaAs層を挿入
した場合、InGaAsの方がGaAsよりも移動度が
大きいこと、GaAs/InGaAs界面でキャリアで
ある電子の閉じ込めを向上させることができることか
ら、高い電流駆動能力及び大きな電流利得遮断周波数が
得られることが期待されている。InGaAsのIn組
成比を大きくすればさらにその効果が得られるが、In
GaAsはGaAsよりも格子定数が大きく、かつIn
組成比が大きくなるにつれて格子定数は大きくなる(S
iはGaAsよりさらに小さい)ため、In組成比の大
きなInGaAs層を成長させる場合、ある膜厚に達す
ると転位が発生し、電子デバイスの特性に悪影響を及ぼ
す。そのため、InGaAsは、通常、格子間の不整合
のための転位が発生する臨界膜厚より薄い層で形成され
る。このようなMESFETをPseudomorphic MESF
ETという。
Therefore, in order to obtain a larger current driving capability and a current gain cutoff frequency, n-InGa is added to the channel layer.
Pseudomorphic MESFET with As quantum well layer inserted
Has been proposed. When an InGaAs layer is inserted into the GaAs layer, the InGaAs has higher mobility than GaAs and can improve the confinement of electrons as carriers at the GaAs / InGaAs interface, so that high current driving capability and large current gain are obtained. It is expected that a cutoff frequency will be obtained. The effect can be further obtained by increasing the In composition ratio of InGaAs.
GaAs has a larger lattice constant than GaAs, and In
As the composition ratio increases, the lattice constant increases (S
Since i is smaller than GaAs), when growing an InGaAs layer having a large In composition ratio, dislocation occurs when the thickness reaches a certain thickness, which adversely affects the characteristics of the electronic device. Therefore, InGaAs is usually formed as a layer having a thickness smaller than the critical thickness at which dislocation due to mismatch between lattices occurs. Such a MESFET is called a Pseudomorphic MESF
It is called ET.

【0005】従来、例えば第50回応用物理学会学術講
演会講演予稿集(28P-ZA-12:1989)では、 半絶縁性Ga
As基板上に、0.7μmのi−GaAsバッファ層、
不純物密度7×1017cm-3、膜厚0.1μmのn−G
aAsチャネル層に、不純物密度7×1017cm-3、膜
厚100Åのn−In0.2 Ga0.8 As層を挿入したPs
eudomorphic MESFETにおいて、n−GaAsチャ
ネル層内におけるInGaAs量子井戸層を挿入させる
位置について調査されており、チャネル層の底部に形成
した場合に、相互コンダクタンスgmの平坦性がよく、
キャリア閉じ込めが有効に行われて、良好なピンチオフ
特性をもたらすことが開示されている。
[0005] Conventionally, for example, in the 50th Annual Meeting of the Japan Society of Applied Physics (28P-ZA-12: 1989), semi-insulating Ga
0.7 μm i-GaAs buffer layer on an As substrate,
N-G with an impurity density of 7 × 10 17 cm −3 and a thickness of 0.1 μm
Ps in which an n-In 0.2 Ga 0.8 As layer having an impurity density of 7 × 10 17 cm −3 and a film thickness of 100 ° is inserted into the aAs channel layer.
In the eudomorphic MESFET, the position where the InGaAs quantum well layer is inserted in the n-GaAs channel layer has been investigated. When formed at the bottom of the channel layer, the flatness of the transconductance gm is good.
It is disclosed that carrier confinement is effectively performed, resulting in good pinch-off characteristics.

【0006】また、特許第2728765号公報では、
n−GaAsチャネル層内の底部にInGaAs量子井
戸層を挿入した場合でも、ゲート長の短縮によってピン
チオフ特性が悪化することが示されており、これを回避
するためにp型埋込み層を形成することが開示されてい
る。
[0006] Also, in Japanese Patent No. 2728765,
It has been shown that, even when an InGaAs quantum well layer is inserted at the bottom in an n-GaAs channel layer, the pinch-off characteristic is deteriorated by shortening the gate length. To avoid this, it is necessary to form a p-type buried layer. Is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記文
献に開示されたPseudomorphic MESFETは、n−I
x Ga1-x As量子井戸層をIn組成比がx=0.
2、膜厚が100Å、不純物濃度が7×1017cm-3
形成している。さらに大きな電流駆動能力を得るために
は、例えばIn組成比を大きくし、GaAs/InGa
As界面のキャリアの閉じ込め効果を高めるという方法
が考えられるが、同じ膜厚のInGaAs層を形成して
も、In組成比が大きくなるにつれてGaAsとの格子
定数差が大きくなるため、結晶性が悪化し、InGaA
s中の原子分布の不規則性に起因する電子の合金散乱に
よって移動度が低下し、逆に電流駆動能力が低下した
り、ピンチオフ特性が悪化するという問題があった。
However, the Pseudomorphic MESFET disclosed in the above-mentioned document has an n-I
n x Ga 1-x As quantum well layer In composition ratio x = 0.
2. The film is formed with a thickness of 100 ° and an impurity concentration of 7 × 10 17 cm −3 . In order to obtain a larger current driving capability, for example, the In composition ratio is increased, and GaAs / InGa
A method of increasing the effect of confining carriers at the As interface can be considered. However, even if an InGaAs layer having the same thickness is formed, as the In composition ratio increases, the lattice constant difference from GaAs increases, and crystallinity deteriorates. And InGaAs
There is a problem that mobility is reduced due to alloy scattering of electrons due to irregularity of atomic distribution in s, and conversely, current driving capability is reduced and pinch-off characteristics are deteriorated.

【0008】すなわち、In組成比を大きくし、かつI
nGaAs層の膜厚を大きくするという互いに矛盾する
問題を結晶性の悪化をもたらさずに解決することがさら
に大きな電流駆動能力と良好なピンチオフ特性の両立に
不可欠であった。また、ゲート長の短縮に伴うピンチオ
フ特性の悪化という問題もあった。
That is, when the In composition ratio is increased and I
Solving the contradictory problems of increasing the thickness of the nGaAs layer without deteriorating the crystallinity was indispensable for achieving both higher current driving capability and good pinch-off characteristics. Further, there is a problem that the pinch-off characteristic is deteriorated due to the shortening of the gate length.

【0009】本発明は、このような問題点に鑑みてなさ
れたものであり、大きな電流駆動能力と良好なピンチオ
フ特性の両立に不可欠なエピ膜構成の設計指針を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a design guideline for an epi-film configuration that is indispensable for achieving both high current driving capability and good pinch-off characteristics.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る電界効果トランジスタでは、GaA
s基板又はSi基板上に、化合物半導体から成るバッフ
ァ層とチャネル層を積層して形成した電界効果トランジ
スタにおいて、前記バッファ層及びチャネル層を1つの
III 族元素Aと1つのV族元素BからなるIII-V族化合
物半導体層を含む層で形成し、前記チャネル層のバッフ
ァ層側に、他の元素Cを含み、且つ前記III-V族化合物
半導体よりバンドギャップの小さいCx 1-x Bからな
るn型量子井戸層を形成し、このn型量子井戸層の組成
比xを前記バッファ層からの膜厚dの関数として、x=
cdn を満たし、かつn≧1となるように連続的に変化
させて形成すると共に、格子間の不整合による転位が発
生する臨界膜厚より薄い層で形成した。
According to a first aspect of the present invention, there is provided a field effect transistor comprising:
In a field-effect transistor formed by stacking a buffer layer and a channel layer made of a compound semiconductor on an s substrate or a Si substrate, the buffer layer and the channel layer
A layer containing a group III-V compound semiconductor layer composed of a group III element A and one group V element B, and containing another element C on the buffer layer side of the channel layer and containing the group III-V compound An n-type quantum well layer made of C x A 1 -x B having a smaller band gap than a semiconductor is formed, and the composition ratio x of the n-type quantum well layer is defined as a function of the film thickness d from the buffer layer, where x =
It was formed by continuously changing so as to satisfy cd n and satisfying n ≧ 1, and was formed by a layer thinner than a critical film thickness at which dislocation due to mismatch between lattices occurs.

【0011】このように他の元素Cの組成比が小さいと
ころでは厚く、他の元素Cの組成比が大きいところでは
薄く形成されるため、転位の少ない良好な量子井戸層を
形成できる。その結果、合金散乱に起因する移動度の低
下を妨げることができ、電流駆動能力を向上させること
ができる。
As described above, the thin film is formed where the composition ratio of the other element C is small, and thinned where the composition ratio of the other element C is large. Therefore, a good quantum well layer with few dislocations can be formed. As a result, a decrease in mobility due to alloy scattering can be prevented, and current driving capability can be improved.

【0012】また、請求項2に係る電界効果トランジス
タでは、前記バッファ層のチャネル層側にi−GaAs
層を形成し、このi−GaAs層の下部にi−AlGa
As層または酸化されたAlAs層を形成し、前記n型
量子井戸層をn−Inx Ga1-x As層で形成した。
Further, in the field-effect transistor according to claim 2, i-GaAs is formed on the channel layer side of the buffer layer.
A layer is formed, and an i-AlGa layer is formed under the i-GaAs layer.
Forming an As layer or oxidized AlAs layer, the n-type quantum well layer was formed in n-In x Ga 1-x As layer.

【0013】このようにすると、Inx Ga1-x Asの
高い移動度を利用することができ、i−AlGaAs層
あるいは酸化されたAlAs層のいずれかの層がバッフ
ァ層の伝導体のエネルギーを上昇させるため、ゲート長
を短くした際のピンチオフ特性をさらに向上させること
ができる。
In this manner, the high mobility of In x Ga 1 -x As can be used, and either the i-AlGaAs layer or the oxidized AlAs layer can reduce the energy of the conductor of the buffer layer. As a result, the pinch-off characteristic when the gate length is shortened can be further improved.

【0014】[0014]

【発明の実施の形態】図1は、請求項1に係る電界効果
トランジスタの一実施形態を示す断面図である。半絶縁
性GaAs基板または高抵抗Si基板1上にi−GaA
sバッファ層6を0.5〜3μm、不純物濃度1〜7×
1017cm-3のn−InGaAs量子井戸層3、n−G
aAsチャネル層2、及びオーミックコンタクトを取る
ためのn−GaAsコンタクト層5が形成されており、
前記n−GaAsコンタクト層5上にオーミック電極
8、9、前記化合物半導体チャネル層3上にゲート電極
4が形成されている。このような化合物半導体層は半導
体基板1をカーボンサセプタ上に設置し、有機金属材料
を加熱分解して他の有機金属材料構成元素と高温で反応
させる有機金属化学気相成長法(MOCVD法)で形成
される。上記基板1には、通常、半絶縁性GaAs基板
を用いるが、高抵抗Si基板を用い、以下のように形成
しても良い。
FIG. 1 is a sectional view showing an embodiment of a field-effect transistor according to the present invention. I-GaAs on a semi-insulating GaAs substrate or a high-resistance Si substrate 1
The s buffer layer 6 has a thickness of 0.5 to 3 μm and an impurity concentration of 1 to 7 ×.
10 17 cm -3 n-InGaAs quantum well layer 3, n-G
an aAs channel layer 2 and an n-GaAs contact layer 5 for obtaining ohmic contact are formed.
Ohmic electrodes 8 and 9 are formed on the n-GaAs contact layer 5, and a gate electrode 4 is formed on the compound semiconductor channel layer 3. Such a compound semiconductor layer is formed by metal organic chemical vapor deposition (MOCVD) in which the semiconductor substrate 1 is placed on a carbon susceptor, and the organic metal material is thermally decomposed and reacted with other constituent elements of the organic metal material at a high temperature. It is formed. The substrate 1 is usually a semi-insulating GaAs substrate, but may be formed as follows using a high-resistance Si substrate.

【0015】すなわち、高抵抗Si基板1を900〜9
50℃で熱処理の後、400〜450℃に温度を下げて
保持し、GaAsを100〜200Å成長後、通常の成
長温度650℃まで昇温し、i−GaAsバッファ層6
を成長させる。さらに転位低減のため、降温と昇温を繰
り返す熱サイクル法や、GaAsとは格子定数が若干異
なるInGaAs層などからなる歪超格子層をGaAs
層間に交互に複数層形成することによって表面への転移
の伝播を中断させる歪超格子法などを用いてもよい。
That is, the high resistance Si substrate 1 is
After the heat treatment at 50 ° C., the temperature is lowered to 400 to 450 ° C., and after the GaAs is grown at 100 to 200 °, the temperature is raised to the normal growth temperature of 650 ° C., and the i-GaAs buffer layer 6 is grown.
Grow. In order to further reduce dislocations, a thermal cycling method in which the temperature is decreased and the temperature is increased, or a strained superlattice layer composed of an InGaAs layer having a lattice constant slightly different from that of GaAs is formed of GaAs.
A strain superlattice method or the like may be used in which a plurality of layers are alternately formed between layers to interrupt the propagation of the transition to the surface.

【0016】図2(b)は、従来例のn−Inx Ga
1-x As量子井戸層のバッファ層6からの厚みdとIn
組成xの相関を示したものであり、図2(a)は、本発
明のn−Inx Ga1-x As量子井戸層のバッファ層6
からの厚みdと、In組成xの相関を示したものであ
る。すなわち、In組成xは、x=cdn を満たすよう
に制御されており、nは、n≧1を満たしていればよ
い。図2(a)には、例としてn=1、2、3の場合が
描かれている。
FIG. 2B shows a conventional example of n-In x Ga.
The thickness d of the 1-x As quantum well layer from the buffer layer 6 and In
FIG. 2A shows the correlation of the composition x. FIG. 2A shows the buffer layer 6 of the n-In x Ga 1 -x As quantum well layer of the present invention.
2 shows the correlation between the thickness d from the In and the In composition x. That, In composition x is controlled to satisfy x = cd n, n has only to meet the n ≧ 1. FIG. 2A illustrates a case where n = 1, 2, and 3 as an example.

【0017】nの決定には、チャネル層2の移動度が最
も大きくなる値が選ばれる。n≧1として、この中で最
適なnを決定すればよい。この場合、Inの組成比が小
さいところでは相対的に厚く、Inの組成比が大きいと
ころでは相対的に薄く形成されるようになっている。こ
のため、従来例の図2(b)のn−Inx Ga1-x As
層3の全膜厚をD。、Inの組成比をX。とし、本発明
の図2(a)のn−Inx Ga1-x As層3の全膜厚を
D、In組成比の最大値をxとすると、結晶性を悪化さ
せることなくD>D。、X>X。とすることが可能とな
る。従来例ではInx Ga1-x As層3の厚みD。=1
00Å、In組成比X。=0.2であったが、本実施例
ではn−Inx Ga1-x As層3の全膜厚D=150〜
300Å、In組成比の最大値x=0.25〜0.35
とすることができた。このため、転位の少ない良好な量
子井戸層を形成することができ、量子井戸層内を走行で
きる量子数の上限を大きくすることができる。
To determine n, a value that maximizes the mobility of the channel layer 2 is selected. Assuming that n ≧ 1, the optimum n may be determined. In this case, the film is formed relatively thick when the composition ratio of In is small, and relatively thin when the composition ratio of In is large. For this reason, n-In x Ga 1 -x As shown in FIG.
D is the total thickness of the layer 3. , In composition ratio X. Assuming that the total thickness of the n-In x Ga 1 -x As layer 3 in FIG. 2A of the present invention is D and the maximum value of the In composition ratio is x, D> D without deteriorating the crystallinity. . , X> X. It becomes possible. In the conventional example, the thickness D of the In x Ga 1-x As layer 3. = 1
00, In composition ratio X. = 0.2, but in this embodiment, the total thickness D of the n-In x Ga 1 -x As layer 3 is 150 to 150 nm.
300 °, maximum In composition ratio x = 0.25 to 0.35
And could be. For this reason, a good quantum well layer with few dislocations can be formed, and the upper limit of the quantum number that can travel in the quantum well layer can be increased.

【0018】また、チャネル側のIn組成比が大きくと
れるため、GaAs/InGaAs界面のキャリアの閉
じ込め効果を高めることができる。したがって、さらに
大きな、電流駆動能力を得ることが可能となり、従来例
と比較してさらに大きな相互コンダクタンス及び遮断周
波数が得られる。
Further, since the In composition ratio on the channel side can be increased, the effect of confining carriers at the GaAs / InGaAs interface can be enhanced. Therefore, it is possible to obtain a larger current driving capability, and it is possible to obtain a larger transconductance and a cutoff frequency as compared with the conventional example.

【0019】上記実施形態では、In組成xはx=cd
n を満たすようにしたが、Inの組成比xのバッファ層
からの厚みd依存性が下に凸の関数であれば、本発明と
ほぼ同様の効果があることは容易に推測できる。
In the above embodiment, the In composition x is x = cd
Although n is satisfied, if the dependency of the composition ratio x of In from the buffer layer on the thickness d is a convex downward function, it can be easily presumed that the same effect as in the present invention can be obtained.

【0020】また、図3は請求項2に係る電界効果トラ
ンジスタの一実施形態の断面図である。バッファ層6に
i−AlGaAs層または酸化されたAlAs層のいず
れか一つの層7を形成し、さらにその上部にi−GaA
s層6、n−Inx Ga1-xAs量子井戸層3が形成さ
れている。
FIG. 3 is a sectional view of an embodiment of the field-effect transistor according to the second aspect. One layer 7 of an i-AlGaAs layer or an oxidized AlAs layer is formed on the buffer layer 6, and the i-GaAs layer is further formed thereon.
The s layer 6 and the n-In x Ga 1 -x As quantum well layer 3 are formed.

【0021】図4(a)は、バッファ層6にi−AlG
aAs層7を埋め込んで形成した場合の伝導帯のエネル
ギーバンド図であり、図4(b)は、酸化されたAlA
s層7を挿入したときの伝導帯のエネルギーバンド図の
一例であり、図4(c)は、このような埋め込み層のな
い従来例のエネルギーバンド図の一例である。i−Al
GaAs層7またはバッファ層6中の位置やAl組成お
よび膜厚、また酸化されたAlAs層7のバッファ層6
中の位置は、チャネル側のバッファ層6の伝導帯が上昇
するように形成される。このようにしてチャネル部2の
電子の閉じ込めをさらに向上させることができる。より
具体的には、i−AlGaAs層7を挿入した場合のA
l組成比と膜厚は、FETのゲート電圧を負に大きく振
っていった場合の電流値が極小値をとる値に定められ
る。これは用いる基板や成長方法によって若干異なる最
適値に定められる。このような層を挿入したことによっ
て、ゲート長を短縮していった場合におけるピンチオフ
特性の悪化を改善することができる。
FIG. 4A shows that the buffer layer 6 is made of i-AlG
FIG. 4B is an energy band diagram of a conduction band when the aAs layer 7 is formed by being buried, and FIG.
FIG. 4C is an example of an energy band diagram of a conduction band when the s layer 7 is inserted, and FIG. 4C is an example of an energy band diagram of a conventional example without such a buried layer. i-Al
The position in the GaAs layer 7 or the buffer layer 6, the Al composition and the film thickness, and the oxidized AlAs layer 7 in the buffer layer 6
The middle position is formed such that the conduction band of the buffer layer 6 on the channel side rises. In this manner, the confinement of electrons in the channel portion 2 can be further improved. More specifically, A when the i-AlGaAs layer 7 is inserted
The 1 composition ratio and the film thickness are determined so that the current value when the gate voltage of the FET is largely negatively changed takes a minimum value. This is set to an optimal value slightly different depending on the substrate used and the growth method. By inserting such a layer, it is possible to improve deterioration of pinch-off characteristics when the gate length is reduced.

【0022】[0022]

【発明の効果】以上のように、請求項1に係る電界効果
トランジスタによれば、バッファ層及びチャネル層を1
つのIII 族元素Aと1つのV族元素BからなるIII-V族
化合物半導体層を含む層で形成し、前記チャネル層のバ
ッファ層側に、他の元素Cを含み、且つ前記III-V族化
合物半導体よりバンドギャップの小さいCx 1-x Bか
らなるn型量子井戸層を形成し、このn型量子井戸層の
組成比xを前記バッファ層からの膜厚dの関数として、
x=cdn を満たし、かつn≧1となるように連続的に
変化させて形成すると共に、格子間の不整合による転位
が発生する臨界膜厚より薄い層で形成したことから、広
いゲート電圧に渡って大きな相互コンダクタンスが得ら
れ、また大きな遮断周波数が得られる。
As described above, according to the field effect transistor of the first aspect, the buffer layer and the channel layer are formed by one.
A layer containing a group III-V compound semiconductor layer consisting of one group III element A and one group V element B, and the other layer C containing the other element C on the buffer layer side of the channel layer. An n-type quantum well layer made of C x A 1-x B having a smaller band gap than the compound semiconductor is formed, and the composition ratio x of the n-type quantum well layer is defined as a function of the film thickness d from the buffer layer.
Since it is formed by changing continuously so that x = cd n and satisfying n ≧ 1 and formed of a layer thinner than a critical film thickness at which dislocation due to mismatch between lattices occurs, a wide gate voltage can be obtained. , A large transconductance is obtained, and a large cutoff frequency is obtained.

【0023】また、請求項2に係る電界効果トランジス
タによれば、バッファ層のチャネル層側にi−GaAs
層を形成し、このi−GaAs層の下部にi−AlGa
As層または酸化されたAlAs層を形成し、n型量子
井戸層をn−Inx Ga1-xAs層で形成したことか
ら、キャリアのチャネル内部への閉じ込めを向上させる
ことができ、ゲート長を短縮していった場合におけるピ
ンチオフ特性を改善することができる。
According to the field effect transistor of the second aspect, i-GaAs is formed on the channel layer side of the buffer layer.
A layer is formed, and an i-AlGa layer is formed under the i-GaAs layer.
Since the As layer or the oxidized AlAs layer is formed and the n-type quantum well layer is formed of the n-In x Ga 1 -x As layer, the confinement of carriers into the channel can be improved, and the gate length can be improved. , The pinch-off characteristics in the case of shortening can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る電界効果トランジスタの断面図
である。
FIG. 1 is a cross-sectional view of a field-effect transistor according to claim 1.

【図2】(a)は請求項1に係る電界効果トランジスタ
のn−Inx Ga1-x As層の厚みと組成比の相関を説
明する図であり、(b)は従来例の電界効果トランジス
タのn−Inx Ga1-x As層の厚みと組成比の相関を
説明する図である。
FIG. 2A is a diagram for explaining the correlation between the thickness and composition ratio of an n-In x Ga 1 -xAs layer of the field effect transistor according to claim 1, and FIG. FIG. 4 is a diagram illustrating a correlation between the thickness of an n-In x Ga 1-x As layer of a transistor and a composition ratio.

【図3】請求項2に係る電界効果トランジスタの断面図
である。
FIG. 3 is a sectional view of a field-effect transistor according to claim 2;

【図4】請求項2に係る電界効果トランジスタのバッフ
ァ層部分のエネルギーバンド図であり、(a)はi−A
lGaAs層を挿入したとき、(b)は酸化されたAl
As層を挿入したとき、(c)は挿入層がない場合(従
来構造)の伝導帯のエネルギーバンド図である。
FIG. 4 is an energy band diagram of a buffer layer portion of the field-effect transistor according to claim 2, wherein FIG.
When an lGaAs layer is inserted, (b) shows oxidized Al
FIG. 3C is an energy band diagram of a conduction band when an As layer is inserted and there is no insertion layer (conventional structure).

【符号の説明】[Explanation of symbols]

1………GaAs又はSi基板、2………n−GaAs
チャネル層、3………n−InGaAs量子井戸層、4
………ゲート電極、5………オーミックコンタクト層、
6………i−GaAs層、7………i−AlGaAs層
又は酸化したAlAs層、8、9………オーミック電極
1. GaAs or Si substrate, 2. n-GaAs
Channel layer, 3... N-InGaAs quantum well layer, 4
... gate electrode, 5 ... ohmic contact layer,
6 i-GaAs layer, 7 i-AlGaAs layer or oxidized AlAs layer, 8, 9 ohmic electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板又はSi基板上に、化合物
半導体から成るバッファ層とチャネル層を積層して形成
した電界効果トランジスタにおいて、前記バッファ層及
びチャネル層を1つのIII 族元素Aと1つのV族元素B
からなるIII −V族化合物半導体層を含む層で形成し、
前記チャネル層のバッファ層側に、他の元素Cを含み、
且つ前記III-V族化合物半導体よりバンドギャップが小
さいCx1-x Bからなるn型量子井戸層を形成し、こ
のn型量子井戸層の組成比 xを前記バッファ層から
の膜厚dの関数として、x=cdn を満たし、かつn≧
1となるように連続的に変化させて形成すると共に、格
子間の不整合による転位が発生する臨界膜厚より薄い層
で形成したことを特徴とする電界効果トランジスタ。
In a field-effect transistor formed by laminating a buffer layer and a channel layer made of a compound semiconductor on a GaAs substrate or a Si substrate, the buffer layer and the channel layer are composed of one group III element A and one V Group element B
Formed of a layer including a III-V compound semiconductor layer comprising
On the buffer layer side of the channel layer, contains another element C,
In addition, an n-type quantum well layer made of C x A 1 -xB having a smaller band gap than that of the III-V compound semiconductor is formed, and the composition ratio x of the n-type quantum well layer is set to a film thickness d from the buffer layer. Satisfies x = cd n and n ≧
1. A field effect transistor formed by changing the thickness continuously so as to be 1, and formed of a layer thinner than a critical film thickness at which dislocation due to mismatch between lattices occurs.
【請求項2】 前記バッファ層のチャネル層側にi−G
aAs層を形成し、このi−GaAs層の下部にi−A
lGaAs層または酸化されたAlAs層を形成し、前
記n型量子井戸層をn−Inx Ga1-x As層で形成し
たことを特徴とする請求項1に記載の電界効果トランジ
スタ。
2. An i-G layer on a channel layer side of the buffer layer.
An aAs layer is formed, and the i-GaAs layer is formed under the i-GaAs layer.
forming a lGaAs layer or oxidized AlAs layer, the field-effect transistor according to claim 1, characterized in that the n-type quantum well layer was formed in n-In x Ga 1-x As layer.
JP21466098A 1998-07-29 1998-07-29 Field effect transistor Pending JP2000049331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21466098A JP2000049331A (en) 1998-07-29 1998-07-29 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21466098A JP2000049331A (en) 1998-07-29 1998-07-29 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2000049331A true JP2000049331A (en) 2000-02-18

Family

ID=16659460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21466098A Pending JP2000049331A (en) 1998-07-29 1998-07-29 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2000049331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333095A (en) * 2003-06-13 2005-12-02 Sumitomo Chemical Co Ltd Compound semiconductor, manufacturing method of the same and compound semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333095A (en) * 2003-06-13 2005-12-02 Sumitomo Chemical Co Ltd Compound semiconductor, manufacturing method of the same and compound semiconductor element

Similar Documents

Publication Publication Date Title
EP1390983B2 (en) Group-iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer
JP3457614B2 (en) High-speed composite p-channel Si / SiGe heterostructure for field effect devices
USRE44538E1 (en) Indium gallium nitride channel high electron mobility transistors, and method of making the same
US9401403B2 (en) Nitride semiconductor structure
US20070272945A1 (en) Field-effect transistor
WO2011099097A1 (en) Nitride semiconductor device and process for production thereof
US5837565A (en) Semiconductor device
JP3449116B2 (en) Semiconductor device
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
JP2611735B2 (en) Heterojunction FET
US6342411B1 (en) Electronic component and method for manufacture
US20110254055A1 (en) Field effect transistor and manufacturing method thereof
US5338942A (en) Semiconductor projections having layers with different lattice constants
JP3667331B2 (en) HETERO FIELD EFFECT TRANSISTOR, MANUFACTURING METHOD THEREOF, AND TRANSMITTING / RECEIVING DEVICE EQUIPPED WITH THE SAME
JPH06188271A (en) Field effect transistor
JP2017152467A (en) Field effect transistor and manufacturing method therefor
JP2000049331A (en) Field effect transistor
JP2557373B2 (en) Compound semiconductor device
JPH0468775B2 (en)
JP5285252B2 (en) Nitride semiconductor device
JP3423812B2 (en) HEMT device and manufacturing method thereof
KR20230090573A (en) AlGaN/GaN hetero-junction structure of HEMT Device of having multi-strain matching structure
JP2541280B2 (en) Semiconductor device
JP3405684B2 (en) Field effect transistor and method of manufacturing the same
KR20230090574A (en) AlGaN/GaN hetero-junction structure of HEMT Device of having 3 dimensional structure