JP2000031735A - Adaptive array antenna device - Google Patents

Adaptive array antenna device

Info

Publication number
JP2000031735A
JP2000031735A JP24111798A JP24111798A JP2000031735A JP 2000031735 A JP2000031735 A JP 2000031735A JP 24111798 A JP24111798 A JP 24111798A JP 24111798 A JP24111798 A JP 24111798A JP 2000031735 A JP2000031735 A JP 2000031735A
Authority
JP
Japan
Prior art keywords
antenna elements
waves
antenna
signal processing
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24111798A
Other languages
Japanese (ja)
Inventor
Hiroshi En
浩 袁
Toshiyuki Maeyama
利幸 前山
Tatsuaki Hamai
龍明 濱井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
KDDI Corp
Original Assignee
Kyocera Corp
DDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, DDI Corp filed Critical Kyocera Corp
Priority to JP24111798A priority Critical patent/JP2000031735A/en
Publication of JP2000031735A publication Critical patent/JP2000031735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To receive arriving waves regardless of the three-dimensional arriving direction of the arriving waves and the bias of the polarization plane by arranging at least two antenna elements capable of receiving both vertically and horizontally polarized wave components with a prescribed interval and processing the reception signals of the antenna elements in a specified signal processor. SOLUTION: Inverse F antenna elements 1 and 2 capable of receiving both vertically and horizontally polarized wave components are arranged so as to be orthogonal to each other with the interval (d) of λ/2. The reception signals of the antenna elements 1 and 2 are processed in the signal processor of a signal processing system based on CMA algorithm. In the signal processor, the reception signals of the inverse F antenna elements 1 and 2 are passed through a variable coefficient device and synthesized by an adder. Synthetic output and the reception signals are supplied to a signal processing part and the signal processing part decides the coefficient of the variable coefficient device so as to suppress interference waves or unrequired interference waves (multiple waves) correlated to desired waves with CMA as a guidance principle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は移動体通信用アダプ
ティブアレーアンテナ装置に係り、特に同一の送受周波
数信号に適合し、任意偏波と任意到来方向の受信に対応
したアダプティブアレーアンテナ装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adaptive array antenna apparatus for mobile communication, and more particularly to an improvement of an adaptive array antenna apparatus adapted to receive and transmit signals of the same transmission frequency and receiving arbitrary polarized waves and arbitrary directions of arrival. .

【0002】[0002]

【従来の技術】従来のアレーアンテナ装置としては特開
平6−260835号に開示されたものがある。この装
置は衛星通信への適用を目的とするもので、アンテナ素
子としてダイポールアンテナを用い、垂直偏波対応のア
ンテナ素子群と、水平偏波対応のアンテナ素子群を設
け、これらを交互配列し、かつ各アンテナ素子群に対
し、一方には高周波数帯域での動作に適合する構成、他
方には低周波数帯域での動作に適合する構成としてい
る。
2. Description of the Related Art A conventional array antenna device is disclosed in Japanese Patent Application Laid-Open No. Hei 6-260835. This device is intended for application to satellite communication, using a dipole antenna as an antenna element, providing an antenna element group for vertical polarization and an antenna element group for horizontal polarization, and these are alternately arranged, One of the antenna element groups has a configuration suitable for operation in a high frequency band, and the other has a configuration suitable for operation in a low frequency band.

【0003】[0003]

【発明が解決しようとする課題】上述した従来のアレー
アンテナ装置は送受用アンテナ素子としてダイポールア
ンテナを組み合わせただけのもので、受信信号のアダプ
ティブな信号処理は行なわれておらず、特に不要波の除
去は考慮されていない。また上記従来装置は衛星通信用
アンテナの適用を目的として送信帯、受信帯の異なった
偏波と、異なった周波数に適合するように特定化されて
おり、しかも受信アンテナとしては垂直偏波だけ、もし
くは水平偏波だけしか受信できないので、移動体通信用
アンテナとしては好適でない。
The above-mentioned conventional array antenna apparatus merely combines a dipole antenna as a transmitting / receiving antenna element, and does not perform adaptive signal processing of a received signal. Elimination is not considered. In addition, the above-mentioned conventional device is specified so as to adapt to different polarizations in the transmission band and the reception band and different frequencies for the purpose of applying a satellite communication antenna, and as a reception antenna, only vertical polarization, Or, since only horizontal polarization can be received, it is not suitable as a mobile communication antenna.

【0004】本発明の目的は移動体通信への適用を目的
として同一周波数帯でも異なった周波数帯でも両偏波を
同時に送受信でき、特に3次元的な到来波の到来方向と
その偏波面の偏りに係わらず、到来波の受信が可能なア
ダプティブアレーアンテナ装置を提供することにある。
An object of the present invention is to simultaneously transmit and receive both polarized waves in the same frequency band or different frequency bands for the purpose of application to mobile communication, and in particular, the direction of arrival of a three-dimensional incoming wave and the polarization of its polarization plane. Regardless, an object of the present invention is to provide an adaptive array antenna device capable of receiving an incoming wave.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアダプティブアレーアンテナ装置は、垂
直、水平両偏波成分を受信可能な少なくとも2個のアン
テナ素子を所定間隔で配置し、該アンテナ素子の受信信
号を、CMAアルゴリズムに基づく信号処理方式の信号
処理装置で処理するように構成したことを要旨とする。
本発明において、上記アンテナ素子として逆Fアンテナ
素子を用いてもよい。
In order to achieve the above object, an adaptive array antenna device according to the present invention has at least two antenna elements capable of receiving both vertical and horizontal polarization components arranged at a predetermined interval. The gist is that a reception signal of the antenna element is processed by a signal processing device of a signal processing method based on a CMA algorithm.
In the present invention, an inverted-F antenna element may be used as the antenna element.

【0006】[0006]

【発明の実施の形態】本発明のアダプティブアレーアン
テナ装置は、垂直、水平両偏波成分を受信可能なアンテ
ナ素子、例えば逆Fアンテナ素子と、CMAアルゴリズ
ムを利用した信号処理装置とで構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The adaptive array antenna apparatus of the present invention comprises an antenna element capable of receiving both vertical and horizontal polarization components, for example, an inverted-F antenna element, and a signal processing apparatus using a CMA algorithm.

【0007】逆Fアンテナ素子はそれ自体公知のもの
で、図1に示すように、ほぼ逆F字形の形状を成してい
る。移動体通信における実伝搬環境では垂直偏波で送信
しても反射、散乱と回析により、偏波面の回転が起こ
り、水平偏波の成分も生じる。しかし、モノポールアン
テナでは電波の垂直成分しか受信できないので、垂直成
分だけでなく、水平成分も受信できるアンテナを使用し
た方が良い。
[0007] The inverted-F antenna element is known per se, and has a substantially inverted-F shape as shown in FIG. In an actual propagation environment in mobile communication, even if transmission is performed with vertically polarized waves, rotation of the plane of polarization occurs due to reflection, scattering, and diffraction, and components of horizontal polarization also occur. However, since a monopole antenna can receive only the vertical component of a radio wave, it is better to use an antenna that can receive not only the vertical component but also the horizontal component.

【0008】そこで本発明では、図2に示すように、例
えば、2個の前記逆Fアンテナ素子1,2をλ/2の間
隔dで、また図3に示すように互いに直交するように配
置する。上記アンテナ素子の各部の寸法は図示の如く定
める。そして各アンテナ素子1,2の受信信号は、図4
に示すように、CMA(Constant Modulus Algorithm)
アルゴリズムに基づく信号処理方式の信号処理装置3で
処理する。
In the present invention, for example, as shown in FIG. 2, for example, the two inverted-F antenna elements 1 and 2 are arranged at an interval d of λ / 2 and orthogonally to each other as shown in FIG. I do. The dimensions of each part of the antenna element are determined as shown. The received signals of the antenna elements 1 and 2 are shown in FIG.
As shown in the figure, CMA (Constant Modulus Algorithm)
The signal is processed by the signal processing device 3 of the signal processing method based on the algorithm.

【0009】図4において、4及び5は可変係数器、6
は加算器、7は信号処理部で、逆Fアンテナ素子1,2
の受信信号x1,x2は可変係数器4,5を通って加算器
6により合成されるが、その合成出力y及び受信信号x
1,x2は信号処理部に与えられ、信号処理部7ではy及
びx1,x2を用いてCMAを指導原理として妨害波、あ
るいは所望波と相関のある不要な妨害波(多重波)を抑
圧するように可変係数器4,5の係数(ウエイト)
1,W2を決定する。
In FIG. 4, reference numerals 4 and 5 denote variable coefficient units, 6
Is an adder, 7 is a signal processing unit, and the inverted F antenna elements 1, 2
Received signals x 1, x 2 but is synthesized by the adder 6 via the variable coefficient multiplier 4 and 5, the combined output y and the received signal x
1 and x 2 are given to a signal processing unit, and the signal processing unit 7 uses y and x 1 and x 2 based on CMA as a guiding principle to disturb waves or unnecessary disturbing waves (multiplexed waves) having a correlation with a desired wave. (Weight) of variable coefficient units 4 and 5 so as to suppress
W 1 and W 2 are determined.

【0010】移動体通信においては、送信側の基地局か
ら見れば、受信側の移動局の位置が確定していないため
に、不必要な方向にも電波を放射せねばならない。それ
が海面、あるいは建造物に反射して多重波となって移動
局に到来する。そのため移動局では多重波を同時に受信
する結果、フェージングが生じ通信の品質を劣化させる
ので、本発明では前記CMAアルゴリズムに基づく信号
処理方式により受信信号を処理して、放射パターンのヌ
ルを実現することにより多重波の影響を軽減し、品質の
向上を図る。
In mobile communication, from the viewpoint of a transmitting base station, since the position of the receiving mobile station is not determined, radio waves must be radiated in unnecessary directions. It is reflected on the sea surface or a building and becomes a multiplex wave to reach the mobile station. Therefore, as a result of simultaneous reception of multiple waves at the mobile station, fading occurs and communication quality is degraded. Therefore, in the present invention, a received signal is processed by a signal processing method based on the CMA algorithm to realize a null radiation pattern. Thereby reduce the effects of multiplex waves and improve quality.

【0011】次に本発明の逆Fアンテナ素子を用いた場
合と、1/4波長モノポールアンテナ素子を用いた場合
の、CMAアダプティブアレー構成の特性の比較結果を
説明する。
Next, comparison results of the characteristics of the CMA adaptive array configuration when the inverted F antenna element of the present invention is used and when a quarter-wave monopole antenna element is used will be described.

【0012】図5は図2に示す逆Fアンテナ素子1,2
に対する到来波の偏りを示す。到来波は直接波と遅延波
とし、どちらもθE=45°とする。ここで遅延波は干
渉波とし、直接到来波の方向をθd=30°、φd=6
0°、遅延波の方向をθi=80°、φi=0°〜36
0°とした時のSINR(Signal to Interference plu
s Noise Ratio)特性を図6に示す。
FIG. 5 shows the inverted F antenna elements 1 and 2 shown in FIG.
2 shows the polarization of an incoming wave with respect to. The incoming wave is a direct wave and a delayed wave, and both are set to θ E = 45 °. Here, the delayed wave is an interference wave, and the direction of the directly arriving wave is θd = 30 °, φd = 6
0 °, the direction of the delayed wave is θi = 80 °, φi = 0 ° to 36
SINR at 0 ° (Signal to Interference plu
s Noise Ratio) characteristics are shown in FIG.

【0013】図6において、8は逆Fアンテナ素子の場
合の特性、9はモノポールの場合の特性を表わす。逆F
アンテナ素子の場合は直接波が捕捉されたが、モノポー
ルの場合は遅延波が捕捉された。即ち、逆Fアンテナ素
子の場合は強い電波が捕捉され、モノポールの場合は弱
い電波が捕捉された。ここでは、遅延波ではなく同一チ
ャンネル干渉波の場合でも同じ特性が出る。また逆Fア
ンテナ素子の場合はSINRが高いが、モノポールの場
合はφ=75°とφ=285°の所でグレーティングヌ
ルができる。
In FIG. 6, reference numeral 8 denotes a characteristic in the case of an inverted F antenna element, and 9 denotes a characteristic in the case of a monopole. Reverse F
In the case of the antenna element, a direct wave was captured, whereas in the case of the monopole, a delayed wave was captured. That is, a strong radio wave was captured in the case of the inverted F antenna element, and a weak radio wave was captured in the case of the monopole. Here, the same characteristics are obtained even in the case of co-channel interference waves instead of delayed waves. In the case of an inverted F antenna element, the SINR is high, but in the case of a monopole, grating nulls occur at φ = 75 ° and φ = 285 °.

【0014】図7は直接波の仰角によるSINR特性を
示す。10は逆Fアンテナ素子の場合の特性、11はモ
ノポールアンテナの場合の特性を表わす。逆Fアンテナ
素子の場合は直接波が捕捉されたが、モノポールの場合
は仰角が高い程、直接波が捕捉されにくくなり遅延波の
方が捕捉される傾向となる。
FIG. 7 shows SINR characteristics depending on the elevation angle of a direct wave. Reference numeral 10 denotes the characteristic in the case of the inverted F antenna element, and 11 denotes the characteristic in the case of the monopole antenna. In the case of the inverted F antenna element, a direct wave is captured, but in the case of a monopole, as the elevation angle is higher, the direct wave is more difficult to be captured, and the delayed wave tends to be captured.

【0015】図8は出力電力(Owtput Power)特性を示
し、逆Fアンテナ素子(IFA)の場合は、2nd wave
の特性から明らかなようにモノポール(Monopole)より
も遅延波を早く抑圧し収束速度が向上していることが分
かる。
FIG. 8 shows output power characteristics. In the case of an inverted-F antenna element (IFA), the 2nd wave
As can be seen from the characteristics, the delayed wave is suppressed earlier than the monopole and the convergence speed is improved.

【0016】図9は3個の逆Fアンテナ素子1,2,8
をλ/2の間隔dで配置した本発明の他の実施例であ
る。上記アンテナ素子の各部の寸法は図示の如くで、ま
た、例えば、α1=90°、α2=180°、α3=45
°のように定める。更に各アンテナ素子1,2,8の受
信信号は前述と同様にCMAアルゴリズムに基づく信号
処理方式で処理する。
FIG. 9 shows three inverted F antenna elements 1, 2, 8
Is another embodiment of the present invention in which are arranged at an interval d of λ / 2. The dimensions of each part of the antenna element are as shown in the drawing. For example, α 1 = 90 °, α 2 = 180 °, α 3 = 45
°. Further, the received signals of the antenna elements 1, 2, 8 are processed by a signal processing method based on the CMA algorithm in the same manner as described above.

【0017】図10は図9の実施例のSZNRパターン
を示す。同図より明らかなように対称性により生じるグ
レーティングヌルを完全に除去できる。
FIG. 10 shows an SZNR pattern of the embodiment of FIG. As is clear from the figure, the grating null caused by the symmetry can be completely removed.

【0018】図11は素子間隔dをλとした時の2個の
逆Fアンテナ素子を用いた場合のSINRパターンを、
図12は3個の逆Fアンテナ素子を用いた場合のSIN
Rパターンを示す。図11から2素子の場合、たくさん
のグレーティングヌルNが生じ、特にθ=90°付近で
顕著であることがわかるが、3素子の場合は図12から
明かなように、このようなグレーティングヌルが除去さ
れている。
FIG. 11 shows an SINR pattern when two inverted F antenna elements are used when the element interval d is λ.
FIG. 12 shows the SIN when three inverted F antenna elements are used.
3 shows an R pattern. It can be seen from FIG. 11 that a large number of grating nulls N occur in the case of two elements and are particularly remarkable around θ = 90 °. Has been removed.

【0019】図13(a)は3個の逆Fアンテナ素子、
(b)は2個の逆Fアンテナ素子を夫々用いた場合のP
AR特性を示す。PAR(SINR Pattern Angle Rat
io)は3次元SINR特性を評価するためのパラメータ
で、SINRが所定値に達する空間立体角を表す。
FIG. 13A shows three inverted F antenna elements,
(B) shows P in the case where two inverted F antenna elements are used, respectively.
5 shows AR characteristics. PAR (SINR Pattern Angle Rat
io) is a parameter for evaluating the three-dimensional SINR characteristic, and represents a spatial solid angle at which the SINR reaches a predetermined value.

【0020】実験により、到来波の到来方向は30°≦
θ≦90°の範囲に到来する確率が一番高いことが分か
っている。ここで到来方向は30°≦θ≦90°、0°
≦Φ≦360°に一様とすると、到来確率P(θ,Φ)
は次式になる。
According to experiments, the arrival direction of the incoming wave is 30 ° ≦
It is known that the probability of arrival in the range of θ ≦ 90 ° is the highest. Here, the arrival direction is 30 ° ≦ θ ≦ 90 °, 0 °
Assuming that ≦ Φ ≦ 360 °, arrival probability P (θ, Φ)
Becomes the following equation.

【0021】[0021]

【数1】 PARは次式になる。(Equation 1) PAR is given by the following equation.

【数2】 (Equation 2)

【0022】ここで△ΦKはSING≧Rになる空間立
体角である。図13より逆Fアンテナを1個増すことで
SING特性の改善が図られていることがわかる。
Here, △ Φ K is a spatial solid angle satisfying SING ≧ R. FIG. 13 shows that the SING characteristic is improved by adding one inverted F antenna.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、任
意偏波の受信ができ、特に逆Fアンテナ素子を用いた場
合はその配置により3次元的に、到来波の到来方向と偏
波面の偏りに係わらず到来波の受信ができる。即ち、垂
直偏波、水平偏波をそれぞれ単独受信、もしくは両偏波
合成受信できる。しかも受信信号はCMAアルゴリズム
に基づく信号処理方式により処理されるので、不要波を
除去することができる。
As described above, according to the present invention, it is possible to receive an arbitrary polarized wave. Irrespective of the deviation of the incoming waves. In other words, vertical polarization and horizontal polarization can be independently received, or both polarizations can be combined and received. Moreover, since the received signal is processed by the signal processing method based on the CMA algorithm, unnecessary waves can be removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】逆Fアンテナ素子を示す概略図である。FIG. 1 is a schematic diagram showing an inverted-F antenna element.

【図2】本発明の一実施例を示す概略図である。FIG. 2 is a schematic diagram showing one embodiment of the present invention.

【図3】上記実施例の平面図である。FIG. 3 is a plan view of the embodiment.

【図4】本発明に用いられる信号処理装置の説明図であ
る。
FIG. 4 is an explanatory diagram of a signal processing device used in the present invention.

【図5】到来波の偏りを示す図である。FIG. 5 is a diagram illustrating the polarization of an incoming wave.

【図6】本発明のアンテナ装置とモノポールアンテナの
SINR特性を示す図である。
FIG. 6 is a diagram illustrating SINR characteristics of the antenna device of the present invention and a monopole antenna.

【図7】直接波の仰角によるSINR特性を示す図であ
る。
FIG. 7 is a diagram showing SINR characteristics depending on the elevation angle of a direct wave.

【図8】出力電力特性を示す図である。FIG. 8 is a diagram showing output power characteristics.

【図9】本発明の他の実施例を示す概略図である。FIG. 9 is a schematic view showing another embodiment of the present invention.

【図10】図9の実施例のSINRパターンを示す図で
ある。
FIG. 10 is a diagram showing an SINR pattern of the embodiment in FIG. 9;

【図11】2個の逆Fアンテナ素子を用いた場合のSI
NRパターンを示す図である。
FIG. 11 shows SI when two inverted-F antenna elements are used.
It is a figure showing an NR pattern.

【図12】3個の逆Fアンテナ素子を用いた場合のSI
NRパターンを示す図である。
FIG. 12 shows SI when three inverted-F antenna elements are used.
It is a figure showing an NR pattern.

【図13】各アンテナ素子のアレーのPAR特性図であ
る。
FIG. 13 is a PAR characteristic diagram of an array of each antenna element.

【符号の説明】[Explanation of symbols]

1 逆Fアンテナ素子 2 逆Fアンテナ素子 3 CMAアルゴリズムにより信号処理装置 8 逆Fアンテナ素子 Reference Signs List 1 inverted F antenna element 2 inverted F antenna element 3 signal processing device by CMA algorithm 8 inverted F antenna element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前山 利幸 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 (72)発明者 濱井 龍明 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 Fターム(参考) 5J021 AA02 AA03 AA06 AB00 DB01 FA00 FA13 FA14 GA08 HA10 JA00 JA05 5J045 AA05 AA21 CA02 CA03 DA08 FA01 NA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiyuki Maeyama 6-27-8 Jingumae, Shibuya-ku, Tokyo Inside Kyocera DDI Future Communication Laboratory Co., Ltd. (72) Inventor Tatsuaki Hamai 6-27 Jingumae, Shibuya-ku, Tokyo -8 F-term in Kyocera DDI Future Communication Research Laboratories Co., Ltd. (Reference) 5J021 AA02 AA03 AA06 AB00 DB01 FA00 FA13 FA14 GA08 HA10 JA00 JA05 5J045 AA05 AA21 CA02 CA03 DA08 FA01 NA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直、水平両偏波成分を受信可能な少な
くとも2個のアンテナ素子を所定間隔で配置し、該アン
テナ素子の受信信号を、CMAアルゴリズムに基づく信
号処理方式の信号処理装置で処理するように構成したこ
とを特徴とするアダプティブアレーアンテナ装置。
At least two antenna elements capable of receiving both vertical and horizontal polarization components are arranged at a predetermined interval, and a reception signal of the antenna elements is processed by a signal processing device of a signal processing method based on a CMA algorithm. An adaptive array antenna device characterized in that it is configured to perform
【請求項2】 上記アンテナ素子が逆Fアンテナ素子で
あることを特徴とする請求項1に記載のアダプティブア
レーアンテナ装置。
2. The adaptive array antenna device according to claim 1, wherein said antenna element is an inverted-F antenna element.
【請求項3】 上記アンテナ素子として3個の逆Fアン
テナ素子を用いたことを特徴とする請求項1に記載のア
ダプティブアレーアンテナ装置。
3. The adaptive array antenna device according to claim 1, wherein three inverted-F antenna elements are used as said antenna elements.
JP24111798A 1998-03-24 1998-08-12 Adaptive array antenna device Pending JP2000031735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24111798A JP2000031735A (en) 1998-03-24 1998-08-12 Adaptive array antenna device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9533198 1998-03-24
JP10-95331 1998-03-24
JP24111798A JP2000031735A (en) 1998-03-24 1998-08-12 Adaptive array antenna device

Publications (1)

Publication Number Publication Date
JP2000031735A true JP2000031735A (en) 2000-01-28

Family

ID=26436585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24111798A Pending JP2000031735A (en) 1998-03-24 1998-08-12 Adaptive array antenna device

Country Status (1)

Country Link
JP (1) JP2000031735A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003503A2 (en) * 2001-06-26 2003-01-09 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6717551B1 (en) 2002-11-12 2004-04-06 Ethertronics, Inc. Low-profile, multi-frequency, multi-band, magnetic dipole antenna
US6744410B2 (en) 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US6911940B2 (en) 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US6943730B2 (en) 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US7084813B2 (en) 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2015077621A (en) * 2013-10-18 2015-04-23 株式会社ニシムラ Press work method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003503A3 (en) * 2001-06-26 2003-05-08 Ethertronics Inc Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
CN100433454C (en) * 2001-06-26 2008-11-12 艾斯特里克有限公司 Multi-frequency magnetic dipole antenna structures and methods of reusing volume of antenna
WO2003003503A2 (en) * 2001-06-26 2003-01-09 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
EP1959518A3 (en) * 2001-06-26 2008-11-05 Ethertronics, Inc. Multifrequency magnetic dipole antenna and methods for re-using the volume of an antenna
US7012568B2 (en) 2001-06-26 2006-03-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US6943730B2 (en) 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US6744410B2 (en) 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6717551B1 (en) 2002-11-12 2004-04-06 Ethertronics, Inc. Low-profile, multi-frequency, multi-band, magnetic dipole antenna
US6911940B2 (en) 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US7084813B2 (en) 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2015077621A (en) * 2013-10-18 2015-04-23 株式会社ニシムラ Press work method

Similar Documents

Publication Publication Date Title
Ioannides et al. Uniform circular arrays for smart antennas
US20200162141A1 (en) Small cell beam-forming antennas
US6771988B2 (en) Radio communication apparatus using adaptive antenna
US7616959B2 (en) Method and apparatus for shaped antenna radiation patterns
US6839574B2 (en) Method and apparatus for estimating downlink beamforming weights in a communications system
AU2003245108B2 (en) Real-time, cross-correlating millimetre-wave imaging system
US20100007573A1 (en) Multibeam antenna
US20100190507A1 (en) Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US20050282587A1 (en) Base station apparatus with reception and diversity weight combining
TW201238275A (en) Ground station antenna array for air to ground communication system
JPH11510655A (en) Method and apparatus for polarization diversity in a base station using an antenna array
JP2006522538A (en) Beam shaping method and apparatus based on broadband antenna
JP2007235762A (en) Antenna for multi-input/multi-output communication
JP2000031735A (en) Adaptive array antenna device
US20200358182A1 (en) Low-complexity beam steering in array apertures
US20220085519A1 (en) High frequency system using a circular array
JP3210931B2 (en) Wireless communication method
JP2004260319A (en) Array antennas assembly, portable terminal using the same, and mutual coupling compensation method
JP2009159453A (en) Wireless communication system, polarization plane adjustment method, base station, and sensor station
KR101377205B1 (en) wireless signal processing apparatus
Sayama et al. Characteristics evaluation and path loss measurement of vehicle glass mounted antenna for 28-GHz band
JPH09326630A (en) Adaptive array antenna system
Ohlmer et al. Urban outdoor MIMO experiments with realistic handset and base station antennas
JP2000278193A (en) Diversity antenna system
JP3264825B2 (en) Adaptive array antenna device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20041122

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A02