JP2000045087A - Production of high purity bismuth - Google Patents

Production of high purity bismuth

Info

Publication number
JP2000045087A
JP2000045087A JP10214502A JP21450298A JP2000045087A JP 2000045087 A JP2000045087 A JP 2000045087A JP 10214502 A JP10214502 A JP 10214502A JP 21450298 A JP21450298 A JP 21450298A JP 2000045087 A JP2000045087 A JP 2000045087A
Authority
JP
Japan
Prior art keywords
bismuth
purity
anode plate
concentration
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10214502A
Other languages
Japanese (ja)
Other versions
JP4041590B2 (en
Inventor
Mitsuru Kamikawa
満 上川
Michihiro Akahori
道弘 赤堀
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP21450298A priority Critical patent/JP4041590B2/en
Publication of JP2000045087A publication Critical patent/JP2000045087A/en
Application granted granted Critical
Publication of JP4041590B2 publication Critical patent/JP4041590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of stably producing a high purity bismuth having >=99.999% purity. SOLUTION: In this method for producing high purity bismuth by which an anode plate of bismuth is subjected to electrolytic refining with an electrolytic soln. contg. hydrofluosilic acid, the anode plate having the grade that Ag, Cu and Pb are respectively <=0.5% is used, and, the concn. of hydrofluosilic acid in the electrolytic soln. is held in 280 to 380 g/l (preferably, 320 to 340 g/l) and the concn. of Bi in >=40 g/l (preferably, 50 to 70 g/l). As the anode plate, the one obtd. by reducing bismuth litharge in an electric furnace in the coexistence with FeS to form into a bismuth matrix and executing refining and casting in an anode furnace is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度ビスマスの
製造方法に関し、特に、電解精製法による高純度ビスマ
スの製造方法に関する。
The present invention relates to a method for producing high-purity bismuth, and more particularly, to a method for producing high-purity bismuth by electrolytic refining.

【0002】[0002]

【従来の技術】電解精製法による従来のビスマス製造方
法は、原料であるビスマス密陀(Bi2O 5 主体でAg,Cu,
Pb等を含む)を電気炉で還元してビスマス地金を造り、
アノード板に鋳造して珪弗酸(H2SiF6)および珪弗化ビ
スマス(Bi2(SiF6)3)溶液を電解液としてカソード板
(銅板またはステンレス板)上に純ビスマスとして析出
させ、これをはぎ取り、熔融して型に鋳造して製品(高
純度ビスマスあるいは電析精製ビスマスと言う)とする
方法である。
2. Description of the Related Art Conventional bismuth production method by electrolytic refining method
The law is based on the raw material BismuthTwoO FiveAg, Cu,
Pb, etc.) in an electric furnace to produce bismuth ingots,
Cast to an anode plate and fluoric acid (HTwoSiF6) And silicofluoride
Smas (BiTwo(SiF6)Three) Cathode plate using solution as electrolyte
(Copper plate or stainless plate) deposited as pure bismuth
This is peeled off, melted and cast into a mold, and the product (high
Purified bismuth or electrodeposited bismuth)
Is the way.

【0003】[0003]

【発明が解決しようとする課題】上記製造方法により、
純度99.99 %までの製品であれば安定生産できるが、純
度99.999%以上の高純度製品を要求された場合、これを
安定生産することは困難であった。そこで、本発明は、
純度99.999%以上の製品を安定生産可能な高純度ビスマ
スの製造方法を提供することを目的とする。
According to the above manufacturing method,
If the product has a purity of up to 99.99%, it can be produced stably, but if a high-purity product with a purity of 99.999% or more is required, it has been difficult to produce it stably. Therefore, the present invention
An object of the present invention is to provide a method for producing high-purity bismuth capable of stably producing a product having a purity of 99.999% or more.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
達成の鍵は、アノード板中のAg,Cu量を低減すること、
及び、電解液中の不純物量(特にPb量)を低減すること
にあると着眼し、鋭意実験の結果、アノード板の不純物
品位が、Ag:0.5 %以下、Cu:0.5 %以下、Pb:0.5 %
以下であり、かつ、電解液中の不純物濃度が、Pb:10g/
l 以下、Cu:20mg/l以下、Ag:1mg/l以下とした上でBi
濃度を一定に保って電解精製を行い、あるいはさらに精
製処理を行うことにより、ビスマスの純度が安定して9
9.999%(ファイブナイン;5Nと記す)以上となると
いう知見を得るに至り、この知見に基づいて更に検討を
重ねて本発明を完成した。
The present inventors have found that the key to achieving the above object is to reduce the amounts of Ag and Cu in the anode plate,
The inventors focused on reducing the amount of impurities (particularly, the amount of Pb) in the electrolytic solution. As a result of earnest experiments, the impurity quality of the anode plate was as follows: Ag: 0.5% or less, Cu: 0.5% or less, Pb: 0.5% or less. %
And the concentration of impurities in the electrolyte is Pb: 10 g /
l, Cu: 20 mg / l or less, Ag: 1 mg / l or less, and Bi
By carrying out electrolytic refining while keeping the concentration constant, or further purifying, the purity of bismuth stabilizes.
The inventor has obtained the finding that it is 9.999% (five nines; described as 5N) or more, and based on this finding, further studied and completed the present invention.

【0005】すなわち本発明は、ビスマスのアノード板
を珪弗酸を含む電解液で電解精製する高純度ビスマスの
製造方法において、Ag,Cu,Pb品位がそれぞれ0.5 %以
下であるアノード板を用い、電解液の珪弗酸濃度を280
〜380g/l(好ましくは320 〜340g/l)、Bi濃度を40g/l
以上(好ましくは50〜70g/l )に保持することを特徴と
する高純度ビスマスの製造方法である。
That is, the present invention provides a method for producing a high-purity bismuth by electrolytically refining a bismuth anode plate with an electrolytic solution containing silicic acid, using an anode plate having Ag, Cu, and Pb grades of 0.5% or less, respectively. Increase the concentration of silicic acid in the electrolyte to 280
~ 380g / l (preferably 320 ~ 340g / l), Bi concentration 40g / l
A method for producing high-purity bismuth, characterized by maintaining the above (preferably 50 to 70 g / l).

【0006】このような電解精製条件だけでも純度5N
の高純度ビスマスが製造できるが、純度5N以上品を安
定して製造するためには、前記電解精製で得られたビス
マスに対し精製処理を行うことが好ましい。前記アノー
ド板としては、ビスマス密陀を電気炉にてFeS 共存下で
還元してビスマス地金とし、これを陽極炉で精製・鋳造
したものが好ましい。
[0006] Even under such electrolytic refining conditions alone, the purity is 5N.
However, in order to stably produce a product having a purity of 5N or more, it is preferable to perform a purification treatment on the bismuth obtained by the electrolytic purification. As the anode plate, a plate obtained by reducing bismuth metal in an electric furnace in the coexistence of FeS to obtain a bismuth ingot, which is refined and cast in an anode furnace is preferable.

【0007】ここで、陽極炉とは、ビスマス地金を精製
し、その後アノード板に鋳造する目的で使用する保持炉
である。なお、本発明において、組成・純度に係る%、
ppm は重量百分率、重量百万分率を意味する。
Here, the anode furnace is a holding furnace used for the purpose of purifying bismuth metal and then casting it onto an anode plate. Incidentally, in the present invention, the percentage of the composition and purity,
ppm means weight percentage, parts per million.

【0008】[0008]

【発明の実施の形態】図1は、本発明の実施形態を示す
工程図である。ビスマスのアノード板にAg、Cu、Pbのう
ちどれか一つでも0.5 %を超えて含有されると、純度5
N以上の高純度ビスマスを安定生産することができない
から、アノード板の不純物品位をAg:0.5 %以下、Cu:
0.5 %以下、Pb:0.5 %以下に制限する必要がある。
FIG. 1 is a process diagram showing an embodiment of the present invention. If any one of Ag, Cu and Pb exceeds 0.5% in the bismuth anode plate, the purity is 5%.
Since it is not possible to stably produce high-purity bismuth of N or more, the impurity quality of the anode plate is set to Ag: 0.5% or less, Cu:
It must be limited to 0.5% or less and Pb: 0.5% or less.

【0009】これを実現するには、ビスマス密陀を電気
炉で還元する際に、カラミ、コークスに加えFeS を添加
するのが好適である。FeS を添加することにより、マッ
ト中へAg,Cuを集める(Cu2S中にAgが濃縮する)ことが
可能となり、ビスマス地金のAg品位を効果的に低減する
ことができる。なお、電気炉より分離回収したマットは
鉛熔鉱炉の装入原料として繰り返し利用される。
[0009] In order to realize this, it is preferable to add FeS in addition to Karami and coke when reducing the bismuth mound in an electric furnace. By adding FeS, Ag and Cu can be collected in the mat (Ag is concentrated in Cu 2 S), and the Ag quality of the bismuth metal can be effectively reduced. The mat separated and recovered from the electric furnace is repeatedly used as a raw material for the lead smelting furnace.

【0010】しかし、ビスマス地金のPb,Cu品位はまだ
十分に下がりきらないことが多いから、このビスマス地
金を硫黄と共に陽極炉に装入し、ビスマス地金に含まれ
るPb,Cuを硫黄と反応させて渣(PbS, CuS)を生成さ
せ、この渣を分離した残りをアノード板に鋳造するのが
好ましい。これにより、Pb,Cuが有効に除去され、鋳造
されたアノード板の不純物品位をAg:0.5 %以下、Cu:
0.5 %以下、Pb:0.5 %以下にすることができる。苛性
ソーダは余分の硫黄を洗浄するために加えられる。
However, since the Pb and Cu grades of the bismuth metal often cannot be sufficiently reduced yet, the bismuth metal is charged into an anode furnace together with sulfur, and the Pb and Cu contained in the bismuth metal are converted into sulfur. To produce a residue (PbS, CuS), and the remainder separated from the residue is cast on an anode plate. As a result, Pb and Cu are effectively removed, and the impurity quality of the cast anode plate is set to 0.5% or less for Ag:
0.5% or less, and Pb: 0.5% or less. Caustic soda is added to scrub excess sulfur.

【0011】しかし、アノード板の不純物品位を上記の
ように調整しても、電解液中の不純物濃度を、Pb:10g/
l 以下、Cu:20mg/l以下、Ag:1mg/l以下に抑制しない
と製品(高純度ビスマス)の純度を5N以上に安定させ
ることができない。そうするには、電解液の珪弗酸濃度
を280 〜380g/l(好ましくは320 〜340g/l)、Bi濃度を
40g/l 以上(好ましくは50〜70g/l )に保持することが
必要である。
However, even if the impurity quality of the anode plate is adjusted as described above, the impurity concentration in the electrolytic solution is reduced to 10 g / Pb.
Unless the Cu content is controlled to 20 mg / l or less and the Ag content to 1 mg / l or less, the purity of the product (high-purity bismuth) cannot be stabilized to 5 N or more. To do so, the concentration of silicic acid in the electrolyte is 280-380 g / l (preferably 320-340 g / l) and the concentration of Bi is
It is necessary to keep it at 40 g / l or more (preferably 50 to 70 g / l).

【0012】従来、珪弗酸濃度の常用値は250g/l程度で
あった。本発明者らの知見によれば、この程度の酸濃度
値ではBiのカソードへの析出速度が大きく、またBiのア
ノードからの溶出速度が小さいためにBiの供給が遅れ、
液中のBi濃度が低下してPb、Cu、Agが混入(析出)し易
くなるためBi品位が低下する。これに対し、珪弗酸濃度
を280g/l以上(より好ましくは320g/l以上)に保持する
と先に述べたBiの供給バランスが均等となるため、液中
のBi濃度が安定化し、不純物が混入し難くなるためBi品
位が向上する。一方、珪弗酸濃度を過度に高めると珪弗
酸の添加コストが増加してムダが生じるため好ましくな
い。かかるムダを生じさせないようにするために、珪弗
酸濃度は380g/l以下、より好ましくは340g/l以下、に制
限することが望ましい。
Conventionally, the usual value of the concentration of silicic acid was about 250 g / l. According to the findings of the present inventors, at such an acid concentration value, the deposition rate of Bi on the cathode is large, and the rate of dissolution of Bi from the anode is small, so the supply of Bi is delayed,
Since the Bi concentration in the liquid is reduced and Pb, Cu, and Ag are easily mixed (precipitated), the Bi quality is reduced. On the other hand, if the concentration of silicofluoric acid is maintained at 280 g / l or more (more preferably, 320 g / l or more), the supply balance of Bi described above becomes uniform, so the Bi concentration in the liquid is stabilized, and Since it is hard to mix, Bi quality is improved. On the other hand, if the concentration of the silicic acid is excessively increased, the cost of adding the silicic acid increases and waste is generated, which is not preferable. In order to prevent such waste, the concentration of silicic acid is preferably limited to 380 g / l or less, more preferably 340 g / l or less.

【0013】なお、カソード電流密度は50A/m2以下で操
業するのがよく、さらに好ましいのは40A/m2以下であ
る。上記のようにBi濃度の安定化条件を整えたうえで、
Bi濃度を40g/l 以上に保持する。この値が40g/l に満た
ないとPb、Cu、Agが混入(析出)し易くなる。液中Bi濃
度を40g/l 以上に安定して保持するには、電解浴に酸化
ビスマス(Bi2O3 )または高純度ビスマス密陀を添加す
るのが好適である。また、Pbを10g/l 以下に抑制するた
めに、電解液中に硫酸を加え硫酸鉛として系外へ抜出
(瀉血)しても良い。
It is preferable to operate at a cathode current density of 50 A / m 2 or less, more preferably 40 A / m 2 or less. After adjusting the Bi concentration stabilization conditions as described above,
Maintain Bi concentration above 40g / l. If this value is less than 40 g / l, Pb, Cu, and Ag are likely to be mixed (precipitated). In order to stably maintain the Bi concentration in the liquid at 40 g / l or more, it is preferable to add bismuth oxide (Bi 2 O 3 ) or high-purity bismuth oxide to the electrolytic bath. In addition, in order to suppress Pb to 10 g / l or less, sulfuric acid may be added to the electrolytic solution to withdraw (bleed) as lead sulfate out of the system.

【0014】なお、Bi濃度を高くしすぎると、電解液中
に過剰のBiが存在するようになりムダが生じる。すなわ
ち中間品量(電解液中のBi量)が工程中に増加してしま
う。かかるムダを生じさせないようにするには、液中Bi
濃度を60g/l 程度(50〜70g/l )とするのが好ましい。
また、Biの電解工程における電解液の温度は、特に制御
する必要はなく、15〜40℃の範囲内において電解が可能
である。
If the Bi concentration is too high, excess Bi will be present in the electrolyte, causing waste. That is, the amount of the intermediate product (the amount of Bi in the electrolytic solution) increases during the process. To prevent such waste, Bi
The concentration is preferably about 60 g / l (50-70 g / l).
Further, the temperature of the electrolytic solution in the Bi electrolysis step does not need to be particularly controlled, and electrolysis can be performed within a range of 15 to 40 ° C.

【0015】上記工程により、カソードに純度5Nのビ
スマス(析出Bi)が安定的に析出する。しかし、ここで
の不純物は大部分がPbであるため、このPbを除去するた
めに、前記析出Biを精製炉にて陽極炉の場合と同様の精
製処理を行い、ビスマス中のPbをPbS に渣化し、該渣を
分離した残りを鋳造することにより、純度5N以上の高
純度(電析精製)ビスマスが安定的に得られる。なお、
精製炉とは、炉内で熔解した析出Biを高純度ビスマスに
精製し、その後インゴットに鋳造する目的で使用する保
持炉である。
By the above steps, bismuth (deposited Bi) having a purity of 5N is stably deposited on the cathode. However, since most of the impurities here are Pb, in order to remove the Pb, the deposited Bi is subjected to the same purification treatment as in the anode furnace in a purification furnace to convert Pb in bismuth into PbS. By forming a residue and casting the residue obtained by separating the residue, high-purity (electrodeposited) bismuth having a purity of 5N or more can be stably obtained. In addition,
The refining furnace is a holding furnace used to purify precipitated Bi melted in the furnace into high-purity bismuth and then cast it into an ingot.

【0016】[0016]

【実施例】図1の工程に沿って電析精製ビスマスを製造
した本発明の実施例について説明する。表1に示す組成
になるビスマス密陀(Bi密陀) 5.0t/バッチを、カラ
ミ(主成分FeO, CaO, SiO2等)400 〜500 kg/バッチ、
コークス200 〜250 kg/バッチ、FeS 100 〜150 kg/バ
ッチとともに電気炉に装入し、約1100℃に加熱し熔解し
た。
EXAMPLE An example of the present invention in which an electrodeposited purified bismuth was manufactured according to the process of FIG. 1 will be described. To obtain the composition shown in Table 1 bismuth Mitsu陀the (Bi Mitsu陀) 5.0T / batch, Karami (main component FeO, CaO, SiO 2, etc.) 400 to 500 kg / batch
The coke was charged into an electric furnace together with 200 to 250 kg / batch and 100 to 150 kg / batch of FeS, heated to about 1100 ° C. and melted.

【0017】得られた生成物を比重分離してスラグ約
1.0t/バッチ、マット約 0.8t/バッチ、表1に示す
組成になるビスマス地金約 3.0t/バッチを得た。この
ビスマス地金の約9tを1バッチ分として陽極炉にて35
0 〜380 ℃に保持し、硫黄200kg 、苛性ソーダ50kgをそ
れぞれ数回に分けて投入して、PbS 及びCuS を主成分と
する渣約 3.0t/バッチを生成し、これを比重分離によ
り除去し、残りをアノード用Bi地金(鋳造前の組成を表
1に示す)として鋳造し、アノード板(組成を表1に示
す)を得た。
The obtained product is separated by specific gravity to obtain a slag
1.0 t / batch, about 0.8 t / batch of mat and about 3.0 t / batch of bismuth metal having the composition shown in Table 1. Approximately 9 tons of this bismuth metal is used as a batch for 35 batches in an anode furnace.
While maintaining the temperature at 0 to 380 ° C., 200 kg of sulfur and 50 kg of caustic soda are charged in several portions, respectively, to produce about 3.0 t / batch of PbS and CuS as main components, which are removed by specific gravity separation. The remainder was cast as Bi metal for anode (composition before casting is shown in Table 1) to obtain an anode plate (composition is shown in Table 1).

【0018】このアノード板を用い、カソードにステン
レス鋼板を用いて、表2A欄に示す条件で電解精製した
ところ、カソードに表1A欄に示す組成になるビスマス
(析出Bi)が析出した。なお、アノード板の重量は33kg
/枚で、電解精製に際してはこれを電解槽1槽当たり11
枚セットし、7槽/列を1バッチとし、カソード電流密
度は30〜35A/m2とした。
Using this anode plate and a stainless steel plate for the cathode, electrolytic purification was performed under the conditions shown in Table 2A. As a result, bismuth (deposited Bi) having the composition shown in Table 1A was deposited on the cathode. The anode plate weighs 33 kg
Per sheet, which is used for electrolytic refining at a rate of 11
The number of sheets was set to 7 batches / row as one batch, and the cathode current density was 30 to 35 A / m 2 .

【0019】カソードに析出したBiをはぎ取り分析した
結果、析出Bi中のBi純度5N品を得ることができた。さ
らに析出Bi中のPb品位を下げるために、その約2tを1
バッチ分として精製炉にて380 〜400 ℃で熔融し、硫黄
20kg、苛性ソーダ30kgをそれぞれ数回に分けて投入し
て、PbS 主成分とする渣約200kg /バッチを生成し、こ
れを比重分離により除去し、残りを鋳造して得た電析精
製ビスマス(製品)の製品歩留り及び組成は表1A欄に
示す通りであり、Bi純度5N以上の製品を高収率で得る
ことができた。
The Bi deposited on the cathode was stripped and analyzed, and as a result, a product with a Bi purity of 5N in the deposited Bi was obtained. In order to further reduce the Pb quality in the precipitated Bi, about 2t
Melt at 380-400 ° C in a refining furnace as batch
20 kg and 30 kg of caustic soda are charged in several batches, respectively, to produce about 200 kg / batch of PbS-based residue, which is removed by specific gravity separation. The product yield and composition of (1) are as shown in Table 1A, and a product with a Bi purity of 5N or more could be obtained in high yield.

【0020】これに対し、表2B欄に示す従来条件で電
解精製した従来例では、表1B欄に示す通り、製品のBi
純度が4N程度に止まり製品歩留りも低かった。また、
電気炉での還元の際にFeS の代わりにS単体を投入する
ことも試みたが、Bi地金、アノード板のAg品位がそれぞ
れ8.6 %、1.3 %と高く、表1A欄の電解条件で精製し
ても電析精製ビスマス(製品)のBi品位は99.994%と低
かった。
On the other hand, in the conventional example in which the electrolytic purification was carried out under the conventional conditions shown in Table 2B, as shown in Table 1B, the Bi
The purity was only about 4N and the product yield was low. Also,
Attempts were also made to use S alone instead of FeS when reducing in an electric furnace. Even so, the Bi grade of electrodeposited bismuth (product) was as low as 99.994%.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】かくして本発明によれば、純度99.999%
以上のビスマスを電解精製法にて安定生産することがで
きるようになるという優れた効果を奏する。
According to the present invention, the purity is 99.999%.
There is an excellent effect that the above bismuth can be stably produced by the electrolytic refining method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す工程図である。FIG. 1 is a process chart showing an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 正幸 岐阜県吉城郡神岡町大字鹿間1番地1 神 岡鉱業株式会社内 Fターム(参考) 4K058 AA11 BA29 BB03 CA03 EC04 EC10 FA08  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masayuki Tanaka 1 Kamaoka, Kamioka-cho, Yoshiki-gun, Gifu 1F, Kamioka Mining Co., Ltd. F-term (reference) 4K058 AA11 BA29 BB03 CA03 EC04 EC10 FA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビスマスのアノード板を珪弗酸を含む電
解液で電解精製する高純度ビスマスの製造方法におい
て、Ag,Cu,Pb品位がそれぞれ0.5 %以下であるアノー
ド板を用い、電解液の珪弗酸濃度を280 〜380g/l、Bi濃
度を40g/l 以上に保持することを特徴とする高純度ビス
マスの製造方法。
1. A method for producing a high-purity bismuth by electrolytically refining a bismuth anode plate with an electrolytic solution containing silicic acid, wherein an anode plate having an Ag, Cu, and Pb grade of 0.5% or less is used. A method for producing high-purity bismuth, comprising maintaining the concentration of silicic acid at 280 to 380 g / l and the concentration of Bi at 40 g / l or more.
【請求項2】 前記電解精製で得られたビスマスに対し
精製処理を行う請求項1記載の方法。
2. The method according to claim 1, wherein the bismuth obtained by the electrolytic refining is subjected to a refining treatment.
【請求項3】 前記アノード板が、ビスマス密陀を電気
炉にてFeS 共存下で還元して得たビスマス地金を陽極炉
で精製・鋳造したものである請求項1または2に記載の
高純度ビスマスの製造方法。
3. The method according to claim 1, wherein the anode plate is a bismuth ingot obtained by reducing bismuth in an electric furnace in the coexistence of FeS, and is refined and cast in an anode furnace. A method for producing pure bismuth.
JP21450298A 1998-07-29 1998-07-29 Method for producing high-purity bismuth having a purity of 5N or more Expired - Lifetime JP4041590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21450298A JP4041590B2 (en) 1998-07-29 1998-07-29 Method for producing high-purity bismuth having a purity of 5N or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21450298A JP4041590B2 (en) 1998-07-29 1998-07-29 Method for producing high-purity bismuth having a purity of 5N or more

Publications (2)

Publication Number Publication Date
JP2000045087A true JP2000045087A (en) 2000-02-15
JP4041590B2 JP4041590B2 (en) 2008-01-30

Family

ID=16656785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21450298A Expired - Lifetime JP4041590B2 (en) 1998-07-29 1998-07-29 Method for producing high-purity bismuth having a purity of 5N or more

Country Status (1)

Country Link
JP (1) JP4041590B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554186A (en) * 2012-02-17 2012-07-11 重庆重冶铜业有限公司 Method for preparing copper electrolysis anode plate
JP2013147686A (en) * 2012-01-17 2013-08-01 Jx Nippon Mining & Metals Corp Method of producing bismuth anode for use in electrolytic refining
WO2015083405A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石金属株式会社 Method for manufacturing low-alpha-radiation bismuth and low-alpha-radiation bismuth
JP2015178641A (en) * 2014-03-18 2015-10-08 Jx日鉱日石金属株式会社 Electrolytic method for bismuth
JP2018016893A (en) * 2017-11-06 2018-02-01 Jx金属株式会社 Method for electrolyzing bismuth
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147686A (en) * 2012-01-17 2013-08-01 Jx Nippon Mining & Metals Corp Method of producing bismuth anode for use in electrolytic refining
CN102554186A (en) * 2012-02-17 2012-07-11 重庆重冶铜业有限公司 Method for preparing copper electrolysis anode plate
WO2015083405A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石金属株式会社 Method for manufacturing low-alpha-radiation bismuth and low-alpha-radiation bismuth
JP5941596B2 (en) * 2013-12-03 2016-06-29 Jx金属株式会社 Method for producing low α-ray bismuth and low α-ray bismuth
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
JP2015178641A (en) * 2014-03-18 2015-10-08 Jx日鉱日石金属株式会社 Electrolytic method for bismuth
JP2018016893A (en) * 2017-11-06 2018-02-01 Jx金属株式会社 Method for electrolyzing bismuth
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth

Also Published As

Publication number Publication date
JP4041590B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JPS6127323B2 (en)
US4076605A (en) Dichromate leach of copper anode slimes
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
EP0068469B1 (en) Refining copper-bearing material contaminated with nickel, antimony and/or tin
CN100441710C (en) Dry type refining method for copper
JP2000045087A (en) Production of high purity bismuth
JP4470689B2 (en) Indium recovery method using tin smelting
JP3882608B2 (en) Method and apparatus for electrolytic purification of high purity tin
JP2642230B2 (en) Manufacturing method of high purity tin
JPH0457603B2 (en)
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP2010222627A (en) Electrolytic process of lead
US3951764A (en) Aluminum-manganese alloy
US2797159A (en) Method of purifying of metallic indium
US4192674A (en) Method of obtaining tantalum-niobium from ores having a high titanium content
US2094632A (en) Metallurgical process
US2821506A (en) Purification of titanium and zirconium metal
JPH101727A (en) Treatment of copper electrolyte slime
JP3701629B2 (en) Sponge titanium manufacturing method
US1842028A (en) Method of recovering lead-tin alloys
CN114875239A (en) Magnesium refining process in titanium sponge production process
CN116065026A (en) Comprehensive recovery method of copper anode slime smelting slag
CN116814964A (en) Method for recycling noble metal by removing copper through fire refining of high-copper lead slag
CN117684037A (en) Additive for regenerated copper alloy melt treatment and preparation method and use method thereof
SU1271096A1 (en) Method of processing anode deposits of electrolytic refining of aluminium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term