JP2000044633A - Production of new vinyl-cis-butadiene rubber and vinyl- cis-butadiene rubber composition - Google Patents

Production of new vinyl-cis-butadiene rubber and vinyl- cis-butadiene rubber composition

Info

Publication number
JP2000044633A
JP2000044633A JP10218013A JP21801398A JP2000044633A JP 2000044633 A JP2000044633 A JP 2000044633A JP 10218013 A JP10218013 A JP 10218013A JP 21801398 A JP21801398 A JP 21801398A JP 2000044633 A JP2000044633 A JP 2000044633A
Authority
JP
Japan
Prior art keywords
cis
polymerization
butadiene
vinyl
butadiene rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10218013A
Other languages
Japanese (ja)
Other versions
JP3855480B2 (en
Inventor
Hiroyuki Nakamura
裕之 中村
Takeshi Nakajima
毅 仲島
Koji Maeda
孝二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21801398A priority Critical patent/JP3855480B2/en
Publication of JP2000044633A publication Critical patent/JP2000044633A/en
Application granted granted Critical
Publication of JP3855480B2 publication Critical patent/JP3855480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a vinyl-cis-butadiene rubber and a vinyl-cis-butadiene rubber composition improved in molding processability, tensile stress, tensile strength, flex crack growth resistance, etc. SOLUTION: This vinyl-cis-butadiene rubber is obtained by mixing (A) 1,3-butadiene with an inert solvent consisting essentially of a 4C fraction, (B) regulating the concentration of moisture in the resultant mixture, (C) adding AlRnX3-n [R is a 1-6C alkyl group or a cycloalkyl group; X is a halogen element; (n) is 1.5-2] which is one component of a cis-1,4 polymerization catalyst and a soluble cobalt compound that is another component of the cis-1,4 polymerization catalyst to the resultant mixture and carrying out the cis-1,4 polymerization and (D) making a syndiotactic-1,2 polymerization catalyst prepared from the soluble cobalt compound, the general formula: AlR3 (R is a 1-6C alkyl group or a cycloalkyl group) and carbon disulfide present in the obtained polymerization reactional mixture and conducting the syndiotactic-1,2 polymerization of the 1,3-butadiene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はC4 留分を主成分と
する不活性有機溶媒中におけるシス−1,4重合とシン
ジオタクチック−1,2重合からなるビニル・シス−ブ
タジエンゴム(以下,VCRと略す)の製造方法及びV
CR組成物に関するものである。詳しくはシス−1,4
ポリブタジエンであるブタジエンゴム(以下,BRと略
す)の成形性や引張応力,引張強さ,耐屈曲亀裂成長性
などを改良したVCRの更なる改良に関するものであ
る。
The present invention relates consists of cis-1,4 polymerization and syndiotactic-1,2 polymerization in an inert organic solvent mainly composed of C 4 fraction vinyl-cis - butadiene rubber (hereinafter , VCR) and V
It relates to CR compositions. Specifically, cis-1,4
The present invention relates to further improvement of a VCR in which butadiene rubber (hereinafter abbreviated as BR), which is polybutadiene, is improved in moldability, tensile stress, tensile strength, flex crack growth resistance and the like.

【0002】[0002]

【従来の技術】従来VCRの製造方法はベンゼン,トル
エン,キシレンなどの芳香族炭化水素,n−ヘキサン,
n−ヘプタンなどの脂肪族炭化水素,シクロヘキサン,
シクロペンタンなどの脂環族炭化水素,及びこれらのハ
ロゲン化族炭化水素,例えばクロルベンゼン,塩化メチ
レンなどの不活性有機溶媒で行われてきた。これらの溶
媒を用いると重合溶液の粘度が高く撹拌,伝熱,移送な
どに問題があり,溶媒の回収には過大なエネルギーが必
要であった。又,前記溶媒は毒性の為,発癌作用の為に
環境にとって非常に危険性のあるものであった。
2. Description of the Related Art Conventionally, VCR production methods include aromatic hydrocarbons such as benzene, toluene and xylene, n-hexane,
aliphatic hydrocarbons such as n-heptane, cyclohexane,
The reaction has been carried out with an alicyclic hydrocarbon such as cyclopentane, and an inert organic solvent such as a halogenated hydrocarbon such as chlorobenzene or methylene chloride. When these solvents are used, the viscosity of the polymerization solution is high, and there are problems in stirring, heat transfer, transfer, and the like, and excessive energy is required for solvent recovery. Also, the solvent is very dangerous for the environment due to toxicity and carcinogenic action.

【0003】VCRの製造方法としては前記の不活性有
機溶媒中で水,可溶性コバルト化合物と一般式AlRn
3-n (但しRは炭素数1〜6のアルキル基,フェニル
基又はシクロアルキル基であり,Xはハロゲン元素であ
り,nは1.5〜2の数字)で表せる有機アルミニウム
クロライドから得られた触媒を用いて1,3−ブタジエ
ンをシス−1,4重合してBRを製造して,次いでこの
重合系に1,3−ブタジエン及び/または前記溶媒を添
加するか或いは添加しないで可溶性コバルト化合物と一
般式AlR3 (但しRは炭素数1〜6のアルキル基,フ
ェニル基又はシクロアルキル基である)で表せる有機ア
ルミニウム化合物と二硫化炭素とから得られるシンジオ
タクチック−1,2重合触媒を存在させて1,3−ブタ
ジエンをシンジオタクチック−1,2重合(以下,1,
2重合と略す)する方法(特公昭49−17666号,
特公昭49−17667号)は公知である。
[0003] As a method for producing a VCR, water, a soluble cobalt compound and a general formula AlRn are used in the above-mentioned inert organic solvent.
X 3-n (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group, X is a halogen element, and n is a number of 1.5 to 2). The BR is produced by cis-1,4 polymerization of 1,3-butadiene using the prepared catalyst, and then soluble in the polymerization system with or without the addition of 1,3-butadiene and / or the above-mentioned solvent. Syndiotactic-1,2 polymerization obtained from a cobalt compound, an organoaluminum compound represented by the general formula AlR 3 (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group) and carbon disulfide In the presence of a catalyst, 1,3-butadiene is polymerized into syndiotactic-1,2 (hereinafter, referred to as 1,1).
2) (Japanese Patent Publication No. 49-17666,
Japanese Patent Publication No. 49-17667 is known.

【0004】また特公昭62−171号公報,特公昭6
3−36324号公報,特公平2−37927号公報,
特公平2−38081号公報,特公平3−63566号
公報にはVCRの製造法として二硫化炭素の存在下又は
不在下に1,3−ブタジエンをシス−1,4重合してV
CRを製造したり,VCRを製造した後に1,3−ブタ
ジエンと二硫化炭素を分離・回収して二硫化炭素を実質
的に含有しない1,3−ブタジエンや前記の不活性有機
溶媒を循環させる方法などが記載されている。更に特公
平4−48815号公報には配合物のダイスウェル比が
小さく,その加硫物がタイヤのサイドウォ−ルとして好
適な引張応力と耐屈曲亀裂成長性に優れたVCRが記載
されている。
[0004] Japanese Patent Publication No. Sho 62-171 and Japanese Patent Publication Sho No. 6
JP-A-3-36324, JP-B-2-37927,
JP-B-2-38081 and JP-B-3-63566 disclose a process for producing a VCR by carrying out cis-1,4 polymerization of 1,3-butadiene in the presence or absence of carbon disulfide.
After producing CR or VCR, 1,3-butadiene and carbon disulfide are separated and recovered, and 1,3-butadiene substantially free of carbon disulfide and the above-mentioned inert organic solvent are circulated. The method is described. Furthermore, Japanese Patent Publication No. 4-48815 describes a VCR having a low die swell ratio of a compound, and a vulcanized product excellent in tensile stress and flex crack growth resistance suitable as a tire side wall.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,これら
のVCRの製造方法はベンゼン,トルエン,キシレンな
どの芳香族炭化水素,n−ヘキサン,n−ヘプタンなど
の脂肪族炭化水素,シクロヘキサン,シクロペンタンな
どの脂環族炭化水素,及びこれらのハロゲン化族炭化水
素,例えばクロルベンゼン,塩化メチレンなどの不活性
有機溶媒で行われているので重合溶液の粘度が高く撹
拌,伝熱,移送などに問題があり,溶媒の回収には過大
なエネルギーを必要とするし,人体に対する環境衛生な
どの欠点を有している。また配合物や加硫物物性などは
更に改良する必要がある。本発明はこのような問題点を
解決すべくなされたものであり,主に常温で沸点を有す
る不活性媒体中で水−有機アルミニウムクロライド−可
溶性コバルト化合物を触媒成分として1,3−ブタジエ
ンを連続的にシス−1,4重合した後に1,3−ブタジ
エンを連続的に1,2重合して沸騰n−ヘキサン不溶分
(以下,H.Iと略す)3〜30重量%と沸騰n−ヘキ
サン可溶分97〜70重量%とするVCRの新規製造方
法及びVCR組成物を提供することを目的とする。
However, these methods of producing VCRs involve the use of aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as n-hexane and n-heptane, cyclohexane and cyclopentane. Since the reaction is carried out with an alicyclic hydrocarbon or an inert organic solvent such as these halogenated hydrocarbons, for example, chlorobenzene or methylene chloride, the viscosity of the polymerization solution is high and there is a problem in stirring, heat transfer, transfer, etc. In addition, recovery of the solvent requires excessive energy, and has drawbacks such as environmental health for the human body. Further, it is necessary to further improve the properties of the compound and the vulcanized product. SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it has been proposed that water-organoaluminum chloride-soluble cobalt compound be used as a catalyst component in continuous use of 1,3-butadiene in an inert medium having a boiling point at room temperature. After cis-1,4 polymerization, 1,3-butadiene is continuously polymerized into 1,2,3 to 30% by weight of boiling n-hexane insoluble matter (hereinafter abbreviated as HI) and boiling n-hexane. An object of the present invention is to provide a novel VCR production method and a VCR composition having a soluble content of 97 to 70% by weight.

【0006】[0006]

【課題を解決するための手段】本発明によれば,(A)
1,3−ブタジエンとC4 留分を主成分とする不活性有
機溶媒を混合して,(B)得られた1,3−ブタジエン
と不活性有機溶媒からなる混合物の水分の濃度を調節
し,次いで,(C)シス−1,4重合触媒の一成分であ
る一般式AlRn X3-n (但しRは炭素数1〜6のアル
キル基,フェニル基又はシクロアルキル基であり,Xは
ハロゲン元素であり,nは1.5〜2の数字)で表され
るハロゲン含有の有機アルミニウム化合物とシス−1,
4重合触媒の他の一成分である可溶性コバルト化合物と
を前記混合物に添加して1,3−ブタジエンをシス−
1,4重合して,(D)得られた重合反応混合物中に可
溶性コバルト化合物と一般式AlR3 (但しRは炭素数
1〜6のアルキル基,フェニル基又はシクロアルキル基
である)で表される有機アルミニウム化合物と二硫化炭
素とから得られるシンジオタクチック−1,2重合触媒
を存在させて,1,3−ブタジエンをシンジオタクチッ
ク−1,2重合(以下,1,2重合と略す)して新規な
ビニル・シス−ブタジエンゴム(以下,VCRと略す)
が提供される。そして,C4 留分を主成分とする不活性
有機溶媒がn−ブタン,シス−2−ブテン,トランス−
2−ブテン,ブテン−1から選択される。そして,以下
の(a)及び(b)からなる:即ち,(a)沸騰n−ヘ
キサン不溶分が3〜30重量%;(1)沸騰n−ヘキサ
ン不溶分(以下,H.Iと略す)がシンジオタクチック
−1,2−ポリブタジエン(以下,SPBDと略す)で
あり,(2)SPBDの分散形態が短繊維結晶であり,
(3)短繊維結晶の長軸長さの分布が繊維長さの98%
が0.6μm未満であり,70%以上が0.2μm未満
である,また(b)沸騰n−ヘキサン可溶分97〜70
重量%;(1)沸騰n−ヘキサン可溶分のミクロ構造が
90%以上のシス−1,4−ポリブタジエンからなるV
CR組成物が提供される。
According to the present invention, (A)
By mixing 1,3-butadiene and an inert organic solvent containing a C 4 fraction as main components, (B) adjusting the water concentration of the obtained mixture comprising 1,3-butadiene and the inert organic solvent. And then (C) a general formula AlRn X3 -n which is a component of the cis-1,4 polymerization catalyst (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group, and X is a halogen atom) And n is a number from 1.5 to 2) and a halogen-containing organoaluminum compound represented by the following formula: cis-1,
(4) A soluble cobalt compound, which is another component of the polymerization catalyst, is added to the mixture to convert 1,3-butadiene into cis-
After polymerization of 1,4, (D) the resulting polymerization reaction mixture is represented by a soluble cobalt compound and a general formula AlR 3 (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group). 1,3-butadiene is polymerized in the presence of a syndiotactic-1,2 polymerization catalyst obtained from the organoaluminum compound to be prepared and carbon disulfide to synthesize 1,3-butadiene (hereinafter, abbreviated as 1,2 polymerization). ) And a new vinyl cis-butadiene rubber (hereinafter abbreviated as VCR)
Is provided. The inert organic solvent mainly composed of the C 4 fraction is composed of n-butane, cis-2-butene, trans-
It is selected from 2-butene and butene-1. It comprises the following (a) and (b): (a) 3 to 30% by weight of boiling n-hexane insoluble matter; (1) boiling n-hexane insoluble matter (hereinafter abbreviated as HI) Is syndiotactic-1,2-polybutadiene (hereinafter abbreviated as SPBD), and (2) the dispersed form of SPBD is a short fiber crystal,
(3) Distribution of long axis length of short fiber crystal is 98% of fiber length
Is less than 0.6 μm, 70% or more is less than 0.2 μm, and (b) a boiling n-hexane soluble
% By weight; (1) V composed of cis-1,4-polybutadiene having a boiling point n-hexane soluble component microstructure of 90% or more.
A CR composition is provided.

【0007】[0007]

【発明の実施の形態】まず本発明のVCRの製造方法及
びVCR組成物の一態様を説明する。1,3−ブタジエ
ンと炭素数が4のC4 留分を主成分とする不活性媒体は
好ましくは1,3−ブタジエンとC4 留分を主成分とす
る不活性媒体との合計量に対する1,3−ブタジエンの
割合が10重量%以上,特に10〜60重量%となるよ
うに混合する。60重量%以上の場合にはVCRの製造
方法の制御が困難となり,10重量%以下ではVCRの
製造方法の効率が低下するので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION First, an embodiment of the VCR production method and the VCR composition of the present invention will be described. The inert medium mainly comprising 1,3-butadiene and a C 4 fraction having 4 carbon atoms is preferably 1 to 3 parts by mass of the total amount of the inert medium mainly comprising 1,3-butadiene and a C 4 fraction. , 3-butadiene is mixed so that the ratio becomes 10% by weight or more, especially 10 to 60% by weight. When the content is 60% by weight or more, it is difficult to control the method of manufacturing the VCR.

【0008】炭素数が4のC4 留分(以下,C4 留分と
略す)を主成分とする不活性有機溶媒としては,製造さ
れるBRを溶解し,又は溶解しなくても撹拌や移送,伝
熱,重合反応槽への付着がなく,触媒の活性に悪影響を
及ぼさない不活性媒体であれば特に制限されないが,本
発明ではC4 留分を主成分とする不活性有機溶媒が使用
される。好ましくはシス−2−ブテン,トランス−2−
ブテンを50重量%以上含有し,シス−2−ブテンとト
ランス−2−ブテン以外に,ブテン−1,n−ブタンな
どのC4 留分を主成分とする炭化水素が用いられる。炭
素数がC1 〜C 3 留分を用いると低温・高圧下でのVC
Rの製造が必要となり生産性も低下しコスト高になりる
ので経済的でない。また,ベンゼン,トルエン,キシレ
ン,クロルベンゼンなどの不活性溶媒を使用するとBR
中へのSPBDの短繊維結晶の分散状態が本発明の如く
形成されないので,優れたダイスウェル特性や高引張応
力,引張強さ,高屈曲亀裂成長性能を発現しないので好
ましくない。但し,ベンゼン,トルエン,キシレン,ク
ロルベンゼンなどを,例えば触媒調製用溶媒として使用
することはできる。
C having 4 carbon atomsFourFraction (hereinafter CFourWith a distillate
As an inert organic solvent whose main component is abbreviated),
Dissolving or dissolving BR that is not dissolved
No heat or adhesion to polymerization reactor, adversely affecting catalyst activity
It is not particularly limited as long as it is an inert medium that does not affect it.
In the invention, CFourUses an inert organic solvent whose main component is a distillate
Is done. Preferably, cis-2-butene, trans-2-
Butene containing at least 50% by weight of cis-2-butene and
In addition to lance-2-butene, butene-1, n-butane
Which CFourA hydrocarbon containing a fraction as a main component is used. Charcoal
Prime number is C1~ C ThreeVC at low temperature and high pressure using fraction
Production of R is required, productivity is reduced and cost is increased.
Not so economical. In addition, benzene, toluene, xylene
If an inert solvent such as chlorobenzene or chlorobenzene is used, BR
The dispersion state of the short fiber crystals of SPBD in
Because it is not formed, it has excellent die swell characteristics and high tensile
Good because it does not exhibit force, tensile strength and high flex crack growth performance.
Not good. However, benzene, toluene, xylene,
Using benzene, for example, as a solvent for catalyst preparation
You can.

【0009】次に1,3−ブタジエンと前記のC4 留分
を主成分とする不活性有機溶媒とを混合して得られた混
合媒体中の水分の濃度を調節する。水分は前記媒体中の
有機アルミニウムクロライド1モル当たり,好ましくは
0.1〜1.0モル,特に好ましくは0.2〜1.0モ
ルの範囲である。この範囲以外では触媒活性が低下した
り,シス−1,4構造含有率が低下したり,分子量が異
常に低下又は高くなったり,重合時のゲルの発生を抑制
することができず,このため重合槽などへのゲルの付着
が起り,更に連続重合時間を延ばすことができないので
好ましくない。水分の濃度を調節する方法は公知の方法
が適用できる。多孔質濾過材を通して添加・分散させる
方法(特開平4−85304号公報)も有効である。
Next, the concentration of water in a mixed medium obtained by mixing 1,3-butadiene and the above-mentioned inert organic solvent containing a C 4 fraction as a main component is adjusted. The water content is preferably in the range of 0.1 to 1.0 mol, particularly preferably 0.2 to 1.0 mol, per 1 mol of the organic aluminum chloride in the medium. Outside this range, the catalytic activity is reduced, the cis-1,4 structure content is reduced, the molecular weight is abnormally reduced or increased, and the generation of gel during polymerization cannot be suppressed. It is not preferable because the gel adheres to the polymerization tank or the like and the continuous polymerization time cannot be extended. Known methods can be applied to adjust the concentration of water. A method of adding and dispersing through a porous filter medium (JP-A-4-85304) is also effective.

【0010】1,3−ブタジエンとC4 留分を主成分と
する不活性媒体溶液中の水分の濃度を調節して得られた
溶液には有機アルミニウムクロライドを添加する。一般
式AlRn X3-n で表される有機アルミニウムクロライ
ドの具体例としては,ジエチルアルミニウムモノクロラ
イド,ジエチルアルミニウムモノブロマイド,ジイソブ
チルアルミニウムモノクロライド,ジシクロヘキシルア
ルミニウムモノクロライド,ジフェニルアルミニウムモ
ノクロライド,ジエチルアルミニウムセスキクロライド
などを好適に挙げることができる。有機アルミニウムク
ロライドの使用量の具体例としては,1,3−ブタジエ
ンの全量1モル当たり0.1ミリモル以上,特に0.5
〜50ミリモルが好ましい。
An organoaluminum chloride is added to a solution obtained by adjusting the concentration of water in an inert medium solution containing 1,3-butadiene and a C 4 fraction as main components. Specific examples of the organic aluminum chloride represented by the general formula AlRn X3 -n include diethylaluminum monochloride, diethylaluminum monobromide, diisobutylaluminum monochloride, dicyclohexylaluminum monochloride, diphenylaluminum monochloride, diethylaluminum sesquichloride and the like. Can be suitably mentioned. Specific examples of the amount of the organoaluminum chloride to be used include 0.1 mmol or more, particularly 0.5
~ 50 mmol is preferred.

【0011】次いで,有機アルミニウムクロライドを添
加した混合媒体に可溶性コバルト化合物を添加してシス
−1,4重合する。可溶性コバルト化合物としては,C
4 留分を主成分とする不活性媒体又は液体1,3−ブタ
ジエンに可溶なものであるか又は,均一に分散できる,
例えばコバルト(II)アセチルアセトナート,コバルト
(III )アセチルアセトナートなどコバルトのβ−ジケ
トン錯体,コバルトアセト酢酸エチルエステル錯体のよ
うなコバルトのβ−ケト酸エステル錯体,コバルトオク
トエート,コバルトナフテネート,コバルトベンゾエー
トなどの炭素数6以上の有機カルボン酸のコバルト塩,
塩化コバルトピリジン錯体,塩化コバルトエチルアルコ
ール錯体などのハロゲン化コバルト錯体などを挙げるこ
とができる。可溶性コバルト化合物の使用量は1,3−
ブタジエンの1モル当たり0.001ミリモル以上,特
に0.005ミリモル以上であることが好ましい。また
可溶性コバルト化合物に対する有機アルミニウムクロラ
イドのモル比(Al/Co)は10以上であり,特に5
0以上であることが好ましい。また,可溶性コバルト化
合物以外にもニッケルの有機カルボン酸塩,ニッケルの
有機錯塩,有機リチウム化合物を使用することも可能で
ある。
Next, a soluble cobalt compound is added to the mixed medium containing the organic aluminum chloride to carry out cis-1,4 polymerization. Soluble cobalt compounds include C
It is soluble in an inert medium or liquid 1,3-butadiene mainly composed of 4 fractions or can be uniformly dispersed.
For example, cobalt β-diketone complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; β-keto acid ester complexes of cobalt such as cobalt acetoacetate ethyl ester complex; cobalt octoate; cobalt naphthenate; Cobalt salts of organic carboxylic acids having 6 or more carbon atoms, such as cobalt benzoate,
Cobalt halide complexes such as cobalt chloride pyridine complex and cobalt chloride ethyl alcohol complex can be mentioned. The amount of soluble cobalt compound used is 1,3-
It is preferably at least 0.001 mmol, particularly preferably at least 0.005 mmol, per mole of butadiene. The molar ratio of organoaluminum chloride to the soluble cobalt compound (Al / Co) is 10 or more, especially 5
It is preferably 0 or more. In addition to the soluble cobalt compound, it is also possible to use an organic carboxylate of nickel, an organic complex of nickel, and an organic lithium compound.

【0012】シス−1,4重合する温度は0℃を超える
温度〜100℃,好ましくは10〜100℃、更に好ま
しくは20〜100℃までの温度範囲で1,3−ブタジ
エンをシス−1,4重合する。重合時間(平均滞留時
間)は10分〜2時間の範囲が好ましい。シス−1,4
重合後のポリマー濃度は5〜26重量%となるようにシ
ス−1,4重合を行うことが好ましい。重合槽は1槽,
又は2槽以上の槽を連結して行われる。重合は重合槽
(重合器)内にて溶液を攪拌混合して行う。重合に用い
る重合槽としては高粘度液攪拌装置付きの重合槽,例え
ば特公昭40−2645号に記載された装置を用いるこ
とができる。
The temperature at which cis-1,4 is polymerized is from a temperature exceeding 0 ° C. to 100 ° C., preferably from 10 to 100 ° C., and more preferably from 20 to 100 ° C. 4 Polymerize. The polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours. Cis-1,4
It is preferable to carry out cis-1,4 polymerization so that the polymer concentration after the polymerization is 5 to 26% by weight. One polymerization tank,
Alternatively, it is performed by connecting two or more tanks. The polymerization is carried out by stirring and mixing the solution in a polymerization tank (polymerization vessel). As the polymerization tank used for the polymerization, a polymerization tank equipped with a high-viscosity liquid stirring device, for example, an apparatus described in Japanese Patent Publication No. 40-2645 can be used.

【0013】本発明のシス−1,4重合時に公知の分子
量調節剤,例えばシクロオクタジエン,アレン,メチル
アレン(1,2−ブタジエン)などの非共役ジエン類,
又はエチレン,プロピレン,ブテン−1などのα−オレ
フィン類を使用することができる。又重合時のゲルの生
成を更に抑制するために公知のゲル化防止剤を使用する
ことができる。シス−1,4−構造含有率が一般に90
%以上,特に95%以上で,ムーニー粘度(ML1+4
100℃,以下,MLと略す)10〜130,好ましく
は15〜80であり,実質的にゲル分を含有しない。
In the cis-1,4 polymerization of the present invention, known molecular weight regulators such as non-conjugated dienes such as cyclooctadiene, arene and methylarene (1,2-butadiene);
Alternatively, α-olefins such as ethylene, propylene and butene-1 can be used. In order to further suppress the formation of a gel during polymerization, a known gelling inhibitor can be used. The cis-1,4-structure content is generally 90
%, Especially 95% or more, Mooney viscosity (ML 1 + 4 ,
100 ° C., hereinafter abbreviated as ML) 10 to 130, preferably 15 to 80, and substantially contains no gel component.

【0014】前記の如くして得られたシス−1,4重合
反応混合物に1,3−ブタジエンを添加しても添加しな
くてもよい。そして,一般式AlR3 で表せる有機アル
ミニウム化合物と二硫化炭素,必要なら前記の可溶性コ
バルト化合物を添加して1,3−ブタジエンを1,2重
合して沸点n−ヘキサン可溶分97〜70重量%とH.
Iが3〜30重量%とからなるVCRを製造する。一般
式AlR3 で表せる有機アルミニウム化合物としてはト
リメチルアルミニウム,トリエチルアルミニウム,トリ
イソブチルアルミニウム,トリn−ヘキシルアルミニウ
ム,トリフェニルアルミニウムなどを好適に挙げること
ができる。有機アルミニウム化合物は1,3−ブタジエ
ン1モル当たり0.1ミリモル以上,特に0.5〜50
ミリモル以上である。二硫化炭素は特に限定されないが
水分を含まないものであることが好ましい。二硫化炭素
の濃度は20ミリモル/L以下,特に好ましくは0.0
1〜10ミリモル/Lである。二硫化炭素の代替として
公知のイソチオシアン酸フェニルやキサントゲン酸化合
物を使用してもよい。
1,3-Butadiene may or may not be added to the cis-1,4 polymerization reaction mixture obtained as described above. Then, an organic aluminum compound represented by the general formula AlR 3 and carbon disulfide, was added if necessary the soluble cobalt compound as 1,3-butadiene 1,2 polymerization to boiling n- hexane solubles 97-70 wt % And H.
A VCR comprising I to 3 to 30% by weight is produced. The organoaluminum compound represented by the general formula AlR 3 may be mentioned trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n- hexyl aluminum, triphenyl aluminum, etc. suitably. The organoaluminum compound is used in an amount of 0.1 mmol or more, especially 0.5-50
More than mmol. The carbon disulfide is not particularly limited, but preferably does not contain water. The concentration of carbon disulfide is 20 mmol / L or less, particularly preferably 0.02 mmol / L.
It is 1 to 10 mmol / L. As a substitute for carbon disulfide, a known phenyl isothiocyanate or xanthate compound may be used.

【0015】1,2重合する温度は0℃を超える温度〜
100℃,好ましくは10〜100℃,更に好ましくは
20〜100℃までの温度範囲で1,3−ブタジエンを
1,2重合する。1,2重合する際の重合系には前記の
シス重合液100重量部当たり1〜50重量部,好まし
くは1〜20重量部の1,3−ブタジエンを添加するこ
とで1,2重合時の1,2−ポリブタジエンの収量を増
大させることができる。重合時間(平均滞留時間)は1
0分〜2時間の範囲が好ましい。1,2重合後のポリマ
ー濃度は9〜29重量%となるように1,2重合を行う
ことが好ましい。重合槽は1槽,又は2槽以上の槽を連
結して行われる。重合は重合槽(重合器)内にて重合溶
液を攪拌混合して行う。1,2重合に用いる重合槽とし
ては1,2重合中に更に高粘度となり,ポリマーが付着
しやすいので高粘度液攪拌装置付きの重合槽,例えば特
公昭40−2645号公報に記載された装置を用いるこ
とができる。
The temperature at which 1,2 is polymerized is a temperature exceeding 0 ° C.
1,3-Butadiene 1,2 is polymerized in a temperature range of 100 ° C, preferably 10 to 100 ° C, more preferably 20 to 100 ° C. The 1,2-butadiene of 1 to 50 parts by weight, preferably 1 to 20 parts by weight, is added to 100 parts by weight of the cis polymerization solution to the polymerization system at the time of the 1,2 polymerization. The yield of 1,2-polybutadiene can be increased. The polymerization time (average residence time) is 1
A range from 0 minutes to 2 hours is preferred. The 1,2 polymerization is preferably performed so that the polymer concentration after the 1,2 polymerization is 9 to 29% by weight. The polymerization tank is performed by connecting one tank or two or more tanks. The polymerization is carried out by stirring and mixing the polymerization solution in a polymerization tank (polymerization vessel). The polymerization tank used for the 1,2 polymerization is a polymerization tank equipped with a high-viscosity liquid stirrer, for example, an apparatus described in Japanese Patent Publication No. 40-2645, since the viscosity becomes higher during the 1,2 polymerization and the polymer easily adheres. Can be used.

【0016】重合反応が所定の重合率に達した後,常法
に従って公知の老化防止剤を添加することができる。老
化防止剤の代表としてはフェノール系の2,6−ジ−t
−ブチル−p−クレゾール(BHT),リン系のトリノ
ニルフェニルフォスファイト(TNP),硫黄系のジラ
ウリル−3,3’−チオジプロピオネート(TPL)な
どが挙げられる。単独でも2種以上組み合わせて用いて
もよく,老化防止剤の添加はVCR100重量部に対し
て0.001〜5重量部である。次に重合停止剤を重合
系に加えて停止する。例えば重合反応終了後,重合停止
槽に供給し,この重合溶液にメタノール,エタノールな
どのアルコール,水などの極性溶媒を大量に投入する方
法,塩酸,硫酸などの無機酸,酢酸,安息香酸などの有
機酸,塩化水素ガスを重合溶液に導入する方法などの,
それ自体公知の方法である。次いで通常の方法に従い生
成したVCRを分離,洗浄,乾燥する。
After the polymerization reaction reaches a predetermined polymerization rate, a known antioxidant can be added according to a conventional method. Representative examples of anti-aging agents include phenolic 2,6-di-t.
-Butyl-p-cresol (BHT), phosphorus-based trinonylphenyl phosphite (TNP), and sulfur-based dilauryl-3,3'-thiodipropionate (TPL). The antioxidant may be used alone or in combination of two or more kinds, and the addition of the antioxidant is 0.001 to 5 parts by weight based on 100 parts by weight of the VCR. Next, a polymerization terminator is added to the polymerization system to terminate the polymerization. For example, after the polymerization reaction is completed, the solution is supplied to a polymerization stopping tank, and a large amount of a polar solvent such as alcohol such as methanol or ethanol or water is added to the polymerization solution. Such as a method of introducing an organic acid or hydrogen chloride gas into a polymerization solution,
It is a method known per se. Next, the produced VCR is separated, washed and dried according to a usual method.

【0017】このようにして得られたVCRは沸騰n−
ヘキサン可溶分97〜70重量%とH.Iが3〜30重
量%とからなり,沸騰n−ヘキサン可溶分はミクロ構造
が90%以上のシス−1,4−ポリブタジエンであり,
H.Iの融点が180〜215℃のSPBDである。M
Lは20〜150,好ましくは25〜100である。V
CR中に分散したSPBDはBRマトリックス中に微細
な結晶として均一に分散し,SPBDの極微細短繊維結
晶により結晶間距離が短縮されてその間にBRを拘束し
た構造となっており,その短繊維結晶の長軸長さの分布
は繊維長さの98%以上が0.6μm未満であり,且つ
繊維長さの70%以上が0.2μm未満である。他方,
従来のVCRは,その短繊維結晶の長軸長さの分布は繊
維長さの98%以上が1.0μm未満であり,且つ繊維
長さの70%以上が0.4μm未満であった。明らかに
分布が異なっていた。
The VCR thus obtained has a boiling n-
97-70% by weight of hexane soluble matter and H.I. I is from 3 to 30% by weight, and the boiling n-hexane soluble component is cis-1,4-polybutadiene having a microstructure of 90% or more.
H. I is SPBD having a melting point of 180 to 215 ° C. M
L is 20 to 150, preferably 25 to 100. V
The SPBD dispersed in the CR is uniformly dispersed as fine crystals in the BR matrix, and the ultrafine short fiber crystals of the SPBD reduce the distance between the crystals and have a structure in which the BR is constrained between them. The distribution of the major axis length of the crystal is such that 98% or more of the fiber length is less than 0.6 μm and 70% or more of the fiber length is less than 0.2 μm. On the other hand,
In the conventional VCR, the distribution of the major axis length of the short fiber crystal is 98% or more of the fiber length is less than 1.0 μm, and 70% or more of the fiber length is less than 0.4 μm. Clearly the distribution was different.

【0018】このようにして得られたVCRを分離取得
した残部の未反応の1,3−ブタジエン,不活性媒体及
び二硫化炭素を含有する混合物から蒸留により1,3−
ブタジエン,不活性媒体として分離して,一方,二硫化
炭素を吸着分離処理,あるいは二硫化炭素付加物の分離
処理によって二硫化炭素を分離除去し,二硫化炭素を実
質的に含有しない1,3−ブタジエンと不活性媒体とを
回収する。また,前記の混合物から蒸留によって3成分
を回収して,この蒸留から前記の吸着分離あるいは二硫
化炭素付着物分離処理によって二硫化炭素を分離除去す
ることによっても,二硫化炭素を実質的に含有しない
1,3−ブタジエンと不活性媒体とを回収することもで
きる。前記のようにして回収された二硫化炭素と不活性
媒体とは新たに補充した1,3−ブタジエンを混合して
使用される。
The VCR thus obtained is separated from the remaining unreacted 1,3-butadiene, the inert medium and the mixture containing carbon disulfide by distillation to obtain 1,3-butadiene.
Butadiene is separated as an inert medium. On the other hand, carbon disulfide is separated and removed by adsorption separation treatment of carbon disulfide or separation treatment of carbon disulfide adduct, and contains substantially no carbon disulfide. Recover butadiene and inert medium. Alternatively, the three components are recovered from the mixture by distillation, and the carbon disulfide is substantially contained by separating and removing the carbon disulfide from the distillation by the adsorption separation or the carbon disulfide deposit separation treatment. Unreacted 1,3-butadiene and an inert medium can be recovered. The carbon disulfide recovered as described above and the inert medium are used by mixing freshly replenished 1,3-butadiene.

【0019】本発明による方法で連続運転すると,触媒
成分の操作性に優れ,高い触媒効率で工業的に有利にV
CRを連続的に長時間製造することができる。特に,重
合槽内の内壁や攪拌翼,その他攪拌が緩慢な部分に付着
することもなく,高い転化率で工業的に有利に連続製造
できる。
The continuous operation according to the method of the present invention provides excellent operability of catalyst components, high catalyst efficiency and industrially advantageous V
CR can be manufactured continuously for a long time. In particular, continuous production can be advantageously carried out industrially at a high conversion rate without adhering to the inner wall in the polymerization tank, the stirring blade, and other parts where stirring is slow.

【0020】本発明により得られるVCRは単独でまた
は他の合成ゴム若しくは天然ゴムとブレンドして配合
し,必要ならばプロセス油で油展し,次いでカーボンブ
ラックなどの充填剤,加硫剤,加硫促進剤その他通常の
配合剤を加えて加硫し,タイヤ用として有用であり,ト
レッド,サイウォール,スティフナー,ビードフィラ
ー,インナーライナー,カーカスなどに,その他,ホー
ス,ベルトその他の各種工業用品等の機械的特性及び耐
摩耗性が要求されるゴム用途に使用される。また,プラ
スチックスの改質剤として使用することもできる。
The VCR obtained according to the present invention is compounded alone or blended with other synthetic rubbers or natural rubbers, and if necessary, oil-extended with a process oil, and then a filler such as carbon black, a vulcanizing agent, a vulcanizing agent, and the like. It is vulcanized by adding a sulfur accelerator and other usual compounding agents, and is useful for tires. For treads, cywalls, stiffeners, bead fillers, inner liners, carcass, etc., hoses, belts and other various industrial products. Used for rubber applications where mechanical properties and abrasion resistance are required. It can also be used as a modifier for plastics.

【0021】本発明により得られるVCRに前記の配合
剤を加えて混練した組成物は,従来のベンゼン,トルエ
ン,ヘキサン,シクロヘキサン,クロルベンゼンなどの
溶媒を使用した方法で得られたVCRに比較してダイス
ウェル比(押出し時の配合物の径とダイオリフィス径の
比)が小さく押出加工性に優れている。本発明によるダ
イスウェル比(Dsn)及び前記従来の方法によるダイ
スウェル比(Dso)の関係をDsn/Dsoの比とV
CR組成物(配合物)中のH.I=w(重量%)の関係
が以下の式で表されることを特徴とする。即ち, Dsn/Dso ≦ −0.02w + 1 但し,VCR組成物=T(重量部),VCR配合量=v
(重量部)及びVCR組成物中のH.I=w(重量%)
の関係はw=(vH.I)/Tである。VCR組成物中
のH.Iが増加するとダイスウェル比が小さくなり押出
加工性が改善される。即ち,本発明のVCR組成物と従
来のVCR組成物間のダイスウェル比の差は,配合物中
のH.Iが増加する程大きくなり,押出加工性が良好に
なることを示す。
The composition obtained by adding the above compounding agent to the VCR obtained by the present invention and kneading the same was compared with a VCR obtained by a conventional method using a solvent such as benzene, toluene, hexane, cyclohexane and chlorobenzene. Therefore, the die swell ratio (the ratio between the diameter of the compound during extrusion and the diameter of the die orifice) is small and the extrudability is excellent. The relationship between the die swell ratio (Dsn) according to the present invention and the die swell ratio (Dso) according to the conventional method is represented by the ratio of Dsn / Dso and V
H. in CR compositions (formulations) The relationship of I = w (% by weight) is represented by the following equation. That is, Dsn / Dso ≦ −0.02w + 1, where VCR composition = T (parts by weight), VCR compounding amount = v
(Parts by weight) and H.V. in the VCR composition. I = w (% by weight)
Is w = (vH.I) / T. H. in the VCR composition As I increases, the die swell ratio decreases and the extrudability improves. That is, the difference in die swell ratio between the VCR composition of the present invention and the conventional VCR composition is determined by the H.V. It increases as I increases, indicating that the extrudability is good.

【0022】また,本発明により得られるVCR組成物
(配合物)を加硫すると硬度や引張応力が向上する。特
に100%引張応力の向上が著しく,前記従来の方法で
得られたVCRに比較して補強効果が大幅に改善されお
り,本発明による100%引張応力(Mn100 )及び前
記従来の方法による100%引張応力(Mo100 )の比
と配合物中のH.I=w(重量%)の関係が以下の式で
表されることを特徴とする。即ち, Mn100 /Mo
100 ≧ 0.03w + 1 但し,w=(vH.I)/Tであるのは前記の通りであ
る。配合物のH.Iが増加すると加硫物の100%引張
応力が大きくなる。即ち,本発明のVCRと従来のVC
R間の100%引張応力の差は,配合物中のH.Iが増
加する程大きくなり,補強効果が増大することを示す。
When the VCR composition (compound) obtained according to the present invention is vulcanized, hardness and tensile stress are improved. In particular, the 100% tensile stress is remarkably improved, and the reinforcing effect is greatly improved as compared with the VCR obtained by the above-mentioned conventional method, and the 100% tensile stress (Mn100) according to the present invention and the 100% tensile stress by the above-mentioned conventional method are improved. The ratio of tensile stress (Mo100) and H.O. The relationship of I = w (% by weight) is represented by the following equation. That is, Mn100 / Mo
100 ≧ 0.03w + 1 where w = (vHI) / T is as described above. H. of the formulation As I increases, the 100% tensile stress of the vulcanizate increases. That is, the VCR of the present invention and the conventional VC
The difference in 100% tensile stress between the R. It increases as I increases, indicating that the reinforcing effect increases.

【0023】[0023]

【実施例】以下,本発明を実施例に基づいて具体的に説
明するが,これらは本発明の目的を限定するものではな
い。また,VCRの素ゴムの物性,配合物の物性及び加
硫物の物性は以下のようにして測定した。沸騰n−ヘキサン不溶分H.I:;2gのVCRを2
00mlのn−ヘキサンにて4時間ソックスレー抽出器
によって沸騰抽出した抽出残部を重量%で示した。沸騰n−ヘキサン不溶分の融点 :;沸騰n−ヘキサン抽
出残部を示差走査熱量計(DSC)による吸熱曲線のピ
ーク温度により決定した。沸騰n−ヘキサン可溶分のミクロ構造 :;赤外吸収分光
法により測定した。ムーニー粘度,ML1+4,100℃,
ML:;沸騰n−ヘキサン可溶分,VCR及び配合物の
ムーニー粘度をJIS K6300に準じて100℃に
て測定した値である。T−cp :;沸騰n−ヘキサン可溶分やBRの25℃に
おける5重量%トルエン溶液の粘度を測定してセンチポ
イズ(cp)で示した値である。分子量分布 :;沸騰n−ヘキサン可溶分のテトラヒドロ
フラン溶液にてゲル浸透クロマトグラフィー(GPC,
トーソー社,HLC−802A)により40℃,標準ポ
リスチレンを使用した検量線より,重量平均分子量(M
w ),数平均分子量(Mn )及び分子量分布(Mw /M
n )を求めた。ηsp/c :;沸騰n−ヘキサン不溶分の分子量の大きさ
の目安として0.20g/dlのテトラリン溶液から1
35℃で還元粘度を測定した。ダイスウェル比 :;加工性測定装置(モンサント社,M
PT)を用いて配合物の押出し加工性の目安として10
0℃,100sec-1の剪断速度で押出し時の配合物の
径とダイオリフィス径(但し,L/D=1.5mm/
1.5mm)の比を測定し,ダイスウェル比を求めた。
また,比較例1を100としてダイスウェル指数を算出
した。これらの数値が小さい程加工性が良好なことを示
す。加硫条件 :;キュラストメーター(日本合成ゴム社,J
SRキュラストメーター2F)を使用して配合物の加硫
曲線を測定し,その結果から,150℃で40分,プレ
ス加硫した。硬さ・引張・引裂試験 :;加硫物はJIS K625
0,K6251,及びK6252に準じて室温で測定し
てそれぞれ硬さ,100%引張応力(kg/cm 2 ),
引張強さ(kg/cm2 ),伸び(%),引裂強さ(k
g/cm)で示した。屈曲亀裂成長性 :;JIS K6260に準じてストロ
ーク56mm,初期亀裂2mmで亀裂が15mmまで成
長した時点の屈曲回数で示した。電子顕微鏡写真 :;VCRを2mm角のサンプルに切り
だし,一塩化硫黄/二硫化炭素=1:1溶液中に72時
間浸漬して,VCRのシス部分の二重結合を選択的に加
硫し,アセトンで十分洗浄した後に3日間風乾した加硫
物をミクロトームで超薄切片を切りだして四塩化オスミ
ウム蒸気でVCRのビニル部分の二重結合を染色し,透
過型電子顕微鏡(日立製,H−7100)で観察して得
られた5,000倍写真からVCRのSPBD結晶の形
態として短繊維の長軸の長さを目視で測定して0.2μ
m刻みで分布図を作成した。又,平均繊維長軸長さを求
めた。
EXAMPLES Hereinafter, the present invention will be specifically described based on examples.
It should be noted that they do not limit the purpose of the present invention.
No. In addition, the physical properties of VCR raw rubber,
The physical properties of the sulphate were measured as follows.Boiling n-hexane insolubles ,H. I: 2 g VCR to 2
Soxhlet extractor with 00 ml of n-hexane for 4 hours
The remaining portion extracted by boiling was indicated by weight%.Melting point of boiling n-hexane insoluble matter : Boiling n-hexane extraction
The remaining part is plotted on an endothermic curve by a differential scanning calorimeter (DSC).
Determined by the working temperature.Microstructure of boiling n-hexane solubles : Infrared absorption spectroscopy
It was measured by the method.Mooney viscosity, ML1 + 4,100 ° C,
ML: of boiling n-hexane solubles, VCR and formulation
Mooney viscosity at 100 ° C according to JIS K6300
It is the value measured byT-cp : 25 ° C of boiling n-hexane solubles and BR
The viscosity of a 5% by weight toluene solution in
Is the value indicated by the size (cp).Molecular weight distribution : Tetrahydrogen soluble in boiling n-hexane
Gel permeation chromatography (GPC,
40 ° C, standard port by Tosoh Corporation, HLC-802A)
From the calibration curve using polystyrene, the weight average molecular weight (M
w), number average molecular weight (Mn) and molecular weight distribution (Mw / M
n).η sp / c :; Molecular weight of boiling n-hexane insoluble matter
As a guideline, 1% from a 0.20 g / dl tetralin solution
The reduced viscosity was measured at 35 ° C.Die swell ratio : Workability measuring device (Monsanto, M
PT) as a guide to the extrusion processability of the compound.
0 ° C, 100 sec-1Of the compound during extrusion at a shear rate of
Diameter and die orifice diameter (however, L / D = 1.5mm /
1.5 mm) and the die swell ratio was determined.
Also, the die swell index was calculated with Comparative Example 1 as 100.
did. Smaller values indicate better workability.
You.Vulcanization conditions : Curast meter (Nippon Synthetic Rubber Co., Ltd., J
Vulcanization of compound using SR Curastometer 2F)
The curve was measured and the results were prepressed at 150 ° C for 40 minutes.
Vulcanized.Hardness / tensile / tear test : Vulcanized product is JIS K625
0, K6251, and K6252 at room temperature
Hardness and 100% tensile stress (kg / cm Two),
Tensile strength (kg / cmTwo), Elongation (%), tear strength (k
g / cm).Flex crack growth : Stroke according to JIS K6260
Crack 56mm, initial crack 2mm, crack up to 15mm
It was indicated by the number of flexions at the time of extension.Electron micrograph : Cut VCR into 2mm square sample
However, for 72 hours in a solution of sulfur monochloride / carbon disulfide = 1: 1
To selectively add double bonds in the cis portion of the VCR.
Vulcanized by air drying for 3 days after washing and washing thoroughly with acetone
The material was cut into ultrathin sections with a microtome and osmium tetrachloride
Dye the double bond in the vinyl part of the VCR using
Observed with a scanning electron microscope (H-7100, manufactured by Hitachi)
Of the VCR SPBD crystal from the 5,000x photograph
As a state, the length of the long axis of the short fiber is visually measured to be 0.2 μm.
A distribution map was created at m intervals. Also, find the average fiber major axis length.
I did.

【0024】〔実施例1〕所定の水分を溶解した1,3
−ブタジエンを32重量%濃度でシス−2−ブテンを主
成分として含有するC4 留分(68重量%)混合媒体
(水分;2.09ミリモル/L)を毎時12.5リット
ル(二硫化炭素20mg/Lを含有する)を20℃に保
持された容量2リットルの攪拌機付きステンレス製熟成
槽に供給すると共にジエチルアルミニウムクロライド
(10重量%のn−ヘキサン溶液,3.13mmol/
L)を供給し,この反応槽溶液におけるジエチルアルミ
ニウムクロライド/水モル比を1.5に調製する。得ら
れた熟成液を40℃に保持された容量5リットルの攪拌
機付きステンレス製シス重合槽に供給する。このシス重
合槽にはコバルトオクトエート(コバルトオクトエート
0.0117mmol/L,n−ヘキサン溶液)と分子
量調節剤1,2−ブタジエン(1,2−ブタジエン8.
2mmol/L;1.535mol/Lのn−ヘキサン
溶液)が供給される。得られたシス重合液を内容5リッ
トルのリボン型攪拌機付きステンレス製1,2重合槽に
供給し,35℃で10時間連続重合した。この1,2重
合槽にはトリエチルアルミニウム(10重量%のn−ヘ
キサン溶液,4.09mmol/L)を連続的に供給し
た。得られた重合液を攪拌機付混合槽に供給し,これに
2,6−ジ−t−ブチル−p−クレゾールをゴムに対し
て1PHR加え,更にメタノールを少量加え重合を停止
した後,未反応1,3−ブタジエン及びC4 留分を蒸発
除去し,常温で真空乾燥してVCR8.3kgを得た。
このVCRのML=57,H.I=11.1%,H.I
の融点=204.1℃,H.Iのηsp/c=1.84,
沸騰n−ヘキサン可溶分のML=30,沸騰n−ヘキサ
ン可溶分のT−cp=62,沸騰n−ヘキサン可溶分の
シス−1,4構造=98.5%,Mw =465,00
0,Mn =188,000,Mw /Mn =2.47であ
った。透過型電子顕微鏡観察写真から得られた短繊維結
晶の長軸長さの分布は繊維長さの98%以上が0.6μ
m未満であり,且つ繊維長さの70%以上が0.2μm
未満でった。
[Example 1] 1,3 in which predetermined water was dissolved
- C 4 fraction containing cis-2-butene as a main component butadiene in 32% strength by weight (68 wt%) mixed medium (water; 2.09 mmol / L) per hour 12.5 liters (carbon disulfide 20 mg / L) was supplied to a 2 liter stainless steel ripening tank equipped with a stirrer maintained at 20 ° C. and diethyl aluminum chloride (10% by weight n-hexane solution, 3.13 mmol / l).
L), and the molar ratio of diethylaluminum chloride / water in the reaction solution is adjusted to 1.5. The obtained aging solution is supplied to a stainless cis polymerization tank having a stirrer and having a capacity of 5 liters and maintained at 40 ° C. In this cis polymerization tank, cobalt octoate (cobalt octoate 0.0117 mmol / L, n-hexane solution) and molecular weight regulator 1,2-butadiene (1,2-butadiene 8.
2 mmol / L; 1.535 mol / L n-hexane solution). The resulting cis polymerization solution was supplied to a 5-liter stainless steel 1, 2 polymerization tank equipped with a ribbon-type stirrer, and was continuously polymerized at 35 ° C. for 10 hours. Triethylaluminum (10 wt% n-hexane solution, 4.09 mmol / L) was continuously supplied to the 1,2 polymerization tank. The resulting polymerization solution was supplied to a mixing tank equipped with a stirrer, and 1 PHR of 2,6-di-t-butyl-p-cresol was added to the rubber, and a small amount of methanol was further added to terminate the polymerization. The 1,3-butadiene and C 4 fractions were removed by evaporation and vacuum dried at room temperature to obtain 8.3 kg of VCR.
ML of this VCR = 57, H.V. I = 11.1%, H.I. I
Melting point = 204.1 DEG C .; Η sp / c of I = 1.84,
Boiling n-hexane solubles ML = 30, boiling n-hexane solubles T-cp = 62, boiling n-hexane solubles cis-1,4 structure = 98.5%, Mw = 465. 00
0, Mn = 188,000, Mw / Mn = 2.47. The distribution of the major axis length of the short fiber crystals obtained from the transmission electron microscopic observation photograph is that 98% or more of the fiber length is 0.6 μm.
m and at least 70% of the fiber length is 0.2 μm
Was less than

【0025】〔実施例2〕実施例1と同様にしてシス重
合して1,2重合した。1,2重合槽にはコバルトオク
トエート0.1252mmol/Lとした以外は実施例
1と同様に運転して3時間連続重合して,処理してVC
R2.3kgを得た。このVCRのH.Iは17.1
%,H.Iの融点は203.0℃,H.Iのηsp/c=
1.59であった。このVCRにBR(ML=29,T
−cp=58,Mw =459,000,Mn =185,
000,Mw /Mn =2.47)をドライブレンドして
VCRをH.I=12%に調整した。このVCRのML
=56,H.I=12.0%,H.Iの融点=203.
0℃,H.Iのηsp/c=1.59,沸騰n−ヘキサン
可溶分のT−cp=55であった。
Example 2 In the same manner as in Example 1, cis polymerization was carried out to polymerize 1,2. The polymerization was carried out in the same manner as in Example 1 except that the cobalt octoate in the polymerization tanks 1 and 2 was changed to 0.1252 mmol / L.
2.3 kg of R were obtained. This VCR's H. I is 17.1
%, H. The melting point of I.I. Η sp / c of I =
1.59. This VCR has BR (ML = 29, T
-Cp = 58, Mw = 459,000, Mn = 185,
000, Mw / Mn = 2.47) by dry blending to obtain I was adjusted to 12%. ML of this VCR
= 56, H.C. I = 12.0%, H.I. Melting point of I = 203.
0 ° C, H.C. The η sp / c of I was 1.59, and the T-cp of the boiling n-hexane soluble matter was 55.

【0026】〔比較例1〕不活性媒体にベンゼン−C4
留分混合溶媒(ベンゼン30重量%とシス−2−ブテン
を主成分とするC4 留分39重量%)とした場合のVC
R(宇部興産社製,UBEPOL−VCR412,ML
=43,H.I=11.1%)であり,H.Iの融点=
201.4℃,H.Iのηsp/ c =1.87であった。
沸騰n−ヘキサン可溶分のML=32,沸騰n−ヘキサ
ン可溶分のシス−1,4構造は97.5%,Mw は48
3,000,Mn は198,000,Mw /Mn =2.
43であった。透過型電子顕微鏡観察写真から得られた
短繊維結晶の長軸長さの分布は繊維長さの98%以上が
1.0μm未満であり,且つ繊維長さの70%以上が
0.4μm未満であった。
Comparative Example 1 Benzene-C4 was used as an inert medium.
VC in the case of using a fraction mixed solvent (39% by weight of a C4 fraction containing 30% by weight of benzene and cis-2-butene)
R (UBEVOL-VCR412, ML manufactured by Ube Industries)
= 43, H .; I = 11.1%). Melting point of I =
201.4 ° C, H.I. Ηsp / c of I was 1.87.
Boiling n-hexane solubles ML = 32, boiling n-hexane solubles cis-1,4 structure 97.5%, Mw 48
3,000, Mn is 198,000, Mw / Mn = 2.
43. The distribution of the major axis length of the short fiber crystal obtained from the transmission electron microscope observation photograph is such that 98% or more of the fiber length is less than 1.0 μm and 70% or more of the fiber length is less than 0.4 μm. there were.

【0027】〔比較例2〕比較例1と同様の混合溶媒を
用いて得られたBR(宇部興産社製,UBEPOL−B
R150)であり,ML=43,シス−1,4構造=9
7.7%,T−cp=75,Mw =563,000,M
n =206,000,Mw /Mn =2.73であった。
[Comparative Example 2] BR (UBEPOL-B manufactured by Ube Industries, Ltd.) obtained using the same mixed solvent as in Comparative Example 1
R150), ML = 43, cis-1,4 structure = 9
7.7%, T-cp = 75, Mw = 563,000, M
n = 206,000, Mw / Mn = 2.73.

【0028】前記の実施例1及び2と比較例1及び2を
表1の配合表に従って,一次配合した配合物に硫黄及び
加硫促進剤以外の配合剤を混合して配合物の物性をそれ
ぞれ測定して表2及び表3に示した。
According to the composition table of Table 1, the above-mentioned Examples 1 and 2 and Comparative Examples 1 and 2 were mixed with a compounding agent other than sulfur and a vulcanization accelerator to the compounded mixture, and the physical properties of the compounded compounds were respectively adjusted. The measured values are shown in Tables 2 and 3.

【0029】前記の実施例1及び2と比較例1及び2を
表1の配合表に従ってバンバリーミキサーにて一次配合
した配合物に硫黄,加硫促進剤をオープンロールで二次
配合して150℃でプレス加硫した。目的物性に応じて
物性測定用試料を作成して,加硫物性をそれぞれ測定し
て表4に示した。電子顕微鏡観察写真からVCR中に分
散したSPBDの短繊維結晶長軸の長さの分布を図1に
示した。また,実施例1及び比較例1の平均繊維長軸長
さは0.13μm及び0.30μmであり,明らかに極
微細分散であり,分布も異なっていた。
The above-mentioned Examples 1 and 2 and Comparative Examples 1 and 2 were firstly blended with a Banbury mixer according to the blending table in Table 1, and then sulfur and a vulcanization accelerator were secondarily blended with an open roll to 150 ° C. Press vulcanized. Samples for measuring physical properties were prepared according to the target physical properties, and the vulcanized physical properties were measured, and the results are shown in Table 4. FIG. 1 shows the distribution of the length of the long axis of the short fiber crystal of the SPBD dispersed in the VCR from an electron micrograph. Further, the average fiber major axis lengths of Example 1 and Comparative Example 1 were 0.13 μm and 0.30 μm, which were clearly ultrafine dispersion and different in distribution.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】本発明のビニル・シスポリブタジエン
(VCR)はシンジオタクチック−1,2−ポリブタジ
エン(SPBD)結晶が極微細な構造でシス−1,4−
ポリブタジエン(BR)マトリックス中に均一に分散し
て,更に極微細に分散した短繊維結晶がBR成分を結晶
間で拘束することで,高硬度,高引張応力の補強効果を
発現する。配合物のダイスウェル比が小さく押出加工性
能が優れると共に加硫物は高硬度,高引張応力,優れた
耐屈曲亀裂成長性であるので自動車タイヤの各部材の薄
肉化やカーボンブラックなどの充填剤の低減などに寄与
でき,低燃費タイヤ用途に適している。
The vinyl cis polybutadiene (VCR) of the present invention has a very fine syndiotactic-1,2-polybutadiene (SPBD) crystal and cis-1,4-polybutadiene.
Short fiber crystals dispersed uniformly in a polybutadiene (BR) matrix and further finely dispersed bind BR components between the crystals, thereby exhibiting a reinforcing effect of high hardness and high tensile stress. The compound has a low die swell ratio and excellent extruding performance, and the vulcanizate has high hardness, high tensile stress and excellent flex crack growth resistance. Suitable for low fuel consumption tire applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例1及び比較例1のVCR
のSPBDの繊維の形状を示す電子顕微鏡写真を観察し
て得られた短繊維結晶の長軸長さの分布図である。
FIG. 1 shows a VCR of Example 1 and Comparative Example 1 of the present invention.
FIG. 4 is a distribution diagram of the major axis length of short fiber crystals obtained by observing an electron micrograph showing the shape of the SPBD fiber.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 AC031 BL012 FD010 GM01 GN01 4J100 AS02P CA01 CA12 CA15 FA09 FA19 FA30 FA41 JA28 JA29  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 AC031 BL012 FD010 GM01 GN01 4J100 AS02P CA01 CA12 CA15 FA09 FA19 FA30 FA41 JA28 JA29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1,3−ブタジエンをシス−1,4重合
し,次いでシンジオタクチック−1,2重合する方法に
おいて,(A)1,3−ブタジエンとC4 留分を主成分
とする不活性有機溶媒を混合し,(B)得られた1,3
−ブタジエンとC4 留分を主成分とする不活性有機溶媒
からなる混合物の水分の濃度を調節し,次いで,(C)
シス−1,4重合触媒の一成分である一般式AlRn X
3-n (但しRは炭素数1〜6のアルキル基,フェニル基
又はシクロアルキル基であり,Xはハロゲン元素であ
り,nは1.5〜2の数字)で表されるハロゲン含有の
有機アルミニウム化合物とシス−1,4重合触媒の他の
一成分である可溶性コバルト化合物とを前記混合物に添
加して1,3−ブタジエンをシス−1,4重合する,そ
して,(D)得られた重合反応混合物中に可溶性コバル
ト化合物と一般式AlR3 (但しRは炭素数1〜6のア
ルキル基,フェニル基又はシクロアルキル基である)で
表される有機アルミニウム化合物と二硫化炭素とから得
られるシンジオタクチック−1,2重合触媒を存在させ
て,1,3−ブタジエンをシンジオタクチック−1,2
重合することを特徴とする新規なビニル・シス−ブタジ
エンゴムの製造方法。
1. A method of cis-1,4 polymerization of 1,3-butadiene and then syndiotactic-1,2 polymerization, wherein (A) 1,3-butadiene and a C 4 fraction are main components. An inert organic solvent was mixed, and (B) the obtained 1,3
- adjusting the water concentration of butadiene and C 4 of an inert organic solvent mainly a fraction mixture, then, (C)
General formula AlRn X which is one component of the cis-1,4 polymerization catalyst
A halogen-containing organic compound represented by 3-n (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group, X is a halogen element, and n is a number of 1.5 to 2). An aluminum compound and a soluble cobalt compound, which is another component of the cis-1,4 polymerization catalyst, are added to the mixture to polymerize 1,3-butadiene in cis-1,4, and (D) is obtained. The polymerization reaction mixture is obtained from a soluble cobalt compound, an organoaluminum compound represented by the general formula AlR 3 (where R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group), and carbon disulfide. In the presence of a syndiotactic-1,2 polymerization catalyst, 1,3-butadiene was converted to syndiotactic-1,2.
A method for producing a novel vinyl cis-butadiene rubber, characterized by polymerizing.
【請求項2】 C4 留分を主成分とする不活性有機溶媒
がn−ブタン,シス−2−ブテン,トランス−2−ブテ
ン,及びブテン−1から選択される請求項1記載のビニ
ル・シス−ブタジエンゴムの製造方法。
2. The vinyl organic solvent according to claim 1, wherein the inert organic solvent mainly composed of a C 4 cut is selected from n-butane, cis-2-butene, trans-2-butene and butene-1. A method for producing cis-butadiene rubber.
【請求項3】 ビニル・シス−ブタジエンゴム組成物が
以下(a)〜(b)からなる: (a)沸騰n−ヘキサン不溶分3〜30重量%; (1)沸騰n−ヘキサン不溶分がシンジオタクチック−
1,2−ポリブタジエンであり,(2)シンジオタクチ
ック−1,2−ポリブタジエンが短繊維結晶であり,
(3)短繊維結晶の長軸長さの分布が繊維長さの98%
以上が0.6μm未満であり,70%以上が0.2μm
未満である,(b)沸騰n−ヘキサン可溶分97〜70
重量%; (1)沸騰n−ヘキサン可溶分のミクロ構造が90%以
上のシス−1,4−ポリブタジエンである ことを特徴とする。
3. A vinyl cis-butadiene rubber composition comprising the following (a) and (b): (a) 3 to 30% by weight of a boiling n-hexane insoluble matter; Syndiotactic-
(2) syndiotactic-1,2-polybutadiene is a short fiber crystal,
(3) Distribution of long axis length of short fiber crystal is 98% of fiber length
Is less than 0.6 μm and 70% or more is 0.2 μm
(B) boiling n-hexane solubles 97-70
% By weight; (1) cis-1,4-polybutadiene having a boiling point n-hexane soluble component microstructure of 90% or more.
JP21801398A 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition Expired - Lifetime JP3855480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21801398A JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21801398A JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Publications (2)

Publication Number Publication Date
JP2000044633A true JP2000044633A (en) 2000-02-15
JP3855480B2 JP3855480B2 (en) 2006-12-13

Family

ID=16713266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21801398A Expired - Lifetime JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Country Status (1)

Country Link
JP (1) JP3855480B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054808A1 (en) 2004-12-20 2006-05-26 Ube Industries, Ltd. Process for production of polybutadiene rubber and rubber compositions
JP2007099925A (en) * 2005-10-05 2007-04-19 Ube Ind Ltd Rubber vibration insulator composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2007126648A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
WO2007135946A1 (en) 2006-05-22 2007-11-29 Ube Industries, Ltd. Method for producing polybutadiene
JP2007314809A (en) * 2007-08-29 2007-12-06 Ube Ind Ltd Silica-blended rubber composition for tire
JP2008138080A (en) * 2006-12-01 2008-06-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008163144A (en) * 2006-12-27 2008-07-17 Ube Ind Ltd Production method of vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
US7700691B2 (en) 2003-12-12 2010-04-20 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
JP2010235865A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Method of producing reinforced polybutadiene rubber
US7884154B2 (en) * 2004-12-21 2011-02-08 Ube Industries, Ltd. Rubber composition
JP2013227523A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
WO2014142274A1 (en) 2013-03-13 2014-09-18 宇部興産株式会社 Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
JP2018044146A (en) * 2016-09-09 2018-03-22 宇部興産株式会社 Vinyl-cis-polybutadiene rubber
US10053526B2 (en) 2014-07-09 2018-08-21 Ube Industries, Ltd. Catalyst for conjugated diene polymerization, conjugated diene polymer, modified conjugated diene polymer, polybutadiene, and compositions comprising foregoing
KR20230008140A (en) 2020-04-27 2023-01-13 유비이 엘라스토머 가부시키가이샤 Polybutadiene composition and method for producing the same, rubber composition, tire and rubber belt

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7863385B2 (en) 2003-12-12 2011-01-04 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
US7700691B2 (en) 2003-12-12 2010-04-20 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
WO2006054808A1 (en) 2004-12-20 2006-05-26 Ube Industries, Ltd. Process for production of polybutadiene rubber and rubber compositions
US7884155B2 (en) 2004-12-20 2011-02-08 Ube Industries, Ltd. Process for producing polybutadiene rubber and rubber composition
KR100963998B1 (en) * 2004-12-20 2010-06-15 우베 고산 가부시키가이샤 Process for production of polybutadiene rubber and rubber compositions
US7884154B2 (en) * 2004-12-21 2011-02-08 Ube Industries, Ltd. Rubber composition
JP2007099925A (en) * 2005-10-05 2007-04-19 Ube Ind Ltd Rubber vibration insulator composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2007126648A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
WO2007135946A1 (en) 2006-05-22 2007-11-29 Ube Industries, Ltd. Method for producing polybutadiene
US7868103B2 (en) 2006-05-22 2011-01-11 Ube Industries, Ltd. Method for producing polybutadiene
JP2008138080A (en) * 2006-12-01 2008-06-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008163144A (en) * 2006-12-27 2008-07-17 Ube Ind Ltd Production method of vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2007314809A (en) * 2007-08-29 2007-12-06 Ube Ind Ltd Silica-blended rubber composition for tire
JP2010235865A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Method of producing reinforced polybutadiene rubber
JP2013227523A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
CN105121477A (en) * 2013-03-13 2015-12-02 宇部兴产株式会社 Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
KR20150131102A (en) 2013-03-13 2015-11-24 우베 고산 가부시키가이샤 Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
WO2014142274A1 (en) 2013-03-13 2014-09-18 宇部興産株式会社 Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
CN105121477B (en) * 2013-03-13 2017-03-15 宇部兴产株式会社 Conjugated-diolefin (co) polymer shares catalyst and the conjugated diolefin polymer using the catalyst, modified conjugated diene polymer, its manufacture method, rubber composition for tire and balata belt rubber composition
US10508163B2 (en) 2013-03-13 2019-12-17 Ube Industries, Ltd. Conjugated diene polymer and modified conjugated diene polymer produced using the same, rubber composition for tire, and rubber composition for rubber belt
US10633470B2 (en) 2013-03-13 2020-04-28 Ube Industries, Ltd. Method of producing a conjugated diene polymer, a modified conjugated diene polymer, and a vinyl cis-polybutadiene composition
US10053526B2 (en) 2014-07-09 2018-08-21 Ube Industries, Ltd. Catalyst for conjugated diene polymerization, conjugated diene polymer, modified conjugated diene polymer, polybutadiene, and compositions comprising foregoing
JP2018044146A (en) * 2016-09-09 2018-03-22 宇部興産株式会社 Vinyl-cis-polybutadiene rubber
KR20230008140A (en) 2020-04-27 2023-01-13 유비이 엘라스토머 가부시키가이샤 Polybutadiene composition and method for producing the same, rubber composition, tire and rubber belt

Also Published As

Publication number Publication date
JP3855480B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4924026B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP3981841B2 (en) Vinyl cis-polybutadiene rubber and butadiene rubber composition using the same
JP3855480B2 (en) Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition
JPS631324B2 (en)
JP4208037B2 (en) Rubber composition for belt and rubber belt
JPH08333487A (en) Rubber composition for tire
JP2011184570A (en) Method for producing vinyl-cis-polybutadiene rubber, and vinyl-cis-polybutadiene rubber
JP2017132955A (en) Vinyl-cis-polybutadiene rubber and method for producing the same
WO2014142274A1 (en) Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
CA1252599A (en) Polybutadiene having high 1, 2 and cis-1,4 microstructure contents
JP2005247899A (en) Rubber composition
JP2001294614A (en) Polybutadiene and method for producing the same
JP2006249299A (en) Vinyl-cis-polybutadiene rubber
JP5287436B2 (en) Method for producing reinforced polybutadiene rubber
JP2007063391A (en) Manufacturing process of modified butadiene rubber
JP2007031568A (en) Method for manufacturing vinyl-cis-polybutadiene
JP4353013B2 (en) Rubber composition for tire cord coating
JP4433910B2 (en) High hardness compounded rubber composition
JP4952168B2 (en) Method for producing vinyl cis-polybutadiene composition
JP4151620B2 (en) Rubber composition for passenger car tires
JP2017132959A (en) Rubber composition and tire
JP2004244427A (en) Polybutadiene composition and its production process
JP4151629B2 (en) Rubber composition for sidewall
JP4151621B2 (en) Rubber composition for large vehicle tires
JP2006022243A (en) Silica-compounded rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term