JP2000045828A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JP2000045828A
JP2000045828A JP10220576A JP22057698A JP2000045828A JP 2000045828 A JP2000045828 A JP 2000045828A JP 10220576 A JP10220576 A JP 10220576A JP 22057698 A JP22057698 A JP 22057698A JP 2000045828 A JP2000045828 A JP 2000045828A
Authority
JP
Japan
Prior art keywords
post
injection
fuel
cylinder
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10220576A
Other languages
Japanese (ja)
Other versions
JP3358552B2 (en
Inventor
Kazuya Kibe
一哉 木部
Isamu Goto
勇 後藤
Hirotatsu Ishigaki
裕達 石垣
Tomohiro Kaneko
智洋 金子
Takashi Yamamoto
崇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22057698A priority Critical patent/JP3358552B2/en
Priority to FR9906807A priority patent/FR2782124B1/en
Priority to DE19927485A priority patent/DE19927485B4/en
Publication of JP2000045828A publication Critical patent/JP2000045828A/en
Application granted granted Critical
Publication of JP3358552B2 publication Critical patent/JP3358552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute sub-injection when temperature inside cylinders reach a target value. SOLUTION: Main injection of fuel is carried out from fuel injection valves 31 to 34 into cylinders 11 to 14 near a top dead center of compression. Post injection of the fuel is carried out from the fuel injection valves 31 to 34 into the cylinders 11 to 14 in an expansion process. In a fuel injection control device of such a diesel engine 1, the post injection timing is set at the time where the temperature inside the cylinders 11 to 14 are equalized to the target values. An ECU 100 obtains the post injection timing with reference to the compression dop dead center according to operation conditions of the diesel engine 1. The ECU 100 executes the post injection at this post injection timing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃料噴
射制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine.

【0002】[0002]

【従来の技術】リーンNOx触媒は、空燃比リーンの状
態で燃焼させる内燃機関、例えば、ディーゼルエンジン
やリーンバーンガソリンエンジンから排出される排気ガ
スのNOx浄化に多用されている。リーンNOx触媒に
は、選択還元型NOx触媒や吸蔵還元型NOx触媒があ
る。
2. Description of the Related Art A lean NOx catalyst is frequently used for purifying NOx of exhaust gas discharged from an internal combustion engine burning at a lean air-fuel ratio, for example, a diesel engine or a lean burn gasoline engine. The lean NOx catalyst includes a selective reduction type NOx catalyst and a storage reduction type NOx catalyst.

【0003】選択還元型NOx触媒は、酸素過剰の雰囲
気で炭化水素(HC)の存在下でNOxを還元または分
解する触媒であり、ゼオライトにCu等の遷移金属をイ
オン交換して担持した触媒、ゼオライトまたはアルミナ
に貴金属を担持した触媒、等が含まれる。
[0003] The selective reduction type NOx catalyst is a catalyst for reducing or decomposing NOx in the presence of hydrocarbons (HC) in an oxygen-excess atmosphere, and a catalyst in which a transition metal such as Cu is ion-exchanged on zeolite and supported. A catalyst in which a noble metal is supported on zeolite or alumina is included.

【0004】この選択還元型NOx触媒でNOxを浄化す
るためには触媒周囲に適量のHC成分が必要とされる。
ところが、前記内燃機関の通常運転時の排気中のHC成
分の量は極めて少なく、そのため、通常運転時にNOx
を浄化するためには、選択還元型NOx触媒にHC成分
を供給する必要がある。
[0004] In order to purify NOx with this selective reduction type NOx catalyst, an appropriate amount of HC component is required around the catalyst.
However, the amount of the HC component in the exhaust gas during the normal operation of the internal combustion engine is extremely small.
It is necessary to supply the HC component to the NOx selective reduction catalyst in order to purify the NOx.

【0005】一方、吸蔵還元型NOx触媒は、流入排気
ガスの空燃比がリーンのときはNOxを吸収し、流入排
気ガス中の酸素濃度が低下すると吸収したNOxを放出
する触媒であり、例えばアルミナを担体とし、この担体
上に例えばカリウムK、ナトリウムNa、リチウムL
i、セシウムCsのようなアルカリ金属、バリウムB
a、カルシウムCaのようなアルカリ土類、ランタンL
a、イットリウムYのような希土類から選ばれた少なく
とも一つと、白金Ptのような貴金属とが担持されて、
構成されている。
[0005] On the other hand, the NOx storage reduction catalyst is a catalyst that absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and releases the absorbed NOx when the oxygen concentration in the inflowing exhaust gas decreases. On a carrier, for example, potassium K, sodium Na, lithium L
i, alkali metal such as cesium Cs, barium B
a, alkaline earth such as calcium Ca, lanthanum L
a, at least one selected from rare earths such as yttrium Y and a noble metal such as platinum Pt are supported;
It is configured.

【0006】空燃比リーンの状態で燃焼させる内燃機関
の排気系にこの吸蔵還元型NOx触媒を配置すると、こ
の内燃機関では通常運転時の排気ガスの空燃比がリーン
であるため、排気ガス中のNOxがNOx触媒に吸収され
ることとなる。しかしながら、リーン空燃比の排気ガス
をNOx触媒に供給し続けると、NOx触媒のNOx吸収
能力が飽和に達し、それ以上、NOxを吸収できなくな
り、NOxをリークさせることとなる。そこで、吸蔵還
元型NOx触媒では、NOx吸収能力が飽和する前に所定
のタイミングで流入排気ガスの空燃比をリッチにするこ
とによって酸素濃度を極度に低下させ、NOx触媒に吸
収されているNOxをNO2に還元して放出し、NOx触
媒のNOx吸収能力を回復させる必要がある。
If the NOx storage-reduction catalyst is disposed in the exhaust system of an internal combustion engine that burns at a lean air-fuel ratio, the internal combustion engine has a lean air-fuel ratio during normal operation. NOx is absorbed by the NOx catalyst. However, if the exhaust gas having the lean air-fuel ratio is continuously supplied to the NOx catalyst, the NOx absorption capacity of the NOx catalyst reaches saturation, and it becomes impossible to absorb NOx any more, thereby causing NOx to leak. Therefore, in the NOx storage reduction catalyst, the oxygen concentration is extremely reduced by enriching the air-fuel ratio of the inflowing exhaust gas at a predetermined timing before the NOx absorption capacity is saturated, thereby reducing the NOx absorbed by the NOx catalyst. released by reducing the NO 2, it is necessary to recover the NOx absorbing capacity of the NOx catalyst.

【0007】ここで、選択還元型NOx触媒にHC成分
を供給する方法の一つとして、あるいは、吸蔵還元型N
Ox触媒に空燃比リッチの排気ガスを供給する方法の一
つとして、燃料のポスト噴射がある。これは、内燃機関
の所定の気筒内に燃料噴射弁から燃料をメイン噴射(主
噴射)した後、当該気筒の膨張行程あるいは排気行程に
おいて前記燃料噴射弁から筒内に燃料を噴射(ポスト噴
射)して排気ガスの空燃比をリッチにし、このポスト噴
射燃料のHC成分を気筒内の爆発時の熱によって軽質な
HCに改質し、これを排気ガスと共に、選択還元型NO
x触媒あるいは吸蔵還元型NOx触媒に供給する方法であ
る。
Here, as one of the methods of supplying the HC component to the selective reduction type NOx catalyst, or by using the storage reduction type Nx catalyst,
One of the methods for supplying the air-fuel ratio rich exhaust gas to the Ox catalyst is post-injection of fuel. This is because after a main injection of fuel (main injection) from a fuel injection valve into a predetermined cylinder of an internal combustion engine, fuel is injected into the cylinder from the fuel injection valve (post injection) during an expansion stroke or an exhaust stroke of the cylinder. To make the air-fuel ratio of the exhaust gas rich, to reform the HC component of this post-injected fuel into light HC by the heat of the explosion in the cylinder, and to convert the HC together with the exhaust gas into a selective reduction type NO.
This is a method of supplying to the x catalyst or the NOx storage reduction catalyst.

【0008】尚、内燃機関において燃料をポスト噴射す
る目的としては、これら排気系に配置したリーンNOx
触媒のNOx浄化性能を維持せしめるためではなく、タ
ーボチャージャの過給圧を上げるためや、触媒の暖機性
向上のためなどにポスト噴射を行う場合もある。
The purpose of post-injecting fuel in an internal combustion engine is to use lean NOx disposed in these exhaust systems.
Post-injection may be performed not for maintaining the NOx purification performance of the catalyst but for increasing the supercharging pressure of the turbocharger or for improving the warm-up property of the catalyst.

【0009】[0009]

【発明が解決しようとする課題】特開平10−4714
6号公報には、選択還元型NOx触媒の触媒温度が高く
なるにしたがってポスト噴射の噴射タイミングを次第に
遅らせることにより、ポスト噴射燃料のHC成分の改質
を最適にする技術が開示されている。
Problems to be Solved by the Invention
Japanese Patent Application Laid-Open No. 6-64106 discloses a technique for optimizing the reforming of the HC component of the post-injected fuel by gradually delaying the post-injection injection timing as the catalyst temperature of the selective reduction type NOx catalyst increases.

【0010】しかしながら、ポスト噴射の時に筒内温度
が低いと、ポスト噴射燃料のHC成分を軽質なHCに改
質することができず、重質成分のまま選択還元型NOx
触媒に供給するようになってNOx浄化率が低下してし
まい、また、ポスト噴射燃料の噴霧がボア壁面に到達し
易くなり、エンジンオイルの希釈という問題が生じる虞
れがある。一方、ポスト噴射の時に筒内温度が高いと、
ポスト噴射燃料が焼失してしまい、選択還元型NOx触
媒にHC成分を供給することができなくなり、NOx浄
化率が低下するという問題が生じる虞れがある。
However, if the in-cylinder temperature is low at the time of post-injection, the HC component of the post-injected fuel cannot be reformed into light HC, and the selective reduction NOx cannot
The NOx purification rate is reduced due to the supply to the catalyst, and the spray of the post-injected fuel is more likely to reach the bore wall surface, which may cause a problem of dilution of the engine oil. On the other hand, if the cylinder temperature is high during post injection,
The post-injected fuel is burned out, and it becomes impossible to supply the HC component to the selective reduction type NOx catalyst, which may cause a problem that the NOx purification rate decreases.

【0011】ポスト噴射燃料のHC成分の改質不良やポ
スト噴射燃料の焼失については、排気系に吸蔵還元型N
Ox触媒を配置した場合にも問題となる。また、エンジ
ンオイルの希釈に関しては、いかなる目的でポスト噴射
を行う場合にも生じる虞れがある問題である。
Regarding poor reforming of the HC component of the post-injected fuel and burning out of the post-injected fuel, the storage system of the storage reduction type N
There is also a problem when an Ox catalyst is provided. Further, dilution of engine oil is a problem that may occur when post-injection is performed for any purpose.

【0012】本発明はこのような従来の技術の問題点に
鑑みてなされたものであり、本発明が解決しようとする
課題は、最適な筒内温度でポスト噴射が実行されるよう
にポスト噴射時期を制御することにより、エンジンオイ
ルの希釈等、ポスト噴射に起因する問題が生じないよう
にすることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art, and a problem to be solved by the present invention is to provide a post-injection method that performs post-injection at an optimum in-cylinder temperature. The purpose of the present invention is to control the timing so that problems due to post-injection such as dilution of engine oil do not occur.

【0013】[0013]

【課題を解決するための手段】本発明は前記課題を解決
するために、以下の手段を採用した。本願の第1の発明
は、圧縮上死点近傍で燃料噴射手段から気筒内に燃料を
主噴射した後に、膨張行程で前記燃料噴射手段から気筒
内に燃料をポスト噴射する内燃機関の燃料噴射制御装置
において、気筒内の温度が目標温度になる時点をポスト
噴射時期として、圧縮上死点を基点にした前記ポスト噴
射時期を内燃機関の運転状態に応じて求めるポスト噴射
時期決定手段、を備え、前記ポスト噴射時期決定手段に
より決定されたポスト噴射時期にポスト噴射を実行する
ことを特徴とする。
The present invention has the following features to attain the object mentioned above. According to a first aspect of the present invention, there is provided a fuel injection control for an internal combustion engine in which fuel is injected into a cylinder from a fuel injection means near a compression top dead center and then post-injected into the cylinder from the fuel injection means in an expansion stroke. In the device, post injection timing determining means for determining the post injection timing based on the compression top dead center in accordance with the operating state of the internal combustion engine, with the time when the temperature in the cylinder reaches the target temperature as the post injection timing, Post injection is performed at the post injection timing determined by the post injection timing determining means.

【0014】第1の発明の内燃機関の燃料噴射制御装置
では、ポスト噴射時期決定手段により、エンジンの運転
状態に応じて圧縮上死点を基点にしたポスト噴射時期が
決定される。決定されたポスト噴射時期において筒内温
度は目標温度になるので、ポスト噴射は筒内温度が目標
温度になったときに実行されることになる。
In the fuel injection control device for an internal combustion engine according to the first invention, the post injection timing based on the compression top dead center is determined by the post injection timing determining means in accordance with the operating state of the engine. Since the in-cylinder temperature reaches the target temperature at the determined post-injection timing, the post-injection is executed when the in-cylinder temperature reaches the target temperature.

【0015】また、本願の第2の発明は、圧縮上死点近
傍で燃料噴射手段から気筒内に燃料を主噴射した後に、
膨張行程で前記燃料噴射手段から気筒内に燃料をポスト
噴射する内燃機関の燃料噴射制御装置において、気筒内
の温度が目標温度になる時点をポスト噴射時期として、
主噴射開始時点を基点にした前記ポスト噴射時期を内燃
機関の運転状態に応じて求めるポスト噴射時期決定手
段、を備え、前記ポスト噴射時期決定手段により決定さ
れたポスト噴射時期にポスト噴射を実行することを特徴
とする。
Further, according to the second invention of the present application, after the main injection of the fuel from the fuel injection means into the cylinder near the compression top dead center,
In a fuel injection control device for an internal combustion engine that post-injects fuel into a cylinder from the fuel injection means in an expansion stroke, a point in time when the temperature in the cylinder reaches a target temperature is defined as a post-injection timing.
Post-injection timing determining means for obtaining the post-injection timing based on the main injection start time in accordance with the operation state of the internal combustion engine, and performing post-injection at the post-injection timing determined by the post-injection timing determining means. It is characterized by the following.

【0016】第2の発明の内燃機関の燃料噴射制御装置
では、ポスト噴射時期決定手段により、エンジンの運転
状態に応じて主噴射開始時点を基点にしたポスト噴射時
期が決定される。決定されたポスト噴射時期において筒
内温度は目標温度になるので、ポスト噴射は筒内温度が
目標温度になったときに実行されることになる。
In the fuel injection control device for an internal combustion engine according to a second aspect of the present invention, the post-injection timing is determined by the post-injection timing determining means based on the main injection start time in accordance with the operating state of the engine. Since the in-cylinder temperature reaches the target temperature at the determined post-injection timing, the post-injection is executed when the in-cylinder temperature reaches the target temperature.

【0017】尚、第1の発明あるいは第2の発明におい
て、ポスト噴射を行う目的としては、排気系に配置した
リーンNOx触媒のNOx浄化性能の維持あるいは回復、
ターボチャージャの過給圧の昇圧、触媒の暖機性向上な
どを例示することができるが、これらに限定されるもの
ではない。本発明は、いかなる目的でポスト噴射が行わ
れる場合にも、適用可能である。
In the first and second aspects of the invention, the purpose of performing post-injection is to maintain or recover the NOx purification performance of the lean NOx catalyst disposed in the exhaust system.
The boosting of the supercharging pressure of the turbocharger and the improvement of the warm-up property of the catalyst can be exemplified, but the present invention is not limited thereto. The present invention is applicable when post-injection is performed for any purpose.

【0018】第1の発明あるいは第2の発明において、
内燃機関としては、直噴式ディーゼルエンジンや直噴式
ガソリンエンジンを例示することができる。
In the first invention or the second invention,
Examples of the internal combustion engine include a direct injection diesel engine and a direct injection gasoline engine.

【0019】第1の発明あるいは第2の発明において
は、前記目標温度を、ポスト噴射された燃料が燃焼せず
且つ噴霧が気筒のボア壁面に到達しない筒内温度とする
ことができる。目標温度をこのようにした場合には、ポ
スト噴射された燃料の噴霧が気筒のボア壁面に到達しな
くなり、また、ポスト噴射された燃料は燃焼せずに排気
系に供給される。
In the first invention or the second invention, the target temperature may be set to a temperature in the cylinder where the post-injected fuel does not burn and the spray does not reach the bore wall surface of the cylinder. When the target temperature is set in this manner, the spray of the post-injected fuel does not reach the bore wall surface of the cylinder, and the post-injected fuel is supplied to the exhaust system without burning.

【0020】[0020]

【発明の実施の形態】以下、本発明に係る内燃機関の燃
料噴射制御装置の実施の形態を図1及び図2の図面に基
いて説明する。尚、以下に記載する実施の形態は、本発
明に係る燃料噴射制御装置を内燃機関としての車両用デ
ィーゼルエンジンに適用した態様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fuel injection control apparatus for an internal combustion engine according to the present invention will be described below with reference to FIGS. The embodiment described below is an embodiment in which the fuel injection control device according to the present invention is applied to a vehicle diesel engine as an internal combustion engine.

【0021】図1は、本発明に係る燃料噴射制御装置が
装備された直噴式ディーゼルエンジンの全体構成を示す
図である。エンジン1は4気筒ディーゼルエンジンであ
り、1番気筒(#1)から4番気筒(#4)の各気筒1
1,12,13,14の燃焼室には、吸気管2、吸気マ
ニホールド20、及び吸気マニホールド20から分岐さ
れた吸気枝管21,22,,23,24を介して新気が
導入される。吸気管2の途中には、エアフロメータ3、
ターボチャージャ4のコンプレッサ5と、インタークー
ラ6と、吸気絞り弁7が設けられている。吸気絞り弁7
は、エンジン1の運転状態に応じてエンジンコントロー
ル用電子制御ユニット(ECU)100によって制御さ
れる。
FIG. 1 is a diagram showing the overall configuration of a direct injection diesel engine equipped with a fuel injection control device according to the present invention. The engine 1 is a four-cylinder diesel engine, and each cylinder 1 of the first cylinder (# 1) to the fourth cylinder (# 4)
Fresh air is introduced into the combustion chambers 1, 12, 13, and 14 through the intake pipe 2, the intake manifold 20, and the intake branch pipes 21, 22, 23, and 24 branched from the intake manifold 20. In the middle of the intake pipe 2, an air flow meter 3,
The compressor 5, the intercooler 6, and the intake throttle valve 7 of the turbocharger 4 are provided. Intake throttle valve 7
Is controlled by an engine control electronic control unit (ECU) 100 in accordance with the operating state of the engine 1.

【0022】エンジン1には、エンジン1の冷却水温度
に対応した出力信号をECU100に出力するエンジン
水温センサ57が取り付けられている。吸気マニホール
ド20には、吸気マニホールド20内の吸気温度に対応
した出力信号をECU100に出力するインマニ温セン
サ51が取り付けられている。インマニ温センサ51
は、吸気絞り弁7の下流に配置されており、また、新気
とEGRガスが十分に混合された状態で吸気の温度を計
測できるように、EGR管47との連結部から十分に距
離のある位置に配置されている。
The engine 1 is provided with an engine water temperature sensor 57 for outputting an output signal corresponding to the cooling water temperature of the engine 1 to the ECU 100. An intake manifold temperature sensor 51 that outputs an output signal corresponding to the intake air temperature in the intake manifold 20 to the ECU 100 is attached to the intake manifold 20. In manifold temperature sensor 51
Is located downstream of the intake throttle valve 7 and is located at a sufficient distance from the connection with the EGR pipe 47 so that the intake air temperature can be measured in a state where fresh air and EGR gas are sufficiently mixed. It is located at a certain position.

【0023】エンジン1には、各気筒11〜14に燃料
を噴射する燃料噴射弁(燃料噴射手段)31,32,3
3,34が設けられている。燃料供給装置52から送油
された燃料は、所定の圧力でコモンレール53に一旦貯
留され、コモンレール53から各燃料噴射弁31〜34
に供給される。
In the engine 1, fuel injection valves (fuel injection means) 31, 32, 3 for injecting fuel into the cylinders 11 to 14 are provided.
3, 34 are provided. The fuel fed from the fuel supply device 52 is temporarily stored in the common rail 53 at a predetermined pressure, and the fuel is supplied from the common rail 53 to each of the fuel injection valves 31 to 34.
Supplied to

【0024】コモンレール53には、コモンレール53
内の燃料圧力(コモンレール圧力)に対応した出力信号
をECU100に出力するコモンレール圧力センサ54
が取り付けられている。
The common rail 53 has a common rail 53
Common rail pressure sensor 54 that outputs an output signal corresponding to the fuel pressure (common rail pressure) in the ECU to ECU 100
Is attached.

【0025】燃料噴射弁31〜34は、圧縮上死点近傍
において対応する気筒に燃料をメイン噴射(主噴射)
し、所定の気筒の膨張行程において対応する気筒の前記
燃料噴射弁から燃料をポスト噴射するように、ECU1
00によって制御されている。ポスト噴射された燃料の
HC成分は、後述する選択還元型NOx触媒10aに供
給される。
The fuel injection valves 31 to 34 perform main injection (main injection) of fuel into the corresponding cylinder near the compression top dead center.
The ECU 1 performs post-injection of fuel from the fuel injection valve of the corresponding cylinder in a predetermined cylinder expansion stroke.
00. The HC component of the post-injected fuel is supplied to a selective reduction type NOx catalyst 10a described later.

【0026】メイン噴射あるいはポスト噴射における燃
料噴射弁31〜34の開弁時期及び開弁期間は、エンジ
ン1の運転状態に応じてECU100により制御され、
1番気筒11から4番気筒14のうちのいずれの気筒に
対してポスト噴射を実行するかはエンジン1の運転状態
に応じてECU100が決定する。
The valve opening timing and the valve opening period of the fuel injection valves 31 to 34 in the main injection or the post injection are controlled by the ECU 100 according to the operating state of the engine 1.
The ECU 100 determines which of the first to fourth cylinders 11 to 14 to execute post-injection according to the operating state of the engine 1.

【0027】各気筒11〜14の燃焼室で生じた排気ガ
スは、各気筒11〜14に対応して設けられた排気枝管
41,42,43,44を介して排気マニホールド40
に排出される。
Exhaust gas generated in the combustion chambers of the cylinders 11 to 14 is passed through exhaust branch pipes 41, 42, 43, and 44 corresponding to the cylinders 11 to 14, respectively.
Is discharged.

【0028】排気マニホールド40に流入した排気ガス
は、集合排気管8を介して大気に排出される。集合排気
管8の途中には、ターボチャージャ4のタービン9と、
触媒コンバータ10が設けられている。排気ガスはター
ビン9を駆動し、タービン9に連結されたコンプレッサ
5を駆動して、吸気を過給する。
Exhaust gas flowing into the exhaust manifold 40 is exhausted to the atmosphere via the collective exhaust pipe 8. In the middle of the collective exhaust pipe 8, there is a turbine 9 of the turbocharger 4,
A catalytic converter 10 is provided. The exhaust gas drives the turbine 9 and drives the compressor 5 connected to the turbine 9 to supercharge the intake air.

【0029】触媒コンバータ10には選択還元型NOx
触媒10aが収容されている。選択還元型NOx触媒1
0aは、酸素過剰の雰囲気で炭化水素の存在下でNOx
を還元または分解する触媒であり、選択還元型NOx触
媒には、ゼオライトにCu等の遷移金属をイオン交換し
て担持した触媒、ゼオライトまたはアルミナに貴金属を
担持した触媒、等が含まれる。
The catalytic converter 10 has a selective reduction type NOx
The catalyst 10a is housed. Selective reduction type NOx catalyst 1
0a is NOx in the presence of hydrocarbons in an oxygen-rich atmosphere
The selective reduction type NOx catalyst includes a catalyst in which a transition metal such as Cu is ion-exchanged on zeolite and a noble metal is supported on zeolite or alumina.

【0030】集合排気管8において触媒コンバータ10
の入口近傍と出口近傍には、触媒コンバータ10に流入
する排気ガスの温度あるいは触媒コンバータ10から流
出する排気ガスの温度に対応した出力信号をECU10
0に出力する入ガス温センサ55と出ガス温センサ56
が取り付けられている。これら入ガス温センサ55と出
ガス温センサ56の出力信号に基づいて、ECU100
は触媒コンバータ10の触媒温度を演算する。
In the collective exhaust pipe 8, the catalytic converter 10
An output signal corresponding to the temperature of the exhaust gas flowing into the catalytic converter 10 or the temperature of the exhaust gas flowing out of the catalytic converter 10 is provided near the inlet and the outlet of the ECU 10.
Input gas temperature sensor 55 and output gas temperature sensor 56 that output 0
Is attached. Based on the output signals of these incoming gas temperature sensor 55 and outgoing gas temperature sensor 56, ECU 100
Calculates the catalyst temperature of the catalytic converter 10.

【0031】また、4番気筒14から排出される排気ガ
スの一部はEGRガス(還流ガス)として、排気枝管4
4からEGR管47を介して吸気マニホールド20に再
循環可能になっている。EGR管47の途中には負圧式
のEGR弁49が設置されている。EGR弁49のダイ
アフラム室には図示しない導圧管を介して吸気管負圧が
導入され、EGR弁49は、エンジン1の運転状態に応
じて開度制御され、EGRガスの還流量を制御する。
A part of the exhaust gas discharged from the fourth cylinder 14 is used as an EGR gas (recirculation gas),
4 can be recirculated to the intake manifold 20 via the EGR pipe 47. In the middle of the EGR pipe 47, a negative pressure type EGR valve 49 is installed. An intake pipe negative pressure is introduced into the diaphragm chamber of the EGR valve 49 via a pressure guiding tube (not shown), and the opening of the EGR valve 49 is controlled in accordance with the operating state of the engine 1 to control the amount of EGR gas recirculation.

【0032】ECU100はデジタルコンピュータから
なり、双方向バスによって相互に接続されたROM(リ
ードオンリメモリ)、RAM(ランダムアクセスメモ
リ)、CPU(セントラルプロセッサユニット)、入力
ポート、出力ポートを具備し、エンジン1の燃料噴射量
制御等の基本制御を行うほか、この実施の形態では、触
媒コンバータ10にHCを供給するためのポスト噴射制
御を行っている。
The ECU 100 is composed of a digital computer and includes a ROM (Read Only Memory), a RAM (Random Access Memory), a CPU (Central Processor Unit), an input port, and an output port interconnected by a bidirectional bus. In addition to performing basic control such as the first fuel injection amount control, in this embodiment, post injection control for supplying HC to the catalytic converter 10 is performed.

【0033】これら制御のために、ECU100の入力
ポートには、アクセル開度センサ71からの入力信号
と、クランク角センサ72からの入力信号が入力され
る。アクセル開度センサ71はアクセル開度に比例した
出力電圧をECU100に出力し、ECU100はアク
セル開度センサ71の出力信号に基づいてエンジン負荷
を演算する。クランク角センサ72はクランクシャフト
が一定角度回転する毎に出力パルスをECU100に出
力し、ECU100はこの出力パルスに基づいてエンジ
ン回転数を演算する。これらエンジン負荷とエンジン回
転数によってエンジン運転状態が判別される。
For these controls, an input signal from the accelerator opening sensor 71 and an input signal from the crank angle sensor 72 are input to input ports of the ECU 100. The accelerator opening sensor 71 outputs an output voltage proportional to the accelerator opening to the ECU 100, and the ECU 100 calculates an engine load based on an output signal of the accelerator opening sensor 71. The crank angle sensor 72 outputs an output pulse to the ECU 100 every time the crankshaft rotates by a certain angle, and the ECU 100 calculates the engine speed based on the output pulse. The engine operating state is determined based on the engine load and the engine speed.

【0034】次に、この実施の形態における燃料噴射制
御装置の作用について説明する。ECU100は、エン
ジン1の運転状態に応じて、各燃料噴射弁31〜34を
所定の開弁時期に所定期間開弁して各気筒11〜14内
に所定量の燃料をメイン噴射する。各気筒11〜14内
にメイン噴射された燃料は、爆発・燃焼した後、排気ガ
スとして、各排気枝管41〜44、排気マニホールド4
0、集合排気管8、触媒コンバータ10を通って大気に
排気される。
Next, the operation of the fuel injection control device according to this embodiment will be described. The ECU 100 opens each of the fuel injection valves 31 to 34 at a predetermined valve opening timing for a predetermined period in accordance with the operation state of the engine 1 and main-injects a predetermined amount of fuel into each of the cylinders 11 to 14. After the fuel injected into the cylinders 11 to 14 explodes and burns, the fuel is exhausted into the exhaust branch pipes 41 to 44 and the exhaust manifold 4.
0, exhausted to the atmosphere through the collective exhaust pipe 8 and the catalytic converter 10.

【0035】また、ECU100は、エンジン1の運転
状態に応じて、前記メイン噴射された燃料の爆発・燃焼
により生じた排気ガス中のNOxを触媒コンバータ10
で浄化するのに必要な還元剤量に相当する燃料のポスト
噴射量を演算し、このポスト噴射量の燃料をポスト噴射
するべく、所定の気筒の燃料噴射弁を、当該気筒の膨張
行程における所定の開弁時期に所定期間開弁する。ポス
ト噴射された燃料のHC成分は、爆発行程の熱により軽
質なHCに改質されて、排気ガスと共に前記排気経路を
通って触媒コンバータ10に供給される。その結果、排
気ガス中のNOxは触媒コンバータ10の選択還元型N
Ox触媒10aにおいて還元され、N2、H2O、CO2
なって大気に放出される。
The ECU 100 converts NOx in the exhaust gas generated by the explosion and combustion of the main injected fuel into the catalytic converter 10 according to the operating state of the engine 1.
Calculates a post-injection amount of fuel corresponding to the amount of reducing agent necessary for purifying at a predetermined time. The valve is opened for a predetermined period at the valve opening timing. The HC component of the post-injected fuel is reformed into light HC by the heat of the explosion process, and supplied to the catalytic converter 10 through the exhaust path together with the exhaust gas. As a result, NOx in the exhaust gas is converted into the selective reduction type N
It is reduced in the Ox catalyst 10a and is released to the atmosphere as N 2 , H 2 O and CO 2 .

【0036】ところで、燃料をポスト噴射する時に筒内
温度が高すぎると、ポスト噴射された燃料が焼失してし
まい、触媒コンバータ10に必要量のHCを供給するこ
とができなくなって、NOxの浄化率が低下するという
問題が生じ、一方、燃料をポスト噴射する時に筒内温度
が低すぎると、ポスト噴射された燃料のHC成分を軽質
なHCに改質することができず、重質成分のまま触媒コ
ンバータ10に供給することになってNOxの浄化率が
低下してしまい、また、ポスト噴射された燃料の貫徹力
が大きくなるため、噴霧が気筒のボア壁面に到達して、
エンジンオイルを希釈するという問題が生じる虞れがあ
ることは前述した通りである。
If the in-cylinder temperature is too high when the fuel is post-injected, the post-injected fuel is burned out, so that the required amount of HC cannot be supplied to the catalytic converter 10 and NOx purification is performed. On the other hand, if the in-cylinder temperature is too low when the fuel is post-injected, the HC component of the post-injected fuel cannot be reformed into light HC, and the heavy component As it is supplied to the catalytic converter 10 as it is, the purification rate of NOx decreases, and the penetration force of the post-injected fuel increases, so that the spray reaches the bore wall surface of the cylinder,
As described above, the problem of diluting the engine oil may occur.

【0037】したがって、ポスト噴射は、ポスト噴射燃
料の噴霧がボア壁面に到達することがなく、しかもポス
ト噴射燃料のHC成分を軽質なHC成分に改質すること
ができる筒内温度の時に、実行する必要がある。
Therefore, the post-injection is performed when the temperature of the post-injection fuel does not reach the bore wall surface and the in-cylinder temperature allows the HC component of the post-injection fuel to be reformed into a light HC component. There is a need to.

【0038】そこで、この燃料噴射制御装置では、筒内
温度がポスト噴射に最適な温度になったときにポスト噴
射が実行されるように、ECU100がエンジン1の運
転状態に応じてポスト噴射の時期を演算し、ポスト噴射
の制御を行っている。尚、この実施の形態においてポス
ト噴射に最適な筒内温度、即ち、ポスト噴射燃料の噴霧
がボア壁面に到達することがなく且つポスト噴射燃料の
HC成分を軽質なHC成分に改質することができる筒内
温度、がいかなる温度であるかは、予めこのエンジン1
に対して実験を行って決定する。
Therefore, in this fuel injection control device, the ECU 100 controls the timing of the post-injection according to the operating state of the engine 1 so that the post-injection is executed when the in-cylinder temperature reaches the optimum temperature for the post-injection. Is calculated to control the post injection. In this embodiment, the optimum in-cylinder temperature for post-injection, that is, the reforming of the HC component of the post-injected fuel into a light HC component without the post-injected fuel spray reaching the bore wall surface. The possible in-cylinder temperature is determined in advance by the engine 1
Is determined by conducting an experiment.

【0039】ポスト噴射タイミングの制御手順を説明す
る前に、筒内温度とピストン位置(クランク角)との関
係について解析する。今、エンジンの運転状態が、エン
ジン回転数ene、主燃料噴射量eqfin、エンジン水温gth
w、インマニ温度gthi、吸入空気量ega であるとする。
このときの供給熱量Qinj は次式のようになる。 Qinj=eqfin ×燃料比重×燃料熱発生率
Before describing the control procedure of the post injection timing, the relationship between the in-cylinder temperature and the piston position (crank angle) will be analyzed. Now, the operating state of the engine includes the engine speed ene, the main fuel injection amount eqfin, and the engine coolant temperature gth.
w, intake manifold temperature gthi, intake air amount ega.
The supplied heat amount Qinj at this time is as follows. Qinj = eqfin x fuel specific gravity x fuel heat release rate

【0040】断熱圧縮の場合、ポスト噴射時の筒内温度
Tpoは数1で示される。
In the case of adiabatic compression, the in-cylinder temperature Tpo at the time of post-injection is shown by the following equation (1).

【数1】 ここで、εは圧縮比、κは比熱比、Cvは定容比熱、Vp
oはポスト噴射時の筒内容積、Vtdcは圧縮上死点(TD
C)の筒内容積である。
(Equation 1) Here, ε is a compression ratio, κ is a specific heat ratio, Cv is a constant volume specific heat, Vp
o is the cylinder volume at the time of post injection, Vtdc is the compression top dead center (TD
This is the in-cylinder volume of C).

【0041】ところが、実際のエンジンでは冷却水損失
があるために、Tpoは上式で求めた値よりも低くなる。
燃焼が完全な定容燃焼と仮定すると、圧縮上死点(TD
C)の筒内温度Ttdcは数2のようになる。
However, in an actual engine, since there is a loss of cooling water, Tpo is lower than the value obtained by the above equation.
Assuming that combustion is complete constant volume combustion, compression top dead center (TD)
The in-cylinder temperature Ttdc of C) is as shown in Expression 2.

【数2】 (Equation 2)

【0042】ところで、冷却水損失Qwは、(Ttdc−gt
hw)に比例し、エンジン回転数eneに反比例する。した
がって、冷却水損失Qwは数3の一次元マップより求め
ることができる。
Incidentally, the cooling water loss Qw is represented by (Ttdc-gt
hw) and inversely proportional to the engine speed ene. Therefore, the cooling water loss Qw can be obtained from the one-dimensional map of Expression 3.

【数3】 (Equation 3)

【0043】冷却水損失Qwも加味したポスト噴射時の
筒内温度Tpoは、数4のようになる。
The in-cylinder temperature Tpo at the time of post-injection in consideration of the cooling water loss Qw is as shown in Equation 4.

【数4】 よって、ポスト噴射時の筒内容積Vpoは数5で示され
る。
(Equation 4) Therefore, the in-cylinder volume Vpo at the time of post-injection is represented by Equation 5.

【数5】 (Equation 5)

【0044】また、圧縮上死点(TDC)からのポスト
噴射時のクランク角eainjpoは次式で示される。 eainjpo=cos-1(1+2/(ε−1)−Vpo/(π×R
2×L)) ここで、Rは気筒のボア径、Lはストロークである。こ
れにより、予め最適な筒内温度Tpoを設定しておけば、
エンジンの運転状態に応じて最適なポスト噴射時期を決
定することができることとなる。
The post-injection crank angle einjpo from the compression top dead center (TDC) is expressed by the following equation. eainjpo = cos -1 (1 + 2 / (ε-1) -Vpo / (π × R
2 × L)) where R is the bore diameter of the cylinder and L is the stroke. With this, if the optimum in-cylinder temperature Tpo is set in advance,
The optimal post-injection timing can be determined according to the operating state of the engine.

【0045】以上の手順でポスト噴射タイミングを設定
することが可能であるが、実際のエンジンでは完全な等
容燃焼ではないため、時間損失が生じる。時間損失の影
響をなくすためには、上述のように直接、ポスト噴射時
期を求めるのではなく、メイン噴射終了とポスト噴射開
始のインターバルeaintpoで制御すればよい。このポス
ト噴射インターバルeaintpoも、ポスト噴射時の前記ク
ランク角eainjpoと同様に、数6との相関がある。
Although the post-injection timing can be set by the above procedure, the actual engine is not completely equal-volume combustion, so that a time loss occurs. In order to eliminate the influence of the time loss, instead of directly obtaining the post-injection timing as described above, the control may be performed at the interval eaintpo between the end of the main injection and the start of the post-injection. This post-injection interval eaintpo also has a correlation with Equation 6 as with the crank angle eainjpo at the time of post-injection.

【数6】 したがって、ポスト噴射インターバルeaintpoは前記
(2)式の値との一次元マップより求めることができ
る。
(Equation 6) Therefore, the post-injection interval eaintpo can be obtained from the one-dimensional map with the value of the above equation (2).

【0046】そして、圧縮上死点TDCからのポスト噴
射時のクランク角eainjpoは、メイン噴射時期を基準に
して次式により求める。 eainjpo=eainj+etqf+eaintpo ここで、eainj はメイン噴射時期であり、etqfはメイン
噴射期間である。
The crank angle eainjpo at the time of post-injection from the compression top dead center TDC is obtained by the following equation based on the main injection timing. eainjpo = eainj + etqf + eaintpo Here, eainj is the main injection timing, and etqf is the main injection period.

【0047】次に、図2を参照してポスト噴射タイミン
グの制御手順の一例を説明する。まず、ECU100
は、ステップ101において、エンジン回転数ene、メ
イン噴射燃料量eqfin、エンジン水温gthw、インマニ温
度gthi、吸入空気量egaを読み込む。
Next, an example of a control procedure of the post injection timing will be described with reference to FIG. First, the ECU 100
In step 101, the engine speed ene, the main injection fuel amount eqfin, the engine water temperature gthw, the intake manifold temperature gthi, and the intake air amount ega are read.

【0048】次に、ECU100は、ステップ102に
おいて、エンジン1の運転状態に応じて、目標コモンレ
ール圧力epcr、メイン噴射時期eainj、メイン噴射期間e
tqfを求める。
Next, in step 102, the ECU 100 determines the target common rail pressure epcr, the main injection timing eainj, and the main injection period e according to the operating state of the engine 1.
Find tqf.

【0049】次に、ECU100は、ステップ103に
おいて、次式から供給熱量Qinjを演算する。 Qinj=eqfin ×燃料比重×燃料熱発生率 次に、ECU100は、ステップ104において、前記
(1)式を演算し、その演算結果に対応する冷却水損失
Qwを冷却水損失マップから求める。尚、冷却水損失マ
ップは、予めこのエンジン1に対して実験を行い、冷却
水損失Qwと前記(1)式の値との関係を求めて一次元
マップとしたものであり、冷却水損失マップは予めEC
U100のROMに記憶しておく。
Next, in step 103, the ECU 100 calculates the supplied heat amount Qinj from the following equation. Qinj = eqfin × fuel specific gravity × fuel heat generation rate Next, in step 104, the ECU 100 calculates the above equation (1), and obtains a cooling water loss Qw corresponding to the calculation result from a cooling water loss map. The cooling water loss map is a one-dimensional map obtained by conducting an experiment on the engine 1 in advance and obtaining the relationship between the cooling water loss Qw and the value of the above equation (1). Is EC in advance
It is stored in the ROM of U100.

【0050】次に、ECU100は、ステップ105に
おいて、前記(2)式を演算し、その演算結果に対応す
るポスト噴射インターバルeaintpoをインターバルマッ
プから求める。尚、インターバルマップは、予めこのエ
ンジン1に対して実験を行い、ポスト噴射インターバル
eaintpoと前記(2)式の値との関係を求めて一次元マ
ップとしたものであり、インターバルマップは予めEC
U100のROMに記憶しておく。
Next, in step 105, the ECU 100 calculates the above equation (2), and obtains a post-injection interval eaintpo corresponding to the calculation result from the interval map. The interval map is obtained by conducting an experiment on the engine 1 in advance and calculating the post injection interval.
The relationship between eaintpo and the value of the above equation (2) is obtained as a one-dimensional map.
It is stored in the ROM of U100.

【0051】次に、ECU100は、ステップ106に
おいて、次式からポスト噴射時期eainjpoを演算する。 eainjpo=eainj+etqf+eaintpo 次に、ECU100は、ステップ107において、触媒
コンバータ10の触媒温度Tcatと吸入空気量egaに基づ
いてポスト噴射量マップからポスト噴射量を求める。
尚、ポスト噴射量マップは、触媒温度Tcat及び吸入空
気量egaとポスト噴射量との関係を二次元マップ化した
ものであり、予めECU100のROMに記憶してお
く。
Next, in step 106, the ECU 100 calculates the post-injection timing eainjpo from the following equation. eainjpo = eainj + etqf + eaintpo Next, in step 107, the ECU 100 obtains the post injection amount from the post injection amount map based on the catalyst temperature Tcat of the catalytic converter 10 and the intake air amount ega.
The post injection amount map is a two-dimensional map of the relationship between the catalyst temperature Tcat and the intake air amount ega and the post injection amount, and is stored in the ROM of the ECU 100 in advance.

【0052】次に、ECU100は、ステップ108に
おいて、ステップ106で求めたポスト噴射時期とステ
ップ107で求めたポスト噴射量によるポスト噴射を実
行する。
Next, in step 108, the ECU 100 executes the post injection based on the post injection timing obtained in step 106 and the post injection amount obtained in step 107.

【0053】このようにエンジン1の運転状態に応じて
ポスト噴射時期を制御することにより、この燃料噴射制
御装置では、ポスト噴射に最適な筒内温度の時にポスト
噴射を実行することができることとなる。そして、その
結果、ポスト噴射された燃料のHC成分を軽質なHCに
改質して選択還元型NOx触媒10aに供給することが
でき、NOx浄化率が向上する。また、ポスト噴射され
た燃料が気筒のボア壁面に到達することがなく、したが
って、ポスト噴射に起因するエンジンオイル希釈を未然
に防止することができる。尚、この実施の形態におい
て、ECU100はポスト噴射時期決定手段を構成す
る。
By controlling the post-injection timing according to the operating state of the engine 1 in this manner, the fuel injection control device can execute the post-injection when the in-cylinder temperature is optimal for the post-injection. . As a result, the HC component of the post-injected fuel can be reformed into light HC and supplied to the selective reduction type NOx catalyst 10a, and the NOx purification rate is improved. Further, the post-injected fuel does not reach the bore wall surface of the cylinder, and therefore, engine oil dilution caused by the post-injection can be prevented beforehand. In this embodiment, the ECU 100 constitutes a post-injection timing determining means.

【0054】[0054]

【発明の効果】本願の第1の発明に係る内燃機関の燃料
噴射制御装置によれば、気筒内の温度が目標温度になる
時点をポスト噴射時期として、圧縮上死点を基点にした
前記ポスト噴射時期を内燃機関の運転状態に応じて求め
るポスト噴射時期決定手段、を備え、前記ポスト噴射時
期決定手段により決定されたポスト噴射時期にポスト噴
射を実行するようにしたことにより、筒内温度が所望の
目標温度になったときにポスト噴射を実行することがで
きるという優れた効果が奏される。
According to the fuel injection control device for an internal combustion engine according to the first aspect of the present invention, the time when the temperature in the cylinder reaches the target temperature is set as the post-injection timing, and the position of the post is determined based on the compression top dead center. A post-injection timing determining means for determining the injection timing according to the operating state of the internal combustion engine, and the post-injection timing is determined by the post-injection timing determining means, so that the post-injection timing is executed. There is an excellent effect that post-injection can be executed when the temperature reaches a desired target temperature.

【0055】また、本願の第2の発明に係る内燃機関の
燃料噴射制御装置によれば、気筒内の温度が目標温度に
なる時点をポスト噴射時期として、主噴射開始時点を基
点にした前記ポスト噴射時期を内燃機関の運転状態に応
じて求めるポスト噴射時期決定手段、を備え、前記ポス
ト噴射時期決定手段により決定されたポスト噴射時期に
ポスト噴射を実行するようにしたことにより、筒内温度
が所望の目標温度になったときにポスト噴射を実行する
ことができるという優れた効果が奏される。
Further, according to the fuel injection control device for an internal combustion engine according to the second aspect of the present invention, the time when the temperature in the cylinder reaches the target temperature is set as the post injection timing, and the post injection timing is set based on the main injection start time. A post-injection timing determining means for determining the injection timing according to the operating state of the internal combustion engine, and the post-injection timing is determined by the post-injection timing determining means, so that the post-injection timing is executed. There is an excellent effect that post-injection can be executed when the temperature reaches a desired target temperature.

【0056】さらに、第1の発明あるいは第2の発明に
おいては、前記目標温度を、ポスト噴射された燃料が燃
焼せず且つ噴霧が気筒のボア壁面に到達しない筒内温度
とした場合には、ポスト噴射された燃料の噴霧が気筒の
ボア壁面に到達しなくなり、その結果、ポスト噴射に起
因してエンジンオイルが希釈するのを防止することがで
きる。また、ポスト噴射された燃料を燃焼させずに排気
系に供給することができる。
Further, in the first invention or the second invention, when the target temperature is the in-cylinder temperature at which the post-injected fuel does not burn and the spray does not reach the bore wall surface of the cylinder, Spray of the post-injected fuel does not reach the bore wall surface of the cylinder, and as a result, dilution of the engine oil due to the post-injection can be prevented. Further, the post-injected fuel can be supplied to the exhaust system without burning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る内燃機関の燃料噴射制御装置の
一実施の形態における概略構成を示すシステム図であ
る。
FIG. 1 is a system diagram showing a schematic configuration in an embodiment of a fuel injection control device for an internal combustion engine according to the present invention.

【図2】 本発明に係る内燃機関の燃料噴射制御装置に
おけるポスト噴射時期制御手順の一例を示すフローチャ
ートである。
FIG. 2 is a flowchart illustrating an example of a post-injection timing control procedure in a fuel injection control device for an internal combustion engine according to the present invention.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン(内燃機関) 11〜14 気筒 31〜34 燃料噴射弁(燃料噴射手段) 100 ECU(ポスト噴射時期決定手段) Reference Signs List 1 diesel engine (internal combustion engine) 11 to 14 cylinders 31 to 34 fuel injection valve (fuel injection means) 100 ECU (post injection timing determination means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 F01N 3/28 301C 3/36 3/36 B F02D 41/40 F02D 41/40 B (72)発明者 石垣 裕達 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 金子 智洋 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 山本 崇 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA10 AA11 AA18 AB04 BA00 BA14 CB02 CB03 EA00 EA01 EA07 EA14 EA16 EA17 EA18 GB01W GB05W GB09W GB10W 3G301 HA02 HA11 HA13 HA15 JA00 JA25 MA18 MA23 MA26 PA10Z PB08Z PD11Z PE01Z PE03Z PE08Z PF03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 F01N 3/28 301C 3/36 3 / 36B F02D 41/40 F02D 41/40 B ( 72) Inventor Yuta Ishigaki 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Tomohiro Kaneko 1 Toyota Town Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Takashi Yamamoto Aichi 1F, Toyota-cho, Toyota-shi, TOYOTA F-term in Toyota Motor Co., Ltd. (reference) PD11Z PE01Z PE03Z PE08Z PF03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮上死点近傍で燃料噴射手段から気筒
内に燃料を主噴射した後に、膨張行程で前記燃料噴射手
段から気筒内に燃料をポスト噴射する内燃機関の燃料噴
射制御装置において、 気筒内の温度が目標温度になる時点をポスト噴射時期と
して、圧縮上死点を基点にした前記ポスト噴射時期を内
燃機関の運転状態に応じて求めるポスト噴射時期決定手
段、 を備え、前記ポスト噴射時期決定手段により決定された
ポスト噴射時期にポスト噴射を実行することを特徴とす
る内燃機関の燃料噴射制御装置。
1. A fuel injection control device for an internal combustion engine, comprising: a main injection of fuel from a fuel injection means into a cylinder near a compression top dead center; and a post-injection of fuel from the fuel injection means into the cylinder during an expansion stroke. A post-injection timing determining means for determining the post-injection timing based on the compression top dead center in accordance with the operating state of the internal combustion engine, with the time when the temperature in the cylinder reaches the target temperature as the post-injection timing. A fuel injection control device for an internal combustion engine, which performs post-injection at the post-injection timing determined by the timing determining means.
【請求項2】 圧縮上死点近傍で燃料噴射手段から気筒
内に燃料を主噴射した後に、膨張行程で前記燃料噴射手
段から気筒内に燃料をポスト噴射する内燃機関の燃料噴
射制御装置において、 気筒内の温度が目標温度になる時点をポスト噴射時期と
して、主噴射開始時点を基点にした前記ポスト噴射時期
を内燃機関の運転状態に応じて求めるポスト噴射時期決
定手段、 を備え、前記ポスト噴射時期決定手段により決定された
ポスト噴射時期にポスト噴射を実行することを特徴とす
る内燃機関の燃料噴射制御装置。
2. A fuel injection control apparatus for an internal combustion engine, comprising: a main injection of fuel from a fuel injection means into a cylinder near a compression top dead center; and a post-injection of fuel from the fuel injection means into the cylinder during an expansion stroke. Post-injection timing determining means for determining the post-injection timing based on the main injection start time in accordance with the operating state of the internal combustion engine, with the time when the temperature in the cylinder reaches the target temperature as the post-injection timing, A fuel injection control device for an internal combustion engine, which performs post-injection at the post-injection timing determined by the timing determining means.
【請求項3】 前記目標温度は、ポスト噴射された燃料
が燃焼せず且つ噴霧が気筒のボア壁面に到達しない筒内
温度であることを特徴とする請求項1または2に記載の
内燃機関の燃料噴射制御装置。
3. The internal combustion engine according to claim 1, wherein the target temperature is an in-cylinder temperature at which post-injected fuel does not burn and spray does not reach a bore wall surface of the cylinder. Fuel injection control device.
JP22057698A 1998-08-04 1998-08-04 Fuel injection control device for internal combustion engine Expired - Fee Related JP3358552B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22057698A JP3358552B2 (en) 1998-08-04 1998-08-04 Fuel injection control device for internal combustion engine
FR9906807A FR2782124B1 (en) 1998-08-04 1999-05-28 FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
DE19927485A DE19927485B4 (en) 1998-08-04 1999-06-16 Fuel injection control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22057698A JP3358552B2 (en) 1998-08-04 1998-08-04 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000045828A true JP2000045828A (en) 2000-02-15
JP3358552B2 JP3358552B2 (en) 2002-12-24

Family

ID=16753154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22057698A Expired - Fee Related JP3358552B2 (en) 1998-08-04 1998-08-04 Fuel injection control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP3358552B2 (en)
DE (1) DE19927485B4 (en)
FR (1) FR2782124B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138538A (en) * 2006-11-30 2008-06-19 Mitsubishi Motors Corp Engine oil diluted state estimating device
JP2011032949A (en) * 2009-08-03 2011-02-17 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2011179387A (en) * 2010-02-26 2011-09-15 Honda Motor Co Ltd Control device for vehicle
JP2013011255A (en) * 2011-06-30 2013-01-17 Honda Motor Co Ltd Exhaust emission control system
US8596062B2 (en) 2004-04-05 2013-12-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10000398A1 (en) * 2000-01-07 2001-07-12 Volkswagen Ag Method for determining injection parameters of a diesel internal combustion engine
JP4568991B2 (en) * 2000-02-23 2010-10-27 マツダ株式会社 Engine exhaust purification device and fuel injection timing setting method
DE10029502A1 (en) * 2000-06-21 2002-01-31 Daimler Chrysler Ag Accelerated build-up of boost pressure through a multi-stage combustion process for diesel engines
JP4505702B2 (en) * 2000-12-01 2010-07-21 マツダ株式会社 Fuel injection control device for diesel engine
DE10061796A1 (en) * 2000-12-12 2002-07-04 Man Nutzfahrzeuge Ag Process for improving the response of turbochargers
EP1245817A3 (en) * 2001-03-30 2003-01-02 Mazda Motor Corporation Apparatus for and method of purifying exhaust gas and method of injecting fuel for diesel engine
EP1296050B1 (en) 2001-09-25 2006-08-16 Ford Global Technologies, LLC Apparatus and method for regeneration of exhaust treatment device
FR2832761B1 (en) * 2001-11-23 2004-12-24 Peugeot Citroen Automobiles Sa SYSTEM FOR MONITORING THE OPERATION OF A MOTOR VEHICLE DIESEL ENGINE
JP3933172B2 (en) 2005-07-15 2007-06-20 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP5664483B2 (en) * 2011-07-12 2015-02-04 三菱自動車工業株式会社 Fuel injection control device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621400B1 (en) * 1993-04-23 1999-03-31 Daimler-Benz Aktiengesellschaft Air compressing injection internal combustion engine with an exhaust gas treating device for reducing nitrous oxides
WO1996022457A1 (en) * 1995-01-20 1996-07-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning method for internal combustion engine
JPH0925815A (en) * 1995-06-07 1997-01-28 Caterpillar Inc Post-injection combustion exhaust-gas purifying system and method thereof
JP3335278B2 (en) 1996-07-31 2002-10-15 トヨタ自動車株式会社 Fuel injection control device for in-cylinder direct injection internal combustion engine
JP3052856B2 (en) * 1996-10-24 2000-06-19 三菱自動車工業株式会社 Exhaust heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596062B2 (en) 2004-04-05 2013-12-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP2008138538A (en) * 2006-11-30 2008-06-19 Mitsubishi Motors Corp Engine oil diluted state estimating device
JP4697463B2 (en) * 2006-11-30 2011-06-08 三菱自動車工業株式会社 Engine oil dilution state estimation device
JP2011032949A (en) * 2009-08-03 2011-02-17 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2011179387A (en) * 2010-02-26 2011-09-15 Honda Motor Co Ltd Control device for vehicle
JP2013011255A (en) * 2011-06-30 2013-01-17 Honda Motor Co Ltd Exhaust emission control system

Also Published As

Publication number Publication date
DE19927485B4 (en) 2007-02-08
FR2782124B1 (en) 2000-11-17
FR2782124A1 (en) 2000-02-11
DE19927485A1 (en) 2000-02-24
JP3358552B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US7963103B2 (en) Exhaust gas purification method and system
US6779337B2 (en) Hydrogen fueled spark ignition engine
JP3358552B2 (en) Fuel injection control device for internal combustion engine
JP3613676B2 (en) Exhaust gas purification device for internal combustion engine
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
US10443521B2 (en) Exhaust emission control system of engine
JP2007239493A (en) Internal combustion engine with supercharger
US20080148719A1 (en) Engine system and a method for a combustion inhibition regeneration of an exhaust gas treatment device in a such system
JP3487267B2 (en) Exhaust gas purification device for internal combustion engine
JP2003148211A (en) Exhaust emission control device for internal combustion engine
JP2007046515A (en) Exhaust emission control device of internal combustion engine
JP2001234772A (en) Exhaust emission control device for internal combustion engine
JPH1193641A (en) Exhaust emission control device for internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
EP0953742B1 (en) Compression-ignition internal combustion engine having combustion heater
US10598121B2 (en) Control system for engine
JP3840815B2 (en) Exhaust gas purification device for internal combustion engine
JP3799770B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2003269230A (en) Internal combustion engine
JP3632582B2 (en) Exhaust gas purification device for internal combustion engine
JP3633290B2 (en) Exhaust gas purification device for internal combustion engine
JP2000080921A (en) Fuel injection system for cylinder direct injection type internal combustion engine
JP3570306B2 (en) Exhaust gas purification device for internal combustion engine
JP2000087732A (en) Exhaust emission control device of internal combustion engine
JP2001032741A (en) Exhaust emission control device for cylinder fuel injection type internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees