JP2000042400A - Filling method of granular material - Google Patents

Filling method of granular material

Info

Publication number
JP2000042400A
JP2000042400A JP10231133A JP23113398A JP2000042400A JP 2000042400 A JP2000042400 A JP 2000042400A JP 10231133 A JP10231133 A JP 10231133A JP 23113398 A JP23113398 A JP 23113398A JP 2000042400 A JP2000042400 A JP 2000042400A
Authority
JP
Japan
Prior art keywords
filling
container
cylindrical container
opening
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10231133A
Other languages
Japanese (ja)
Inventor
Osamu Nagano
修 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10231133A priority Critical patent/JP2000042400A/en
Publication of JP2000042400A publication Critical patent/JP2000042400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To fill a granular material in a tubular vessel without breaking by previously putting the granular material in a columnar vessel provided with an opening part at the bottom and moving the columnar vessel from the upper part of the tubular vessel to a granular material filling position and opening the opening part to transfer the granular material in the tubular vessel. SOLUTION: At the time of filling the granular material 9 in the tubular vessel 1, the granular material 8 is previously put into the columnar vessel 2 provided with the opening part having opening and closing structure at the bottom and after that, the columnar vessel 2 is moved from the upper part of the tubular vessel 1 to the granular material filling position. Next, the opening part is opened and the granular material 8 is treated to be transferred from the columnar vessel 2 to the tubular vessel 1. In such a case, the granular material is filled from a certain distance not to collide with the bottom of the tubular vessel 1 to be broken by using the columnar vessel 2 as a filling vessel and further at the time of filling into the upper part of the tubular vessel 1, the granular material 9 already filled in the lower part of the tubular vessel 1 acts as a cushioning material to suppress the breaking of the granular material 8 to a minimum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油精製設備や化
学工業設備等の管状容器内に物理強度の弱い粒状物質、
例えば脆弱な触媒やリング状の粒状物質を破損すること
なく充填する方法とその充填装置に関する。
TECHNICAL FIELD The present invention relates to a granular substance having a low physical strength in a tubular container of a petroleum refining facility or a chemical industrial facility.
For example, the present invention relates to a method for filling a fragile catalyst or a ring-shaped particulate substance without breaking, and a filling apparatus therefor.

【0002】[0002]

【従来の技術】従来、粒状物質の充填方法として、とり
わけ破損現象が問題となる触媒粒子の充填に関した多く
の報告例がなされている。多管垂直式反応器内の反応管
に触媒粒子を充填する方法として「粉粒体の貯槽と供給
装置」(日刊工業新聞社)P.171に示される様に、
シュ−トを用いて触媒粒子を反応管開口部より直接に落
下させ投入する方法が知られている。しかしながら、こ
の方法には触媒粒子の落下距離が長ければ当然落下速度
も高まり、物理的に脆弱な触媒粒子は破損されやすいと
いう問題点があった。
2. Description of the Related Art There have been many reports on a method of filling a particulate matter, particularly on the filling of catalyst particles, in which a breakage phenomenon is a problem. As a method for filling catalyst particles into a reaction tube in a multi-tube vertical reactor, "Powder Storage and Supply Apparatus" (Nikkan Kogyo Shimbun), p. As shown in FIG.
A method is known in which catalyst particles are dropped directly from the opening of a reaction tube using a shout and charged. However, this method has a problem that if the falling distance of the catalyst particles is long, the falling speed naturally increases, and the physically fragile catalyst particles are easily damaged.

【0003】特開昭47−14067公報には、開口底
部を折り返した可燃性物質製の管状袋に粒状物質を入れ
た後、管状容器内を充填すべき位置まで自由落下させる
ことなく降下させ、ついで管状袋の底部の折り返し部分
を解放し、袋内部の粒状物質を放出しながら管状容器内
に充填する方法が開示されている。しかし、この方法は
管状袋の管径が細く、全長が長いと袋内部で粒状物質同
士が架橋し易く、袋底部の折り返し部分を解放しても粒
状物質が放出されにくい問題点があった。粒状物質同士
が架橋し、詰まって袋から放出しなくなってしまった場
合は、その都度、袋を管状容器から引き上げて対処する
必要が生じていた。
JP-A-47-14067 discloses that after a granular substance is put in a tubular bag made of a flammable substance whose opening bottom is turned back, the inside of the tubular container is lowered without free falling to a position to be filled. Then, a method is disclosed in which the folded portion at the bottom of the tubular bag is released, and the tubular material is filled into the tubular container while discharging the particulate matter inside the bag. However, this method has a problem that if the tubular bag has a small diameter and the overall length is long, the particulate matter easily cross-links inside the bag, and the particulate matter is difficult to be released even when the folded portion at the bottom of the bag is released. Each time the particulate matter is crosslinked and clogged and cannot be released from the bag, it has been necessary to lift the bag from the tubular container each time.

【0004】特公昭59−249公報には、伸縮自在に
形成された触媒降下管の上端に触媒供給手段を接続し、
この触媒降下管の下端を触媒充填室に臨ませ、徐々に触
媒粒子を充填する装置が開示されている。しかし、触媒
充填室が長く、細長い管状容器である場合は、当然、降
下管径も細くなり触媒粒子同士が架橋してしまい、閉塞
が生じる問題があった。また、充填初期には、触媒粒子
を自由落下させて降下管に触媒粒子を満たす必要があ
り、脆弱な触媒粒子の充填には適用が困難であった。更
に、この初期の触媒粒子の落下充填を避けるためには触
媒代用物を用いたりしなければならなかった。
In Japanese Patent Publication No. 59-249, a catalyst supply means is connected to the upper end of a catalyst downcomer formed so as to be stretchable.
An apparatus is disclosed in which the lower end of the catalyst downcomer is made to face a catalyst filling chamber and catalyst particles are gradually filled. However, when the catalyst filling chamber is long and the tube is elongated, there is a problem that the diameter of the downcomer tube becomes narrower and the catalyst particles are cross-linked with each other, resulting in blockage. In addition, in the initial stage of the filling, it is necessary to freely drop the catalyst particles and fill the downcomer with the catalyst particles, and it is difficult to apply the method to the filling of the fragile catalyst particles. Furthermore, a catalyst substitute had to be used to avoid this early dropping of catalyst particles.

【0005】米国特許第4,077,530号明細書公
報には、触媒粒子を管状反応器に充填する際に、少なく
とも1本のワイヤ−を管状反応器内に介在させ、ワイヤ
−或いは反応器の壁に触媒粒子を接触させながら落下速
度を抑制させつつ充填する方法が開示されている。ま
た、触媒の充填層高が高くなるに伴って、管状反応器内
からワイヤ−を引き上げる方法についても開示がなされ
ている。類似した方法として、特開平5−31351公
報、特開平5−97730及び特開平6−7669公報
には、成形触媒または担持触媒を固定床反応器に上部よ
り落下充填するに際し、反応器内に、実質的に触媒の落
下を妨げない形状及び太さを有する少なくとも1個の紐
状物質を介在させる触媒の充填方法が開示されている。
[0005] US Pat. No. 4,077,530 discloses that at least one wire is interposed in a tubular reactor when the catalyst particles are filled in the tubular reactor. A method is disclosed in which the catalyst particles are filled while contacting the catalyst particles with the walls of the resin while suppressing the falling speed. Also disclosed is a method of pulling up a wire from the inside of a tubular reactor as the height of the packed bed of the catalyst increases. As a similar method, JP-A-5-31351, JP-A-5-97730 and JP-A-6-7669 disclose that a molded catalyst or a supported catalyst is dropped and filled into a fixed bed reactor from the top, A method for filling a catalyst is disclosed in which at least one string-like substance having a shape and a thickness that does not substantially prevent the catalyst from dropping is interposed.

【0006】これらの方法の場合、充填すべき粒状物質
が形状の異なる、或いは比重の異なる混合物である場
合、ワイヤ−或いは紐状物質を介在して粒子が落下する
際に篩い効果が生じ、均一に混合物を充填できないとい
う問題点があった。また、発熱反応に用いる触媒の充填
では、触媒機能を持たない希釈剤粒子と触媒粒子を混合
し、単位充填体積当たりの発熱量を抑制することがしば
しば試みられるが、均一に混合物が充填できない場合、
発熱量が局部的に大きくなり暴走反応がおきてしまうこ
とがある。この様な観点から均一充填は重要な位置づけ
となるが、これらの方法では満足な充填状態が得られな
い問題点があった。
[0006] In these methods, when the granular material to be filled is a mixture having a different shape or a different specific gravity, a sieving effect is generated when the particles fall through a wire or a string-like material, and the uniformity is obtained. There was a problem that the mixture could not be filled. In addition, when filling the catalyst used in the exothermic reaction, it is often attempted to mix the diluent particles having no catalytic function with the catalyst particles to suppress the heat generation per unit filling volume, but when the mixture cannot be uniformly filled. ,
The calorific value may increase locally, causing a runaway reaction. From such a viewpoint, uniform filling is important, but there is a problem that a satisfactory filling state cannot be obtained by these methods.

【0007】更に、ワイヤ−や紐状物質が介在している
ため、粒状物質の充填量を一度に多く投入すると、反応
器の途中で粒状物質が詰まってしまい、ワイヤ−や紐を
容易に抜き出すことができなくなってしまう場合があっ
た。粒状物質を少量ずつ充填しながら、ワイヤ−や紐を
少し引き上げるという作業を繰り返す必要があり、手間
暇がかかるという問題点となっていた。特に、多管垂直
式容器への迅速充填という観点からは改善が望まれてい
た。
Further, since a wire or a string material is interposed, if a large amount of the granular material is charged at a time, the granular material is clogged in the middle of the reactor, and the wire or the string is easily extracted. In some cases. It is necessary to repeat the operation of slightly pulling up the wire or the string while filling the particulate matter little by little, which has been a problem that it takes time and effort. In particular, improvement has been desired from the viewpoint of quick filling in a multi-tube vertical container.

【0008】特開平9−141084公報には、固体触
媒を固定床反応器内に設置された反応管内に上部より落
下充填するに際し、まず該反応管内に液状物を充填し、
続いて該固体触媒を充填し、しかる後、該液状物を除去
する固体触媒の充填方法が開示されている。この方法で
は、触媒の機能を損なわない液状物質を選定する必要が
あり、液状物質によっては経済的に見合わない場合が多
い。また、反応管内から液状物質を完全に、しかも容易
に取り除くことも難しい。さらに触媒粒子が細孔を有す
る場合は、毛細管現象により液状物質が触媒粒子内に入
り込み、除去することが困難となるだけでなく、液状物
質と接触せしめたことにより触媒粒子が本来持っている
物理的強度が弱まってしまうこともある。
Japanese Patent Application Laid-Open No. Hei 9-141084 discloses that when a solid catalyst is dropped and filled from above into a reaction tube installed in a fixed bed reactor, first, a liquid material is filled in the reaction tube,
Subsequently, a method for filling the solid catalyst is described, in which the solid catalyst is filled and then the liquid material is removed. In this method, it is necessary to select a liquid material that does not impair the function of the catalyst, and depending on the liquid material, it is often not economically feasible. It is also difficult to completely and easily remove the liquid substance from the inside of the reaction tube. Furthermore, when the catalyst particles have pores, not only does the liquid substance enter the catalyst particles due to capillary action, making it difficult to remove, but also the physical properties inherent in the catalyst particles due to contact with the liquid substance. The target strength may be weakened.

【0009】0特開平10−24232公報には、多管
垂直式反応器に触媒を充填するに際して、開閉可能な触
媒開放口を有する触媒充填装置を用いて、該反応器内の
反応管の底部から少なくとも50容量%まで触媒を充填
し、次いで残りの触媒を自由落下により該反応管に充填
する方法が開示されている。しかし、本公報でも、触媒
充填装置には反応管の内径より小さな円筒状の袋が用い
られており、円筒状の袋が細く長い場合は袋内壁面の凹
凸によって触媒の落下が妨げられ、袋内で生じる架橋現
象を抑制することが難しく、さらなる改善が必要とされ
ていた。
[0009] Japanese Patent Application Laid-Open No. Hei 10-24232 discloses that when a catalyst is charged into a multi-tube vertical reactor, a catalyst filling device having a catalyst opening port that can be opened and closed is used to fill the bottom of a reaction tube in the reactor. To at least 50% by volume of the catalyst and then free-fall the remaining catalyst into the reaction tube. However, in this publication as well, a cylindrical bag smaller than the inner diameter of the reaction tube is used for the catalyst filling device, and when the cylindrical bag is thin and long, unevenness of the inner wall surface of the bag prevents the catalyst from dropping, It is difficult to suppress the cross-linking phenomenon occurring in the inside, and further improvement has been required.

【0010】[0010]

【発明が解決しようとする課題】本発明は、物理的に強
度の弱い粒状物質、例えば脆弱な触媒やリング状の粒状
物質を管状容器に破損することなく、簡便に、しかも形
状や比重のことなる混合粒状物質に関しても均一に充填
する方法を提供する。
DISCLOSURE OF THE INVENTION The present invention relates to a method for simply forming a particulate material having a low physical strength, for example, a fragile catalyst or a ring-shaped particulate material, without damaging the tubular container. The present invention also provides a method of uniformly filling mixed particulate matter.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記課題を
検討した結果、充填治具として、自己保持性を有し、且
つ下部に開閉機構を有する開口部を設けた筒型容器を用
いて管状容器内に粒状物質を充填する方式を採用するこ
とにより、強度の弱い粒状物質、例えば脆弱な触媒やリ
ング状の粒状物質でも破損することなく迅速に、しかも
形状や比重の異なる混合粒状物質に関しても均一に充填
できることを見出し、本発明を完成するに至った。
As a result of studying the above problems, the present inventor has used a cylindrical container having a self-holding property and an opening having an opening / closing mechanism at the bottom as a filling jig. By adopting a method of filling granular material in a tubular container, it is possible to quickly mix even weak particles, such as fragile catalysts and ring-shaped particles, without breaking, and to mix granular materials with different shapes and specific gravities. Was found to be able to be uniformly filled, and the present invention was completed.

【0012】即ち、本発明は: 管状容器に粒状物質を充填するに際し、該粒状物質
を入れた時に変形することのない内壁面硬度を有し、さ
らに下部に開閉機構を有する開口部を設けた筒型容器に
予め該粒状物質を挿入した後、この筒型容器を管状容器
上部から粒状物質充填位置まで移動させ、ついで該開口
部を開け、粒状物質を筒型容器から管状容器内に移し入
れる粒状物質充填方法を提供する。また、 筒型容器の外壁枠基準の断面積が管状容器の内壁枠
基準の断面積に対して50%以上99%以下である点に
も特徴を有する。また、 筒型容器の上部に該容器引上げ用の上昇紐が、且つ
開閉機構の他端に開口部開放用の降下紐が、夫々取り付
けられている点に特徴を有する。また、 該降下紐が、筒型容器の外壁面に取り付けた保護管
中を通して取り付けられている点に特徴を有する。ま
た、 粒状物質が触媒機能を有する粒状物を含む粒状物質
である点にも特徴を有する。また、 触媒機能を有する粒状物質がメタクロレイン、アク
ロレイン、メタクリル酸、及び/又はアクリル酸の合成
機能を有する触媒である点にも特徴を有する。また、 粒状物質が破損率1.0%以上の粒状物質である点
にも特徴を有する。
That is, the present invention provides: When filling a granular material into a tubular container, the tubular container has an inner wall surface hardness that does not deform when the granular material is charged, and further, an opening having an opening and closing mechanism is provided at a lower portion. After inserting the particulate matter in the cylindrical container in advance, the cylindrical container is moved from the upper part of the tubular container to the granular material filling position, then the opening is opened, and the particulate matter is transferred from the cylindrical container into the tubular container. A method for filling particulate matter is provided. Another feature is that the cross-sectional area of the cylindrical container based on the outer wall frame is 50% or more and 99% or less of the cross-sectional area of the tubular container based on the inner wall frame. Further, the present invention is characterized in that an ascending cord for pulling up the container is attached to the upper part of the cylindrical container, and a descending cord for opening the opening is attached to the other end of the opening / closing mechanism. Further, the present invention is characterized in that the descent string is attached through a protective tube attached to the outer wall surface of the cylindrical container. Another feature is that the particulate material is a particulate material containing a particulate material having a catalytic function. It is also characterized in that the particulate substance having a catalytic function is a catalyst having a function of synthesizing methacrolein, acrolein, methacrylic acid, and / or acrylic acid. Another characteristic is that the granular material is a granular material having a breakage rate of 1.0% or more.

【0013】以下、本発明を詳細に説明する。 (i) 充填方法 本発明の粒状物質充填方法は、基本的に、管状容器に粒
状物質を充填するに際し、該粒状物質を入れた時に変形
することのない内壁面硬度を有し、さらに下部に開閉機
構を有する開口部を設けた筒型容器に予め該粒状物質を
挿入した後、この筒型容器を管状容器上部から粒状物質
充填位置まで移動させ、ついで該開口部を開け、粒状物
質を筒型容器から管状容器内に移し入れるものである
(請求項1)。図1は、本発明の筒型容器を使用して粒
状物質を管状容器に充填する方法を説明する透視図であ
る。図1において、1は管状容器、2は筒型容器、3は
保護管、4は開閉蓋(底蓋)、5は弾性ゴムシート、6
は降下紐、7は上昇紐、8は筒型容器中の粒状物質、9
は管状容器中の粒状物質である。
Hereinafter, the present invention will be described in detail. (i) Filling method The method for filling a granular substance of the present invention basically has an inner wall surface hardness that is not deformed when the granular substance is charged when filling the tubular container with the particulate substance, and further includes a lower part. After inserting the granular material in advance into a cylindrical container provided with an opening having an opening and closing mechanism, the cylindrical container is moved from the upper portion of the tubular container to the granular material filling position, and then the opening is opened, and the granular material is filled in the cylindrical container. It is transferred from the mold container into the tubular container (claim 1). FIG. 1 is a perspective view illustrating a method for filling a tubular container with a granular substance using the cylindrical container of the present invention. In FIG. 1, 1 is a tubular container, 2 is a cylindrical container, 3 is a protective tube, 4 is an opening / closing lid (bottom lid), 5 is an elastic rubber sheet, 6
Is the descending cord, 7 is the ascending cord, 8 is the particulate matter in the cylindrical container, 9
Is the particulate material in the tubular container.

【0014】充填治具として筒型容器2を用いるので、
粒状物質が管状容器1底部に衝突して破砕しない距離か
ら充填ができ、且つ管状容器上部への充填に際して、管
状容器の下部に充填された粒状物質が緩衝材となり、粒
状物質の破砕を最小限に抑えることができる。また、管
状容器への粒状物質の充填を数回に分けて行うことがで
き、粒状物質を管状容器及び筒型容器に閉塞させず、作
業性良く充填できる。管状容器1に粒状物質を充填する
に際し、筒型容器2を用いて管状容器の底部から少なく
とも50容量%まで、好ましくは90容量%まで、更に
好ましくは97容量%まで充填し、次いで残りの粒状物
質を自由落下で管状容器1に充填する仕方を採用でき
る。各部品の機能等については以下に詳細に説明する。
Since the cylindrical container 2 is used as a filling jig,
The granular material can be filled from a distance where the granular material does not collide with the bottom of the tubular container 1 and crushed. In addition, when filling the upper portion of the tubular container, the granular material filled in the lower portion of the tubular container serves as a buffer material, and crushing of the particulate material is minimized. Can be suppressed. Further, the filling of the granular material into the tubular container can be performed in several steps, and the granular material can be filled with good workability without blocking the tubular container and the cylindrical container. When filling the tubular container 1 with particulate matter, the tubular container 2 is used to fill at least 50% by volume, preferably up to 90% by volume, more preferably up to 97% by volume from the bottom of the tubular container and then to the remaining granular material. A method of filling the tubular container 1 with a substance by free fall can be adopted. The function of each component will be described in detail below.

【0015】(ii)粒状物質 本発明において用いる粒状物質の形状に関しては特に限
定はなく、球状、円柱状、リング状、角柱状、穴あき角
柱状、星形状、箱型状等、通常の打錠機、押出成型機、
転動造粒機等で成形される粒状物質が用いられる。特
に、物理強度の弱い物質に対して、本発明の方法を適用
することが有利である。また、粒状物質は、触媒機能を
有する粒状物を含む粒状物質であっても良いし(請求項
5)、触媒機能のない単なる充填物であっても良い。触
媒としては特に制限されないが、メタクロレイン、アク
ロレイン、メタクリル酸、及び/又はアクリル酸の合成
機能を有する触媒が有利に適用できる(請求項6)。粒
状物質が形状の異なる2種以上の混合物であっても良い
し、比重の異なる2種以上の混合物であっても良い。粒
状物質を構成する物質にも特に制限はない。
(Ii) Particulate Material The shape of the granular material used in the present invention is not particularly limited, and may be a conventional material such as a sphere, a cylinder, a ring, a prism, a perforated prism, a star, a box, and the like. Tablet machine, extrusion machine,
A granular substance formed by a rolling granulator or the like is used. In particular, it is advantageous to apply the method of the present invention to a substance having low physical strength. Further, the granular material may be a granular material containing a granular material having a catalytic function (claim 5), or may be a mere packing having no catalytic function. The catalyst is not particularly limited, but a catalyst having a function of synthesizing methacrolein, acrolein, methacrylic acid, and / or acrylic acid can be advantageously applied (claim 6). The particulate matter may be a mixture of two or more kinds having different shapes, or a mixture of two or more kinds having different specific gravities. There is no particular limitation on the material constituting the particulate material.

【0016】本発明は、下記に定義する破損率が1%以
上、好ましくは5%以上の物理的に脆弱な粒状物質の充
填に特に有効である(請求項7)。ここで言う破損率と
は、以下で定義される。1粒の粒状物質を3mの高さか
ら厚さ1cmの平滑な鉄板上に自由落下させた時、粒状
物質がその落下前の重量と比較して99.5%以上の重
量を保って形状を維持できない場合、粒状物質は破損し
たと言い、200個以上の粒状物質を個々に前記の条件
下で自由落下させた時の破損粒状物質の個数率を破損率
と定義する。
The present invention is particularly effective for filling a physically fragile particulate material having a failure rate defined below of 1% or more, preferably 5% or more (claim 7). The breakage rate here is defined below. When one granular material is freely dropped from a height of 3 m onto a smooth iron plate with a thickness of 1 cm, the granular material retains a weight of 99.5% or more compared to the weight before the fall and forms a shape. If it cannot be maintained, the particulate matter is said to be broken, and the number ratio of the broken particulate matter when 200 or more granular substances are individually dropped under the above-mentioned conditions is defined as the failure rate.

【0017】(iii) 管状容器1:本発明において、充填
容器(例えば反応管)として用いる管状容器1の形態に
ついては特に限定はなく、円柱状、楕円柱状、角柱状等
の管状容器を用いることができる。本発明の方法は、管
径が細く、管長が長い管状容器内に粒状物質を充填する
場合に有効な手段となる。また、多管垂直型反応器のよ
うな容器への充填に際しては、迅速かつ再現性のある充
填が可能であることから特に有効な手段となる。管状容
器1の材質は特に制限されないが、金属製、合成樹脂
製、磁器製、セラミックス製等が用いられる。
(Iii) Tubular container 1: In the present invention, the form of the tubular container 1 used as a filling container (eg, a reaction tube) is not particularly limited, and a cylindrical container such as a column, an elliptic column, or a prism is used. Can be. The method of the present invention is an effective means when a granular substance is filled in a tubular container having a small tube diameter and a long tube length. In addition, when filling a container such as a multi-tube vertical reactor, it is a particularly effective means since filling can be performed quickly and reproducibly. The material of the tubular container 1 is not particularly limited, but is made of metal, synthetic resin, porcelain, ceramics, or the like.

【0018】(iv) 充填治具としての筒型容器: 1)筒型容器2の構造 管状容器1に粒状物質を充填する際に用いる充填治具と
しては、管状容器内に挿入して移動させることができ、
該粒状物質を入れた時に変形することのない内壁面硬度
を有する筒型容器であって、その下部には開閉機能を有
する開口部、即ち開閉蓋(底蓋)4を設けてあれば、そ
の形状や材質は特に限定されない。筒型容器2に粒状物
質を入れた時に、筒型容器の内壁面が変形しない材質で
作られていることが、粒状物質同士の架橋現象をなく
し、粒状物質の放出を極めて有利にする点から必要であ
る。
(Iv) Cylindrical Container as Filling Jig: 1) Structure of Cylindrical Container 2 As a filling jig used for filling the tubular container 1 with the particulate matter, the jig is inserted into the tubular container and moved. It is possible,
A cylindrical container having an inner wall surface hardness that is not deformed when the particulate matter is put therein, provided that an opening having an opening / closing function, that is, an opening / closing lid (bottom lid) 4 is provided at a lower portion thereof; The shape and material are not particularly limited. When the granular material is put into the cylindrical container 2, the inner wall surface of the cylindrical container is made of a material that does not deform, which eliminates a bridging phenomenon between the granular materials and makes the release of the granular material extremely advantageous. is necessary.

【0019】筒型容器2の下部断面が上部断面より広い
場合には、末広がり状になるため、粒状物質の放出がさ
らに有利となる。筒型容器2の大きさは、粒状物質を充
填したまま管状容器内につっかえることなく容易に出し
入れできれば特に制限されないが、筒型容器の外壁枠基
準の断面積が管状容器の内壁枠基準の断面積に対して5
0%以上99%以下、好ましくは60%以上95%以下
であることが望ましい(請求項2)。筒型容器2の全長
は、数回に分けても充填できるので特に制限されない
が、管状容器1の全長より小さく且つ作業効率との関係
で或る程度の長さを有するのが良い。筒型容器の一例を
図1に例示したが、これに限定されるものではない。筒
型容器の一例をさらに詳しく説明するならば以下のよう
になる。
When the lower cross section of the cylindrical container 2 is wider than the upper cross section, the cylindrical container 2 becomes divergent, so that the release of particulate matter is more advantageous. The size of the cylindrical container 2 is not particularly limited as long as it can be easily taken in and out without being trapped in the tubular container while the granular material is filled. 5 per area
It is desirably 0% to 99%, preferably 60% to 95% (claim 2). The total length of the cylindrical container 2 is not particularly limited because it can be filled even if divided into several times, but it is preferable that the total length of the cylindrical container 2 is smaller than the total length of the tubular container 1 and has a certain length in relation to work efficiency. Although an example of the cylindrical container is illustrated in FIG. 1, the present invention is not limited to this. An example of the cylindrical container will be described in more detail below.

【0020】2)筒型容器2の材質等 筒型容器の内壁面は粒状物質を入れた時に変形しない様
な硬い材質でできている必要がある。例えば、金属やプ
ラスチック等を用いることができ、その材質は特に制限
されなく、塩化ビニル板等の合成樹脂製でも良く、例え
ばアクリル板のような透明板でも不透明板でも良い。透
明板を用いると、内容物の状態が容易に透視できるので
さらに好ましい。粒状物質を挿入した時に内壁面の平滑
度が変化してしまう様な柔らかい材質で作られた筒型容
器や、布等で作られた柔軟性があり、容器の形状が変形
できる袋状の容器は、たとえ粒状物質を入れた後に筒型
形状になったとしても、粒状物質の放出に際し、容器内
で粒状物質同士の架橋現象が生じやすく、容器内から粒
状物質が容易に放出できないために、好ましくない。一
方、筒型容器の壁面は平滑であれば粒状物質との摩擦が
小さくなり、管状容器への移し替え時に架橋ができずら
くなるため、好ましい結果を与える。
2) Material etc. of the cylindrical container 2 The inner wall surface of the cylindrical container needs to be made of a hard material so as not to be deformed when a granular substance is put therein. For example, metal, plastic, or the like can be used, and the material is not particularly limited, and may be made of a synthetic resin such as a vinyl chloride plate, and may be a transparent plate such as an acrylic plate or an opaque plate. It is more preferable to use a transparent plate because the state of the contents can be easily seen through. A cylindrical container made of a soft material that changes the smoothness of the inner wall surface when particulate matter is inserted, or a bag-shaped container made of cloth etc. that is flexible and can be deformed Is, even if it becomes a cylindrical shape after putting the particulate matter, when the particulate matter is released, the particulate matter easily cross-links in the container, and the particulate matter cannot be easily released from the container, Not preferred. On the other hand, if the wall surface of the cylindrical container is smooth, the friction between the cylindrical container and the granular substance is small, and it is difficult to perform cross-linking at the time of transfer to the tubular container.

【0021】3)細部 ・筒型容器の上部には、容器を引き上げる時に使用する
上昇紐7が取り付けられており(請求項3)、下部には
粒状物質がこぼれ出ないように開閉蓋(例えばアクリル
板)4が設置されている必要がある。 ・開閉蓋は筒型容器と接続されており、蓋を切り離すこ
となく触媒の自重によって開く機構となっている。開閉
蓋と筒型容器の壁面を弾性ゴムシ−ト5で接着しておく
とゴムの弾性力によって開閉蓋が開き易くなるので好ま
しい。ただし、弾性ゴム板の役割は、開閉蓋4の開閉動
作を容易にするために設けられたものであり、開閉が円
滑にいく何らかの工夫がされていれば必ずしも必要では
ない。上記開閉蓋4は筒型容器2と同じ材料でも良く、
もちろん筒型容器と同体に形成しておき加工により部分
的に筒型容器と接続させヒンジ機構を形成させても良
い。
3) Details ・ A lifting cord 7 used for lifting the container is attached to the upper part of the cylindrical container (claim 3), and an opening / closing lid (for example, a lid) is provided at the lower part to prevent the particulate matter from spilling out. Acrylic plate) 4 must be installed. -The opening / closing lid is connected to the cylindrical container, and has a mechanism that opens by the weight of the catalyst without separating the lid. It is preferable to attach the opening / closing lid to the wall surface of the cylindrical container with an elastic rubber sheet 5 because the opening / closing lid is easily opened by the elastic force of the rubber. However, the role of the elastic rubber plate is provided for facilitating the opening / closing operation of the opening / closing lid 4, and is not necessarily required if some measure is taken to make opening / closing smooth. The opening / closing lid 4 may be made of the same material as the cylindrical container 2,
Of course, the hinge mechanism may be formed in the same shape as the cylindrical container and partially connected to the cylindrical container by processing.

【0022】・一方、開閉蓋4の他端には降下紐6が取
り付けられており(請求項3)、降下紐を使用して筒型
容器2を釣り下げている時は開閉蓋4が開放しないよう
な仕組みを備えている。 ・上昇紐7、降下紐6の材質は特に制限されないが、自
由に変形できて或る程度の強度を有する繊維製等が好ま
しい。 ・降下紐6は筒型容器2の外壁面に取り付けてある保護
管3を通って筒型容器上部まで導かれていることが望ま
しく(請求項4)、管状容器内壁と筒型容器外壁の接触
によって降下紐6がすり切れることない様に工夫を凝ら
した構造とするのが好ましい。 ・保護管3の材質は筒型容器と同じでも良く、その大き
さは降下紐6が保護管の内壁に接触することなく上下で
きる程度であれば特に制限はない。
On the other hand, a descent cord 6 is attached to the other end of the opening / closing lid 4 (Claim 3), and when the cylindrical container 2 is hooked using the descent cord, the opening / closing lid 4 is opened. There is a mechanism that does not. The material of the ascending cord 7 and the descending cord 6 is not particularly limited, but is preferably made of a fiber which can be freely deformed and has a certain strength. It is desirable that the descent string 6 be guided to the upper part of the cylindrical container through the protective tube 3 attached to the outer wall surface of the cylindrical container 2 (Claim 4), and that the inner wall of the cylindrical container and the outer wall of the cylindrical container contact. It is preferable to adopt a structure devised so that the descent cord 6 is not worn out. The material of the protective tube 3 may be the same as that of the cylindrical container, and the size thereof is not particularly limited as long as the descent string 6 can move up and down without contacting the inner wall of the protective tube.

【0023】4)筒型容器への充填等 筒型容器2に粒状物質を入れる際には、状況に応じて筒
型容器を傾けることにより、壁面をゆっくり転がしなが
ら粒状物質を容器に入れることができるため、粒状物質
への損傷を防ぐことができる。また、内壁面を平滑にし
ておけば転がっていく際に壁面との摩擦で触媒が粉化す
ることを著しく抑制できるし、筒型容器壁面によって粒
状物質が保護される状態になるため、物理的強度の弱い
粒状物質の取り扱いには特に好適となる。これに対し
て、材質として布や合成樹脂シ−トを用いた筒型状の袋
を充填治具として使用した従来法の場合には、袋との摩
擦により粒状物質が粉化する傾向が強まり問題となる。
4) Filling the cylindrical container, etc. When the granular material is put into the cylindrical container 2, the granular material can be put into the container while slowly rolling the wall surface by tilting the cylindrical container according to the situation. Therefore, damage to the particulate matter can be prevented. In addition, if the inner wall surface is smooth, powdering of the catalyst due to friction with the wall surface as it rolls can be significantly suppressed, and since the granular material is protected by the cylindrical container wall surface, physical It is particularly suitable for handling particulate matter having low strength. On the other hand, in the case of the conventional method using a cylindrical bag using cloth or synthetic resin sheet as a material as a filling jig, the tendency of the particulate matter to powder due to friction with the bag increases. It becomes a problem.

【0024】[0024]

【発明の実施の形態】以下、図1を用いて実施例により
本発明をさらに詳細に説明する。 (実施例1)外径6.4mm、内径4.4mm、高さ
6.4mmの磁性ラッシヒリング(岩尾磁器工業株式会
社製)を一粒ずつ、総計200粒を高さ3mの位置から
厚み1cmの平滑な鉄板上に自由落下させた。落下後、
原形を留めていたラッシヒリングは僅か2個であり、残
りのラッシヒリングはほぼ半分に割れていた。破損率9
9%と測定された。このラッシヒリングを、底部を平ら
な鉄板で塞いだ内径52mm、高さ5mの管状容器1に
充填することを試みるに当たり、充填状況を目視できる
様に管状容器の材質を透明な塩化ビニ−ル製とした。ま
た、この管状容器内を粒状物質を入れて移動させる容器
として図1に示すような筒型容器を準備した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of an embodiment with reference to FIG. (Example 1) Magnetic lash lash rings (manufactured by Iwao Porcelain Industrial Co., Ltd.) having an outer diameter of 6.4 mm, an inner diameter of 4.4 mm, and a height of 6.4 mm were each one by one. It was allowed to fall freely on a smooth iron plate. After falling,
Only two Raschig rings remained in their original form, and the remaining Raschig rings were almost split in half. Damage rate 9
It was measured as 9%. In attempting to fill this Raschig ring into a tubular container 1 having an inner diameter of 52 mm and a height of 5 m, the bottom of which is closed with a flat iron plate, the material of the tubular container is made of transparent vinyl chloride so that the filling state can be visually checked. did. Further, a cylindrical container as shown in FIG. 1 was prepared as a container in which a granular substance was put and moved in the tubular container.

【0025】この筒型容器2は、内径40mm、外径4
4mm、高さ1mの透明な塩化ビニ−ル製であり、筒型
容器側面に降下紐6用保護管3として内径2mm、外径
4mm、長さ1mのSUS製パイプを円筒軸に沿って取
り付け、筒型容器2を釣り下げるための降下紐6を貫通
させている。また、筒型容器2の下部には、開閉蓋4と
して直径40mm、厚み1mmのアクリル板を筒型容器
2の側面と弾性ゴムシ−ト5で接着し、開閉可能な機能
を持たせた構造としている。
This cylindrical container 2 has an inner diameter of 40 mm and an outer diameter of 4 mm.
4mm, 1m high transparent vinyl chloride, SUS pipe with inner diameter of 2mm, outer diameter of 4mm and length of 1m is attached along the cylindrical axis as protective tube 3 for drop cord 6 on the side of the cylindrical container. The lowering cord 6 for hanging the cylindrical container 2 is penetrated. An acrylic plate having a diameter of 40 mm and a thickness of 1 mm is adhered to the side of the cylindrical container 2 with an elastic rubber sheet 5 at the lower portion of the cylindrical container 2 as an opening / closing lid 4 so as to have a function of opening and closing. I have.

【0026】開閉蓋4の一端を降下紐6で括りつけてい
るため、降下紐6を用いて筒型容器2を上下させる操作
時には開閉蓋4が閉まった状態になり、筒型容器2の中
に入れられた粒状物質8が筒型容器2内に留まる構造と
なっている。一方、筒型容器2の上部には上昇紐7が取
り付けられており、上昇紐7を用いて筒型容器2を上下
させる操作時には、粒状物質の自重と弾性ゴムシ−トの
引っ張り力で開閉蓋4が開き、筒型容器2の中に入れら
れた粒状物質が筒型容器外に放出できる構造となってい
る。まず、降下紐6を引張りながら、この筒型容器2を
約45度程度傾けて、ラッシヒリングを内部に入れる操
作を試みたところ、ラッシヒリングは筒型容器の片側の
壁面を転がりながら破損することなく充填された。筒型
容器を垂直に立てた時、ラッシヒリングは約80cmの
高さにまで充填されていた。
Since one end of the opening / closing lid 4 is tied up with the descent string 6, the opening / closing lid 4 is closed when the cylindrical container 2 is moved up and down using the descent string 6, and the inside of the cylindrical container 2 is closed. The structure is such that the granular material 8 put in the container stays in the cylindrical container 2. On the other hand, an ascending cord 7 is attached to the upper part of the cylindrical container 2. When the ascending cord 7 is used to move the cylindrical container 2 up and down, the lid is opened and closed by the weight of the particulate matter and the pulling force of the elastic rubber sheet. 4 is opened so that the particulate matter contained in the cylindrical container 2 can be discharged outside the cylindrical container. First, while pulling the descent string 6, the cylindrical container 2 was tilted by about 45 degrees and an operation of inserting the Raschig ring inside was attempted. The Raschig ring was filled without rolling while being broken on one wall surface of the cylindrical container. Was done. When the cylindrical container was set up vertically, the Raschig ring had been filled to a height of about 80 cm.

【0027】垂直に設置された内径52mm、高さ5m
の透明な塩化ビニ−ル製の管状容器1の上部から、ラッ
シヒリングを入れた筒型容器2を降下紐6を使用してゆ
っくりと釣り下げていった。降下紐6の張りが緩むこと
で、筒型容器2が管状容器1の底部に到達したことが分
かった。その後、降下紐6を5cm程度引き上げてから
上昇紐7に持ち替えて、筒型容器2をゆっくりと引き上
げた。筒型容器の底部に設けられた底蓋4が開きラッシ
ヒリングが筒型容器2から管状容器1へ流れ出るのが観
察された。
Vertically installed inside diameter 52 mm, height 5 m
From the upper part of the transparent vinyl chloride-made tubular container 1, the cylindrical container 2 containing the Raschig ring was slowly lowered using the descent string 6. It was found that the tubular container 2 reached the bottom of the tubular container 1 because the tension of the descending string 6 was loosened. After that, the descending cord 6 was pulled up by about 5 cm, and then was changed to the ascending cord 7, and the cylindrical container 2 was slowly pulled up. The bottom lid 4 provided at the bottom of the cylindrical container was opened, and it was observed that the Raschig ring flowed from the cylindrical container 2 to the tubular container 1.

【0028】筒型容器2を上昇紐7を用いて引き上げ、
再びラッシヒリングを筒型容器2に詰め、上記と同じ手
順で管状容器2内へラッシヒリングを充填した。この操
作を繰り返して、管状容器1の底部から4.5mまでラ
ッシヒリング9を充填した。最後の充填操作に際して
は、長さが50cmの筒型容器2を使用した。管状容器
1の外側から目視で観察した結果、ラッシヒリングの破
損現象は全く認められず、底部から4.5mの位置まで
均一に充填されているのが観察できた。次いで、管状容
器1の底部の鉄板(図示してない)を取り外し、底部か
ら充填高さにして約25cmずつラッシヒリング9を順
次、静かに抜き出し、ラッシヒリングの形状を観察した
結果、どの抜出しロットに於いても破損した形状のもの
は観察されなかった。
The cylindrical container 2 is pulled up using the lifting cord 7,
The Raschig ring was packed into the cylindrical container 2 again, and the Raschig ring was filled into the tubular container 2 in the same procedure as described above. This operation was repeated to fill the Raschig ring 9 to 4.5 m from the bottom of the tubular container 1. In the last filling operation, a cylindrical container 2 having a length of 50 cm was used. As a result of visual observation from the outside of the tubular container 1, no breakage phenomenon of the Raschig ring was observed at all, and it was observed that the container was uniformly filled up to a position 4.5 m from the bottom. Next, the iron plate (not shown) at the bottom of the tubular container 1 was removed, and the Raschig rings 9 were sequentially and gently extracted from the bottom at a filling height of about 25 cm, and the shape of the Raschig rings was observed. No damaged shape was observed.

【0029】(実施例2)プロピレン、イソブチレンあ
るいはtert−ブチルアルコ−ルの酸化反応に触媒機
能を有する複合酸化物として、Mo12Bi4 Ce4 Fe
1 Cs0.2 x で示される複合酸化物を次の様にして調
製した。ただし、組成式中のXはMo、Bi、Ce、F
eおよびCsの原子価条件を満足させるのに必要な酸素
の原子数である。約50℃の温水4.5kgにヘプタモ
リブデン酸アンモニウム2.12kgを溶解させた(A
液)。硝酸ビスマス1.94kg、硝酸セリウム1.7
4kg、硝酸鉄0.34kgおよび硝酸セシウム0.0
39kgを15重量%の硝酸水溶液10kgに溶解させ
た(B液)。
Example 2 As a composite oxide having a catalytic function in the oxidation reaction of propylene, isobutylene or tert-butyl alcohol, Mo 12 Bi 4 Ce 4 Fe
A composite oxide represented by 1 Cs 0.2 O x was prepared as follows. However, X in the composition formula is Mo, Bi, Ce, F
The number of oxygen atoms required to satisfy the valence conditions of e and Cs. 2.12 kg of ammonium heptamolybdate was dissolved in 4.5 kg of warm water at about 50 ° C. (A
liquid). 1.94 kg bismuth nitrate, 1.7 cerium nitrate
4 kg, iron nitrate 0.34 kg and cesium nitrate 0.0
39 kg was dissolved in 10 kg of a 15% by weight aqueous nitric acid solution (solution B).

【0030】A液とB液の両液を約2時間程度攪拌混合
して原料スラリ−を得た。この原料スラリ−を噴霧乾燥
し、得られた乾燥物を250℃で3時間仮焼した。かく
して得られた疑似球形の粉末乾燥物を直径5mm、高さ
4mmの円柱状に打錠成形した後、450℃で5時間焼
成して粒状触媒とした。ここに得られた粒状触媒を一粒
ずつ、総計200粒を高さ3mの位置から厚み1cmの
平滑な鉄板上に自由落下させた。落下後、99.5%以
上の重量を残して原形を留めていた粒状触媒は僅か3個
であり、残りの粒状触媒は角が欠けたり、割れたりし
て、破損後の最も大きな破片の重量は破損前の99.5
%以下になっていた。破損率98.5%と測定された。
The solution A and the solution B were stirred and mixed for about 2 hours to obtain a raw material slurry. This raw material slurry was spray-dried, and the obtained dried product was calcined at 250 ° C. for 3 hours. The thus-obtained dried pseudo-spherical powder was tableted into a column having a diameter of 5 mm and a height of 4 mm, and then calcined at 450 ° C. for 5 hours to obtain a granular catalyst. A total of 200 particles of the granular catalyst thus obtained were dropped freely from a position of 3 m on a smooth iron plate having a thickness of 1 cm from a position of 3 m in height. After dropping, only three granular catalysts remained in their original shape, leaving a weight of 99.5% or more, and the remaining granular catalysts were chipped or cracked, and the weight of the largest fragment after breakage Is 99.5 before damage
% Or less. The failure rate was measured to be 98.5%.

【0031】この粒状触媒の充填実験を行うにあたり、
実施例1で用いた管状容器1と筒型容器2を用いて、実
施例1と同様な方法で実験を行った。管状容器1の底部
から4.5mまで粒状触媒を充填したが、管状容器の外
側からの目視観察では粒状触媒の破損現象は全く認めら
れず、底部から4.5mの位置まで均一に充填されてい
るのが観察できた。次いで、実施例1と同様に管状容器
の底部から充填高さにして約25cmずつ粒状触媒を順
次、静かに抜き出し、粒状触媒の形状を観察した結果、
どの抜き出しロットに於いても欠けた形状や割れた形状
の粒状触媒は観察されなかった。
In conducting a filling experiment of the granular catalyst,
An experiment was performed in the same manner as in Example 1 using the tubular container 1 and the cylindrical container 2 used in Example 1. Although the granular catalyst was filled up to 4.5 m from the bottom of the tubular container 1, no damage phenomenon of the granular catalyst was observed by visual observation from the outside of the tubular container, and the granular catalyst was uniformly filled up to a position 4.5 m from the bottom. Could be observed. Then, as in Example 1, the granular catalyst was sequentially and gently withdrawn from the bottom of the tubular container at a filling height of about 25 cm at a time, and the shape of the granular catalyst was observed.
No chipped or cracked granular catalyst was observed in any of the withdrawn lots.

【0032】(実施例3)実施例1で用いたラッシヒリ
ングを1リットル、および実施例2と同様に調製した粒
状触媒1リットルをビニ−ル製の袋に入れ、静かに混合
した。実施例1と同様に筒型容器にこの混合物を入れ、
管状容器に混合物を充填することを試みた。実施例1と
同様な操作を繰り返して、管状容器の底部から4.5m
まで混合物を充填したが、管状容器の外側からの目視観
察ではラッシヒリングと粒状触媒の両者に破損現象は全
く認められず、底部から4.5mの位置まで均一に混合
充填されているのが観察できた。次いで、実施例1と同
様に管状容器の底部から充填高さにして約25cmずつ
混合物を順次、静かに抜き出し、ラッシヒリングと粒状
触媒の形状を観察したが、どの抜き出しロットに於いて
も欠けた形状や割れた形状のラッシヒリングおよび粒状
触媒は観察されなかった。
Example 3 1 liter of the Raschig ring used in Example 1 and 1 liter of the granular catalyst prepared in the same manner as in Example 2 were placed in a vinyl bag and mixed gently. This mixture was placed in a cylindrical container as in Example 1,
An attempt was made to fill the mixture into a tubular container. By repeating the same operation as in Example 1, 4.5 m from the bottom of the tubular container
Although the mixture was filled up to the above, visual observation from the outside of the tubular container did not show any breakage phenomenon in both the Raschig ring and the granular catalyst, and it was observed that the mixture was uniformly mixed and filled up to a position 4.5 m from the bottom. Was. Next, the mixture was gradually and gently extracted from the bottom of the tubular container at a filling height of about 25 cm in the same manner as in Example 1, and the shapes of the Raschig ring and the granular catalyst were observed. No cracked Raschig rings or granular catalyst were observed.

【0033】(比較例1)実施例1で用いたラッシヒリ
ングと管状容器を用いて充填実験を行った。ただし、筒
型容器を用いず、管状容器の上部からラッシヒリングを
管状容器内部に自然落下させた。ラッシヒリングの1リ
ットルを自然落下充填させた時点で、管状容器の外側か
ら目視観察したところ、ラッシヒリングの大半が破損し
て原形を留めていなかった。そこで破損率を測定する為
の再実験を行い、200個のラッシヒリングを管状容器
の上部から自然落下させた後、底部から抜き出してみた
ところ、原形を留めていたのは僅か10個であり、他の
ほとんどがリング形状を留めていなかった。管状容器の
壁面にぶつけながら自然落下させることにより、或いは
既に破損したラッシヒリングの上に自然落下させること
により、若干は破損率を低減できるものの実施例1の結
果には到底及ばない結果となってしまった。
(Comparative Example 1) A filling experiment was performed using the lash ring and the tubular container used in Example 1. However, without using a cylindrical container, the Raschig ring was allowed to fall naturally into the tubular container from above the tubular container. When one liter of the Raschig ring was allowed to fall and fill by gravity, visual observation from the outside of the tubular container revealed that most of the Raschig ring was broken and did not retain its original shape. Therefore, a re-test was performed to measure the breakage rate. After 200 lash rings were naturally dropped from the top of the tubular container and then pulled out from the bottom, only 10 pieces remained in their original form. Most did not retain the ring shape. By spontaneously falling while hitting the wall surface of the tubular container, or by spontaneously dropping onto the already broken Raschig ring, the breakage rate can be slightly reduced, but the result of Example 1 is far from the result. Was.

【0034】(比較例2)実施例3と同様な方法で混合
したラッシヒリングと粒状触媒の混合物を用意した。ま
た、外径4mm、内径2mm、長さ5.5mのシリコン
チュ−ブを5本用意し、実施例1で用いた管状容器の上
部からたわみが無い様に挿入した。混合物を約1リット
ル充填したところ、シリコンチュウ−ブが混合物に埋ま
り過ぎて引き上げることができなくなってしまったこと
から、充填作業をやり直し、今度は混合物を約200m
l充填するごとにシリコンチュ−ブを約10cm上部に
引き上げる要領で管状容器の上部より混合物を落下充填
させた。混合物がシリコンチュ−ブにぶつかりながら落
下していく様子を観察したところ、形状の大きなラッシ
ヒリングが先に落下していく傾向にあり、形状の小さな
粒状触媒はシリコンチュ−ブ同士あるいはシリコンチュ
−ブと管状容器の壁面が作り出す狭い空隙に拘束されな
がら遅れて落下していくのが観察された。
Comparative Example 2 A mixture of a Raschig ring and a granular catalyst mixed in the same manner as in Example 3 was prepared. Further, five silicon tubes having an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 5.5 m were prepared, and inserted into the tubular container used in Example 1 so as not to bend from the upper portion. When about 1 liter of the mixture was filled, the silicon tube was so buried in the mixture that it could not be pulled out.
Each time the mixture was filled, the mixture was dropped and filled from the upper portion of the tubular container in such a manner that the silicon tube was pulled upward by about 10 cm. When the mixture was observed to fall while hitting the silicon tubes, the large-sized Raschig rings tended to fall first, and the small-sized granular catalysts were used between the silicon tubes or between the silicon tubes. And it was observed that it was falling late while being restrained by the narrow gap created by the wall surface of the tubular container.

【0035】充填された混合物の状態も管状容器側面か
ら観察した限りでは均一ではなく、ラッシヒリングの多
い層と粒状触媒の多い層に分かれて充填されていた。ま
た、充填下部の領域では、明らかに角の欠けた粒状触媒
と割れたラッシヒリングが多数確認された。落下時の衝
突回数を増やし、落下速度を緩めるため、シリコンチュ
−ブがたわむ様に管状容器に挿入した場合は、ラッシヒ
リングと粒状触媒の両者とも、その一部がシリコンチュ
−ブ同士あるいはシリコンチュ−ブと管状容器の壁面が
作り出す、より狭い空隙に挟まってしまい、シリコンチ
ュ−ブを引き上げるまでは管状容器下部まで落下できず
途中に留まってしまった。管状容器の側面から観察する
と明らかに粒状触媒の方が多く途中に留まっており、シ
リコンチュ−ブを引き上げるとチュ−ブが伸びきって勢
い良く落下していくのが観察された。充填された混合物
の状態も管状容器側面から観察した限りでは均一ではな
く、ラッシヒリングの多い層と粒状触媒の多い層に分か
れて充填されていた。充填下部の領域では、破損してい
るラッシヒリングの個数が、シリコンチュ−ブをたわみ
なく挿入した場合に比べ、僅かに減少しているのが観察
されたが、抜本的な問題解決にはならなかった。
The state of the charged mixture was not uniform as observed from the side of the tubular vessel, and the mixture was separated into a layer having many Raschig rings and a layer having many granular catalysts. In addition, in the region below the packing, a large number of granular catalysts having chipped corners and broken Raschig rings were clearly observed. When the silicon tube is inserted into a tubular container so as to bend in order to increase the number of collisions at the time of falling and slow down the falling speed, a part of both the Raschig ring and the granular catalyst are part of each other or the silicon tube. The tube and the wall surface of the tubular container were caught in a narrower space created by the tube, and could not fall to the lower portion of the tubular container until the silicon tube was pulled up, and remained on the way. Observation from the side of the tubular container clearly showed that more of the granular catalyst remained in the middle, and when the silicon tube was pulled up, it was observed that the tube was extended and dropped vigorously. The state of the charged mixture was not uniform as far as it was observed from the side of the tubular container, and the mixture was separated into a layer having a large amount of Raschig rings and a layer having a large amount of particulate catalyst. In the region below the filling, the number of broken Raschig rings was observed to be slightly reduced as compared to the case where the silicon tube was inserted without bending, but this did not solve the fundamental problem. Was.

【0036】[0036]

【発明の効果】本発明によって、物理的に脆弱な粒状物
質を管状容器に充填する場合、破損することなく、迅速
に、しかも粒状物質が形状や比重の異なる混合物であっ
ても均一に充填でき、管状容器に気体を流通させるさせ
る場合にあっては、粒状物質の破損や粉化によって生じ
る圧力損失を著しく軽減できる。
According to the present invention, when a physically fragile granular material is filled in a tubular container, it can be quickly filled without breakage and evenly filled even if the granular material is a mixture having different shapes and specific gravities. In the case where gas is allowed to flow through the tubular container, the pressure loss caused by breakage or powdering of the particulate matter can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の筒型容器を使用して粒状物質を管状容
器に充填する方法を説明する概略図である。
FIG. 1 is a schematic view illustrating a method for filling a tubular container with a particulate material using the cylindrical container of the present invention.

【符号の説明】[Explanation of symbols]

1 管状容器 2 筒型容器 3 保護管 4 開閉蓋(底蓋) 5 弾性ゴムシート 6 降下紐 7 上昇紐 8 筒型容器に入った粒状物質 9 管状容器に充填された粒状物質 DESCRIPTION OF SYMBOLS 1 Tubular container 2 Cylindrical container 3 Protective tube 4 Opening / closing lid (bottom lid) 5 Elastic rubber sheet 6 Descending string 7 Ascending string 8 Granular material contained in cylindrical container 9 Granular material filled in tubular container

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 管状容器に粒状物質を充填するに際し、
該粒状物質を入れた時に変形することのない内壁面硬度
を有し、さらに下部に開閉機構を有する開口部を設けた
筒型容器に予め該粒状物質を挿入した後、この筒型容器
を管状容器上部から粒状物質充填位置まで移動させ、つ
いで該開口部を開け、粒状物質を筒型容器から管状容器
内に移し入れることを特徴とする粒状物質充填方法。
1. When filling a tubular container with a particulate material,
After inserting the granular material in advance into a cylindrical container having an inner wall surface hardness that does not deform when the granular material is put therein and having an opening having an opening / closing mechanism at a lower portion, the cylindrical container is formed into a tubular shape. A method for filling particulate matter, comprising: moving the upper part of a container to a particulate matter filling position; opening the opening; and transferring the particulate matter from a cylindrical container into a tubular container.
【請求項2】 筒型容器の外壁枠基準の断面積が管状容
器の内壁枠基準の断面積に対して50%以上99%以下
であることを特徴とする、請求項1記載の粒状物質充填
方法。
2. The particulate matter filling according to claim 1, wherein the cross-sectional area of the cylindrical container based on the outer wall frame is 50% or more and 99% or less with respect to the cross-sectional area of the tubular container based on the inner wall frame. Method.
【請求項3】 筒型容器の上部に該容器引上げ用の上昇
紐が、且つ開閉機構の他端に開口部開放用の降下紐が、
夫々取り付けられていることを特徴とする、請求項1記
載の粒状物質充填方法。
3. An ascending cord for pulling up the container at the upper part of the cylindrical container, and a descent cord for opening the opening at the other end of the opening and closing mechanism.
The method for filling particulate matter according to claim 1, wherein the particulate matter is individually attached.
【請求項4】 該降下紐が、筒型容器の外壁面に取り付
けた保護管中を通して取り付けられていることを特徴と
する、請求項3記載の粒状物質充填方法。
4. The method for filling particulate matter according to claim 3, wherein said descent string is attached through a protection tube attached to an outer wall surface of the cylindrical container.
【請求項5】 粒状物質が触媒機能を有する粒状物を含
む粒状物質であることを特徴とする、請求項1〜4のい
ずれかに記載の粒状物質充填方法。
5. The method for filling a granular substance according to claim 1, wherein the granular substance is a granular substance including a granular substance having a catalytic function.
【請求項6】 触媒機能を有する粒状物質がメタクロレ
イン、アクロレイン、メタクリル酸、及び/又はアクリ
ル酸の合成機能を有する触媒であることを特徴とする、
請求項5記載の粒状物質充填方法。
6. The particulate material having a catalytic function is a catalyst having a function of synthesizing methacrolein, acrolein, methacrylic acid, and / or acrylic acid,
The method for filling particulate matter according to claim 5.
【請求項7】 粒状物質が破損率1.0%以上の粒状物
質であることを特徴とする、請求項1〜6のいずれかに
記載の粒状物質充填方法。
7. The method according to claim 1, wherein the particulate material is a particulate material having a breakage rate of 1.0% or more.
JP10231133A 1998-08-04 1998-08-04 Filling method of granular material Pending JP2000042400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10231133A JP2000042400A (en) 1998-08-04 1998-08-04 Filling method of granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10231133A JP2000042400A (en) 1998-08-04 1998-08-04 Filling method of granular material

Publications (1)

Publication Number Publication Date
JP2000042400A true JP2000042400A (en) 2000-02-15

Family

ID=16918806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10231133A Pending JP2000042400A (en) 1998-08-04 1998-08-04 Filling method of granular material

Country Status (1)

Country Link
JP (1) JP2000042400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038181A (en) * 2005-08-05 2007-02-15 Asahi Kasei Chemicals Corp Packing tool of particulate material and packing method of particulate material
JP2009509763A (en) * 2005-10-03 2009-03-12 チューブマスター・インコーポレイテッド Equipment for loading chemical reaction tubes
CN103041753A (en) * 2011-10-12 2013-04-17 中国石油化工集团公司 Feeding device and feeding method for filling catalyst in row tube of fixed bed reactor
JP2014200786A (en) * 2013-04-02 2014-10-27 アルケマ フランス Method for filling multitube catalytic reactor
JP2018176125A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Catalyst loading method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038181A (en) * 2005-08-05 2007-02-15 Asahi Kasei Chemicals Corp Packing tool of particulate material and packing method of particulate material
JP2009509763A (en) * 2005-10-03 2009-03-12 チューブマスター・インコーポレイテッド Equipment for loading chemical reaction tubes
CN103041753A (en) * 2011-10-12 2013-04-17 中国石油化工集团公司 Feeding device and feeding method for filling catalyst in row tube of fixed bed reactor
JP2014200786A (en) * 2013-04-02 2014-10-27 アルケマ フランス Method for filling multitube catalytic reactor
JP2018176125A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Catalyst loading method
JP6993664B2 (en) 2017-04-20 2022-01-13 国立研究開発法人日本原子力研究開発機構 Catalyst filling method

Similar Documents

Publication Publication Date Title
US3778962A (en) Vacuum controlled vessel loading with particulate materials
JP2000042400A (en) Filling method of granular material
US7597529B2 (en) Method for filling a vertical tube with catalyst particles
CA2448598C (en) Process and apparatus for loading a particulate solid into a vertical tube
US9114388B2 (en) Process and installation for making protected catalyst bodies by means of a molten organic substance
TWI360436B (en) Method of charging catalyst tubes of a bundle of c
TW201124205A (en) Method for blending and loading solid catalyst material into tubular structures
JP5924969B2 (en) Granule processing equipment
JP2020517422A (en) How to load pellets
JPH1024232A (en) Catalyst packing method and catalyst packing device
CA2123125A1 (en) Conveyor trough apparatus for loading catalyst pellets into vertical, tubular reactors
JP2004505753A (en) A new method for homogeneously charging solid particles in a container
WO2005058475A1 (en) Catalyst filling method
US20200353434A1 (en) Methods and systems for sock-loading fixed bed reactors
JP2014171939A (en) Continuous fixed-bed catalyst reactor
JP5059307B2 (en) Filling method of particulate material
KR100978627B1 (en) The method of charging catalysts with minimizing mechanical loss of the catalysts
JP2007254413A (en) Method for hydrogenation of olefin
JP2004249196A (en) Particulate material filling method and fixed bed
JP2004082099A (en) Filling method of solid catalyst
JP2819078B2 (en) Method for filling molybdenum-containing oxide catalyst
TWI818163B (en) Filling method of granular materials
US2769672A (en) Method for pneumatically lifting granular contact material
US2647044A (en) Solids baffle for catalyst apparatus
JP2017113732A (en) Cylindrical reactor, and loading method of catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224