JP2000045091A - Titanium material for electrolytic metal foil producing drum, and its production - Google Patents

Titanium material for electrolytic metal foil producing drum, and its production

Info

Publication number
JP2000045091A
JP2000045091A JP10210823A JP21082398A JP2000045091A JP 2000045091 A JP2000045091 A JP 2000045091A JP 10210823 A JP10210823 A JP 10210823A JP 21082398 A JP21082398 A JP 21082398A JP 2000045091 A JP2000045091 A JP 2000045091A
Authority
JP
Japan
Prior art keywords
cold
rolling
drum
metal foil
titanium material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10210823A
Other languages
Japanese (ja)
Other versions
JP3500072B2 (en
Inventor
Mitsuo Ishii
満男 石井
Yoshinao Kawahara
由尚 河原
Isao Nagai
勲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21082398A priority Critical patent/JP3500072B2/en
Publication of JP2000045091A publication Critical patent/JP2000045091A/en
Application granted granted Critical
Publication of JP3500072B2 publication Critical patent/JP3500072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a wiring pattern with high precision and high reproducibility as the one for a printed circuit board by allowing it to have a cold-worked structure, to have the area ratio of mechanical twin crystals in the total sheet thickness cross-section in the optional L-cross section a specific value or higher and making the surface of the sheet uniform and dense. SOLUTION: As the cold working, forging, drawing or the like can also be used in addition to rolling. The L cross-section denotes the plane vertical to the sheet face and also parallel to the drawing direction of the structure. The stock is obtd. by executing hot working such as rolling or the like and moreover executing annealing, but, since an ununiform macro-structure is present, mechanical twin crystals are generated by the cold working to obtain a uniform and dense metallic structure. At this time, in the case the area ratio of mechanical twin crystals is >=25% in the total sheet thickness cross-section in the optional L cross-section, at the time of producing electrolytic metal foil by a drum composed of this titanium material, the one free from problems caused by scratches and good as printed wiring can stably be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品のプリン
ト配線板などに使用される銅箔(Cu箔と記す)などの電
解金属箔を製造するためのドラム用純チタン材またはチ
タン低合金材(本明細書ではこれらを総称してチタン材
という)であって、緻密な板面金属組織を有する材料お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure titanium material or a titanium low alloy material for a drum for producing electrolytic metal foil such as copper foil (hereinafter referred to as Cu foil) used for printed wiring boards of electronic parts. (In the present specification, these are collectively referred to as titanium materials), and relates to a material having a dense metal structure on a plate surface and a method for producing the same.

【0002】[0002]

【従来の技術】電子部品に組込まれて使用されるプリン
ト配線板は、Cu箔と絶縁基板を張り合わせ、表面に導体
パターンをプリントし、不要部分をエッチングで除去し
て作られている。プリント配線板に主として用いられて
いるCu箔は、高品位のCu原料を硫酸溶液に溶解し、Pbな
どの不溶性金属を陽極にし、それに対峙させたドラムを
陰極にして、ドラムを回転させつつ電気化学的にドラム
上にCuを電着させ、これを連続的に剥離し、ロール状に
巻き取って製造されている。ドラムの材料としては、耐
食性と電着金属の可剥離性の点から、近年、チタンが多
用されるようになってきた。
2. Description of the Related Art A printed wiring board used by being incorporated in an electronic component is manufactured by laminating a Cu foil and an insulating substrate, printing a conductor pattern on the surface, and removing unnecessary portions by etching. Cu foil, which is mainly used for printed wiring boards, consists of dissolving high-quality Cu raw material in a sulfuric acid solution, using insoluble metal such as Pb as an anode, and using a drum facing it as a cathode, while rotating the drum to produce electricity. It is manufactured by chemically depositing Cu on a drum, peeling it off continuously, and winding it into a roll. In recent years, titanium has been frequently used as a material for the drum, in view of corrosion resistance and removability of the electrodeposited metal.

【0003】プリント配線に使用されるCu箔の面粗さ
は、エッチングで形成される配線パターン(幅0.1 〜0.
5mm)の精度や再現性を左右する重要な因子である。この
面粗さは、Cu箔が電着していたチタン製陰極ドラムの研
磨・整面された粗さを継承している。また往々にして、
研磨・整面された陰極ドラムが電解液中で徐々に腐食を
受けて、あたかも金属組織観察用のエッチングを施した
状態となり、ドラム表面の金属組織模様がCu箔上に転写
されて仕上面粗さの均一性を損ない、プリント配線のエ
ッチング不良を惹起するという問題がある。
The surface roughness of a Cu foil used for printed wiring is determined by a wiring pattern formed by etching (having a width of 0.1 to 0.1 mm).
5mm) is an important factor that affects the accuracy and reproducibility. This surface roughness is inherited from the polished and polished roughness of the titanium cathode drum on which the Cu foil was electrodeposited. Also often,
The polished and polished cathode drum is gradually corroded in the electrolytic solution and becomes as if etched for metallographic structure observation.The metallographic pattern on the drum surface is transferred to the Cu foil and the finished surface is roughened. However, there is a problem that the uniformity of the printed wiring board is impaired and etching defects of the printed wiring are caused.

【0004】この金属組織の転写模様は、その形態か
ら、スクラッチ疵、シラクモ、シジミ等と呼ばれている
(以下、これらを総称してスクラッチ疵と呼ぶ)。また
ドラム表面は、使用中に電気スパークなどにより表面が
荒れてくるため、何度も研磨・整面が行なわれる。この
ためドラムは、少しずつ研削されて新しい面が表面とな
る。従ってドラム用チタン材には、表面の均一性の他に
厚さ方向の均一性も要求される。
[0004] The transferred pattern of the metal structure is referred to as a scratch, shiramo, shijimi, or the like because of its form (hereinafter, these are collectively referred to as scratches). In addition, the surface of the drum is roughened by an electric spark or the like during use, so that the drum surface is polished and polished many times. For this reason, the drum is ground little by little and a new surface becomes the surface. Therefore, the titanium material for the drum is required to have uniformity in the thickness direction in addition to the uniformity of the surface.

【0005】スクラッチ疵の発生は、ドラム用チタン材
の原素材に含まれているいわゆるマクロ組織に起因する
ことが、その疵の形態から経験的に知られている。通
常、金属組織学でいうマクロ組織は、鋳造組織や加工組
織の現出に使用される適当な金属組織現出用酸液(例え
ば、硝弗酸)を用いてエッチングすることで得られる。
鋳造組織や加工組織の場合、酸液の腐食作用を受けて、
加工歪が集中するメタルフロー部、格子欠陥密度の高い
結晶粒界、コロニーと呼ばれる結晶方位がほぼ揃った領
域の間の境界などが優先的に侵食されて模様として肉眼
で認識される。
It has been empirically known from the form of the scratches that the scratches are caused by a so-called macrostructure contained in the raw material of the titanium material for the drum. In general, the macrostructure referred to in metallography is obtained by etching using an appropriate metal structure revealing acid solution (for example, nitric hydrofluoric acid) used for developing a cast structure or a processed structure.
In the case of a cast or processed structure, the corrosion of the acid solution
A metal flow portion where processing strain is concentrated, a crystal grain boundary having a high lattice defect density, a boundary between regions having substantially uniform crystal orientations called colonies, etc. are preferentially eroded and visually recognized as a pattern.

【0006】従来、スクラッチ疵対策として、ドラム用
チタン材の原素材、すなわちスラブや熱延粗片などに存
在するマクロ組織を微細化あるいは均一化する試みが行
なわれている。例えば、インゴットの鍛造条件あるいは
インゴットの分塊熱延条件、分塊スラブの高温熱処理、
熱延厚板の高温長時間焼鈍などの加工熱処理法の検討が
行なわれて、それなりの改善効果が得られてきた。しか
しながら、Cu箔への要求品質は高度化する一方であり、
緻密度においてもはや既存の方法ではその要求を満足さ
せることが出来ない状況にある。
Conventionally, as a measure against scratches, attempts have been made to refine or homogenize the macrostructure existing in the raw material of the titanium material for the drum, that is, in the slab, the hot-rolled rough piece and the like. For example, ingot forging conditions or ingot bulk hot rolling conditions, high temperature heat treatment of bulk slabs,
Studies have been made on working heat treatment methods such as high-temperature long-time annealing of a hot-rolled thick plate, and a certain improvement effect has been obtained. However, the required quality for Cu foil is increasing,
There is a situation in which existing methods can no longer satisfy the requirements in terms of density.

【0007】従来、一般にチタン展伸材と呼ばれるもの
では、JIS規格などに規定される引張強度、伸びなど
の機械的性質や結晶粒度が材料特性として求められてき
た。しかし上記ドラム用チタン材のように、原素材から
の加工工程で引き継いできたマクロ組織の残存程度、す
なわち表面のマクロ組織の均一・緻密度を求められるこ
とはなかった。言い換えれば表面のマクロ組織が不均一
で緻密度に欠けていても、上記の規格を満足していれ
ば、ドラム用以外の用途では特に問題は起こらなかっ
た。
Heretofore, in the case of what is generally called a titanium wrought material, mechanical properties such as tensile strength and elongation specified by JIS standards and the like and crystal grain size have been required as material properties. However, unlike the above-mentioned titanium material for drums, it has not been required to obtain the degree of the residual macro structure inherited in the processing step from the raw material, that is, the uniformity / density of the macro structure on the surface. In other words, even if the surface macrostructure is non-uniform and lacks in denseness, no particular problem occurs in applications other than drum applications as long as the above-mentioned standard is satisfied.

【0008】一方Cu箔の製造工程では、チタン製ドラム
を硫酸銅水溶液中で回転させながらその表面にCuを電着
させる。その際、ドラム表面は硫酸銅液により腐食作用
を受け、格子欠陥密度の高い結晶粒界や、コロニーと呼
ばれる結晶方位がほぼ揃っている結晶粒の集合体の境界
が優先的に侵食される。そして侵食を受けた模様がCu箔
の表面に転写される。またコロニー内では、腐食作用で
生じるエッチピットの形状や大きさ、方向が揃ってい
て、それらがCu箔に転写されるとまだら模様となり、前
述のようなスクラッチ疵と呼ばれる品質不良を引き起こ
すわけである。
On the other hand, in the production process of the Cu foil, Cu is electrodeposited on the surface of a titanium drum while rotating in a copper sulfate aqueous solution. At this time, the surface of the drum is corroded by the copper sulfate solution, and the grain boundaries having a high lattice defect density and the boundaries of aggregates of crystal grains having a substantially uniform crystal orientation called colonies are preferentially eroded. The eroded pattern is transferred to the surface of the Cu foil. Also, in the colony, the shape, size and direction of the etch pits generated by the corrosive action are uniform, and when they are transferred to the Cu foil, they become mottled and cause the above-mentioned quality defects called scratches. is there.

【0009】チタン及びチタン低合金のドラム素材につ
いて、マクロ組織を微細化する方法として特開平8-1440
33号公報が知られている。これはチタン及びチタン低合
金をα相域で塑性加工し、次いでβ相域まで加熱してα
相からのβ相への変態を起こさせた後、最終的に冷間加
工と焼鈍を行うものである。また円筒状のドラムを通常
の方法で製造する場合、どうしても継ぎ目が円筒の長手
方向に存在し、その継目自体がCu箔の表面に転写され、
やはり品質不良部となり、製品歩留や生産効率を低下さ
せる。このため、孔明き素材から環状圧延することで、
継ぎ目のないドラムを製造する方法が特開平3-169445号
公報に開示されている。また溶接によってドラムを製造
する際、溶接部の肉厚を厚くしておき、溶接後に冷間加
工し焼鈍して、溶接部のマクロ組織を改善する方法が、
特開平6-335769号公報により知られている。
Japanese Patent Laid-Open No. 8-1440 discloses a method for refining the macrostructure of a drum material of titanium and a titanium low alloy.
No. 33 is known. This involves plastic working titanium and titanium low alloys in the α-phase region, and then heating to the β-phase region to obtain α
After the transformation from the phase to the β phase, cold working and annealing are finally performed. Also, when manufacturing a cylindrical drum by a normal method, the seam is inevitably present in the longitudinal direction of the cylinder, the seam itself is transferred to the surface of the Cu foil,
It also becomes a defective part and lowers product yield and production efficiency. For this reason, by annular rolling from perforated material,
A method for manufacturing a seamless drum is disclosed in Japanese Patent Application Laid-Open No. 3-169445. Also, when manufacturing a drum by welding, a method of increasing the thickness of the welded portion, cold working and annealing after welding, and improving the macrostructure of the welded portion,
This is known from JP-A-6-335769.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記特
開平8-144033号公報の方法ではつぎのような問題が懸念
される。(1) β相へ加熱する前に相当量の歪をα相域で
入れることがマクロ組織の微細化に必須であるため、例
えば 850℃で43%もの加工をプレスで与え、しかもその
歪が復熱などの熱過程で消滅しないような特別な配慮が
必要となる。(2)β相域へ加熱する材料の表面には後工
程で除去が困難な酸化層が生成し、材料内部がOに汚染
されるおそれがある。又、加熱時間が長すぎるとβ相の
粒成長が顕著となりβ相の粒径が粗大化し、冷延・焼鈍
を経ても所期の微細化効果が得られない場合がある。
(3) Cu箔製造用ドラムは大きいものでは直径が2m、幅
が2mにも達するので、ドラム素材一枚の大きさも、長
さ6m、幅2mとなり、冷延工程での長さ増加を考慮し
ても相当大きな素材をβ相域まで加熱し、その後冷却す
るなど材料のハンドリングが煩雑となるため、作業性は
良くない。
However, in the method disclosed in Japanese Patent Application Laid-Open No. H8-144033, the following problems are concerned. (1) It is essential to apply a considerable amount of strain in the α-phase region before heating to the β-phase, in order to refine the macrostructure. Special care must be taken so that it does not disappear in the heat process such as recuperation. (2) An oxide layer that is difficult to remove in a later step is formed on the surface of the material heated to the β phase region, and the inside of the material may be contaminated with O. If the heating time is too long, the grain growth of the β phase becomes remarkable, the grain size of the β phase becomes coarse, and the desired refining effect may not be obtained even after cold rolling and annealing.
(3) Cu foil production drums are as large as 2 m in diameter and 2 m in width, so the size of one drum material is 6 m in length and 2 m in width, taking into account the increase in length in the cold rolling process. Even so, the handling of the material becomes complicated, such as heating a considerably large material to the β phase region and then cooling it, so that the workability is not good.

【0011】また上記特開平3-169445号公報の方法で
は、環状圧延するための特殊な熱延装置が必要であるば
かりか、熱延中の温度及び歪分布を均一にすることが難
しく、しばしば繰り返し加熱と熱延を繰り返すため作業
性と歩留の点で好ましいものではなかった。さらに上記
特開平6-335769号公報やチタン薄板の製造工程において
見られるように、冷間加工と焼鈍によって確かにマクロ
組織は均一・緻密にはなるものの、個々のドラム素材を
製造する上でその加工量を決定するための指標は示され
ていなかった。
The method disclosed in Japanese Patent Application Laid-Open No. 3-169445 requires not only a special hot rolling apparatus for annular rolling, but also it is difficult to make the temperature and strain distribution uniform during hot rolling. Since heating and hot rolling were repeated repeatedly, it was not preferable in terms of workability and yield. Furthermore, as can be seen in the above-mentioned JP-A-6-335769 and the manufacturing process of a titanium thin plate, although the macrostructure is certainly uniform and dense by cold working and annealing, it is necessary to manufacture individual drum materials. No index for determining the amount of processing was given.

【0012】そこで本発明の課題は、Cu箔などの電解金
属箔を製造するためのドラム用のチタン材であって、緻
密な板面金属組織を有し、電子部品のプリント配線板用
として高精度かつ再現性のよい配線パターンが得られる
金属箔を製造することができ、しかも工業的に安定して
供給し得るドラム用チタン材、およびその製造方法を提
供することである。
Accordingly, an object of the present invention is to provide a titanium material for a drum for producing an electrolytic metal foil such as a Cu foil, which has a dense metal structure on a plate surface and is highly suitable for a printed wiring board of an electronic component. An object of the present invention is to provide a titanium material for a drum, which can produce a metal foil capable of obtaining a wiring pattern with high accuracy and reproducibility and can be supplied industrially stably, and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明者らは、Cu箔など
の電解金属箔製造ドラム用チタン材において、原素材の
不均一なマクロ組織が残存していると、電解液中でドラ
ムが腐食することにより生じる模様が金属箔に転写され
てスクラッチ疵となり、該金属箔を使用して得られるプ
リント配線にエッチング不良をもたらすとの認識から、
鋭意研究を進めた結果、マクロ組織を破壊して緻密な板
面金属組織を有し、高精度のプリント配線が再現性よく
得られる金属箔を製造するための、工業的に安定して供
給し得るドラム用チタン材およびその製造法を発明する
に至った。
Means for Solving the Problems The present inventors have found that, in a titanium material for a drum for producing an electrolytic metal foil such as a Cu foil, if the non-uniform macrostructure of the raw material remains, the drum may be formed in the electrolytic solution. From the recognition that the pattern generated by the corrosion is transferred to the metal foil and becomes a scratch, resulting in poor etching on the printed wiring obtained using the metal foil,
As a result of our intensive research, we have been able to supply a stable metallurgy industrially to produce metal foil that has a fine metal structure on the plate surface by destroying the macro structure and that can obtain high-precision printed wiring with good reproducibility. The inventors have invented a titanium material for a drum and a method for producing the same.

【0014】すなわち上記課題を解決するための本発明
の第1発明チタン材は、冷間加工組織をなし、任意のL
断面における全板厚断面の機械的双晶面積率が25%以上
であり、板面表面が均一かつ緻密であることを特徴とす
る電解金属箔製造ドラム用チタン材である。また第2発
明チタン材は、再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が30%未満であるこ
とを特徴とする電解金属箔製造ドラム用チタン材であ
る。
That is, the first invention titanium material of the present invention for solving the above-mentioned problems has a cold-work structure,
A titanium material for an electrolytic metal foil producing drum, characterized in that the mechanical twin area ratio of the entire sheet thickness cross section in the cross section is 25% or more and the plate surface is uniform and dense. The second invention titanium material is a titanium material for an electrolytic metal foil production drum, wherein the titanium material has a recrystallized structure and an area ratio of a colony structure on an arbitrary surface parallel to the plate surface is less than 30%.

【0015】つぎに上記課題を解決するための本発明の
第1発明法は、冷間圧延時の圧延ロール回転数Rc(r
ps)を、圧延ロール直径D(mm)に応じて(1)式で
示される範囲に制御しながら、圧下率15%以上の冷間
圧延を行うことにより、冷間加工組織をなし、任意のL
断面における全板厚断面の機械的双晶面積率が25%以上
であり、板面表面が均一かつ緻密である冷延板とするこ
とを特徴とする電解金属箔製造ドラム用チタン材の製造
方法である。
Next, a first invention method of the present invention for solving the above-mentioned problems is to provide a rolling roll rotation speed Rc (r) during cold rolling.
ps) is controlled in the range represented by the expression (1) according to the roll diameter D (mm) while performing cold rolling at a rolling reduction of 15% or more, thereby forming a cold-worked structure. L
A method for producing a titanium material for a drum for producing an electrolytic metal foil, wherein a cold rolled sheet having a mechanical twin area ratio of 25% or more in a cross section of the entire sheet thickness in a cross section and having a uniform and dense surface is provided. It is.

【0016】 Rc≦1.59172 −2.2541×106 /D4 +4.21766 ×105 /D3 −2.54285 ×104 /D2 +7.89452 ×102 /D (1)Rc ≦ 1.59172 −2.2541 × 10 6 / D 4 + 4.21766 × 10 5 / D 3 −2.54285 × 10 4 / D 2 + 7.89452 × 10 2 / D (1)

【0017】そして、熱間加工時に生成したスケールを
表面に付けたままで冷間圧延することが好ましい。ま
た、熱間加工時に生成したスケールを表面に付けたま
ま、大気中で焼鈍を行った後、スケールを残したままで
冷間圧延することもでき、また、熱間加工時に生成した
スケールを表面に付けたまま、真空クリープ矯正機内で
焼鈍を行った後、スケールを残したままで冷間圧延する
こともできる。さらに、表面スケールを除去した冷間圧
延素材を、該素材の結晶粒径d (μm)に応じて、直径D
(mm) が(2)式の関係を満たす圧延ロールで冷間圧延
することもできる。
[0017] It is preferable to perform cold rolling with the scale formed during hot working attached to the surface. In addition, after the scale generated during hot working is attached to the surface and then annealed in the air, cold rolling can be performed with the scale remaining, and the scale generated during hot working can be applied to the surface. After being annealed in a vacuum creep straightening machine while being attached, cold rolling can be performed with the scale remaining. Further, the cold-rolled material from which the surface scale has been removed is subjected to a diameter D according to the crystal grain size d (μm) of the material.
Cold rolling can also be performed with a rolling roll whose (mm) satisfies the relationship of the expression (2).

【0018】 D≧1.033 d0.504 (2)D ≧ 1.033 d 0.504 (2)

【0019】また第2発明法は、上記第1発明法で得ら
れたチタン材を、大気中または真空クリープ矯正機内で
焼鈍することにより、再結晶組織をなし、板面に平行な
任意の面におけるコロニー組織の面積率が30%未満で
ある冷延焼鈍板とすることを特徴とする電解金属箔製造
ドラム用チタン材の製造方法である。
In the second invention method, the titanium material obtained in the first invention method is annealed in the air or in a vacuum creep straightening machine to form a recrystallized structure and to have an arbitrary surface parallel to the plate surface. A cold rolled annealed plate having an area ratio of colony structure of less than 30% in the above method is a method for producing a titanium material for an electrolytic metal foil producing drum.

【0020】[0020]

【発明の実施の形態】本発明においてチタン材とは、前
述のように純チタン材またはチタン低合金材を総称した
ものである。純チタンとしては工業用純チタン(JIS
1種、JIS2種)やこれらの相当品種など、チタン低
合金としてはTi-0.2Pd (ASTM garde 7), Ti-0.2Pd (AST
M grade 11), Ti-0.3Mo-0.8Ni (ASTM garde 12) などが
あげられ、これらの原素材に圧延などの冷間加工を施し
たもの、あるいはさらに焼鈍を施したものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a titanium material is a general term for a pure titanium material or a titanium low alloy material as described above. Industrial pure titanium (JIS)
Ti-0.2Pd (ASTM garden 7), Ti-0.2Pd (AST
M grade 11), Ti-0.3Mo-0.8Ni (ASTM garde 12), etc. These raw materials have been subjected to cold working such as rolling, or have been further annealed.

【0021】本発明は、基本的には以下の製造工程を前
提として構築されたものである。通常、チタン展伸材の
製造は、真空アーク溶解炉(VAR)や電子ビーム再溶
解炉(EBR)において高純度原料を溶解後、金属状態
の円柱状インゴットまたは矩形断面インゴットに鋳造さ
れる。VARインゴットは、その形状のため、直接、板
圧延などの素材とされることは稀で、鍛造機、大型プレ
ス機あるいは分塊圧延機と呼ばれる専用設備により、円
柱の形状を扁平な矩形断面状のスラブに成形することが
多い。またEBRインゴットは円柱状や矩形断面のイン
ゴットであり、やはり鍛造機や分塊圧延機などで後工程
の板圧延機で操業し易い矩形断面スラブに成形される。
The present invention is basically constructed based on the following manufacturing steps. Normally, in the production of a wrought titanium material, a high-purity raw material is melted in a vacuum arc melting furnace (VAR) or an electron beam remelting furnace (EBR), and then cast into a cylindrical ingot in a metal state or a rectangular ingot. Due to its shape, VAR ingots are rarely used directly as a material for sheet rolling, etc., and the special shape of a forging machine, a large press machine or a slab rolling mill reduces the shape of the cylinder into a flat rectangular cross section. Slabs are often formed. The EBR ingot is an ingot having a columnar or rectangular cross section, and is also formed into a rectangular cross section slab which can be easily operated by a plate rolling mill in a later process by using a forging machine or a slab rolling mill.

【0022】これらの分塊鍛造スラブや分塊圧延スラブ
などは、所定の厚さまでさらに熱間加工し、必要に応じ
て歪取りとミクロ組織の調整を目的とした焼鈍を行い、
冷間加工用の素材とする。そしてこの素材を冷間加工し
て第1発明のチタン材とし、さらに焼鈍を行って第2発
明のチタン材とする。また本発明のチタン材を電解金属
箔製造ドラムとするには、円筒状に成形し溶接などによ
り接合し、表面を研磨等により仕上げる。
These forged slabs and slabs are further hot-worked to a predetermined thickness and, if necessary, subjected to annealing for the purpose of removing strain and adjusting the microstructure.
Material for cold working. Then, this material is cold worked to obtain the titanium material of the first invention, and further annealed to obtain the titanium material of the second invention. In order to make the titanium material of the present invention into a drum for producing an electrolytic metal foil, the drum is formed into a cylindrical shape, joined by welding or the like, and the surface is finished by polishing or the like.

【0023】第1発明チタン材は、冷間加工組織をな
し、任意のL断面における全板厚断面の機械的双晶面積
率が25%以上であり、板面表面が均一かつ緻密である。
冷間加工としては、圧延のほか、鍛造、引抜き、繰返し
曲げ、引張りなど、いずれの塑性加工法が採用されてい
てもかまわない。ここで、L断面とは板面に垂直で、か
つ組織の延伸方向と平行な平面、すなわち圧延板の場合
は圧延方向と平行な平面である。
The titanium material of the first invention has a cold-worked structure, has a mechanical twin area ratio of 25% or more in any thickness cross section in an arbitrary L cross section, and has a uniform and dense surface.
As the cold working, any plastic working method such as forging, drawing, repeated bending, and tension may be employed in addition to rolling. Here, the L section is a plane perpendicular to the plate surface and parallel to the stretching direction of the structure, that is, in the case of a rolled plate, a plane parallel to the rolling direction.

【0024】冷間加工用の素材は、圧延等の熱間加工を
行ったもの、あるいはさらに焼鈍を行ったものである
が、不均一なマクロ組織が存在しているので、冷間加工
により機械的双晶を発生させて、均一かつ緻密な金属組
織とする。そして、機械的双晶面積率が任意のL断面に
おける全板厚断面で25%以上であれば、このチタン材か
らなるドラムにより電解金属箔を製造した場合、スクラ
ッチ疵による問題がなく、電子部品のプリント配線とし
て高精度かつ再現性のよいものが安定して得られる。そ
して、ドラムを研磨・整面し繰返し使用しても問題な
い。しかもこのような第1発明チタン材は工業的に安定
して製造し得る。
The material for cold working has been subjected to hot working such as rolling, or has been further annealed. However, since a non-uniform macrostructure exists, the cold working Twins are generated to obtain a uniform and dense metal structure. If the mechanical twin area ratio is 25% or more in the entire thickness cross section in an arbitrary L cross section, when an electrolytic metal foil is manufactured by using a drum made of this titanium material, there is no problem due to scratches, and electronic components A highly accurate and highly reproducible printed wiring can be stably obtained. There is no problem even if the drum is polished and leveled and used repeatedly. Moreover, such a first invention titanium material can be manufactured industrially stably.

【0025】第2発明チタン材は冷間加工後に焼鈍され
たものであり、再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が30%未満である。
コロニー面積率(コロニー組織の面積率)はつぎのよう
に定義した。コロニー組織は、前述のように、結晶方位
がほぼ揃っている結晶粒の集合体であり、カラーエッチ
ング法を利用した判定方法で板面の結晶方位の分布不均
一性を定量評価した。
The titanium material of the second invention is annealed after cold working, has a recrystallized structure, and has an area ratio of colony structure on an arbitrary surface parallel to the plate surface of less than 30%.
The colony area ratio (area ratio of colony tissue) was defined as follows. As described above, the colony structure is an aggregate of crystal grains having substantially the same crystal orientation, and the distribution nonuniformity of the crystal orientation on the plate surface was quantitatively evaluated by a determination method using a color etching method.

【0026】ASM発行 Metal Progress 1985年 3月号
31頁所収の George F. Vander Voort 著、「Tint Etchi
ng」の解説論文の表−1に、チタン並びにチタン合金用
のカラーエッチング法が紹介されている。この論文で
は、Weck氏エッチング液(5g・NH4 FHF+100
mL・water 、あるいは3g・NH4 FHF+4mL・HC
L+100mL・water)を用いると、偏光顕微鏡観察した
場合、結晶方位に依存して結晶粒が着色できることが述
べられている。
ASM published Metal Progress March 1985 issue
George F. Vander Voort, p. 31, `` Tint Etchi
Table 1 of the commentary on “ng” introduces color etching methods for titanium and titanium alloys. In this paper, the etching solution of Weck (5 g NH 4 FHF + 100
mL ・ water or 3g ・ NH 4 FHF + 4mL ・ HC
(L + 100 mL water), it is described that crystal grains can be colored depending on the crystal orientation when observed with a polarizing microscope.

【0027】まず、判定の対象となる板材から顕微鏡観
察用サンプル(幅25mm×長さ50mm×厚さ)を5枚採取
し、板厚中心部の板面に平行な面について、通常のミク
ロ組織を顕微鏡観察するのと同じ程度の鏡面研磨を施
し、上記Weck氏エッチング液(5g・NH4 FHF+1
00mL・water)を用いてカラーエッチングした。ノマル
スキー型偏光顕微鏡を用いて着色した結晶粒の分布を倍
率25倍(対眼レンズ10倍、対物レンズ 2.5倍)でカラー
フィルム(ISO100)で撮影し、最終倍率34倍でA4紙サ
イズのカラー写真に仕上げた。撮影は各サンプル3視野
で行った。
First, five samples for microscope observation (25 mm in width × 50 mm in length × thickness) were sampled from a plate material to be determined, and a normal microstructure was obtained for a plane parallel to the plate surface at the center of the plate thickness. Is mirror-polished to the same degree as observed with a microscope, and the above-mentioned etching solution of Weck (5 g · NH 4 FHF + 1) is used.
(00 mL water). Using a Nomarski-type polarizing microscope, the distribution of the colored crystal grains was photographed with a color film (ISO100) at 25x magnification (10x eye lens, 2.5x objective lens), and a 34x A4 paper size color photograph at final magnification. Finished. Imaging was performed in three fields of view for each sample.

【0028】金属箔に生じるスクラッチ疵に対応するド
ラム用チタン材の部分(これをチタン材のスクラッチ疵
という)は肉眼では識別できるが、これを写真撮影して
判定するには、上記の様に25倍程度とするのが、(1) ス
クラッチ疵との対応、(2) 各結晶粒の区別、(3) 結晶粒
毎の色差の判別に関して最適であった。チタン材のスク
ラッチ疵部分の全部又は一部分を撮影したカラー写真を
カラースキャナーを用いて計算機に取り込み、金属組織
用画像解析ソフトを用いて結晶粒毎にその色を決定し
た。物体色データの決定は使用するカラースキャナーに
より異なる。
The portion of the titanium material for the drum corresponding to the scratches generated on the metal foil (this is referred to as scratches of the titanium material) can be identified by the naked eye. The ratio of about 25 was optimal for (1) correspondence with scratches, (2) discrimination of each crystal grain, and (3) discrimination of color difference for each crystal grain. A color photograph of all or a part of the scratches of the titanium material was taken into a computer using a color scanner, and the color of each crystal grain was determined using image analysis software for metallographic structure. The determination of the object color data depends on the color scanner used.

【0029】RGB表色系の三刺激値R、G、BからX
YZ表色系の三刺激値X、Y、Zに変換し、さらに、JI
S Z 8729に規定される方法でL* * * 表色系の物体
色データL* 、a* 、b* とするか、あるいは直接物体
色データL* 、a* 、b* データを得る。本発明では両
方の方法で得たデータを区別せず使用した。これによっ
て、結晶粒の代表的結晶方位をカラーエッチで着色され
た結晶粒の物体色(写真に仕上げたもの)として測定で
きた。
X from tristimulus values R, G, B in the RGB color system
The tristimulus values of the YZ color system are converted into X, Y, and Z, and
The object color data L * , a * , b * of the L * a * b * color system is obtained by the method specified in SZ 8729, or the object color data L * , a * , b * data is obtained directly. In the present invention, the data obtained by both methods were used without distinction. As a result, the typical crystal orientation of the crystal grains could be measured as the object color (finished in a photograph) of the crystal grains colored by color etching.

【0030】チタン材のスクラッチ疵が肉眼で全く判別
できない材料では、個々の結晶粒に対応する色の分布が
ランダムであったが、該疵が明瞭に判別できる材料では
同系色の色の結晶粒が集団でコロニー状に分布している
ことが分かった。各結晶粒の色の分布のランダム性の指
標として、本発明では、個々の結晶粒の物体色の色差を
JIS Z 8730の色差表示法 ΔE* ab=[(ΔL* 2 +(Δa* 2 +(Δ
* 2 1/2 で表示した。
[0030] In the case of a titanium material in which scratches can not be discerned at all with the naked eye, the distribution of colors corresponding to individual crystal grains is random, but in the case of materials in which the scratches can be clearly discriminated, crystal grains of a similar color are used. Was found to be distributed in a colony in the population. As an indicator of the randomness of the color distribution of each crystal grain, the present invention uses the color difference between the object colors of the individual crystal grains.
JIS Z 8730 color difference display method ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δ
b * ) 2 ] 1/2 .

【0031】二つの結晶粒がある場合、それぞれの物体
色の色差ΔE* abが 5.0未満の場合に同系色と判断
し、 5.0以上の場合は別系色とした。同系色の物体色を
持つ隣り合う結晶粒が作る集団の面積が 40000μm2
上の場合、これらの集団をコロニー組織と定義し、チタ
ン材のスクラッチ疵を、板面の金属組織全体に占めるこ
れらのコロニー組織の面積率で評価した。
When there are two crystal grains, when the color difference ΔE * ab of each object color is less than 5.0, it is judged to be similar color, and when it is more than 5.0, it is judged to be different color. When the area of a group formed by adjacent crystal grains having similar object colors is 40,000 μm 2 or more, these groups are defined as a colony structure, and these scratches of titanium material occupy the entire metal structure on the plate surface. The evaluation was based on the area ratio of the colony tissue.

【0032】冷間加工後に焼鈍したチタン材において
は、板面に平行な任意の面におけるコロニー組織の面積
率が30%未満であれば、後述のスクラッチ疵評点が3
以上となり、このチタン材からなるドラムにより電解金
属箔を製造した場合、スクラッチ疵による問題がなく、
電子部品のプリント配線として高精度かつ再現性のよい
ものが安定して得られる。そして、ドラムを研磨・整面
し繰返し使用しても問題ない。しかもこのような第2発
明チタン材は工業的に安定して製造し得る。
In the case of a titanium material annealed after cold working, if the area ratio of the colony structure on an arbitrary surface parallel to the plate surface is less than 30%, the scratch score described later is 3%.
As described above, when an electrolytic metal foil is manufactured by using a drum made of this titanium material, there is no problem due to scratches,
Highly accurate and highly reproducible printed wiring of electronic components can be stably obtained. There is no problem even if the drum is polished and leveled and used repeatedly. Moreover, such a second invention titanium material can be manufactured industrially stably.

【0033】なお機械的双晶の発生は、純チタンおよび
チタン低合金において材料の純度が高く、冷延前結晶粒
が大きいほど発生しやすいことが知られている。しかし
ながらチタン材には、インゴット溶製の原材料であるス
ポンジチタンにFeおよびNi濃度の高い部分が含まれてい
ることがある。このFeおよびNi濃度が高い領域は、イン
ゴット溶製およびそれに引き続く熱間鍛造、分塊圧延、
熱間圧延や途中での焼鈍工程でもマトリックス中に溶解
せず、結晶粒界および結晶粒内に粒子状に存在しマクロ
的にはバンド状に見える場合がある。
It is known that the occurrence of mechanical twinning is more likely to occur as the purity of the material is higher and the crystal grains before cold rolling are larger in pure titanium and titanium low alloy. However, in the titanium material, there is a case where sponge titanium, which is a raw material for ingot melting, contains a portion having a high Fe and Ni concentration. The region with high Fe and Ni concentration is ingot melting and subsequent hot forging, slab rolling,
Even in a hot rolling process or an annealing process in the middle, it does not dissolve in the matrix, and may be present in the form of particles at the crystal grain boundaries and in the crystal grains, and may appear macroscopically band-like.

【0034】これら粒子の存在は通常のチタン展伸材の
使用条件では全く支障のないものであるが、電解金属箔
製造ドラムの素材のように板面のマクロ組織の均一・緻
密性を問われる場合には、冷間加工を加えることにより
機械的双晶を発生させてマクロ組織の方位分散を促進す
る場合に障害となる場合がある。即ち、冷間加工によっ
て導入された機械的双晶によって分断されたマクロ組織
をその後の焼鈍工程で再結晶させ整粒化するとき、上記
のバンド状に存在する粒子群があるとバンドを越えた結
晶粒の成長が抑制されるため再結晶粒の方位分散程度が
劣化する。
Although the presence of these particles does not cause any problem under the normal use conditions of the wrought titanium material, the uniformity and denseness of the macrostructure on the plate surface are required as in the case of the material for the drum for producing an electrolytic metal foil. In such a case, it may be an obstacle to promote the orientation dispersion of the macrostructure by generating mechanical twins by performing cold working. That is, when the macrostructure separated by the mechanical twin introduced by cold working is recrystallized and sized in the subsequent annealing step, if there is a group of particles present in the above-mentioned band shape, the band exceeds the band. Since the growth of crystal grains is suppressed, the degree of orientation dispersion of recrystallized grains is deteriorated.

【0035】従って、冷間圧延素材の板面のミクロ組織
内に於てバンド状に集積したFe、Niに富む粒子が存在し
ないことが望ましい。通常のインゴットの分析値ではイ
ンゴット表層の分析箇所からサンプリングしており、イ
ンゴット分析値からインゴット全体のこのような不純物
の偏在を予測しえないが、経験的にはインゴット分析値
でFe≦0.04重量%、Ni≦0.03重量%であればバンド状に
集積したFe、Niに富む粒子の存在は認められない。従っ
て、黒皮ままで冷間加工に供する場合のように板面のミ
クロ組織検査を行ないにくい場合には上記のインゴット
分析値基準に合致する素材を用いることが特に好まし
い。
Therefore, it is desirable that there be no Fe- or Ni-rich particles accumulated in a band shape in the microstructure of the sheet surface of the cold-rolled material. With normal ingot analysis values, sampling is performed from the analysis part of the ingot surface layer, and such uneven distribution of impurities in the entire ingot cannot be predicted from the ingot analysis value, but empirically, the ingot analysis value is Fe ≤ 0.04 weight %, Ni ≦ 0.03 wt%, the presence of Fe- and Ni-rich particles accumulated in a band is not recognized. Therefore, it is particularly preferable to use a material that meets the above-mentioned ingot analysis value standard when it is difficult to perform a microstructure inspection on the plate surface, such as when cold working with black scale is performed.

【0036】冷間加工によって機械的双晶を導入しマク
ロ結晶粒内の方位分散を高くするには、焼鈍後の製品の
目標結晶粒径より素材の結晶粒径を大きくして機械的双
晶の発生を促進するのが好ましい。本用途向け製品の結
晶粒径は6.2 μm 程度が最低である。また、冷間圧延素
材として使える素材の最大結晶粒径には製品に於て望ま
しい均一・緻密性をもたらすならば特に制限はないが、
圧延素材の供給面からEBR スラブの約51mmとするのが好
ましい。
In order to increase the orientation dispersion in macro crystal grains by introducing mechanical twins by cold working, the mechanical twins must be made larger than the target crystal grain size of the product after annealing. Is preferably promoted. The minimum crystal grain size of the product for this application is about 6.2 μm. There is no particular limitation on the maximum crystal grain size of the material that can be used as a cold-rolled material, as long as the desired uniform and denseness is obtained in the product.
It is preferably about 51 mm of the EBR slab from the supply surface of the rolled material.

【0037】本発明では機械的双晶の発生量を最大限に
しつつ工業生産性を上げるための検討を行なって完成さ
れたものである。機械的双晶の冷間加工による生成量は
α相安定化不純物元素(C、O、N) の含有量によって
影響されるが、本発明が適用される工業用純チタン(J
IS1 種、2 種)及びチタン低合金ではこれらのα相安
定化不純物元素の含有は極めて低く機械的双晶の発生傾
向を大きく変えるものではなかった。しかし、機械的双
晶の発生を効率的行なうにはこれらα相安定化不純物元
素を極力少なくし、冷間加工前に蓄積されていた歪を焼
鈍などで解消しておくことが好ましい。
The present invention has been completed by studying to increase industrial productivity while maximizing the generation of mechanical twins. The amount of mechanical twins formed by cold working is affected by the content of the α-phase stabilizing impurity element (C, O, N).
The contents of these α-phase stabilizing impurity elements were extremely low in the low alloys of IS1 and 2) and titanium low alloys, and did not significantly change the tendency to generate mechanical twins. However, in order to efficiently generate mechanical twins, it is preferable to reduce the amount of the α-phase stabilizing impurity element as much as possible and to eliminate the strain accumulated before cold working by annealing or the like.

【0038】つぎに本発明の第1発明法は、熱間加工さ
れた素材を冷間圧延することにより、全板厚範囲にわた
って所定量の機械的双晶を発生させ、上記第1発明チタ
ン材を製造する方法である。本発明では、チタン材のス
クラッチ疵の原因を不均一なマクロ組織の残存に起因す
るものとして捉えている。電解金属箔製造ドラム用のチ
タン材用を冷間圧延により製造する際、その素材の熱間
加工材に存在するコロニー等の不均一なマクロ組織を、
機械的双晶を発生させることによって全板厚範囲で破壊
する。その条件として、冷間圧延時の圧延ロール回転数
Rc(rps 回/秒)を、圧延ロール直径D(mm)に応じ
て上記(1)式で示される範囲に制御しながら、圧下率
15%以上の冷間圧延を行う。
Next, in the first invention method of the present invention, a hot-worked material is cold-rolled to generate a predetermined amount of mechanical twins over the entire thickness range. It is a method of manufacturing. In the present invention, the cause of the scratch flaw of the titanium material is considered to be caused by the remaining of a non-uniform macrostructure. When manufacturing the titanium material for the electrolytic metal foil production drum by cold rolling, the non-uniform macrostructure such as colonies existing in the hot-worked material of the material,
Breaks down over the entire thickness range by generating mechanical twins. As a condition, the rolling reduction rate 15% is controlled while controlling the rolling roll rotation speed Rc (rps times / second) during the cold rolling to a range represented by the above formula (1) according to the rolling roll diameter D (mm). The above cold rolling is performed.

【0039】純チタンやチタン合金など、主たる構成相
の結晶構造が六方晶である材料を塑性加工するとき、辷
り変形の他に機械的双晶が発生し、塑性加工歪をかなり
の割合で担うことが知られている(例えば、「金属チタ
ンとその応用」、日刊工業新聞社、昭和58年刊)。こ
のとき、機械的双晶の形状は直線あるいは笹の葉型のバ
ンド状で、結晶粒を直線的に貫通して生成する。
When plastically working a material whose main constituent phase is hexagonal, such as pure titanium or a titanium alloy, mechanical twinning occurs in addition to slip deformation, and a considerable amount of plastic working strain is caused. This is known (for example, "Metal titanium and its application", Nikkan Kogyo Shimbun, 1983). At this time, the shape of the mechanical twin is a straight line or a bamboo leaf-shaped band, and is generated by penetrating the crystal grains linearly.

【0040】そのため、加えられた平均歪量に比べては
るかに大きな塑性歪を局部的に与えることができるばか
りでなく、コロニー組織を構成する比較的大きな結晶粒
でも効率良く分断し、その内部の結晶方位の分散度を高
くすることができる。したがって機械的双晶の発生によ
りコロニー等の不均一な組織を効果的に破壊できる。機
械的双晶の生成後は辷り変形が主に塑性変形歪を担うこ
とになるが、辷り変形は既に機械的双晶により分断され
てできたサブ結晶粒の内部で活動するので、コロニー組
織を破壊する能力は機械的双晶に比べて小さい。
[0040] Therefore, not only can a plastic strain far greater than the applied average strain amount be locally applied, but also relatively large crystal grains constituting a colony structure can be efficiently divided, and the inside of the crystal grains can be efficiently separated. The degree of dispersion of crystal orientation can be increased. Therefore, the generation of mechanical twins can effectively destroy an uneven structure such as a colony. After mechanical twins are formed, slip deformation mainly causes plastic deformation strain.However, since slip deformation is already active inside sub-crystal grains that have been separated by mechanical twins, the colony structure is reduced. The ability to break is small compared to mechanical twins.

【0041】純チタンやチタン低合金は熱伝導性が悪い
ため、塑性加工時に歪速度を大きくすると発生する熱が
外部に発散せず材料の温度が上昇し易い。また機械的双
晶は、材料温度が上がるにつれてその生成が減少するこ
とが知られている。そこで、高純度チタン材において機
械的双晶の発生量と冷間加工条件との関係を詳しく調べ
た。また、電解金属箔製造ドラム用チタン材にはマクロ
組織の均一性と緻密性が板厚方向にも求められているこ
とから、機械的双晶の発生量は、L断面すなわち圧延方
向と板厚方向とを含む断面で全板厚範囲にわたって観察
し、面積率を求めた。
Since pure titanium and titanium low alloy have poor thermal conductivity, when the strain rate is increased during plastic working, the heat generated does not radiate to the outside, and the temperature of the material tends to rise. It is also known that the formation of mechanical twins decreases as the material temperature increases. Therefore, the relationship between the amount of mechanical twins generated and the cold working conditions in a high-purity titanium material was examined in detail. In addition, since the titanium material for the electrolytic metal foil production drum is required to have uniform macrostructure and denseness also in the sheet thickness direction, the amount of mechanical twins is determined by the L cross section, that is, the rolling direction and the sheet thickness. Observation was made over the entire thickness range in a cross section including the direction, and the area ratio was determined.

【0042】工業用JIS1種(Fe:0.013重量%、N
i:0.010重量%)の熱延板(板厚10mm)を、真空クリー
プ矯正機(VCF,Vacuum Creep Flattening equipment)内
で、675℃×60分保持後炉冷の VCF焼鈍を施し、黒
皮ままの状態で種々のロール径を持つ冷間圧延機および
厚板熱延機を用いて冷間圧延を行い、機械的双晶の面積
率が25%以上となる冷間圧延条件を調査した。なお VCF
焼鈍は、 VCF装置内にて熱間形状矯正と焼鈍を同時に行
うことを指す。厚板・中板などレベラー矯正が困難な材
料を単独あるいは積層した後、炉内を雲母粉などで充填
した後、加熱しながら真空引きすると大気圧が板材に作
用して微小なクリープ変形が生じて形状が矯正されて平
坦な板材を製造できる。
Industrial JIS Class 1 (Fe: 0.013% by weight, N
i: 0.010% by weight) hot-rolled sheet (plate thickness 10 mm) was held in a vacuum creep straightening machine (VCF, Vacuum Creep Flattening equipment) at 675 ° C for 60 minutes, and then subjected to furnace-cooled VCF annealing, leaving black scale In this state, cold rolling was performed using a cold rolling mill having various roll diameters and a hot strip mill, and the cold rolling conditions under which the area ratio of mechanical twins was 25% or more were investigated. VCF
Annealing refers to simultaneous hot shape correction and annealing in a VCF device. After singly or laminating materials that are difficult to leveler correction such as thick plate and middle plate, fill the furnace with mica powder, etc., and then apply vacuum while heating, and the atmospheric pressure will act on the plate material to cause slight creep deformation The shape can be corrected to produce a flat plate material.

【0043】冷間圧延の圧延ロール直径Dは60〜16
90mm、圧延ロール回転数Rcは0.1〜10rps 、潤
滑は無潤滑、鉱物油、牛脂系油を適宜圧延機と組み合わ
せて使用した。パス毎の圧下量は、圧延ロールの損壊を
防ぐため、ロール径を考慮して定めた。圧延機のロール
径を大きく変えるため、実験室規模の小型圧延機や実生
産用の大型熱延機を用いて室温約28℃で実験を行っ
た。実験では冷延時の総圧下率を25%に統一して行っ
た。
The roll diameter D of the cold rolling is 60 to 16
90 mm, the roll rotation speed Rc was 0.1 to 10 rps, lubrication was unlubricated, and mineral oil and tallow oil were used in combination with a rolling mill as appropriate. The rolling reduction for each pass was determined in consideration of the roll diameter in order to prevent the roll from being damaged. In order to greatly change the roll diameter of the rolling mill, an experiment was performed at a room temperature of about 28 ° C. using a laboratory-scale small rolling mill or a large hot rolling mill for actual production. In the experiment, the total rolling reduction during cold rolling was unified to 25%.

【0044】図1は、冷間圧延の圧延ロール直径Dと圧
延ロール回転数Rcを座標とし、機械的双晶の面積率が
25%以上となる限界条件の曲線を示す。この曲線を含
み、曲線より下の領域で機械的双晶の面積率が25%以
上となり、この条件を式で示したのが上記(1)式であ
る。曲線より上の領域では、加工時の歪速度が高すぎる
ため双晶の発生前に辷り変形が優先しておこり機械的双
晶の面積率が25%未満となる。このように、機械的双
晶の発生量は塑性加工法の種類には依存しないが、加工
時の歪速度には敏感であることから、本発明チタン材の
製造に当たっては従来の展伸材の場合以上に製造条件に
配慮することが重要である。
FIG. 1 shows a curve of a critical condition in which the area ratio of mechanical twins is 25% or more, using the roll diameter D and the roll rotation speed Rc of the cold rolling as coordinates. The area ratio of the mechanical twins including the curve and below the curve is 25% or more, and this condition is represented by the above formula (1). In the region above the curve, since the strain rate during processing is too high, slip deformation occurs preferentially before twinning occurs, and the area ratio of mechanical twins becomes less than 25%. As described above, the amount of mechanical twins does not depend on the type of plastic working method, but is sensitive to the strain rate during working.Therefore, in producing the titanium material of the present invention, the conventional wrought material is not used. It is more important to consider the manufacturing conditions than in the case.

【0045】図2は、図1の関係を求める上記実験にお
いて、ロール直径D、ロール回転数Rc、潤滑条件な
ど、種々の条件で冷間圧延したときに観察される機械的
双晶面積率の最大値と圧下率との関係を示す。すなわち
図2は、機械的双晶面積率を25%以上とするには、圧
下率を15%以上にする必要があることを示している。
以上の実験は熱延板に VCF焼鈍を施したものについて行
ったが、大気中で焼鈍を施したものについても、また焼
鈍を施さないものについても、同様の結果が得られた 電解金属箔製造ドラムを製作する工程においては、チタ
ン材を円筒状に加工したり、あるいは溶接などのドラム
長手方向の接合模様の除去のために相当量の付加的な塑
性加工と研削加工が必要であり、必ずしも通常の展伸材
に求められるような表面性状を冷延板の状態で持たせる
必要はない。そこで、本発明法の冷間圧延では、むし
ろ、黒皮スケールの潤滑効果を利用するのが好ましい。
すなわち、熱間加工工程で生成したスケールを表面に付
けたままで、あるいはスケールを付けたまま大気中また
は VCF(真空クリープ矯正機)で焼鈍を行った後、スケ
ールを残したままで冷間圧延するのが好ましい。この場
合、冷間圧延は、一種の機械的デスケール効果を与える
ので、引き続いてショットブラストと酸洗処理を行うこ
とで表面のデスケールを効率的に行って、そのまま電解
金属箔製造ドラムの素材とすることができる。
FIG. 2 is a graph showing the relationship between the mechanical twin area ratio observed during cold rolling under various conditions such as the roll diameter D, the roll rotation speed Rc, and lubrication conditions in the above-described experiment for obtaining the relationship shown in FIG. The relationship between the maximum value and the rolling reduction is shown. That is, FIG. 2 shows that in order to make the mechanical twin area ratio 25% or more, the rolling reduction needs to be 15% or more.
The above experiments were performed on hot-rolled sheets annealed with VCF.Similar results were obtained for both annealed in air and those not annealed. In the process of manufacturing the drum, a considerable amount of additional plastic processing and grinding is necessary for processing the titanium material into a cylindrical shape or removing the joining pattern in the longitudinal direction of the drum such as welding, and is not necessarily required. It is not necessary to provide the surface properties required for ordinary wrought materials in the state of a cold rolled sheet. Therefore, in the cold rolling according to the present invention, it is preferable to use the lubrication effect of the black scale.
In other words, after the scale formed in the hot working process is attached to the surface, or with the scale attached, it is annealed in the air or with a VCF (vacuum creep straightening machine), and then cold-rolled with the scale remaining. Is preferred. In this case, cold rolling gives a kind of mechanical descale effect, so that the surface is efficiently descaled by performing shot blasting and pickling treatment, and is used as it is as a material for the electrolytic metal foil production drum be able to.

【0046】なお従来の工業用純チタンやチタン低合金
の展伸材の製造においては、冷間圧延前に熱延板をその
まま、あるいは軟化のための再結晶焼鈍を行った後、シ
ョットブラストなどの機械的デスケール処理とその後に
引き続く酸洗処理を行って、熱延板の表面のスケール
(酸化皮膜、黒皮とも言う)を完全に除去した後冷間圧
延を行うことが常識となっている。これは、不必要な酸
化やガス吸収を回避するため、冷間圧延後の板を脱脂
後、そのまま真空焼鈍し、冷延板の表面性状がそのまま
製品表面となる薄板製品を製造する場合が主であること
によっている。
In the conventional production of wrought products of industrial pure titanium or titanium low alloy, the hot-rolled sheet may be used as it is before cold rolling, or may be subjected to recrystallization annealing for softening, followed by shot blasting. It is common sense to perform a mechanical descaling process and a subsequent pickling process to completely remove the scale (also referred to as oxide film or black scale) on the surface of the hot-rolled sheet and then perform cold rolling. . This method is mainly used to manufacture a sheet product in which the cold-rolled sheet is directly degreased and then vacuum-annealed to avoid unnecessary oxidation and gas absorption, and the surface properties of the cold-rolled sheet become the product surface as it is. It is by being.

【0047】本発明法では、上記のようにスケール付き
素材を冷間圧延するのが好ましい。熱間加工まま、ある
いはそれを大気中または VCFで焼鈍しただけのスケール
付き状態の材料は、スケールの下に、熱間加工時の剪断
変形の集中によって細粒化した部分があるため、これら
が、冷延時の粒界での割れの防止に寄与する効果もあ
る。
In the method of the present invention, it is preferable to cold-roll the raw material with scale as described above. Materials with scales that have been hot worked or have just been annealed in the air or with VCF have fine-grained parts under the scale due to the concentration of shear deformation during hot working. In addition, it also has an effect of contributing to prevention of cracks at grain boundaries during cold rolling.

【0048】しかし、やむを得ない理由、例えば一旦別
の用途向けに製造したチタン製品を電解金属箔製造ドラ
ム用とするときには、圧延素材は既にデスケールされて
おり、表面の黒皮を除去した状態で冷延することにな
る。また、通常の展伸材の製造プロセスでは、製品にす
るための精整工程でこれらを黒皮と一緒に除去してしま
うため、一旦製品に仕上げたものを再度冷間加工する際
には上述のような問題が起きうる。
However, for unavoidable reasons, for example, when a titanium product once manufactured for another use is used for an electrolytic metal foil manufacturing drum, the rolled material is already descaled, and is cooled in a state where black scale on the surface is removed. Will be delayed. Also, in the normal wrought material manufacturing process, these are removed together with the black scale in the refining process for making the product, so when cold-working the product once finished, The following problems may occur.

【0049】そこで本発明者らは、緻密な板面金属組織
を有するドラム用チタン材を提供する観点から、冷延素
材として、大きな結晶粒径を有するEBR(電子ビーム
再溶解)スラブから切り出した切片(板面での平均結晶
粒径51mm)、円筒状にドラムを製造するときドラム長
手方向溶接部相当の結晶粒度を持った分塊スラブから切
り出した切片(板面での平均結晶粒径2.2mm)、およ
び熱延板(板厚10mm)を大気中で560℃〜790℃
で30分保定後空冷の焼鈍を施し表面を機械切削したも
の(板面での平均結晶粒径6.2〜118.1μm)を
用いて実験を行った。これらはいずれも一連の工業用純
チタンJIS2種(Fe: 0.04重量%、Ni: 0.02重量
%)材である。
Therefore, the present inventors cut out from an EBR (Electron Beam Remelting) slab having a large crystal grain size as a cold rolled material from the viewpoint of providing a titanium material for a drum having a dense metal structure on a plate surface. Sections (average crystal grain size on the plate surface 51 mm), slices cut from a lump slab having a crystal grain size equivalent to the weld in the longitudinal direction of the drum when manufacturing the drum in a cylindrical shape (average crystal grain size 2 on the plate surface) .2 mm) and a hot-rolled sheet (plate thickness 10 mm) in air at 560 ° C. to 790 ° C.
An experiment was performed using an air-cooled annealed and machine-cut surface (average crystal grain size on the plate surface: 6.2 to 118.1 μm) after holding for 30 minutes at. Each of these is a series of industrial pure titanium JIS Class 2 (Fe: 0.04% by weight, Ni: 0.02% by weight) materials.

【0050】これらの冷延素材を、無潤滑で実験室規模
の小型圧延機や実生産用の大型熱延機を用いて、圧延ロ
ール径を60〜1690mmと大きく変えて室温約28℃
で冷延した。なお冷延時の総圧下率は20%に統一して
行った。また、割れの発生を検知しやすくするため圧延
素材の表面は機械切削後酸洗しバフ研磨して鏡面に仕上
げた。圧延後の冷延板の表面を実体顕微鏡を用いて表面
粒界割れの有無を調べて、割れが発生しない圧延条件を
調べた結果、冷延素材の結晶粒径d(μm)に対し圧延
ロール径D(mm)を上記(2)式を満たすように選ぶこ
とで、粒界割れを防止できることが判明した。
Using a non-lubricated laboratory-scale small rolling mill or a large-scale hot rolling mill for actual production, these cold-rolled materials were subjected to drastic changes in the rolling roll diameter to 60 to 1690 mm and a room temperature of about 28 ° C.
Cold rolled. The total rolling reduction during cold rolling was unified to 20%. Further, the surface of the rolled material was mirror-finished by pickling and buffing after mechanical cutting to make it easier to detect the occurrence of cracks. The surface of the cold-rolled sheet after rolling was checked for surface grain boundary cracks using a stereoscopic microscope, and the rolling conditions under which cracks did not occur were checked. It has been found that by selecting the diameter D (mm) so as to satisfy the above equation (2), grain boundary cracking can be prevented.

【0051】なお本発明法では、冷間加工時の機械的双
晶の発生を最大限にするため圧延ロールの回転数を制限
することによって加工発熱による機械的双晶の発生率低
下を防止している。一方、従来のチタン及びチタン低合
金の展伸材の冷間圧延において、圧延速度が定常状態に
達するまでの加速段階と圧延終了に至るまでの減速段階
では、圧延ロール回転数が一時的には本発明法の範囲と
なることが有りうる。しかし、本発明法では圧延速度が
定常状態になった段階でのロール回転数を規定してい
る。
In the method of the present invention, the rate of occurrence of mechanical twins due to processing heat is prevented by limiting the number of rotations of a rolling roll in order to maximize the generation of mechanical twins during cold working. ing. On the other hand, in conventional cold rolling of wrought titanium and titanium low alloy, in the acceleration stage until the rolling speed reaches a steady state and the deceleration stage until the end of the rolling, the rolling roll rotation speed is temporarily It may be within the scope of the present method. However, in the method of the present invention, the number of rotations of the roll at the stage when the rolling speed reaches a steady state is defined.

【0052】つぎに第2発明法について述べる。本発明
の第2発明法は、上記第1発明法で得られたチタン材を
大気中または真空クリープ矯正機内で焼鈍することによ
り、上記第2発明チタン材を製造する方法である。第1
発明法により冷間加工して、L断面における全板厚断面
の機械的双晶面積率を25%以上とすることにより、冷
延素材に存在したコロニー組織が機械的に破壊され緻密
な組織となる。これを再結晶焼鈍すると、マクロ組織内
部の結晶方位分散が進み、スクラッチ疵の発生が解消さ
れると考えられる。このような観点から本発明者らは冷
間圧延時に発生する機械的双晶の面積率と、再結晶後の
チタン材のスクラッチ疵との関係を調べた。
Next, the second invention method will be described. The second invention method of the present invention is a method for producing the second invention titanium material by annealing the titanium material obtained by the first invention method in the air or in a vacuum creep straightening machine. First
By performing cold working according to the invention method to make the mechanical twin area ratio of the entire sheet thickness section in the L section 25% or more, the colony structure existing in the cold-rolled material is mechanically broken, and Become. It is considered that, when this is recrystallized and annealed, the dispersion of the crystal orientation in the macrostructure proceeds, and the occurrence of scratches is eliminated. From such a viewpoint, the present inventors examined the relationship between the area ratio of mechanical twins generated during cold rolling and the scratches of the titanium material after recrystallization.

【0053】すなわち、工業用純チタン1種(Fe:0.0
28重量%、Ni:0.015重量%)の熱延板(板厚10mm)で
黒皮がついたままの熱延板、及びそれを大気中で690
℃×30分保持する焼鈍を施したやはり黒皮ままの熱延
焼鈍板を、ワークロール径270mmの4段式圧延機に
て、そのまま冷間圧延に供した。圧延ロールの回転数は
0.5rps とし、無潤滑で、平均各パス0.5mmの圧下
を掛けて、総圧下率が5〜90%の範囲で冷延するとと
もに5%毎にサンプリングした。なお、各パス毎に室温
(25℃)の水中に浸漬して板の温度が一定になるよう
に注意した。
That is, one kind of industrial pure titanium (Fe: 0.0
28% by weight, Ni: 0.015% by weight) hot-rolled sheet (plate thickness 10 mm) with black scale, and 690 in air.
The hot-rolled annealed plate which had been annealed and kept at 30 ° C. for 30 minutes was also subjected to cold rolling as it was in a four-high rolling mill having a work roll diameter of 270 mm. The number of rotations of the rolling roll was set to 0.5 rps, and the sample was rolled without lubrication, subjected to a reduction of 0.5 mm on each average pass, cold rolled in a range of a total reduction ratio of 5 to 90%, and sampled every 5%. It was noted that each pass was immersed in water at room temperature (25 ° C.) so that the temperature of the plate became constant.

【0054】これら圧下率の異なる冷延板のL断面にお
ける全板厚断面の機械的双晶面積率を3カ所測定し平均
値を求めた。さらに、冷延板に大気中で650℃×30
分保定後空冷の焼鈍を施し、また板面に平行に深さ2mm
だけ研削し、さらに#320研磨を行って、通常の硝弗
酸系のマクロ腐食液でエッチングした後、前記のように
定義したコロニー面積率(コロニー組織の面積率)を指
標にスクラッチ疵の判定を行った。スクラッチ疵は、コ
ロニー面積率に応じて次のように決めた。
The mechanical twin area ratios of all cross sections of the cold rolled sheet having different rolling reductions in the L cross section were measured at three places, and the average value was obtained. Furthermore, 650 ° C. × 30
After cooling, air-cooled annealing is applied, and the depth is 2mm parallel to the plate surface.
After grinding with only # 320 and etching with a normal nitric hydrofluoric acid-based macro-corrosion solution, judgment of scratches is made using the colony area ratio (area ratio of colony tissue) defined above as an index. Was done. Scratch flaws were determined as follows according to the colony area ratio.

【0055】 評点0:コロニー面積率75%以上〜100%未満 評点1:コロニー面積率50%以上〜 75%未満 評点2:コロニー面積率30%以上〜 50%未満 評点3:コロニー面積率10%以上〜 30%未満 評点4:コロニー面積率 5%以上〜 10%未満 評点5:コロニー面積率 0%以上〜 5%未満 スクラッチ疵は、上記評点0〜評点5の6段階評価で評
点3以上を合格と判定した。
Score 0: Colony area ratio of 75% or more to less than 100% Score 1: Colony area ratio of 50% to less than 75% Score 2: Colony area ratio of 30% to less than 50% Score 3: Colony area ratio of 10% Score: less than 30% Score 4: Colony area ratio 5% or more to less than 10% Score 5: Colony area ratio 0% or more to less than 5% Scratch flaws are scored 3 or more in the 6-point scale of score 0 to score 5 above. It was determined to pass.

【0056】図3は冷延板中での機械的双晶面積率とス
クラッチ疵評点の関係を示したもので、双晶面積率が増
加するにつれてスクラッチ疵が改善されることを示して
いる。図3から、冷延板中の双晶面積率が25%以上の
ものはスクラッチ疵評点が3以上の合格レベルになるこ
とがわかる。なおこの試験では平面研削ができるように
冷延ままの材料を冷間ロールレベラーを通して形状矯正
を行ったが、板厚を変化させないかぎり冷間ロールレベ
ラー矯正による付加的な双晶の発生は非常に少ないこと
を別の実験で確認した。
FIG. 3 shows the relationship between the mechanical twin area ratio in the cold rolled sheet and the scratch score, and shows that the scratch is improved as the twin area ratio increases. From FIG. 3, it is understood that those having a twin area ratio of 25% or more in the cold-rolled sheet have an acceptable scratch score of 3 or more. In this test, the shape of the cold rolled material was corrected through a cold roll leveler so that surface grinding could be performed.However, as long as the sheet thickness was not changed, the generation of additional twins due to the cold roll leveler correction was extremely large. It was confirmed in another experiment that it was small.

【0057】機械的双晶導入によるコロニー組織の分断
効果は、熱延板の焼鈍有無や冷延圧下量には関係なく機
械的双晶の占める割合でのみ決定されることが図3から
わかる。なお、上記の結果は圧延という塑性加工法の一
つを用いて検討を行い得られたものであるが、マクロ模
様の解消に有効なのは圧延という塑性加工法ではなく、
発生する機械的双晶の発生量が大きな影響を及ぼすので
あり、基本的には加工方法には依存しない。
FIG. 3 shows that the effect of dividing the colony structure by the introduction of mechanical twins is determined only by the ratio of mechanical twins irrespective of the presence or absence of annealing of a hot-rolled sheet and the amount of reduction in cold rolling. In addition, the above results were obtained by conducting studies using one of the plastic working methods called rolling, but it is not the plastic working method called rolling that is effective in eliminating the macro pattern,
The amount of generated mechanical twins has a great influence, and basically does not depend on the processing method.

【0058】第1発明法においてスケールを付けたまま
で冷延を行った材料は、往々にして加工硬化しており、
ドラム製造時の矯正段階で曲がりにくく作業性が悪い場
合がある。また、残留応力があると矯正後の切削段階で
ゆがみを生じ易い。そのような場合、第2発明法により
冷延圧延後に焼鈍を入れて軟化させることで問題は解消
される。
The material subjected to cold rolling with the scale attached in the first invention method is often work-hardened,
There is a case where it is difficult to bend at the straightening stage during the production of the drum and the workability is poor. Also, if there is residual stress, distortion is likely to occur in the cutting stage after straightening. In such a case, the problem is solved by softening by annealing after cold rolling by the second invention method.

【0059】[0059]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。
EXAMPLES The present invention will be further described below with reference to examples.

【0060】(実施例1)工業用純チタンJIS1種
(Fe=0.014 重量%、Ni=0.010 重量%)の黒皮がつい
たままの熱延板(板厚12mm)、およびそれを真空クリー
プ矯正機内で 660℃×2 時間保定後炉冷の焼鈍を施した
やはり黒皮ままの熱延焼鈍板を、ワークロール径200mm
の実験用4 段式圧延機にて無潤滑で室温25℃で冷延し
た。圧下率は5%〜80%の範囲で変化させた。圧延ロー
ルの回転数は1.3 (回/秒)とした。これらのサンプル
の圧延方向と板厚方向を含む面での双晶発生面積率の全
板厚平均値を測定した。冷延板に690 ℃×30分保定後空
冷の焼鈍を大気中で行ない、黒皮表面下2mm まで研削
し、更に#320 研磨を行なって通常の硝沸酸系のマクロ
腐食液でエッチングして、スクラッチ疵の目視判定を行
なった。その結果、表1に示すように、機械的双晶発生
率が25%以上ではスクラッチ疵判定は合格であるもの
の、25%未満では熱延板焼鈍の有無に関係なくスクラッ
チ疵判定は不合格であった。
(Example 1) Hot rolled sheet (sheet thickness 12 mm) with black scale of JIS Class 1 (Fe = 0.014 wt%, Ni = 0.010 wt%) for industrial pure titanium, and vacuum creep straightening A hot-rolled annealed plate that has been kept in the machine at 660 ° C for 2 hours and then subjected to furnace cooling annealing, while still being black-scaled, has a work roll diameter of 200 mm.
Cold rolled at room temperature 25 ° C without lubrication using a four-high rolling mill for experiments. The rolling reduction was changed in the range of 5% to 80%. The number of rotations of the rolling roll was 1.3 (times / second). The average thickness of the twins in the plane including the rolling direction and the thickness direction of these samples was measured. After holding at 690 ° C for 30 minutes on the cold rolled sheet, air-cooled annealing is performed in the air, ground to 2mm below the surface of the black scale, and then # 320 polished and etched with a normal nitric acid-based macro-corrosion solution. Then, visual determination of scratches was performed. As a result, as shown in Table 1, when the mechanical twinning rate was 25% or more, the scratch flaw judgment was passed, but when the mechanical twinning rate was less than 25%, the scratch flaw judgment was rejected regardless of the presence or absence of hot-rolled sheet annealing. there were.

【0061】[0061]

【表1】 [Table 1]

【0062】(実施例2)工業用純チタンJIS1種
(Fe=0.030 重量%、Ni=0.017 重量%)の熱延板(板
厚12mm)を大気中で690 ℃×30分の焼鈍を施し、黒皮ま
まの状態で60〜1690mmのロール径を持つ実験用冷間圧延
機および実生産用の大型厚板熱延機を用いて、ロール回
転数を変えて室温約15℃で冷間圧延を行ない、機械的双
晶の発生面積率を求めた。潤滑は無潤滑、鉱物油、牛脂
系油を適宜圧延機と組み合わせて使用した。パス毎の圧
下量は圧延ロールの損壊を防ぐため、ロール径を考慮し
て5 〜11%で実施した。なお、冷延時での総圧下率を33
%に統一して行なった。その結果、表2に示すように、
(1)式の範囲の本発明例は双晶面積率が25%以上で
あった。
Example 2 An industrial pure titanium JIS Class 1 (Fe = 0.030 wt%, Ni = 0.017 wt%) hot rolled sheet (sheet thickness 12 mm) was annealed in the air at 690 ° C. for 30 minutes. Using a laboratory cold rolling mill with a roll diameter of 60 to 1690 mm and a large thick plate hot rolling mill for actual production while changing the roll speed, cold rolling is performed at room temperature of about 15 ° C while changing the roll speed. Then, the generation area ratio of mechanical twins was determined. Lubrication was used without lubrication, using mineral oil and tallow oil in combination with a rolling mill as appropriate. The rolling reduction per pass was 5-11% in consideration of the roll diameter in order to prevent the roll from being damaged. The total rolling reduction during cold rolling was 33
%. As a result, as shown in Table 2,
In the examples of the present invention in the range of the formula (1), the twin area ratio was 25% or more.

【0063】[0063]

【表2】 [Table 2]

【0064】(実施例3)冷延素材として工業用純チタ
ンJIS1 種(Fe=0.020 重量%、Ni=0.012 重量%)
のEBR (電子ビーム再溶解) 薄スラブから切り出した板
厚10mmの切片(板面での平均結晶粒径=48mm)、熱延板
(板厚10mm)を大気中で690 ℃×30分保定空冷(0.04m
m)、840 ℃×5 時間保定空冷(0.28mm)、880 ℃×11
時間保定炉冷(0.47mm)の焼鈍を施し表面を機械切削・
酸洗・鏡面研磨したものを、無潤滑で圧延ロール径と圧
延ロールの回転数を変化させ室温約25℃で冷延した。な
お冷延時の総圧下率は40%に統一して行なった。表3か
ら結晶粒径d(μm)に対し圧延ロール径D(mm)を
(2)式を満たすように選ぶことが粒界割れの防止に有
効であることが判明した。
(Example 3) JIS Class 1 pure industrial titanium (Fe = 0.020 wt%, Ni = 0.012 wt%) as a cold rolled material
EBR (Electron Beam Remelting) A 10mm-thick slice (average crystal grain size at the plate surface = 48mm) cut from a thin slab and a hot-rolled plate (10mm thick) kept in air at 690 ° C for 30 minutes. (0.04m
m), 840 ° C x 5 hours, air cooling (0.28mm), 880 ° C x 11
Annealed for 0.4 hours, and machine cut the surface.
Pickling and mirror polishing were cold-rolled at room temperature of about 25 ° C. without changing the rolling roll diameter and the number of rotations of the rolling roll without lubrication. The total rolling reduction during cold rolling was unified to 40%. From Table 3, it was found that selecting the rolling roll diameter D (mm) for the crystal grain diameter d (μm) so as to satisfy the expression (2) is effective for preventing grain boundary cracking.

【0065】[0065]

【表3】 [Table 3]

【0066】(実施例4)工業用純チタンJIS1 種
(Fe=0.015 重量%、Ni=0.019 重量%)およびチタン
低合金Ti-0.2Pd ASTM garde7(Fe=0.030 重量%、Ni=
0.017 重量%)、Ti-0.3Mo-0.8Ni (ASTM garde12) (Fe
=0.020 重量%、Ni=0.72重量%)の黒皮まま熱延板
(板厚10mm〜12mm、幅2940×長さ10000mm )と、それら
を更に真空クリープ矯正炉内で真空脱気しながら670 ℃
〜720 ℃で30分〜2 時間の加熱保持を行ない形状矯正と
焼鈍を同時に行なった黒皮付き焼鈍板を用いた。
(Example 4) JIS Class 1 pure titanium for industrial use (Fe = 0.015 wt%, Ni = 0.019 wt%) and titanium low alloy Ti-0.2Pd ASTM garde7 (Fe = 0.030 wt%, Ni =
0.017 wt%), Ti-0.3Mo-0.8Ni (ASTM garde12) (Fe
= 0.020% by weight, Ni = 0.72% by weight) Hot rolled sheets (plate thickness: 10mm to 12mm, width: 2940 x length: 10,000mm) with black scale and 670 ° C while further degassing them in a vacuum creep straightening furnace
An annealed plate with black scale was used, which was heated and maintained at 720720 ° C. for 30 minutes to 2 hours and subjected to shape correction and annealing simultaneously.

【0067】圧延ロール径と圧延ロールの回転数を変化
させ総圧下率40%の無潤滑の冷間圧延を室温約28℃で行
なった。なお、真空クリープ処理を行なっても熱延板の
黒皮は一部が変色するだけスケールの厚みに変化はなか
った。冷間圧延後一部分からサンプルを採取し機械的双
晶の発生面積率を測定した。冷延後、いずれの冷延板も
各々通常の大気焼鈍(675 ℃×60分加熱保定後空冷)と
真空クリープ矯正機内での焼鈍(660 ℃×2 時間保定後
炉冷)を行なった後、上述の方法で板面のスクラッチ疵
の評点を付けた。表4に示すように、いずれの焼鈍でも
疵の評点には差がなかった。双晶発生面積率を上記知見
に従って制御したものではスクラッチ疵の改善が確認で
きた。
The rolling roll diameter and the number of revolutions of the rolling roll were changed, and non-lubricated cold rolling at a total reduction of 40% was performed at room temperature of about 28 ° C. In addition, even if vacuum creep processing was performed, the black scale of the hot rolled sheet was partially discolored and the scale thickness was not changed. After cold rolling, a sample was taken from a portion and the area ratio of occurrence of mechanical twins was measured. After cold rolling, each of the cold rolled sheets was subjected to normal air annealing (675 ° C x 60 minutes heating and air cooling after holding) and annealing in a vacuum creep straightening machine (660 ° C x 2 hours holding and furnace cooling), The scratch score on the plate surface was scored by the above method. As shown in Table 4, there was no difference in the score of the flaw in any of the annealings. When the twinning area ratio was controlled in accordance with the above findings, improvement in scratches was confirmed.

【0068】[0068]

【表4】 [Table 4]

【0069】[0069]

【発明の効果】本発明は、電子部品プリント配線板など
に用いられている電解Cu箔などの電解金属箔を製造する
ための回転ドラム用のチタン材およびその製造法であっ
て、該チタン材に含まれる不均一なマクロ組織が金属箔
表面に転写して生成するスクラッチ疵の解消方法を詳細
に検討して、チタン及びチタン低合金製ドラムの素材製
造工程の中で、素材の冷延工程に着目して冷延時におけ
る全板厚にわたる機械的双晶の発生量を、圧延ロール、
圧延ロール回転数、圧延素材の結晶粒径によって制御
し、ドラム素材が原素材からの加工工程で引き継いでき
たマクロ組織を一挙に破壊・解消することを可能とする
製造方法ならびにそのドラム素材を提供するものであ
る。本発明は当該ドラム素材、ドラム、Cu箔など電解金
属箔製品の品質向上、生産効率及び歩留りを向上させる
経済的な効果が大きく、従来からのチタン及び低チタン
合金展伸材のミクロ組織及びマクロ組織の均一化・緻密
化にもその技術的思想を適用できることなどからその工
業的価値は大きい。
The present invention relates to a titanium material for a rotating drum for producing an electrolytic metal foil such as an electrolytic Cu foil used for an electronic component printed wiring board and the like, and a method for producing the same. Investigating in detail the method of eliminating scratches generated by transferring the uneven macrostructure contained in the metal foil surface to the metal foil surface, the cold rolling process of the material in the material manufacturing process of titanium and titanium low alloy drum Paying attention to, the amount of mechanical twinning over the entire sheet thickness during cold rolling
Provided is a manufacturing method and a drum material that can be controlled by the number of rotations of a rolling roll and the crystal grain size of the rolled material, thereby enabling the macrostructure that the drum material has succeeded in the processing step from the original material to be destroyed and eliminated at once. Is what you do. The present invention has a great economical effect of improving the quality, production efficiency and yield of electrolytic metal foil products such as the drum material, drum and Cu foil, and has a great effect on the conventional microstructure and macrostructure of titanium and low titanium alloy wrought materials. Its industrial value is great because its technical ideas can be applied to uniform and dense organization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法における冷間圧延におけるロール直径
とロール回転数との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a roll diameter and a roll rotation speed in cold rolling in the method of the present invention.

【図2】冷間圧延における総圧下率と冷延板に発生する
機械的双晶面積率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a total draft in cold rolling and a mechanical twin area ratio generated in a cold-rolled sheet.

【図3】熱延板及びそれを大気中で焼鈍した材料を種々
の総圧延率で冷延した時の双晶面積率と冷延板を焼鈍し
た材料のマクロ模様評点の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a twin area ratio when a hot-rolled sheet and a material annealed in the air are cold-rolled at various total rolling reductions and a macro pattern score of the material annealed the cold-rolled sheet. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 631 C22F 1/00 631A 683 683 684 684C 685 685Z 686 686A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 631 C22F 1/00 631A 683 683 684 684C 685 685Z 686 686A 694 694A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 冷間加工組織をなし、任意のL断面にお
ける全板厚断面の機械的双晶面積率が25%以上であり、
板面表面が均一かつ緻密であることを特徴とする電解金
属箔製造ドラム用チタン材。
1. A cold working structure, wherein the mechanical twin area ratio of the entire sheet thickness section in an arbitrary L section is 25% or more;
A titanium material for a drum for producing an electrolytic metal foil, wherein the surface of the plate surface is uniform and dense.
【請求項2】 再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が30%未満であるこ
とを特徴とする電解金属箔製造ドラム用チタン材。
2. A titanium material for an electrolytic metal foil producing drum, wherein the titanium material has a recrystallized structure and an area ratio of a colony structure on an arbitrary surface parallel to the plate surface is less than 30%.
【請求項3】 冷間圧延時の圧延ロール回転数Rc(r
ps)を、圧延ロール直径D(mm)に応じて(1)式で
示される範囲に制御しながら、圧下率15%以上の冷間
圧延を行うことにより、冷間加工組織をなし、任意のL
断面における全板厚断面の機械的双晶面積率が25%以上
である冷延板とすることを特徴とする電解金属箔製造ド
ラム用チタン材の製造方法。 Rc≦1.59172 −2.2541×106 /D4 +4.21766 ×105 /D3 −2.54285 ×104 /D2 +7.89452 ×102 /D (1)
3. The roll rotation speed Rc (r) during cold rolling.
ps) is controlled in the range represented by the expression (1) according to the roll diameter D (mm) while performing cold rolling at a rolling reduction of 15% or more, thereby forming a cold-worked structure. L
A method for producing a titanium material for a drum for producing an electrolytic metal foil, wherein the cold-rolled sheet has a mechanical twin area ratio of 25% or more in a total thickness section in a cross section. Rc ≦ 1.59172 −2.2541 × 10 6 / D 4 + 4.21766 × 10 5 / D 3 −2.54285 × 10 4 / D 2 + 7.89452 × 10 2 / D (1)
【請求項4】 熱間加工時に生成したスケールを表面に
付けたままで冷間圧延することを特徴とする請求項3記
載の電解金属箔製造ドラム用チタン材の製造方法。
4. The method for producing a titanium material for an electrolytic metal foil production drum according to claim 3, wherein the cold rolling is performed while the scale formed during the hot working is attached to the surface.
【請求項5】 熱間加工時に生成したスケールを表面に
付けたまま、大気中で焼鈍を行った後、スケールを残し
たままで冷間圧延することを特徴とする請求項3記載の
電解金属箔製造ドラム用チタン材の製造方法。
5. The electrolytic metal foil according to claim 3, wherein after the scale formed during hot working is attached to the surface, annealing is performed in the air, and then cold rolling is performed with the scale remaining. Manufacturing method of titanium material for manufacturing drum.
【請求項6】 熱間加工時に生成したスケールを表面に
付けたまま、真空クリープ矯正機内で焼鈍を行った後、
スケールを残したままで冷間圧延することを特徴とする
請求項3記載の電解金属箔製造ドラム用チタン材の製造
方法。
6. After performing annealing in a vacuum creep straightening machine with the scale formed during hot working attached to the surface,
4. The method for producing a titanium material for an electrolytic metal foil production drum according to claim 3, wherein cold rolling is performed while the scale remains.
【請求項7】 表面スケールを除去した冷間圧延素材
を、該素材の結晶粒径d (μm)に応じて、直径D(mm)
が(2)式の関係を満たす圧延ロールで冷間圧延するこ
とを特徴とする、請求項3、4、5、または6記載の電
解金属箔製造ドラム用チタン材の製造方法。 D≧1.033 d0.504 (2)
7. A cold-rolled material from which surface scale has been removed is subjected to a diameter D (mm) according to a crystal grain size d (μm) of the material.
7. The method for producing a titanium material for an electrolytic metal foil production drum according to claim 3, wherein cold rolling is performed by a rolling roll satisfying the relationship of the formula (2). D ≧ 1.033 d 0.504 (2)
【請求項8】 請求項3、4、5、6または7記載のチ
タン板を、大気中または真空クリープ矯正機内で焼鈍す
ることにより、再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が30%未満である冷
延焼鈍板とすることを特徴とする電解金属箔製造ドラム
用チタン材の製造方法。
8. The titanium plate according to claim 3, 4, 5, 6, or 7 is annealed in the air or in a vacuum creep straightening machine to form a recrystallized structure, and any surface parallel to the plate surface. A method for producing a titanium material for an electrolytic metal foil producing drum, comprising a cold rolled annealed plate having an area ratio of colony structure of less than 30%.
JP21082398A 1998-07-27 1998-07-27 Titanium material for drum for producing electrolytic metal foil and method for producing the same Expired - Fee Related JP3500072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21082398A JP3500072B2 (en) 1998-07-27 1998-07-27 Titanium material for drum for producing electrolytic metal foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21082398A JP3500072B2 (en) 1998-07-27 1998-07-27 Titanium material for drum for producing electrolytic metal foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000045091A true JP2000045091A (en) 2000-02-15
JP3500072B2 JP3500072B2 (en) 2004-02-23

Family

ID=16595720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21082398A Expired - Fee Related JP3500072B2 (en) 1998-07-27 1998-07-27 Titanium material for drum for producing electrolytic metal foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3500072B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048272A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
JPWO2017018523A1 (en) * 2015-07-29 2017-12-21 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018511A1 (en) * 2015-07-29 2018-01-25 新日鐵住金株式会社 Titanium material for hot rolling
JP2020143363A (en) * 2019-02-01 2020-09-10 長春石油化學股▲分▼有限公司 Low profile electrolytic copper foil
WO2020213719A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium alloy plate, manufacturing method for titanium alloy plate, copper foil manufacturing drum, and manufacturing method for copper foil manufacturing drum
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
CN112981174A (en) * 2021-02-04 2021-06-18 新疆湘润新材料科技有限公司 Preparation method of high-strength high-plasticity titanium alloy wire
CN113260727A (en) * 2019-04-17 2021-08-13 日本制铁株式会社 Titanium plate and copper foil manufacturing roller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118246B2 (en) * 2017-08-28 2021-09-14 Nippon Steel Corporation Watch part

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544663B1 (en) * 1999-12-28 2003-04-08 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil
WO2001048272A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
JPWO2017018523A1 (en) * 2015-07-29 2017-12-21 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018511A1 (en) * 2015-07-29 2018-01-25 新日鐵住金株式会社 Titanium material for hot rolling
US11145867B2 (en) 2019-02-01 2021-10-12 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil
JP2020143363A (en) * 2019-02-01 2020-09-10 長春石油化學股▲分▼有限公司 Low profile electrolytic copper foil
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same
US11283080B2 (en) 2019-02-01 2022-03-22 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
CN113165032A (en) * 2019-04-17 2021-07-23 日本制铁株式会社 Titanium alloy sheet, method for producing titanium alloy sheet, copper foil production drum, and method for producing copper foil production drum
CN113260727A (en) * 2019-04-17 2021-08-13 日本制铁株式会社 Titanium plate and copper foil manufacturing roller
JPWO2020213719A1 (en) * 2019-04-17 2021-05-06 日本製鉄株式会社 Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
WO2020213719A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium alloy plate, manufacturing method for titanium alloy plate, copper foil manufacturing drum, and manufacturing method for copper foil manufacturing drum
JP7269472B2 (en) 2019-04-17 2023-05-09 日本製鉄株式会社 Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil
CN112981174A (en) * 2021-02-04 2021-06-18 新疆湘润新材料科技有限公司 Preparation method of high-strength high-plasticity titanium alloy wire
CN112981174B (en) * 2021-02-04 2022-07-05 新疆湘润新材料科技有限公司 Preparation method of high-strength high-plasticity titanium alloy wire

Also Published As

Publication number Publication date
JP3500072B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
TWI491747B (en) High purity wrought copper having uniform and fine microstructure
JP6901049B2 (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing drum and copper foil manufacturing drum manufacturing method
TWI485272B (en) Pure copper plate manufacturing methods and pure copper plate
CN113260727B (en) Titanium plate and copper foil manufacturing roller
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
KR20160009113A (en) Method for manufacturing material for cylindrical sputtering target
JP3500072B2 (en) Titanium material for drum for producing electrolytic metal foil and method for producing the same
JP2006283106A (en) Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP3802683B2 (en) High purity titanium plate for titanium target material and method for producing the same
JP5609784B2 (en) Titanium alloy thick plate for electrolytic Cu foil production drum and its production method
JP5531931B2 (en) Titanium alloy plate for electrolytic Cu foil production drum with developed texture of plate surface and production method thereof
CN113710825B (en) Titanium plate, titanium roll and copper foil manufacturing roller
EP1541704B1 (en) Process for producing aluminum material for electrolytic capacitor electrode
JP4061211B2 (en) Titanium alloy used for cathode electrode for producing electrolytic copper foil and method for producing the same
JP4094244B2 (en) Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP4869398B2 (en) Pure copper plate manufacturing method and pure copper plate
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP4264377B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
JPH08104961A (en) Production of hot rolled sheet of pure titanium for industry
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP2023125429A (en) Method for producing titanium foil and titanium foil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees