JP2000021594A - Ballast using piezoelectric element and power factor compensation circuit - Google Patents

Ballast using piezoelectric element and power factor compensation circuit

Info

Publication number
JP2000021594A
JP2000021594A JP10268382A JP26838298A JP2000021594A JP 2000021594 A JP2000021594 A JP 2000021594A JP 10268382 A JP10268382 A JP 10268382A JP 26838298 A JP26838298 A JP 26838298A JP 2000021594 A JP2000021594 A JP 2000021594A
Authority
JP
Japan
Prior art keywords
piezoelectric transformer
ballast
voltage
lamp
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268382A
Other languages
Japanese (ja)
Inventor
Cho Bohyun
チョウ ボ−ヒュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONG IL TECHNOL Ltd
Original Assignee
DONG IL TECHNOL Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONG IL TECHNOL Ltd filed Critical DONG IL TECHNOL Ltd
Publication of JP2000021594A publication Critical patent/JP2000021594A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the power factor of a fluorescent lamp ballast and also manufacture the ballast that is less expensive and small. SOLUTION: This ballast is composed by providing an A.C. power source 1, a fluorescent lamp 11, a piezoelectric transformer 20 that is connected between the A.C. power source 1 and the fluorescent lamp 4, and has a high voltage gain when its load is low and a low voltage gain when the load is high, and a capacitor connected in parallel with the piezoelectric transformer 20. Firstly, the A.C. input is converted into a D.C. voltage by using a bridge diode 2 and a capacitor Cdc. The D.C. voltage after the conversion like this is formed into a rectangular wave having a desired frequency in order to resonate the piezoelectric transformer 20 through switches S1 and S2. Finally, the rectangular wave voltage drives the piezoelectric transformer 20 and thus, a sine wave is provided, so that the sine wave lights the lamp 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電素子を用いた安
定器の設計および力率補償回路に関するもので、とくに
圧電素子を用いた蛍光灯の安定器の設計および力率を改
善するための力率補償回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ballast design using a piezoelectric element and a power factor compensation circuit, and more particularly to a ballast design for a fluorescent lamp using a piezoelectric element and a power factor for improving the power factor. It relates to a rate compensation circuit.

【0002】[0002]

【従来の技術】従来の電子式蛍光灯の安定器には、ハー
フブリッジ(half-bridge )で駆動する直列並列回路が
使用されている。図1は従来の共振型電子式安定器の回
路図である。図1において、1は220V の常用交流電
源、2はブリッジ回路、3はインダクタLfとコンデン
サCbとが並列に接続されたLC共振子、4は蛍光ラン
プである。図1の共振型安定器において、点灯時にはイ
ンダクタLfおよびコンデンサCbが共振して十分なラ
ンプ始動電圧を得、点灯後には正弦波に近い電流波形を
得る。しかし、十分な始動電圧を得るためには、インダ
クタLfを数mH程度に設定すべきであるので、電子式
安定器の価格上昇の原因となる。また、一般に、蛍光灯
の安定器設計においては、ランプ4の点灯前と点灯後の
状態および安定器全体に対して力率を考慮しなければな
らない。
2. Description of the Related Art Conventional electronic fluorescent lamp ballasts use a series-parallel circuit driven by a half-bridge. FIG. 1 is a circuit diagram of a conventional resonance type electronic ballast. In FIG. 1, reference numeral 1 denotes a 220 V commercial AC power supply, 2 denotes a bridge circuit, 3 denotes an LC resonator in which an inductor Lf and a capacitor Cb are connected in parallel, and 4 denotes a fluorescent lamp. In the resonance type ballast shown in FIG. 1, at the time of lighting, the inductor Lf and the capacitor Cb resonate to obtain a sufficient lamp starting voltage, and after lighting, a current waveform close to a sine wave is obtained. However, in order to obtain a sufficient starting voltage, the inductor Lf should be set to about several mH, which causes an increase in the price of the electronic ballast. In general, when designing a ballast for a fluorescent lamp, the power factor must be considered for the state before and after lighting of the lamp 4 and for the entire ballast.

【0003】[0003]

【発明が解決しようとする課題】最近、照明器具のエネ
ルギー効率を向上させるため、照明器具に対する入力電
流の高調波歪み(Total harmonic distortion )に関す
る規定が強化されており、動作電力が増加するほどに力
率補償に対する必要性がさらに増加することになる。
Recently, in order to improve the energy efficiency of lighting equipment, regulations regarding the total harmonic distortion of the input current to the lighting equipment have been strengthened. The need for power factor compensation will further increase.

【0004】すなわち、ランプを点灯するためには、こ
のランプに数百Vの駆動電圧を印加しなければならず、
予熱型蛍光灯の場合、寿命向上のために初期放電電圧を
降下させる必要がある。また、ランプが点灯された後に
は、ランプの保護のために正弦波に近い一定平均電圧お
よび電流を供給すべきであり、この際に、高調波電流と
入力電圧、入力容量および効率面で、全力率は0.94
以上とする必要がある。
That is, in order to turn on a lamp, a driving voltage of several hundred volts must be applied to the lamp.
In the case of a preheated fluorescent lamp, it is necessary to lower the initial discharge voltage to improve the life. After the lamp is turned on, a constant average voltage and current close to a sine wave should be supplied to protect the lamp.In this case, in terms of harmonic current and input voltage, input capacity and efficiency, Total power factor is 0.94
It is necessary to do above.

【0005】本発明の目的は、前述した従来技術の問題
点を解消するため、圧電素子の性質を用いてランプ点灯
前後の特性を改善した蛍光灯の安定器を提供することで
ある。また、本発明の他の目的は、安定器などにおい
て、力率を効果的に改善し得る力率補償回路を提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ballast for a fluorescent lamp in which the characteristics before and after lamp operation are improved by using the properties of a piezoelectric element in order to solve the above-mentioned problems of the prior art. Another object of the present invention is to provide a power factor compensation circuit capable of effectively improving a power factor in a ballast or the like.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る安定器は、交流電源と、蛍光ランプ
と、前記交流電源と蛍光ランプとの間に接続され、負荷
が低いときに高い電圧利得を有し、負荷が高いときに低
い電圧利得を有する圧電変圧器と、前記圧電変圧器に並
列に接続されたコンデンサとを備える。
In order to achieve the above object, a ballast according to the present invention is connected to an AC power supply, a fluorescent lamp, and between the AC power supply and the fluorescent lamp. The piezoelectric transformer includes a piezoelectric transformer having a high voltage gain and a low voltage gain when a load is high, and a capacitor connected in parallel to the piezoelectric transformer.

【0007】好ましくは、前記ランプの点灯電圧および
正常状態の動作を満足させる動作周波数は76〜78K
Hzである。
Preferably, the operating voltage satisfying the operating voltage of the lamp and the normal operation is 76 to 78K.
Hz.

【0008】また、本発明に係る蛍光灯の安定器に使用
される力率補償回路は、電源と蛍光ランプとの間に接続
された圧電変圧器と、前記圧電変圧器に並列に接続され
たコンデンサと、前記電源からの入力電圧をクランピン
グするダイオードと、前記ダイオードに並列に接続され
たインダクタとを備える。
Further, a power factor compensation circuit used in a ballast of a fluorescent lamp according to the present invention includes a piezoelectric transformer connected between a power supply and the fluorescent lamp, and a piezoelectric transformer connected in parallel to the piezoelectric transformer. A capacitor, a diode for clamping an input voltage from the power supply, and an inductor connected in parallel to the diode.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例につき図面
に基づいて詳細に説明する。本発明の実施例を説明する
ための全図面において、同一機能を有する要素には同一
符号を使用し、その反復説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In all the drawings for describing the embodiments of the present invention, the same reference numerals are used for elements having the same functions, and the repeated description thereof will be omitted.

【0010】基本的に、本発明においては、負荷が低い
ときは高い電圧利得を、負荷が高いときは低い電圧利得
を示し、高いQ値の共振特性を有し、素子の小型化を実
現し得る圧電素子の性質を用いる。
Basically, the present invention exhibits a high voltage gain when the load is low and a low voltage gain when the load is high, has a high Q-value resonance characteristic, and realizes miniaturization of the element. The properties of the resulting piezoelectric element are used.

【0011】また、本発明に使用される圧電素子の共振
子としては、水晶またはセラミックスなどの圧電材料を
使用した共振子を使用し、BaTiO3 系、Pb(Zr
・Ti)O3 系、PbTiO3 系など、直流高電圧を印
加して残留成分を発生させるセラミックス共振子が効果
的である。
Further, a resonator using a piezoelectric material such as quartz or ceramics is used as a resonator of the piezoelectric element used in the present invention, and a BaTiO 3 system, Pb (Zr
-A ceramic resonator that generates a residual component by applying a high DC voltage, such as Ti) O 3 or PbTiO 3 , is effective.

【0012】本発明に使用される圧電変圧器は、負荷が
低いときは高い電圧利得を、負荷が高いときは低い電圧
利得を示す。これは、実際蛍光灯負荷を駆動するための
非常に適切な特性である。
The piezoelectric transformer used in the present invention exhibits a high voltage gain when the load is low and a low voltage gain when the load is high. This is a very suitable characteristic for driving a fluorescent lamp load.

【0013】このような特性を用いて12W蛍光灯の安
定器を例として検討すると、蛍光灯負荷は点灯前に電流
が流れないので開放回路と、点灯後の正常状態では等価
的な非線形負荷抵抗(Req)とそれぞれ表現され、この
負荷抵抗は式(1)のようである。
Considering the ballast of a 12 W fluorescent lamp using such characteristics as an example, a fluorescent lamp load has no open circuit because no current flows before lighting, and an equivalent nonlinear load resistance in a normal state after lighting. (R eq ), and the load resistance is as shown in equation (1).

【0014】[0014]

【数1】 (Equation 1)

【0015】ここで、Vlamp(rms) はランプの両端にか
かる瞬時電圧値であり、I lamp(rms ) はランプに流れる
瞬時電流値である。
Here, V lamp (rms) is an instantaneous voltage value applied to both ends of the lamp , and I lamp (rms ) is an instantaneous current value flowing through the lamp.

【0016】すなわち、非線形負荷抵抗は、ランプに印
加される電圧と電流に反比例する。本発明に使用される
圧電変圧器は、すぐランプを接続すると、点灯前には高
い電圧利得で始動電圧が確保され、ランプが点灯され正
常状態に至ると、等価負荷抵抗(Req)に対して所望動
作を行う。
That is, the nonlinear load resistance is inversely proportional to the voltage and current applied to the lamp. In the piezoelectric transformer used in the present invention, when the lamp is immediately connected, a starting voltage is secured with a high voltage gain before the lamp is lit, and when the lamp is lit and the normal state is reached, the equivalent load resistance (R eq ) is reduced. To perform the desired operation.

【0017】図2は本発明による圧電素子を用いた安定
器の回路図であり、図3は図2の構成によるランプ4の
点灯前後の電圧利得を示すグラフである。図2におい
て、図1と相違する点は、LC共振子3の代わりに低電
力の圧電変圧器20を使用したことである。
FIG. 2 is a circuit diagram of a ballast using the piezoelectric element according to the present invention, and FIG. 3 is a graph showing a voltage gain before and after lighting of the lamp 4 according to the configuration of FIG. FIG. 2 differs from FIG. 1 in that a low-power piezoelectric transformer 20 is used instead of the LC resonator 3.

【0018】図3において、縦軸は利得を、横軸は周波
数(KHz)を示し、Aは点灯前の曲線、Bは点灯後の
曲線を示す。
In FIG. 3, the vertical axis represents gain, the horizontal axis represents frequency (KHz), A represents a curve before lighting, and B represents a curve after lighting.

【0019】図2の低電力圧電安定器の回路図で、まず
ブリッジダイオード2とCdcを用いて交流入力をDC電
圧に変換させる。このように変換されたDC電圧は、ス
イッチS1およびS2を介して圧電変圧器を共振させる
ため所望周波数の矩形波に形成される。最後に、この矩
形波電圧は圧電変圧器を駆動して正弦波を得、この正弦
波がランプを点灯させる。
In the circuit diagram of the low-power piezoelectric ballast shown in FIG. 2, first, an AC input is converted into a DC voltage by using a bridge diode 2 and Cdc . The DC voltage thus converted is formed into a rectangular wave of a desired frequency to resonate the piezoelectric transformer via the switches S1 and S2. Finally, the square wave voltage drives the piezoelectric transformer to obtain a sine wave, which turns on the lamp.

【0020】図2に示す圧電変圧器20はかなり大きい
Q値の共振特性を有するので、矩形波を1次端に印加し
てもランプ4に印加される2次端の波形は正弦波とな
る。この回路において、Cext は点灯前にランプ4のフ
ィラメントを加熱する十分な予熱電流(ランプの予熱電
流400mA)を流すもので、このコンデンサCext
容量は式(2)によって求めると、約2.2nFとな
る。
Since the piezoelectric transformer 20 shown in FIG. 2 has a resonance characteristic of a considerably large Q value, even if a rectangular wave is applied to the primary end, the waveform of the secondary end applied to the lamp 4 is a sine wave. . In this circuit, C ext supplies a sufficient preheating current (400 mA of preheating current of the lamp) for heating the filament of the lamp 4 before lighting, and the capacity of the capacitor C ext is about 2 when calculated by the equation (2). .2 nF.

【0021】[0021]

【数2】 (Equation 2)

【0022】式(2)において、Ipreheat はランプを
点灯するために必要な予熱電流を示し、Vpeakはランプ
点灯のために必要な点灯電圧を示し、ωはランプ駆動周
波数を示す。
[0022] formula (2), I preheat shows a preheating current required to light the lamp, V peak represents the lighting voltage required for the lamp lighting, omega denotes a lamp drive frequency.

【0023】回路の動作周波数は、点灯電圧と正常状態
での動作をともに満足させ得る周波数として選択し、こ
れは次のような過程により得る。
The operating frequency of the circuit is selected as a frequency capable of satisfying both the lighting voltage and the operation in a normal state, and is obtained by the following process.

【0024】図3において、点灯前曲線Aは圧電素子の
等価回路モデリングによる模擬実験で得た電圧利得曲線
であり、点灯後の曲線Bは非線形負荷抵抗を使用して得
た電圧利得曲線を示す。ここで、12.5W電力の非線
形負荷抵抗Req値が800Ωである場合、基本波仮定に
よる圧電変圧器の1次側にかかる基本波のrms値は
In FIG. 3, a curve A before lighting is a voltage gain curve obtained by a simulation experiment based on equivalent circuit modeling of a piezoelectric element, and a curve B after lighting shows a voltage gain curve obtained using a nonlinear load resistance. . Here, when the nonlinear load resistance R eq value of 12.5 W power is 800Ω, the rms value of the fundamental wave applied to the primary side of the piezoelectric transformer assuming the fundamental wave is

【数3】 である。(Equation 3) It is.

【0025】ここで、Vp.fund,rmsは、圧電変圧器の1
次側にかかる基本波の瞬時電圧値を示す。
Here, V p.fund, rms is one of the piezoelectric transformers.
This shows the instantaneous voltage value of the fundamental wave applied to the secondary side.

【0026】圧電変圧器の2次側にかかる電圧、つまり
点灯電圧と正常状態電圧はそれぞれ500V(peak)と
92Vrms であり、圧電変圧器に必要な電圧利得は点灯
時には2.53、正常状態動作時には0.66となる。
図3において、この両方の条件を満足させる動作周波数
は77.2KHzとなる。
The voltage applied to the secondary side of the piezoelectric transformer, ie, the lighting voltage and the normal state voltage are 500 V (peak) and 92 V rms , respectively. The voltage gain required for the piezoelectric transformer is 2.53 at the time of lighting, and the normal state is 2.53. In operation, it is 0.66.
In FIG. 3, the operating frequency that satisfies both conditions is 77.2 KHz.

【0027】また、本発明の圧電変圧器を用いた安定器
において、駆動電力を18Wに高めるためには、第一に
圧電変圧器を並列に連結して使用する方法、第二に圧電
変圧器を多層構造に構成する方法、第三に圧電変圧器の
駆動回路を改善する方法がある。
Also, in the ballast using the piezoelectric transformer of the present invention, in order to increase the driving power to 18 W, first, a method in which piezoelectric transformers are connected in parallel, and secondly, a piezoelectric transformer is used. Third, there is a method of improving the driving circuit of the piezoelectric transformer.

【0028】圧電変圧器の入力端に加わる矩形波は、変
圧器内部の入力容量のため、スイッチを介してピーク電
流が流れることになる。したがって、この電流を遮断す
るためにはインダクタを使用することが好ましい。
The rectangular wave applied to the input terminal of the piezoelectric transformer causes a peak current to flow through the switch due to the input capacity inside the transformer. Therefore, it is preferable to use an inductor to cut off this current.

【0029】図4は、本発明によるダイオードクランピ
ング方法を示す回路図である。図4において、41,4
2は互いに直列に接続されたダイオード、43はダイオ
ード41と42との接続点に並列に接続されたインダク
タである。
FIG. 4 is a circuit diagram showing a diode clamping method according to the present invention. In FIG. 4, 41, 4
Reference numeral 2 denotes a diode connected in series with each other, and reference numeral 43 denotes an inductor connected in parallel to a connection point between the diodes 41 and 42.

【0030】すなわち、図4は、圧電変圧器内部に存在
する入力コンデンサによりスイッチS1とS2を介して
ピーク電流が流れ、これを防止するため、小さいインダ
クタ(Lr)43を図2の構成に付加したものである。
また、大きな電力を駆動するために多層構造に構成した
ときは、内部入力コンデンサの容量がさらに大きくな
り、このときはインダクタ(Lr)が必ず必要になる。
しかし、ピーク電流を防ぐために使用したインダクタ
(Lr)は入力コンデンサと共振して入力端の電圧を過
度に高め得るが、この入力端の過電圧を防止するため、
本実施例ではクランピングダイオード41,42を付加
した。
That is, FIG. 4 shows that a small inductor (Lr) 43 is added to the configuration of FIG. 2 in order to prevent a peak current from flowing through the switches S1 and S2 due to an input capacitor existing inside the piezoelectric transformer and prevent this. It was done.
When a multi-layer structure is used to drive a large amount of power, the capacity of the internal input capacitor is further increased. In this case, an inductor (Lr) is required.
However, the inductor (Lr) used to prevent the peak current can resonate with the input capacitor and increase the voltage at the input terminal excessively.
In this embodiment, clamping diodes 41 and 42 are added.

【0031】本発明において、より大きな電力を駆動す
るためには多層構造を使用するが、このときは入力コン
デンサの容量がさらに大きくなって、さらに大きいピー
ク電流が流れるので、このインダクタ43は必須であ
る。しかし、ピーク電流を防止するために使用したイン
ダクタ43は圧電変圧器の内部容量と共振を起こして、
変圧器の入力端にかかる電圧を過度に高めることがあ
り、このときは変圧器の1、2次端の絶縁を破壊する可
能性がある。したがって、この入力電圧を制限するた
め、ダイオード41,42で入力電圧をクランピングす
る。
In the present invention, a multilayer structure is used to drive a larger power. In this case, however, the inductor 43 is indispensable because the capacity of the input capacitor is further increased and a larger peak current flows. is there. However, the inductor 43 used to prevent the peak current causes resonance with the internal capacitance of the piezoelectric transformer,
The voltage at the input of the transformer can be excessively high, which can destroy the insulation at the primary and secondary ends of the transformer. Therefore, the input voltage is clamped by the diodes 41 and 42 in order to limit the input voltage.

【0032】図5は前述した電流電圧方式を考慮して圧
電変圧器20を等価回路で表す力率補償回路図である。
FIG. 5 is a power factor compensation circuit diagram in which the piezoelectric transformer 20 is represented by an equivalent circuit in consideration of the current-voltage method described above.

【0033】図5において、51は圧電変圧器の等価回
路、52〜54はダイオード、55はチャージポンプコ
ンデンサである。ダイオード53と54とは直列に接続
され、コンデンサ55はダイオード53および54に対
して並列に接続される。
In FIG. 5, 51 is an equivalent circuit of a piezoelectric transformer, 52 to 54 are diodes, and 55 is a charge pump capacitor. Diodes 53 and 54 are connected in series, and capacitor 55 is connected in parallel with diodes 53 and 54.

【0034】図5は力率改善のために図4の構成にチャ
ージポンプコンデンサ55を付加した構成である。既存
のインバータではこのコンデンサが共振回路に影響を及
ぼすが、圧電変圧器を使用する場合には圧電変圧器自体
の電圧利得で負荷を駆動するので、出力波形に対するコ
ンデンサ55の影響を減らすことができる。
FIG. 5 shows a configuration in which a charge pump capacitor 55 is added to the configuration of FIG. 4 to improve the power factor. In an existing inverter, this capacitor affects the resonance circuit, but when a piezoelectric transformer is used, the load is driven by the voltage gain of the piezoelectric transformer itself, so that the effect of the capacitor 55 on the output waveform can be reduced. .

【0035】すなわち、力率改善のために従来の直並列
インバータに使用される場合、チャージポンプコンデン
サ55が共振回路に影響を及ぼすことになる。したがっ
て、このコンデンサ55がランプ電流と電圧にひずみ現
象を発生させてランプ電流の波高率を悪くする。これを
改善するためには、追加の共振回路が使用されなければ
ならない。しかし、本発明の圧電変圧器20に適用する
場合、圧電変圧器20では圧電変圧器自体の電圧利得で
負荷を駆動するので、ランプに出力される変圧器の2次
端の波形に対するコンデンサ55の直接的な影響を減ら
すことができる。
That is, when used in a conventional series-parallel inverter for power factor improvement, the charge pump capacitor 55 affects the resonance circuit. Therefore, the capacitor 55 causes a distortion phenomenon in the lamp current and the voltage, thereby deteriorating the crest factor of the lamp current. To remedy this, an additional resonant circuit must be used. However, when applied to the piezoelectric transformer 20 of the present invention, the load is driven by the voltage gain of the piezoelectric transformer itself in the piezoelectric transformer 20, so that the capacitor 55 with respect to the waveform of the secondary end of the transformer output to the lamp is used. Direct effects can be reduced.

【0036】本発明では、まず予熱電流を考慮したC
ext と圧電変圧器20の動作周波数を、前述した12W
の場合と同方法で得る。すなわち、Cext は2.2nF
となり、動作周波数は77.2KHzとなる。ここで、
動作周波数は、18W安定器の非線形負荷抵抗が500
Ωであり、正常状態でのランプ駆動電圧は85Vとな
り、これを12W計算の場合と同様の過程で得ることに
なる。その他に使用された素子であるコンデンサ55お
よびLr41を求める過程は次のようである。
In the present invention, first, C
ext and the operating frequency of the piezoelectric transformer 20 are 12 W
Obtained in the same way as in That is, C ext is 2.2 nF
And the operating frequency is 77.2 KHz. here,
The operating frequency is such that the nonlinear load resistance of the 18W ballast is 500
Ω, and the lamp drive voltage in a normal state is 85 V, which is obtained in the same process as in the case of 12 W calculation. The process for obtaining the capacitors 55 and Lr41, which are other elements used, is as follows.

【0037】60Hzラインの半周期間の入力電力は、
効率ηを考慮するとき、出力電力と同じになるので、式
(4)のような関係式を得ることになる。
The input power during the half cycle of the 60 Hz line is
When considering the efficiency η, the output power is the same as the output power, so that a relational expression such as Expression (4) is obtained.

【0038】[0038]

【数4】 (Equation 4)

【0039】ここで、Pinは入力電力を、Pout は出力
電力を示し、ηはこの両値の比で、電力効率を示す。そ
して、iin,avgは1スイッチング周期間の平均入力電流
を、Vg は入力電圧値を示す。
[0039] Here, P in is the input power, P out represents output power, eta is the ratio of the two values indicates the power efficiency. I in, avg indicates an average input current during one switching period, and V g indicates an input voltage value.

【0040】[0040]

【数5】 (Equation 5)

【0041】ここで、iin,avgは1スイッチング周期間
の平均入力電流を示し、fs は圧電変圧器の駆動周波数
を、Cinは力率改善のために使用したコンデンサの容
量、そしてVg は入力電圧値をそれぞれ示す。
Here, i in, avg represents an average input current during one switching cycle, f s represents a driving frequency of the piezoelectric transformer, C in represents a capacity of a capacitor used for improving a power factor, and V g indicates an input voltage value.

【0042】ところで、1スイッチング周期間の入力電
流は図6のようであり、この電流の平均である式(5)
を式(4)に代入して展開すると、Cin55は式(6)
と同じになる。
By the way, the input current during one switching cycle is as shown in FIG.
Is substituted into Expression (4) and expanded, C in 55 becomes Expression (6)
Will be the same as

【0043】[0043]

【数6】 (Equation 6)

【0044】最後に、Lr43は、まずCin>>C1と
仮定すると、入力電流は次のように近似させ得る。
[0044] Finally, Lr43 is, First, it is assumed that C in >> C1, the input current can not be approximated as follows.

【0045】[0045]

【数7】 (Equation 7)

【0046】ここで、iinは入力電流、Z0 =(Lr
in1/2 、ω0 は共振周波数である。
Where i in is the input current and Z 0 = (L r /
C in ) 1/2 and ω 0 are resonance frequencies.

【0047】これを1スイッチング周期間の平均入力電
流とすると、式(8)のようである。
Assuming that this is the average input current during one switching cycle, the equation (8) is obtained.

【0048】[0048]

【数8】 (Equation 8)

【0049】ここで、Z0 =(Lr /Cin1/2 であ
り、iin,avgは1スイッチング周期間の平均電流であ
る。
Here, Z 0 = (L r / C in ) 1/2 , and i in, avg is an average current during one switching cycle.

【0050】したがって、式(5)と式(8)とからピ
ーク電流防止用インダクタLrを求めると次のようであ
る。
Therefore, the peak current preventing inductor Lr is obtained from the equations (5) and (8) as follows.

【0051】[0051]

【数9】 (Equation 9)

【0052】[0052]

【発明の効果】前述したように、本発明によると、従来
の共振型電子式安定器のLC共振子の代わりに圧電素子
を使用した圧電変圧器を使用するので、蛍光灯の安定器
の力率を改善し得るだけでなく、安定器を低廉にかつ小
型に製造し得る。
As described above, according to the present invention, since the piezoelectric transformer using a piezoelectric element is used instead of the LC resonator of the conventional resonance type electronic ballast, the power of the ballast of the fluorescent lamp is reduced. Not only can the efficiency be improved, but the ballast can be manufactured inexpensively and compactly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の共振型電子式安定器の回路図である。FIG. 1 is a circuit diagram of a conventional resonance type electronic ballast.

【図2】本発明による圧電変圧器を使用した安定器の回
路図である。
FIG. 2 is a circuit diagram of a ballast using a piezoelectric transformer according to the present invention.

【図3】図2の回路において、ランプの点灯前後の電圧
利得を示すグラフである。
FIG. 3 is a graph showing a voltage gain before and after lighting of a lamp in the circuit of FIG. 2;

【図4】本発明によるダイオードクランピング方法を示
す回路図である。
FIG. 4 is a circuit diagram illustrating a diode clamping method according to the present invention.

【図5】本発明による圧電変圧器を等価回路で示した力
率補償回路図である。
FIG. 5 is a power factor compensation circuit diagram showing an equivalent circuit of the piezoelectric transformer according to the present invention.

【図6】チャージポンプPFC回路の入力電流を示すグ
ラフである。
FIG. 6 is a graph showing an input current of a charge pump PFC circuit.

【符号の説明】[Explanation of symbols]

1 交流電源 2 ブリッジ回路 3 LC共振子 4 蛍光ランプ 20 圧電変圧器 41,42 ダイオード 43 インダクタ 51 圧電器の等価回路 52,53,54 ダイオード 55 チャージポンプコンデンサ DESCRIPTION OF SYMBOLS 1 AC power supply 2 Bridge circuit 3 LC resonator 4 Fluorescent lamp 20 Piezoelectric transformer 41, 42 Diode 43 Inductor 51 Equivalent circuit of piezoelectric transformer 52, 53, 54 Diode 55 Charge pump capacitor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K072 AA02 AC02 BA03 BB01 BC01 BC07 DB03 DD04 GA02 GB12 GC04 HB03 5H007 AA02 BB03 CA02 CB12 CB22 CC32 5H420 CC04 DD03 EA12 EB39 EB40 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3K072 AA02 AC02 BA03 BB01 BC01 BC07 DB03 DD04 GA02 GB12 GC04 HB03 5H007 AA02 BB03 CA02 CB12 CB22 CC32 5H420 CC04 DD03 EA12 EB39 EB40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交流電源と、 蛍光ランプと、 前記交流電源と蛍光ランプとの間に接続され、負荷が低
いときに高い電圧利得を有し、負荷が高いときに低い電
圧利得を有する圧電変圧器と、 前記圧電変圧器に並列で接続されたコンデンサとを備え
ることを特徴とする安定器。
An AC power supply, a fluorescent lamp, and a piezoelectric transformer connected between the AC power supply and the fluorescent lamp, the piezoelectric transformer having a high voltage gain when the load is low, and having a low voltage gain when the load is high. A ballast comprising: a ballast; and a capacitor connected in parallel with the piezoelectric transformer.
【請求項2】 前記ランプの点灯電圧および正常状態の
動作を満足させる動作周波数が76〜78KHzである
ことを特徴とする請求項1に記載の安定器。
2. The ballast according to claim 1, wherein an operating frequency satisfying a lighting voltage of the lamp and an operation in a normal state is 76 to 78 KHz.
【請求項3】 蛍光灯の安定器に使用される力率補償回
路であって、 電源と蛍光ランプとの間に接続された圧電変圧器と、 前記圧電変圧器に並列に接続されたコンデンサと、 前記電源からの入力電圧をクランピングするダイオード
と、 前記ダイオードに並列に接続されたインダクタとを備え
ることを特徴とする力率補償回路。
3. A power factor compensation circuit used in a ballast of a fluorescent lamp, comprising: a piezoelectric transformer connected between a power supply and the fluorescent lamp; and a capacitor connected in parallel to the piezoelectric transformer. A power factor compensation circuit, comprising: a diode for clamping an input voltage from the power supply; and an inductor connected in parallel to the diode.
JP10268382A 1998-06-30 1998-09-22 Ballast using piezoelectric element and power factor compensation circuit Pending JP2000021594A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980025210A KR20000003907A (en) 1998-06-30 1998-06-30 Stabilizer and power-factor compensating circuit using piezoelectric element
KR98-25210 1998-06-30

Publications (1)

Publication Number Publication Date
JP2000021594A true JP2000021594A (en) 2000-01-21

Family

ID=19541701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268382A Pending JP2000021594A (en) 1998-06-30 1998-09-22 Ballast using piezoelectric element and power factor compensation circuit

Country Status (2)

Country Link
JP (1) JP2000021594A (en)
KR (1) KR20000003907A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019990A1 (en) * 2001-08-27 2003-03-06 Dong-Soo Paik Electronic ballast with piezoelectric ceramics
KR100439398B1 (en) * 2001-05-22 2004-07-09 주식회사 멀티채널랩스 Digital controlled electronic ballast with piezoelectric transformer
JP2009539221A (en) * 2006-05-31 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lamp drive circuit
CN108616260A (en) * 2018-04-02 2018-10-02 广州慧智微电子有限公司 A kind of power circuit of power amplifier
CN113872432A (en) * 2021-11-17 2021-12-31 四川莱福德科技有限公司 Power factor correction converter and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036934B1 (en) * 2009-06-23 2011-05-25 서울대학교산학협력단 Converter using piezoelectric transducer, apparatus for driving light emitting diode and method for power conversion using the same
KR102560807B1 (en) 2016-05-30 2023-07-28 주식회사 위츠 Resonance apparatus and apparatus for transmitting power wirelessly using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439398B1 (en) * 2001-05-22 2004-07-09 주식회사 멀티채널랩스 Digital controlled electronic ballast with piezoelectric transformer
WO2003019990A1 (en) * 2001-08-27 2003-03-06 Dong-Soo Paik Electronic ballast with piezoelectric ceramics
JP2009539221A (en) * 2006-05-31 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lamp drive circuit
CN108616260A (en) * 2018-04-02 2018-10-02 广州慧智微电子有限公司 A kind of power circuit of power amplifier
CN108616260B (en) * 2018-04-02 2022-05-10 广州慧智微电子股份有限公司 Power supply circuit of power amplifier
CN113872432A (en) * 2021-11-17 2021-12-31 四川莱福德科技有限公司 Power factor correction converter and control method

Also Published As

Publication number Publication date
KR20000003907A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
US5223767A (en) Low harmonic compact fluorescent lamp ballast
JPH06176881A (en) Stabilizer circuit
JP3187727B2 (en) Ballast circuit for fluorescent lamp
JP2001523389A (en) Triac tunable ballast
JP2003520407A (en) Power feedback power factor correction scheme for multiple lamp operation.
WO1998047323A1 (en) Discharge lamp lighting device and illumination device
US20020191429A1 (en) Single stage PFC + ballast control circuit/general purpose power converter
CN1113101A (en) Parallel resonant ballast with boost
WO2002039788A1 (en) Ballast self oscillating inverter with phase controlled voltage feedback
US20110095693A1 (en) Fluorescent lamp ballast with electronic preheat circuit
TW200908800A (en) Circuit arrangement for igniting and operating a discharge lamp
JPH10285941A (en) Power unit
JP2000021594A (en) Ballast using piezoelectric element and power factor compensation circuit
US5013974A (en) Electronic ballast with improved lamp current crest factor
WO1997043875A1 (en) A power processor for metal halide lamps
EP0606664B1 (en) Ballast circuit
Maamoun An electronic ballast with power factor correction for fluorescent lamps
Corominas et al. A novel low cost two-stage electronic ballast for 250 W high pressure mercury vapor lamps based on current-mode-controlled buck-boost inverter
Moo et al. Electronic ballast for programmed rapid-start fluorescent lamps
Lee et al. The characteristics of new piezoelectric ballast for fluorescent T8 lamp
JP3769993B2 (en) Discharge lamp lighting device
CA2684794C (en) Symmetrical rf power supply for inductively coupled electrodeless lamps
CN2553587Y (en) Preheat soft starting electronic ballast with protector under abnormal state
JP2004524669A (en) Circuit arrangement for a discharge lamp having a resonant half-bridge converter driven by a class E drive circuit
Morais et al. High power factor electronic ballast employing a boost half bridge topology