JP2000026174A - Method for preventing corrosion of reinforcing bar in concrete - Google Patents

Method for preventing corrosion of reinforcing bar in concrete

Info

Publication number
JP2000026174A
JP2000026174A JP10210434A JP21043498A JP2000026174A JP 2000026174 A JP2000026174 A JP 2000026174A JP 10210434 A JP10210434 A JP 10210434A JP 21043498 A JP21043498 A JP 21043498A JP 2000026174 A JP2000026174 A JP 2000026174A
Authority
JP
Japan
Prior art keywords
concrete
zinc
layer
corrosion
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10210434A
Other languages
Japanese (ja)
Inventor
Noriyasu Mochizuki
紀保 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP10210434A priority Critical patent/JP2000026174A/en
Publication of JP2000026174A publication Critical patent/JP2000026174A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • C04B2111/265Cathodic protection of reinforced concrete structures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method capable of preventing the corrosion of reinforcing bars embedded in a reinforced concrete structure, whether it is newly constructed or already constructed, by the work within the range of repair work of the outer concrete surface. SOLUTION: In this method for preventing the corrosion of reinforcing bars, a mortar layer 3 containing an electroconductive fiber material is formed on the surface of a concrete 2 and then zinc or a zinc alloy (hereinafter simply referred to as zinc) is thermally sprayed on the mortar layer 3 to form galvanic couple (layer) of the fiber and the zinc, thereby reducing the amount of oxygen diffusing into the inside of the concrete by the reduction reaction of dissolved oxygen. The galvanic couple(layer) can also be formed by laying a netlike or a partially flat board-like electrode on the surface of the concrete and then thermal spraying zinc on one side of the electrode. As a cathode of the galvanic couple, an iron alloy, a copper alloy, titanium or carbon can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化コンクリート
構造物の鉄筋の防食方法に関し、詳しくはコンクリート
構造物、例えば建造物、護岸、橋梁床板等の大気中に暴
露された強化コンクリート構造物の鉄筋の防食方法に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing corrosion of reinforcing bars in a reinforced concrete structure, and more particularly to a reinforcing method for a reinforced concrete structure exposed to the atmosphere such as a concrete structure, for example, a building, a seawall, a bridge floor plate, and the like. Pertaining to the anticorrosion method.

【0002】[0002]

【従来の技術】一般に、鉄筋コンクリートはセメントと
砂、小石等とともに補強用鉄筋を内蔵した状態で使用さ
れ、セメントのアルカリ性によって鉄筋の表面に不動態
保護被膜を形成して該鉄筋の腐食を抑制し、長期に亘っ
て鉄筋の強度が維持される。しかしながら、コンクリー
ト使用量の著しい増加による川砂の枯渇に伴って海砂を
使用せざるをえない昨今の状況にあっては、コンクリー
ト中に鉄筋の不動態保護被膜を破壊し腐食を促進させる
塩化物(NaCl,MgCl2,CaCl2等)が含まれることから予想
外の短期間でコンクリートが崩壊する現象が生じる。ま
た鉄筋コンクリート構造物が海塩粒子や海水に接する場
所にある場合にあっては、コンクリートの中性化や塩化
物イオンの浸透が進み鉄筋表面の酸化被膜が破壊され、
溶存酸素を酸化剤とした鉄筋の腐食が始まりコンクリー
トの崩壊がもたらされる。
2. Description of the Related Art In general, reinforced concrete is used in a state in which reinforcing steel is incorporated together with cement, sand, pebbles, etc., and a passivation protective film is formed on the surface of the reinforcing steel due to the alkalinity of the cement to suppress corrosion of the reinforcing steel. The strength of the rebar is maintained over a long period of time. However, in the current situation where sea sand has to be used in conjunction with the depletion of river sand due to a significant increase in the amount of concrete used, chloride which destroys the passive protective coating of reinforcing steel in concrete and promotes corrosion (NaCl, MgCl 2 , CaCl 2, etc.) causes a phenomenon in which concrete collapses in an unexpectedly short time. Also, when the reinforced concrete structure is in a place where it comes in contact with sea salt particles or seawater, the neutralization of the concrete and the penetration of chloride ions advance, and the oxide film on the reinforced surface is destroyed.
Corrosion of the rebar using dissolved oxygen as an oxidizing agent starts and concrete collapses.

【0003】鉄筋コンクリート構造物中の鉄筋の防食対
策としては、コンクリート表面を被覆する、鉄筋表面を
亜鉛メッキあるいは樹脂加工等による鉄筋自体の耐食性
向上を図る、コンクリート中に防錆剤を添加して腐食反
応を抑制する等の手段が採られている。また、今日では
外部電源を利用して白金めっきチタン、白金族金属酸化
物触媒被覆チタン、カーボン等の不溶性陽極をコンクリ
ートの外表面や内部に敷設し、鉄筋を該直流電源の負極
に接続して陰極電流を流して腐食を抑制する電気防食法
が行われるようになった。これら手段のうち前者の手段
はコンクリート構造物の新設の場合には適用できるとし
ても既存の鉄筋コンクリート構造物への適用はできず、
また後者の外部電源による電気防食法は電極材の選定、
電流分布、電源装置あるいは施工方法といった高度な技
術が要求され、さらには外部電源の配線やそれら接続等
が不可欠であり、それに伴う煩雑な工程が必要となる。
[0003] As measures against corrosion of reinforcing bars in a reinforced concrete structure, there are measures to improve the corrosion resistance of the reinforcing bars themselves by coating the surfaces of the concrete, galvanizing the surfaces of the reinforcing bars, processing resin, etc., and adding a rust inhibitor to the concrete to corrode. Measures such as suppressing the reaction are employed. Today, an external power source is used to lay an insoluble anode such as platinum-plated titanium, platinum-group metal oxide catalyst-coated titanium, or carbon on the outer surface or inside of concrete, and connect a reinforcing bar to the negative electrode of the DC power source. The cathodic protection method, which suppresses corrosion by passing a cathodic current, has come to be used. Of these measures, the former measure is not applicable to existing reinforced concrete structures, even if it can be applied in the case of new construction of concrete structures,
In addition, the latter method of preventing corrosion by using an external power source selects electrode materials,
Advanced technologies such as current distribution, a power supply device, and a construction method are required, and furthermore, wiring and connection of an external power supply are indispensable, and accompanying complicated steps are required.

【0004】[0004]

【発明が解決しようとする問題点】一般に、鉄筋の腐食
は水分の存在下での電気化学的反応に基づくものであ
り、該反応を支配している要因は、該環境中の溶存酸素
である。すなわち、該鉄筋への溶存酸素の拡散が鉄筋の
腐食を支配する。換言すると鉄筋への酸素の拡散を抑制
することによって鉄筋の腐食を軽減できる。かかる観点
から特公昭60-39157号公報ではコンクリート構造物の表
面近傍に網目状の金属体を埋設しこれを陰極とし、別途
陽極を設けて前記金属体に陰極電流を流すことにより該
陰極金属体表面で侵入した酸素が印加電流に応じて消費
され、腐食要因である酸素が鉄筋への近接を抑制する防
食法が提案されている。しかしながらこの方法は主とし
て上述した外部電源方式による電気防食法を用いてコン
クリート中の鉄筋の防食を図るものであり、上記した外
部電源方式による電気防食法の問題点をそのまま有す
る。すなわち別途直流電源の設置を必要とし、各電極間
の配線あるいは接続手段更には保守管理等に多くの手間
と専門知識を必要とするものである。
Generally, corrosion of reinforcing steel is based on an electrochemical reaction in the presence of moisture, and the factor governing the reaction is dissolved oxygen in the environment. . That is, the diffusion of dissolved oxygen into the rebar governs the corrosion of the rebar. In other words, corrosion of the reinforcing bar can be reduced by suppressing diffusion of oxygen to the reinforcing bar. From this point of view, Japanese Patent Publication No. 60-39157 discloses that a mesh-like metal body is buried near the surface of a concrete structure, and this is used as a cathode, and a separate anode is provided to allow a cathode current to flow through the metal body. An anticorrosion method has been proposed in which oxygen penetrating at the surface is consumed in accordance with an applied current, and oxygen, which is a corrosive factor, suppresses proximity to a reinforcing bar. However, this method is mainly intended to prevent corrosion of reinforcing steel in concrete by using the above-described cathodic protection method using an external power supply method, and has the problem of the above-described cathodic protection method using an external power supply method. That is, a separate DC power supply is required, and a lot of labor and expertise are required for wiring or connecting means between the electrodes and for maintenance management.

【0005】本発明は新設、既設にかかわらず、コンク
リート外表面の補修作業の範囲で鉄筋の腐食を抑制でき
る方法を提供することを目的とするものである。
[0005] It is an object of the present invention to provide a method capable of suppressing corrosion of reinforcing steel in the range of repair work on the outer surface of concrete irrespective of whether it is new or existing.

【0006】[0006]

【課題を解決するための手段】本発明は、コンクリート
表層に繊維化された導電材含有モルタルを形成し、その
上に亜鉛もしくは亜鉛合金(以下、これらを単に亜鉛と
いう)を溶射して該繊維と亜鉛とのガルバニック対
(層)を形成し、これによる溶存酸素の還元反応でコン
クリート内部に拡散する酸素量を減少させるコンクリー
ト中鉄筋の防食方法である。本発明において、ガルバニ
ック対(層)の形成はコンクリート表面に網状または部
分的に平板状の電極を敷設し、その片面上を亜鉛溶射す
ることにより行うようにしても良い。ガルバニック対の
カソードとしては鉄合金、銅合金、チタン、炭素を用い
ることができる。
SUMMARY OF THE INVENTION The present invention provides a method for forming a fiber-containing conductive material-containing mortar on a concrete surface layer and spraying zinc or a zinc alloy (hereinafter simply referred to as zinc) on the mortar. A galvanic pair (layer) of zinc and zinc is formed to reduce the amount of oxygen that diffuses into the concrete due to the reduction reaction of dissolved oxygen. In the present invention, the galvanic couple (layer) may be formed by laying a mesh or partially flat electrode on the concrete surface and spraying zinc on one side thereof. As the cathode of the galvanic couple, an iron alloy, a copper alloy, titanium, or carbon can be used.

【0007】[0007]

【発明の実施の形態】上記したように、大気中に暴露さ
れる鉄筋コンクリート構造物の鉄筋腐食は鉄筋近傍への
溶存酸素の拡散であり、本発明ではこれら鉄筋腐食の要
因である外部環境から供給される酸素の拡散量を抑制す
るために、電気防食の外部電源方式ではなく、流電陽極
法の原理に基づいてコンクリート表面にガルバニック対
(層)を形成することにより鉄筋の防食を行うものであ
る。本発明におけるガルバニック対(層)は繊維化され
た導電材を含有させたモルタルをコンクリート表層に形
成し、その上に亜鉛を溶射することにより形成するか、
あるいは網状または部分的に平板状の電極を敷設し、そ
の片面上を亜鉛溶射することにより形成することができ
る。すなわち、繊維化された導電材と亜鉛溶射膜との
間、もしくは網状または部分的に平板状の電極と亜鉛溶
射膜との間にガルバニック対(層)が形成され、これら
導電材または網状または部分的に平板状の電極の電位が
酸素の拡散限界電流域の電位に保持され、コンクリート
中に拡散しようとする酸素はこれら導電材または電極で
還元されることにより、コンクリート内部への拡散量が
減じられ、埋設鉄筋の腐食を抑制することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the corrosion of reinforcing steel in a reinforced concrete structure exposed to the atmosphere is the diffusion of dissolved oxygen in the vicinity of the reinforcing steel. In order to suppress the amount of oxygen diffusion, the steel bar is protected by forming galvanic pairs (layers) on the concrete surface based on the principle of the galvanic anode method instead of the external power supply method of cathodic protection. is there. The galvanic couple (layer) in the present invention is formed by forming a mortar containing a fibrous conductive material on a concrete surface layer and spraying zinc thereon,
Alternatively, it can be formed by laying a net-like or partially flat electrode and spraying zinc on one side thereof. That is, a galvanic pair (layer) is formed between the fibrous conductive material and the zinc sprayed film or between the mesh or partially flat plate electrode and the zinc sprayed film. The potential of the flat electrode is kept at the potential of the oxygen diffusion limited current range, and the oxygen that is about to diffuse into the concrete is reduced by these conductive materials or electrodes, reducing the amount of diffusion into the concrete. Therefore, corrosion of the buried reinforcing steel can be suppressed.

【0008】このように、本発明に係る防食法は電気防
食法の中の流電陽極法に基づくものである。従って、被
覆流電陽極材と対象導電材との電位差に基づく電気化学
反応を促進するには、第一に対象導電材の表面積を大き
くすることである。このため、本発明では導電材として
繊維化したものを使用して比表面積を大きくすることが
必要である。第二に該被覆金属である亜鉛と導通状態と
なる該繊維導電材の電位を電気化学的に酸素拡散限界電
位内に維持する必要があることから、該被覆金属で該繊
維導電材の全面を覆ってしまわないことである。すなわ
ち、コンクリート構造物の表面近くに部分的に被覆金属
で被覆した該複合繊維で構成された層を挿入することで
ある。第三は、現場施工が簡潔で敷設作業が容易である
ことが必要である。これらの条件を満足する手段とし
て、繊維導電材含有モルタル層を敷設し、その上に亜鉛
を全面溶射する等の手段が採られる。この場合、繊維導
電材は深さ方向に電気的導通を保って分布しているた
め、亜鉛による表面全体の溶射を行っても前記第二の条
件は保持される。
As described above, the anticorrosion method according to the present invention is based on the galvanic anode method in the cathodic protection method. Therefore, in order to promote the electrochemical reaction based on the potential difference between the coated galvanic anode material and the target conductive material, first, it is necessary to increase the surface area of the target conductive material. Therefore, in the present invention, it is necessary to increase the specific surface area by using a fiberized material as the conductive material. Secondly, since it is necessary to electrochemically maintain the potential of the fiber conductive material that is in a conductive state with the coating metal zinc within the oxygen diffusion limit potential, the entire surface of the fiber conductive material is coated with the coating metal. It is not covered. That is, inserting a layer composed of the composite fiber partially coated with a coating metal near the surface of the concrete structure. Third, on-site construction must be simple and laying work must be easy. As a means for satisfying these conditions, a means such as laying a mortar layer containing a fiber conductive material and spraying zinc over the entire surface is employed. In this case, since the fiber conductive material is distributed while maintaining electrical continuity in the depth direction, the second condition is maintained even if the entire surface is sprayed with zinc.

【0009】図1は本発明の概略説明図であり、図1に
おいて、鉄筋1はコンクリート2内に埋め込まれてお
り、この鉄筋コンクリート表面上に導電性繊維含有モル
タル層3が形成され、その導電性繊維含有モルタル層3
上には亜鉛溶射層4が形成されている。この導電性繊維
含有モルタル層3内の導電性繊維とその上の亜鉛溶射層
4とでガルバニック対(層)を構成する。導電性繊維は
例えば鋼等の鉄合金、銅合金、チタン、炭素を用いるこ
とができる。また、前記第一の要件で述べたように導電
材は繊維状のものが適しており、該繊維材の断面形状は
特に限定されないが、円形、三角、四角といった多角形
のものが好ましい。またその断面寸法も特に限定されな
いが、前述の理由から単繊維よりも縒繊維が好ましく、
取扱いや加工性あるいは強度を考慮すると基本となる単
繊維の線径は0.1mm〜1.0mmからなる縒繊維状のものが望
ましい。強化コンクリート表面に敷設する場合は荒目の
布状あるいは網状に織ったものを使用するのが好まし
い。
FIG. 1 is a schematic explanatory view of the present invention. In FIG. 1, a reinforcing bar 1 is embedded in concrete 2 and a mortar layer 3 containing conductive fibers is formed on the surface of the reinforced concrete. Fiber-containing mortar layer 3
A zinc sprayed layer 4 is formed thereon. The conductive fibers in the conductive fiber-containing mortar layer 3 and the zinc sprayed layer 4 thereon constitute a galvanic pair (layer). As the conductive fiber, for example, an iron alloy such as steel, a copper alloy, titanium, or carbon can be used. Further, as described in the first requirement, the conductive material is suitably a fibrous material, and the cross-sectional shape of the fibrous material is not particularly limited, but is preferably a polygonal shape such as a circle, a triangle, and a square. In addition, the cross-sectional dimensions are not particularly limited, but for the above-described reasons, twisted fibers are preferable to single fibers,
In consideration of handling, processability and strength, the basic single fiber is preferably a stranded fiber having a diameter of 0.1 mm to 1.0 mm. When laying on the surface of reinforced concrete, it is preferable to use a coarsely woven or net woven fabric.

【0010】本発明において、亜鉛溶射層4の上には、
さらに補修用コンクリート層5を打設するようにしても
よい。この際、繊維材含有モルタルとその上の亜鉛溶射
層とを拡散酸素侵入防止用隔材として、予め工場等で製
作しておき、現場に搬入した後に敷設するようにしても
良い。あるいは敷設場所が限定されたり、敷設作業時に
該構造物を運用する必要がある場合等の対象構造物にあ
っては、該防止用隔材は所定の大きさのコンクリートブ
ロック、パネルあるいはタイル等の成形品に内蔵させて
おいてもよい。
In the present invention, on the zinc sprayed layer 4,
Further, a repair concrete layer 5 may be cast. At this time, the fiber material-containing mortar and the zinc sprayed layer thereon may be manufactured in advance in a factory or the like as a diffusion oxygen intrusion prevention barrier, and may be laid after being transported to the site. Alternatively, in a target structure where the laying place is limited or the structure needs to be operated at the time of laying work, the barrier material for prevention is a concrete block, panel, tile or the like having a predetermined size. It may be built in a molded product.

【0011】[0011]

【実施例1】図2に示すように、φ9×100mmの磨き丸
鋼1’と二酸化マンガン照合電極5’を埋設した200×2
00×80tmmのモルタル供試体を製作した。モルタル2
は、ポルトランドセメント:川砂:水=1:3:0.6
(重量比)の配合比としたものであり、これに腐食加速
のために30kg/m3の食塩を添加した。前記磨き丸鋼の鉄
筋のかぶり厚さ21mm側表面に表1に示した3種類、5条
件のガルバニック層を設け、その上に10mmの塩分含有モ
ルタル層3(食塩10kg/m3)を設けた。ガルバニック層を
設けた表面以外はエポキシ樹脂で被覆して供試体を得、
これを腐食試験に供した。その供試体斜視説明図を図3
に示す。腐食試験は、恒温恒湿槽中で、50℃、RH100
%で2日間、50℃、RH50%で5日間を一サイクルとす
る乾湿繰返し試験で、253日間行った。試験結果を表2
に示す。
EXAMPLE 1 As shown in FIG. 2, a polished round steel 1 'of φ9 × 100 mm and a manganese dioxide reference electrode 5 ′ embedded 200 × 2
A mortar specimen of 00 × 80 tmm was manufactured. Mortar 2
Is Portland cement: river sand: water = 1: 3: 0.6
(Weight ratio), and 30 kg / m 3 of sodium chloride was added to accelerate the corrosion. On the surface of the polished round steel bar with a cover thickness of 21 mm, galvanic layers of three types and five conditions shown in Table 1 were provided, and a 10 mm salt-containing mortar layer 3 (salt of 10 kg / m 3 ) was provided thereon. . Except for the surface provided with the galvanic layer, the specimen was obtained by coating with epoxy resin.
This was subjected to a corrosion test. Fig. 3 is a perspective view of the test piece.
Shown in The corrosion test was conducted in a constant temperature and humidity chamber at 50 ° C and RH100.
% For 2 days and a cycle of 5 days at 50 ° C. and 50% RH for 253 days. Table 2 shows test results
Shown in

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表2から、本発明に従ってガルバニック層
を設けた試験体は、酸素供給量の低減から電位が低下
し、ガルバニック層の無い試験体に比べ腐食速度の低減
が認められた。
From Table 2, it was confirmed that the test piece provided with the galvanic layer according to the present invention had a lower potential due to the reduced oxygen supply, and a lower corrosion rate than the test piece without the galvanic layer.

【0015】[0015]

【発明の効果】以上のような本発明によれば、整流器等
の外部電源装置が不要である流電陽極方式によるガルバ
ニック対(層)を鉄筋コンクリート構造物表面に形成す
るものであるため、特別の電気配線が不要となり、それ
に伴う工数短縮が可能となり、新設、既設を問わず、補
修作業程度の簡単な作業で施工することができる。
According to the present invention as described above, a galvanic pair (layer) based on a galvanic anode system which does not require an external power supply device such as a rectifier is formed on the surface of a reinforced concrete structure. Electrical wiring is not required, and the man-hours associated with the wiring can be shortened, and the work can be carried out by simple work, such as repair work, regardless of whether it is new or existing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する場合の一例を示す概略説明図
である。
FIG. 1 is a schematic explanatory view showing an example in which the present invention is applied.

【図2】本発明実施例におけるモルタル供試体の斜視説
明図である。
FIG. 2 is an explanatory perspective view of a mortar specimen in the embodiment of the present invention.

【図3】図2に示したモルタル供試体の一面上にガルバ
ニック層を設け、それ以外の面はエポキシ樹脂で被覆し
た腐食試験に供した供試体の斜視概観説明図である。
FIG. 3 is a perspective outline explanatory view of a specimen subjected to a corrosion test in which a galvanic layer is provided on one surface of a mortar specimen shown in FIG. 2 and the other surface is covered with an epoxy resin.

【符号の説明】[Explanation of symbols]

1 鉄筋 2 コンクリート 3 導電性繊維含有モルタル層 4 亜鉛溶射層 5 補修用コンクリート層 5’照合電極 Reference Signs List 1 reinforcing steel 2 concrete 3 mortar layer containing conductive fiber 4 zinc sprayed layer 5 concrete layer for repair 5 'reference electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート表層に繊維化された導電材
含有モルタルを形成し、その上に亜鉛を溶射して該繊維
と亜鉛もしくは亜鉛合金とのガルバニック対を形成し、
これにより溶存酸素の還元反応によりコンクリート内部
に拡散する酸素量を減少させるコンクリート中鉄筋の防
食方法。
1. A method for forming a fibrous conductive material-containing mortar on a concrete surface layer, and spraying zinc thereon to form a galvanic pair of the fiber and zinc or a zinc alloy,
This is a corrosion prevention method for steel bars in concrete that reduces the amount of oxygen that diffuses into concrete due to the reduction reaction of dissolved oxygen.
【請求項2】 ガルバニック対の形成が、コンクリート
表面に敷設された網状電極または部分的に配置された平
板状電極に対し、その片面上を亜鉛もしくは亜鉛合金を
溶射することにより行なわれる請求項1記載の方法。
2. A galvanic pair is formed by spraying zinc or a zinc alloy on one surface of a reticulated electrode laid on a concrete surface or a partially disposed flat electrode. The described method.
【請求項3】 ガルバニック対のカソードとして、鉄合
金、銅合金、チタン、炭素を用いた請求項1または2記
載の方法。
3. The method according to claim 1, wherein an iron alloy, a copper alloy, titanium, or carbon is used as a cathode of the galvanic couple.
JP10210434A 1998-07-09 1998-07-09 Method for preventing corrosion of reinforcing bar in concrete Pending JP2000026174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210434A JP2000026174A (en) 1998-07-09 1998-07-09 Method for preventing corrosion of reinforcing bar in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210434A JP2000026174A (en) 1998-07-09 1998-07-09 Method for preventing corrosion of reinforcing bar in concrete

Publications (1)

Publication Number Publication Date
JP2000026174A true JP2000026174A (en) 2000-01-25

Family

ID=16589272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210434A Pending JP2000026174A (en) 1998-07-09 1998-07-09 Method for preventing corrosion of reinforcing bar in concrete

Country Status (1)

Country Link
JP (1) JP2000026174A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088807A (en) * 2002-05-15 2003-11-20 주식회사 효원종합건설 Cathodic protection repairing method of concrete structures using zinc sacrificial anode and mortar composition for coating zinc sacrificial anode
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
CN106885835A (en) * 2017-04-01 2017-06-23 江苏科技大学 A kind of steel reinforced concrete erosion monitoring built-in type reference electrode and manufacture method
CN109972748A (en) * 2017-12-28 2019-07-05 中冶长天国际工程有限责任公司 Epoxy resin mortar, building anti-corrosion structure and its construction method
JP2019173520A (en) * 2018-03-29 2019-10-10 太平洋セメント株式会社 Non-contact deterioration detection method of metallic material object, sacrifice anode material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088807A (en) * 2002-05-15 2003-11-20 주식회사 효원종합건설 Cathodic protection repairing method of concrete structures using zinc sacrificial anode and mortar composition for coating zinc sacrificial anode
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
CN106885835A (en) * 2017-04-01 2017-06-23 江苏科技大学 A kind of steel reinforced concrete erosion monitoring built-in type reference electrode and manufacture method
CN109972748A (en) * 2017-12-28 2019-07-05 中冶长天国际工程有限责任公司 Epoxy resin mortar, building anti-corrosion structure and its construction method
JP2019173520A (en) * 2018-03-29 2019-10-10 太平洋セメント株式会社 Non-contact deterioration detection method of metallic material object, sacrifice anode material
JP7120786B2 (en) 2018-03-29 2022-08-17 太平洋セメント株式会社 Non-contact deterioration detection method for metallic materials

Similar Documents

Publication Publication Date Title
Goyal et al. A review of corrosion and protection of steel in concrete
US11519077B2 (en) Galvanic anode and method of corrosion protection
CA2880235C (en) Galvanic anode and method of corrosion protection
AU678484B2 (en) Cathodic protection of reinforced concrete
EP1470266B1 (en) Improvement in cathodic protection system
US20020134690A1 (en) Doubly-protected reinforcing members in concrete
JP2000026174A (en) Method for preventing corrosion of reinforcing bar in concrete
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
JP6951053B2 (en) Monitoring method of sacrificial anode method in concrete structure
Patel Prevention of corrosion of steel reinforcement in concrete
EP4139499A1 (en) Anode assembly for corrosion control of steel reinforced concrete structures
Sekar et al. Cathodic protection of steel in concrete using conductive polymer overlays
KR20030037336A (en) Method for cathodic protection-repairing of steel-reinforced concrete structures
Hayfield et al. Titanium based mesh anode in the catholic protection of reinforcing bars in concrete
JP3325322B2 (en) Concrete regeneration method
JPH02209494A (en) Galvanic anode material for preventing corrosion of reinforced concrete and method for electrolytically protecting reinforced concrete structure with the same
JP3431302B2 (en) Method for preventing deterioration of concrete structures
WO1992002664A1 (en) Anode member to be electrically charged for preventing corrosion of reinforced concrete and electric corrosion preventive method employing said member
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
Ball Galvanic protection of piles in a marine environment
JP2003027607A (en) Electrical protection method for reinforced concrete structure
JP2003301533A (en) Reinforcing bar anti-corrosion structure and method in reinforced concrete
JP4168891B2 (en) Reinforced concrete anticorrosion system
JP2006037181A (en) Carbon fiber sheet and electrical protection method and corrosion protection structure for concrete structure using the same
NL1040129C2 (en) Impressed current anode assembly for reinforced concrete applications.