JP2000021384A - Battery - Google Patents

Battery

Info

Publication number
JP2000021384A
JP2000021384A JP10187223A JP18722398A JP2000021384A JP 2000021384 A JP2000021384 A JP 2000021384A JP 10187223 A JP10187223 A JP 10187223A JP 18722398 A JP18722398 A JP 18722398A JP 2000021384 A JP2000021384 A JP 2000021384A
Authority
JP
Japan
Prior art keywords
electrode
plate
battery
current collector
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10187223A
Other languages
Japanese (ja)
Other versions
JP3649909B2 (en
Inventor
Takashi Yamaguchi
貴志 山口
Takaaki Ikemachi
隆明 池町
Shigeto Tanezane
茂人 為実
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18722398A priority Critical patent/JP3649909B2/en
Publication of JP2000021384A publication Critical patent/JP2000021384A/en
Application granted granted Critical
Publication of JP3649909B2 publication Critical patent/JP3649909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely weld a group of electrodes and a collecting boards together in a battery having a non-sintered type electrode. SOLUTION: A battery is provided with a group of electrodes 4 comprising a first electrode 1 and a second electrode 2 constructed of a positive electrode and a negative electrode layered via a separator 3; an armor can 5 for housing the group of electrodes 4; and a collecting board 6 electrically connected to the first electrode and electrically connected to one side of a terminal. The first electrode 1 is a non-sintered type electrode of a metallic three-dimensional porous base board 9 filled with an active material, and provided with a band type connection part 7 the base board 9 exposed. The band type connection part 7 is welded a metallic thin plate 10 and is welded to a plurality of parts in the collecting board 6 so as to be electrically connected. The metallic thin plate 10 is 0.07 mm or more thick and thinner than 80% of that of the first electrode 1, with Vickers hardness ranging from 50 to 250. Alternatively, the collecting board 6 has Vickers hardness ranging from 50 to 250 and thickness of 0.1-1.5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極群に集電板を
溶着して高率放電特性を向上させた電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery in which a current collector is welded to an electrode group to improve high-rate discharge characteristics.

【0002】[0002]

【従来の技術】アルカリ電池等に使用される電極板とし
て、焼結式電極と非焼結式電極がある。従来は焼結式電
極が主流で多く使用されてきた。この電極は、カルボニ
ルニッケル焼結体にニッケル塩、力ドミウム塩などの溶
液を含浸させ、アルカリ処理をして活物質化して製作さ
れる。しかし、近年は、コストを低減して、高エネルギ
ー密度にできることから、非焼結式電極が有望となって
きた。非焼結式電極は、発泡ニッケルや、ニッケル繊維
多孔体などの金属3次元多孔体を基板とし、この基板の
空隙に、ペースト状の活物質を直接に充填して製作され
る。
2. Description of the Related Art Sintered electrodes and non-sintered electrodes are used as electrode plates for alkaline batteries and the like. Conventionally, sintered electrodes have been widely used. This electrode is manufactured by impregnating a carbonyl nickel sintered body with a solution such as a nickel salt or a cadmium salt, and performing an alkali treatment to make it an active material. However, in recent years, non-sintered electrodes have become promising because they can reduce the cost and increase the energy density. The non-sintered electrode is manufactured by using a three-dimensional metal porous body such as foamed nickel or a porous nickel fiber as a substrate, and directly filling a gap of the substrate with a paste-like active material.

【0003】非焼結式電極は、基板に金属3次元多孔体
を使用するので、焼結式電極の基板に使用されるパンチ
ングメタルのように、基板に直接にリード板を溶接して
接続できない。金属3次元多孔体はほとんどの部分が空
隙で、金属部分がしめる割合が極めて少ないために、リ
ード板を接触させても、接触面積が極めて小さく制限さ
れるからである。
Since non-sintered electrodes use a metal three-dimensional porous body for the substrate, they cannot be connected by welding a lead plate directly to the substrate, as in the case of punching metal used for the substrate of a sintered electrode. . This is because most of the three-dimensional metal porous body is a void, and the ratio of the metal part is extremely small, so that even if the lead plate is brought into contact, the contact area is extremely small.

【0004】金属3次元多孔体の基板を集電板に接続す
る技術は、以下の公報に記載される。 特開昭63−4562号公報 特開平2−220365号公報
A technique for connecting a metal three-dimensional porous substrate to a current collector is described in the following publication. JP-A-63-4562 JP-A-2-220365

【0005】との公報には、金属3次元多孔体の基
板の端縁に沿って、活物質を充填しない帯状連結部を設
け、ここに金属薄板を溶着して、この部分を集電板に接
続する構造が記載される。
In the publication, a strip-shaped connecting portion not filled with an active material is provided along an edge of a three-dimensional porous metal substrate, and a thin metal plate is welded to this portion, and this portion is used as a current collector plate. The connection structure is described.

【0006】帯状連結部に金属薄板を溶着している電極
板は、セパレータを介して渦巻状に捲回されて電極群と
なる。この渦巻状の電極群は、図1の分解図で示すよう
に、集電板6を溶着して集電できる。この図に示すよう
に、集電板6を電極群4に溶着する電池は、高率放電特
性を向上させて、大電流での放電特性を改善できる。金
属薄板を溶着している電極板は、図2の展開図で示すよ
うに、帯状連結部7の一部にリード板6Aを溶着して集
電することもできる。しかしながら、図2に示すよう
に、リード板6Aを溶着して集電する構造の電池は、大
電流放電特性を向上させるのが難しい。図1に示すよう
に、帯状連結部となる電極群4の上端縁を、複数部分で
集電板6に接続する電池は、電極板に流れる電流分布を
均一にできる特長がある。
An electrode plate in which a thin metal plate is welded to a strip-shaped connecting portion is spirally wound via a separator to form an electrode group. As shown in the exploded view of FIG. 1, the spiral electrode group can collect the current by welding the current collector 6. As shown in this figure, the battery in which the current collector plate 6 is welded to the electrode group 4 can improve the high-rate discharge characteristics and the discharge characteristics at a large current. As shown in the developed view of FIG. 2, the electrode plate to which the metal thin plate is welded may be formed by welding a lead plate 6A to a part of the band-like connecting portion 7 to collect the current. However, as shown in FIG. 2, it is difficult for a battery having a structure in which the lead plate 6A is welded to collect current to improve large-current discharge characteristics. As shown in FIG. 1, a battery in which the upper end edge of the electrode group 4 serving as a belt-like connecting portion is connected to the current collector plate 6 at a plurality of portions has a feature that a current distribution flowing through the electrode plate can be made uniform.

【0007】図3の断面図は、電極群4の上面に集電板
6を接続する電池の断面構造を示している。この構造の
電池は、集電板6の下面を片方の極板に複数部分で帯状
連結部7に接続している。片方の極板を集電板6に接続
するために、一方の電極板は他方の電極板よりも上方に
突出されている。電極板の突出部は、金属薄板10を溶
着している帯状連結部7である。この構造の電極群は、
図4の断面図に示すように、上面に集電板6を押圧し
て、集電板6に抵抗電気溶接して接続される。
FIG. 3 is a sectional view showing a sectional structure of a battery in which a current collector 6 is connected to an upper surface of an electrode group 4. In the battery having this structure, the lower surface of the current collector plate 6 is connected to the band-shaped connecting portion 7 at a plurality of portions on one electrode plate. In order to connect one of the electrode plates to the current collecting plate 6, one of the electrode plates protrudes above the other electrode plate. The protruding portion of the electrode plate is the band-like connecting portion 7 to which the metal sheet 10 is welded. The electrode group of this structure is
As shown in the cross-sectional view of FIG. 4, the current collector 6 is pressed against the upper surface and connected to the current collector 6 by resistance electric welding.

【0008】[0008]

【発明が解決しようとする課題】以上の構造の電池は、
基板の帯状連結部を、集電板に理想的な状態で接続する
のが極めて難しい。とくに、帯状連結部の複数部分を、
確実に集電板に接続するためには、集電板を相当な圧力
で帯状連結部に押圧して、抵抗電気溶接する必要があ
る。集電板の押圧力を弱くすると、集電板と帯状連結部
との連結部分の間の電気抵抗が大きくなって、正常に電
気溶接できなくなるからである。電気抵抗が大きな状態
で、集電板と帯状連結部とを抵抗電気溶接すると、溶接
機は、定電流を流すために、集電板と帯状連結部との間
に印加する電圧を高くする。高い電圧が印加されると、
集電板と帯状連結部の間でアーク放電するようになっ
て、抵抗が急激に低下し、溶接部分に大電力が供給され
て接触部が瞬時に溶解して飛び散る、いわゆる「爆飛」
といわれる状態となる。この状態になると、集電板と帯
状連結部とは正常に接続できなくなってしまう。
The battery having the above structure is
It is extremely difficult to connect the strip-shaped connecting portion of the substrate to the current collector plate in an ideal state. In particular, the multiple parts of the band
In order to connect the current collector plate to the current collector plate reliably, it is necessary to press the current collector plate against the strip-shaped connecting portion with a considerable pressure and perform resistance electric welding. This is because if the pressing force of the current collector plate is weakened, the electrical resistance between the connecting portion of the current collector plate and the belt-shaped connecting portion increases, and normal electrical welding cannot be performed. When resistance current welding is performed between the current collector plate and the band-shaped connection portion in a state where the electric resistance is large, the welding machine increases the voltage applied between the current collector plate and the band-shaped connection portion to flow a constant current. When a high voltage is applied,
The arc discharge occurs between the current collector plate and the belt-like connection part, the resistance drops sharply, and a large amount of power is supplied to the welded part, and the contact part dissolves instantaneously and scatters, so-called "explosion"
It is said to be in a state. In this state, the current collector plate and the belt-shaped connecting portion cannot be normally connected.

【0009】とくに、電池の内部抵抗を小さくするため
に、集電板の複数部分を帯状連結部に接着する電池は、
帯状連結部と集電板とを接続する全ての部分で理想的な
状態で連結するのが極めて難しい。帯状連結部の上面
と、集電板の下面を完全な平面には加工できないからで
ある。とくに、複数の貫通孔を設けて、貫通孔の周縁に
下方に突起を設けて、この突起を帯状連結部に接触させ
て電気溶接する集電板は、下面を完全な平面状とするこ
とは現実には極めて困難である。
In particular, in order to reduce the internal resistance of the battery, a battery in which a plurality of portions of the current collector plate are bonded to the band-like connecting portion is:
It is extremely difficult to connect in an ideal state all parts connecting the band-shaped connecting portion and the current collector plate. This is because the upper surface of the strip-shaped connecting portion and the lower surface of the current collector plate cannot be processed to a perfect plane. In particular, a plurality of through-holes are provided, a projection is provided below the periphery of the through-hole, and the current collector plate which is electrically welded by bringing the projection into contact with the strip-shaped connecting portion has a lower surface completely flat. In reality it is extremely difficult.

【0010】集電板を電極群に強く押圧することで、帯
状連結部と集電板とを隙間なく接触できる。したがっ
て、この状態で集電板を帯状連結部に溶着すれば、集電
板と帯状連結部とを確実に溶着できる。しかしながら、
集電板を帯状連結部に強く押圧して、溶着すると、図5
と図6に示すように、帯状連結部7が折れ曲がって、内
部ショートの原因となる。折れ曲がった部分がセパレー
タ3を突き破って、他の端子に接触するからである。と
くに、金属薄板10を溶着している帯状連結部7は、不
連続な部分が弱くなって、充填境界で折れ曲がりやすい
性質がある。さらに、金属3次元多孔体の基板に活物質
を充填している非焼結式電極は、基板の強度が弱く、集
電板を強く押圧すると、変形しやすい。
[0010] By strongly pressing the current collector plate against the electrode group, the strip-shaped connecting portion and the current collector plate can be contacted without any gap. Therefore, if the current collector plate is welded to the belt-like connecting portion in this state, the current collector plate and the belt-like connecting portion can be reliably welded. However,
When the current collector plate is strongly pressed against the strip-shaped connecting portion and welded,
As shown in FIG. 6, the band-like connecting portion 7 is bent, causing an internal short circuit. This is because the bent portion breaks through the separator 3 and contacts another terminal. In particular, the strip-shaped connecting portion 7 to which the thin metal plate 10 is welded has a property that the discontinuous portion is weakened and is easily bent at the filling boundary. Furthermore, a non-sintered electrode in which a three-dimensional porous metal substrate is filled with an active material has low substrate strength and is easily deformed when the current collector plate is strongly pressed.

【0011】したがって、従来の電池は、集電板を電極
群に強く押圧して溶着すると、内部ショートが多くな
り、反対に集電板を電極群に押圧する圧力を弱くして溶
着すると、集電板と電極群とを低抵抗な状態で溶着でき
なくなる欠点があった。さらに、電池は、落下された時
などに受ける衝撃で、溶着部分が剥離して使用できなく
なることがある。とくに、電極群の帯状連結部を、複数
部分で集電板に溶着している大電流特性の優れた電池
は、細長いリード板を介して電極群を端子に接続してい
る電池に比較すると、衝撃による不良品の発生率が高く
なる欠点がある。それは、リード板のように自由に変形
して衝撃を吸収する能力が少ないからである。
Therefore, in the conventional battery, when the current collector plate is pressed against the electrode group and welded, the internal short circuit increases. On the contrary, when the current collector plate is pressed against the electrode group and welded with a weak pressure, the current collector plate is collected. There was a disadvantage that the electrode plate and the electrode group could not be welded in a low resistance state. Further, the battery may be unusable due to the impact of the battery when dropped, for example, when the battery is welded. In particular, a battery with excellent large current characteristics in which the band-shaped connecting portion of the electrode group is welded to the current collector plate at a plurality of portions is compared with a battery in which the electrode group is connected to the terminal via an elongated lead plate. There is a drawback that the incidence of defective products due to impact increases. This is because there is little ability to absorb a shock by freely deforming like a lead plate.

【0012】本発明は、上記のような従来の欠点を解決
することを目的に開発されたもので、本発明の重要な目
的は、電極群の帯状連結部を、低抵抗な状態で集電板の
複数部分に確実に溶着でき、さらに、集電板を溶着する
工程における内部ショートが少なく、しかも、耐衝撃特
性の優れた電池を提供することにある。
The present invention has been developed with the object of solving the above-mentioned conventional drawbacks. An important object of the present invention is to provide a low-resistance current collector for a band-like connecting portion of an electrode group. An object of the present invention is to provide a battery which can be reliably welded to a plurality of portions of a plate, has less internal short-circuit in the step of welding the current collector plate, and has excellent impact resistance.

【0013】[0013]

【課題を解決するための手段】本発明の電池は、前述の
目的を達成するために以下の構造を有している。電池
は、正極板と負極板とからなる第1極板1と第2極板2
を、セパレータ3を介して積層している電極群4と、こ
の電極群4を収納している外装缶5と、第1極板1に電
気接続されて、第1極板1を一方の端子に電気的に接続
する集電板6とを備える。
The battery of the present invention has the following structure to achieve the above-mentioned object. The battery comprises a first electrode plate 1 and a second electrode plate 2 each comprising a positive electrode plate and a negative electrode plate.
Are electrically connected to the first electrode plate 1, and the first electrode plate 1 is electrically connected to the first electrode plate 1 by one terminal. And a current collecting plate 6 that is electrically connected to the power supply.

【0014】第1極板を正極板とする電池は、第2極板
を負極板とし、第1極板を負極板とする電池は、第2極
板を正極板とする。
A battery having a first electrode plate as a positive electrode plate has a second electrode plate as a negative electrode plate, and a battery having a first electrode plate as a negative electrode plate has a second electrode plate as a positive electrode plate.

【0015】第1極板1は、金属3次元多孔体の基板9
に活物質を充填している非焼結式電極であって、基板9
を露出させている帯状連結部7を有する。この帯状連結
部7は、金属3次元多孔体を露出させている帯状連結部
7に、金属薄板10を溶着している。金属薄板10を溶
着している帯状連結部7は、集電板6の複数部分に溶着
して電気的に接続している。
The first electrode plate 1 is made of a three-dimensional porous metal substrate 9.
A non-sintered electrode filled with an active material,
Are exposed. The strip-shaped connecting portion 7 has a thin metal plate 10 welded to the strip-shaped connecting portion 7 exposing the metal three-dimensional porous body. The strip-shaped connecting portions 7 to which the metal thin plates 10 are welded are welded to a plurality of portions of the current collector 6 to be electrically connected.

【0016】さらに、本発明の請求項1の電池は、帯状
連結部7に溶着している金属薄板10の厚さを0.07
mm以上で第1極板1の厚さの80%よりも薄くすると
共に、ビッカース硬度を50以上で250以下としてい
る。
Further, in the battery according to the first aspect of the present invention, the thickness of the metal sheet 10 welded to the strip-shaped connecting portion 7 is set to 0.07.
mm and less than 80% of the thickness of the first electrode plate 1, and the Vickers hardness is 50 or more and 250 or less.

【0017】本発明の請求項2の電池は、集電板6に、
ビッカース硬度を50以上で250以下として、厚さを
0.1〜1.5mmとする金属板を使用する。
In the battery according to the second aspect of the present invention,
A metal plate having a Vickers hardness of 50 or more and 250 or less and a thickness of 0.1 to 1.5 mm is used.

【0018】本発明の請求項3の電池は、集電板6が外
装缶5の内形よりも小さい外形であって、電極群4の端
部に対向して配設されている。さらに集電板6は、複数
の貫通孔6Dを設けている。貫通孔6Dは、周縁に、電
極群4の帯状連結部7に向かって突出している突起6E
を有する。突出している突起6Eは、第1極板1の帯状
連結部7に複数部分で溶着されている。
In the battery according to the third aspect of the present invention, the current collector plate 6 has an outer shape smaller than the inner shape of the outer can 5, and is disposed to face the end of the electrode group 4. Further, the current collector 6 has a plurality of through holes 6D. The through-hole 6D has a protrusion 6E on the periphery protruding toward the band-like connecting portion 7 of the electrode group 4.
Having. The protruding protrusions 6E are welded to the band-shaped connecting portion 7 of the first electrode plate 1 at a plurality of portions.

【0019】本発明の請求項4の電池は、金属3次元多
孔体を、発泡ニッケル、又は、ニッケル繊維多孔体とす
る。
In the battery according to a fourth aspect of the present invention, the metal three-dimensional porous body is made of foamed nickel or a nickel fiber porous body.

【0020】本発明の請求項5の電池は、金属3次元多
孔体の基板9の帯状連結部7をプレスして高密度に圧縮
している。
In the battery according to the fifth aspect of the present invention, the band-like connecting portion 7 of the metal three-dimensional porous substrate 9 is pressed and compressed at a high density.

【0021】本発明の請求項6の電池は、第1極板1と
第2極板2とをセパレータ3を介して積層して渦巻状に
捲回してなる渦巻電極を電極群4に使用している。集電
板6は、渦巻電極の端部に接近して配設されている円板
状である。
The battery according to claim 6 of the present invention uses, as the electrode group 4, a spiral electrode formed by laminating the first electrode plate 1 and the second electrode plate 2 with the separator 3 interposed therebetween and spirally winding the electrodes. ing. The current collecting plate 6 is a disk-shaped member disposed close to the end of the spiral electrode.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。ただし、以下に示す実施の形態
は、本発明の技術思想を具体化するための電池を例示す
るものであって、本発明は電池を以下のものに特定しな
い。
Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a battery for embodying the technical idea of the present invention, and the present invention does not specify the battery as follows.

【0023】さらに、この明細書は、特許請求の範囲を
理解しやすいように、実施の形態に示される部材に対応
する番号を、「特許請求の範囲の欄」、および「課題を
解決するための手段の欄」に示される部材に付記してい
る。ただ、特許請求の範囲に示される部材を、実施の形
態の部材に特定するものでは決してない。
Further, in this specification, in order to facilitate understanding of the claims, the numbers corresponding to the members described in the embodiments will be referred to as "claims" and " In the column of “Means of the above”. However, the members described in the claims are not limited to the members of the embodiments.

【0024】図7に示す電池は、封口板11で気密に密
閉された円筒状の外装缶5と、この外装缶5に挿入して
いる電極群4と、電極群4を外装缶5の端子12に接続
する集電板6とを備える。図に示す電池は、外装缶を円
筒状としているが、本発明は電池の外装缶を円筒状に特
定しない。外装缶は、図示しないが、たとえば、四角筒
状ないし楕円筒状とすることもできる。
The battery shown in FIG. 7 has a cylindrical outer can 5 hermetically sealed by a sealing plate 11, an electrode group 4 inserted into the outer can 5, and a terminal of the outer can 5 And a current collecting plate 6 connected to the power collecting plate 12. In the battery shown in the figure, the outer can is cylindrical, but the present invention does not specify the outer can of the battery as cylindrical. Although not shown, the outer can can be, for example, a square tube or an elliptical tube.

【0025】外装缶5は鉄製で、その表面をニッケルメ
ッキしている。外装缶5の材質は、電池の種類と特性を
考慮して最適な金属が選択される。外装缶は、例えば、
ステンレス、アルミニウム、アルミニウム合金製とする
こともある。金属製の外装缶は、上端の開口部を、封口
蓋で気密に密閉している。封口蓋は、外装缶をかしめる
構造、あるいは、外装缶と封口蓋の境界をレーザー溶接
する等の方法で、気密に固定される。封口板11は電池
の一方の端子12を固定している。この端子12は、外
装缶に対して絶縁して固定される。
The outer can 5 is made of iron and its surface is plated with nickel. As the material of the outer can 5, an optimal metal is selected in consideration of the type and characteristics of the battery. The outer can, for example,
It may be made of stainless steel, aluminum, or aluminum alloy. The metal outer can has an opening at the upper end hermetically sealed with a sealing lid. The sealing lid is hermetically fixed by a method of caulking the outer can or by laser welding the boundary between the outer can and the sealing lid. The sealing plate 11 fixes one terminal 12 of the battery. The terminal 12 is insulated and fixed to the outer can.

【0026】本発明の電池は、非焼結式電極を内蔵する
電池、たとえば、ニッケル−水素電池である。ただ、本
発明は、電池をニッケル−水素電池に特定しない。電池
には、たとえば、ニッケル−カドミウム電池、リチウム
イオン電池等とすることもできる。以下、好ましい実施
の形態として、ニッケル−水素電池の実施の形態を詳述
する。
The battery of the present invention is a battery containing a non-sintered electrode, for example, a nickel-hydrogen battery. However, the present invention does not specify a battery as a nickel-metal hydride battery. The battery may be, for example, a nickel-cadmium battery, a lithium ion battery, or the like. Hereinafter, an embodiment of a nickel-hydrogen battery will be described in detail as a preferred embodiment.

【0027】電極群4は、第1極板1と第2極板2を、
セパレータ3を介して捲回している。図に示す電池は、
集電板6に接続される第1極板1を正極板とし、第2極
板2を負極板としている。ただし、本発明は、第1極板
を負極板として、第2極板を正極板とすることもでき
る。セパレータ3を介して互いに積層された第1極板1
と第2極板2は、巻回して渦巻状の電極群4に製作され
る。渦巻状の電極群4は、円筒状の外装缶5に挿入され
る。渦巻状の電極群は、両側からプレスして楕円形に変
形させて、楕円形の外装缶に挿入することができる。さ
らに、角筒状の外装缶に挿入される電極群は、板状に裁
断された複数枚の第1極板と第2極板とを、セパレータ
を介して積層して製作される。
The electrode group 4 includes a first electrode plate 1 and a second electrode plate 2,
It is wound via a separator 3. The battery shown in the figure is
The first electrode plate 1 connected to the current collector plate 6 is a positive electrode plate, and the second electrode plate 2 is a negative electrode plate. However, in the present invention, the first electrode plate may be a negative electrode plate and the second electrode plate may be a positive electrode plate. First electrode plate 1 stacked on each other via separator 3
And the second electrode plate 2 are wound to produce a spiral electrode group 4. The spiral electrode group 4 is inserted into a cylindrical outer can 5. The spiral electrode group can be pressed from both sides, deformed into an elliptical shape, and inserted into an elliptical outer can. Further, the electrode group to be inserted into the rectangular cylindrical outer can is manufactured by laminating a plurality of first electrode plates and second electrode plates cut into a plate shape via a separator.

【0028】セパレータ3は、ポリオレフィン製不織布
が使用される。ただ、セパレータ3には、ポリエチレン
等の合成樹脂製微多孔膜も使用できる。セパレータ3に
は、両側に積層される第1極板1と第2極板2を絶縁で
き、かつ、電解液を浸透できる全てのシート材が使用で
きる。
As the separator 3, a nonwoven fabric made of polyolefin is used. However, a microporous membrane made of a synthetic resin such as polyethylene can be used for the separator 3. As the separator 3, any sheet material that can insulate the first electrode plate 1 and the second electrode plate 2 laminated on both sides and can penetrate the electrolyte can be used.

【0029】第1極板1は、金属3次元多孔体の基板9
に活物質を充填している非焼結式電極である。金属3次
元多孔体の基板9は、発泡ニッケル多孔体やニッケル繊
維多孔体等である。第1極板1は、これ等の基板9に活
物質を充填している。
The first electrode plate 1 is made of a metal three-dimensional porous substrate 9.
This is a non-sintered electrode in which an active material is filled. The metal three-dimensional porous substrate 9 is a foamed nickel porous body, a nickel fiber porous body, or the like. The first electrode plate 1 has these substrates 9 filled with an active material.

【0030】第1極板1の基板は、図8の展開図に示す
ように、基板9の上部に帯状連結部7を設け、他の部分
は活物質を充填している活物質充填部8としている。帯
状連結部7は、活物質を充填せず、あるいは、充填した
活物質を除去して基板9を露出させている。基板9は、
好ましくは、帯状連結部7でプレスされて高密度に圧縮
されている。圧縮された帯状連結部7は、金属薄板を確
実に溶着できる特長がある。
As shown in the developed view of FIG. 8, the substrate of the first electrode plate 1 is provided with a strip-shaped connecting portion 7 on the upper portion of a substrate 9 and the other portion is filled with an active material filling portion 8 filled with an active material. And The band-shaped connecting portion 7 is not filled with the active material, or the filled active material is removed to expose the substrate 9. The substrate 9
Preferably, it is pressed at the band-like connecting portion 7 and compressed at a high density. The compressed band-like connecting portion 7 has a feature that the thin metal plate can be securely welded.

【0031】帯状連結部7は、集電板6により確実に電
気的に接続するために、図9の断面図に示すように、金
属薄板10を固定している。金属薄板10は、抵抗電気
溶接して、あるいは導電性の接着材を介して、帯状連結
部7に電気的に接続される状態で接着される。
As shown in a sectional view of FIG. 9, the strip-shaped connecting portion 7 is fixed with a metal thin plate 10 in order to surely electrically connect to the current collecting plate 6. The thin metal plate 10 is bonded in a state of being electrically connected to the band-shaped connecting portion 7 by resistance electric welding or via a conductive adhesive.

【0032】金属薄板10の厚さは、0.07mm以上
で、第1極板1の80%の厚さよりも薄い。金属薄板1
0を0.07mmよりも薄くすると、帯状連結部を集電
板に溶接するときの強度が充分でなくなる。反対に、金
属薄板の厚さが第1極板1の80%よりも厚くなると、
第1極板と第2極板とをセパレータを介して積層した状
態で、帯状連結部が厚くなって、スペース効率が低下す
る。金属薄板の厚さは、好ましくは0.095〜0.2
mmとする。
The thickness of the thin metal plate 10 is 0.07 mm or more, and is smaller than 80% of the thickness of the first electrode plate 1. Metal sheet 1
When 0 is thinner than 0.07 mm, the strength when welding the band-like connecting portion to the current collector plate is not sufficient. Conversely, if the thickness of the metal sheet is greater than 80% of the first electrode plate 1,
In a state where the first electrode plate and the second electrode plate are stacked with the separator interposed therebetween, the band-shaped connecting portion becomes thick, and the space efficiency is reduced. The thickness of the metal sheet is preferably 0.095 to 0.2.
mm.

【0033】さらに、金属薄板は、ビッカース硬度を5
0以上として、250以下とする金属薄板が使用され
る。金属薄板の硬度が50以下であると、帯状連結部を
集電板に溶着するときの強度が充分でなくなり、また、
電池が衝撃を受けたときに、帯状連結部が集電板から離
れて、耐衝撃強度が低下する。金属薄板のビッカース硬
度が250よりも大きくなると、帯状連結部を集電板に
溶着するときに、金属薄板がセパレータを突き破って内
部ショートしやすく、また、衝撃強度も低下する。した
がって、金属薄板には、ビッカース硬度を50〜250
とする金属の薄板、好ましくは、ビッカース硬度を17
0〜200とする金属の薄板、たとえば、ニッケル薄
板、リンニッケル薄板、鉄にニッケルメッキをした薄板
等を使用する。
Further, the metal sheet has a Vickers hardness of 5
A metal thin plate having a value of 0 or more and 250 or less is used. When the hardness of the metal thin plate is 50 or less, the strength at the time of welding the band-shaped connecting portion to the current collector plate is not sufficient, and
When the battery receives an impact, the strip-shaped connecting portion separates from the current collector plate, and the impact resistance decreases. If the Vickers hardness of the metal sheet is greater than 250, the metal sheet easily breaks through the separator and short-circuits internally when welding the belt-like connecting portion to the current collector, and the impact strength is reduced. Therefore, the Vickers hardness of the metal sheet is 50 to 250.
Metal, preferably a Vickers hardness of 17
A metal thin plate of 0 to 200, for example, a nickel thin plate, a phosphorus nickel thin plate, a thin plate obtained by plating nickel on iron, or the like is used.

【0034】図9の第1極板1は、帯状連結部7の第2
極板2との対向面に保護テープ13を付着している。保
護テープ13は、下端縁を充填境界よりも下方まで延長
している。帯状連結部7に集電板6を押圧して溶接する
ときに、充填境界が折れ曲がってセパレータを突き破る
のを防止するためである。ここに保護テープ13を接着
している電池は、内部ショートを防止して、集電板6を
帯状連結部7に確実に接続できる特長がある。ただ、保
護テープを使用しない状態で、帯状連結部を集電板に接
続することもできる。
The first electrode plate 1 shown in FIG.
A protective tape 13 is attached to a surface facing the electrode plate 2. The protective tape 13 has a lower edge extending below the filling boundary. This is to prevent the filling boundary from being bent and breaking through the separator when the current collector plate 6 is pressed and welded to the belt-shaped connecting portion 7. The battery to which the protective tape 13 is adhered has a feature that the internal short circuit can be prevented and the current collector plate 6 can be reliably connected to the belt-shaped connecting portion 7. However, it is also possible to connect the band-shaped connecting portion to the current collector plate without using the protective tape.

【0035】集電板6は、鉄にニッケルメッキをした金
属板、あるいは、ニッケル板等の金属板で、図10に示
すように、金属板を外装缶5の内形よりも小さい円板状
に切断して、リード板6Aを突出させたものである。集
電板6は、電極群4の両端部で対向するように配設され
る。図10に示す集電板6は、電池の外装缶5が円筒形
である電池に使用するために円形としているが、本発明
の電池は円筒形電池に特定されないので、例えば図示し
ないが、角形電池には、方形状の集電板を使用すること
ができる。
The current collector plate 6 is a metal plate obtained by plating nickel on iron, or a metal plate such as a nickel plate. As shown in FIG. And the lead plate 6A is projected. The current collectors 6 are provided so as to face each other at both ends of the electrode group 4. The current collector plate 6 shown in FIG. 10 has a circular shape for use in a battery in which the battery outer can 5 is cylindrical. However, since the battery of the present invention is not specified as a cylindrical battery, for example, although not shown, A rectangular current collector plate can be used for the battery.

【0036】集電板6は、抵抗電気溶接するときの無効
電流を少なくするために、中心孔6Bの両側にスリット
6Cを設けている。さらに、複数の貫通孔6Dを開口し
ている。貫通孔6Dの周縁には、図11の拡大断面図に
示すように、下方に突出する突起6Eを設けている。突
起6Eは、第1極板1の帯状連結部7に複数部分で溶着
して接続される。集電板6のリード板6Aは、外装缶5
の開口部に絶縁して固定される端子12に接続される。
The current collector plate 6 is provided with slits 6C on both sides of the center hole 6B in order to reduce the reactive current at the time of resistance electric welding. Further, a plurality of through holes 6D are opened. As shown in the enlarged sectional view of FIG. 11, a projection 6E projecting downward is provided on the periphery of the through hole 6D. The projection 6E is connected to the band-shaped connecting portion 7 of the first electrode plate 1 by welding at a plurality of portions. The lead plate 6A of the current collector plate 6 is
Is connected to the terminal 12 which is insulated and fixed to the opening of the first terminal.

【0037】集電板は、ビッカース硬度を50以上で2
50以下として、厚さを0.1〜1.5mmとする金属
板である。集電板は、ビッカース硬度を50以下とし、
あるいは、厚さを0.1mm以下としても、また、ビッ
カース硬度を250以上とし、あるいは厚さを1.5m
mよりも厚くしても、帯状連結部に確実に溶着できなく
なる。
The current collector plate has a Vickers hardness of 50 or more and 2
A metal plate having a thickness of 0.1 to 1.5 mm with a thickness of 50 or less. The current collector plate has a Vickers hardness of 50 or less,
Alternatively, even if the thickness is 0.1 mm or less, the Vickers hardness is 250 or more, or the thickness is 1.5 m
Even if it is thicker than m, it cannot be reliably welded to the band-like connecting portion.

【0038】ビッカース硬度を50以下とし、あるいは
厚さを0.1mm以下とする集電板は、充分な強度がな
いために、溶接用の電極棒を局部的に押圧して、帯状連
結部と集電板との接触部分を確実に溶着できなくなる。
集電板が変形してしまうからである。さらに、ビッカー
ス硬度を250以上とし、あるいは厚さを1.5mm以
上とする集電板も、溶接用の電極棒を局部的に押圧する
ときに、帯状連結部と集電板との接触部分を確実に溶着
できなくなる。集電板がほとんど変形しないからであ
る。
The current collector plate having a Vickers hardness of 50 or less or a thickness of 0.1 mm or less does not have sufficient strength. The contact portion with the current collector cannot be reliably welded.
This is because the current collector plate is deformed. Further, the current collector plate having a Vickers hardness of 250 or more, or a thickness of 1.5 mm or more also has a contact portion between the band-shaped connecting portion and the current collector plate when the electrode rod for welding is locally pressed. Welding cannot be performed reliably. This is because the current collector plate hardly deforms.

【0039】帯状連結部を集電板に溶着するときには、
帯状連結部と集電板の溶着部分において、接触部分を均
一な状態で接触させることが大切である。集電板は、溶
接用電極棒で局部的に押圧される状態で、全く変形しな
くても、また、変形が大きすぎても、溶接部分を均一に
接触できなくなる。変形が大きすぎると、溶接用電極棒
で押圧される近傍の溶接部分は強く押圧されるが、溶接
用電極棒から離れた部分での溶接部分の接触が弱く、あ
るいは離れてしまう。また、集電板が全く変形しない
と、集電板と帯状連結部の突出している溶接部分のみが
強く接触して、他の溶接部分は接触しなくなる。このた
め、全ての溶接部分を均一に接触させて理想的な状態で
溶着できなくなる。
When welding the belt-like connecting portion to the current collector plate,
It is important that the contact portions are brought into contact in a uniform state in the welded portion between the belt-like connecting portion and the current collector plate. In a state where the current collector plate is locally pressed by the welding electrode rod, even if the current collector plate is not deformed at all, or if the deformation is too large, the welded portion cannot be uniformly contacted. If the deformation is too large, the welded portion in the vicinity of being pressed by the welding electrode rod is strongly pressed, but the contact of the welded portion at a portion away from the welding electrode rod is weak or separated. Further, if the current collector plate is not deformed at all, only the protruding welded portion of the current collector plate and the strip-shaped connecting portion comes into strong contact, and the other welded portions do not come into contact. For this reason, it becomes impossible to bring all the welded portions into uniform contact and weld in an ideal state.

【0040】さらに、集電板は、ビッカース硬度を25
0以上とし、あるいは厚さを1.5mm以上とすると、
帯状連結部を連結するときに、第1極板と第2極板とが
セパレータを突き破って内部ショートする率が高くなっ
て、歩留を低下させる。それは、溶接用電極棒で押圧さ
れる集電板の変形が小さくなって、互いに突出する状態
で集電板に押圧される帯状連結部が折れ曲がって、セパ
レータ3を突き破るからである。
Further, the current collector plate has a Vickers hardness of 25.
If it is 0 or more, or if the thickness is 1.5 mm or more,
When connecting the strip-shaped connecting portions, the rate at which the first electrode plate and the second electrode plate break through the separator and cause an internal short circuit increases, and the yield decreases. This is because the deformation of the current collectors pressed by the welding electrode rods is reduced, and the band-shaped connecting portions pressed by the current collectors in a state of protruding from each other are bent and break through the separator 3.

【0041】さらに、集電板は、ビッカース硬度を50
以下とし、あるいは、厚さを0.1mm以下としても、
また、ビッカース硬度を250以上とし、あるいは厚さ
を1.5mmよりも厚くしても、耐衝撃強度が低下す
る。ビッカース硬度を50以下とし、あるいは、厚さを
0.1mm以下とする集電板6は、充分な強度がないた
めに、衝撃を受けたときに帯状連結部との溶着が外れて
耐衝撃強度が低下する。また、ビッカース硬度を250
以上とし、あるいは、1.5mmよりも厚い集電板は、
衝撃を受けたときに全く変形しない、いいかえると、緩
衝作用がないために、帯状連結部と集電板との溶着部分
が外れやすく、耐衝撃強度が低下する。
Further, the current collector plate has a Vickers hardness of 50.
Or less, or even if the thickness is 0.1 mm or less,
Even if the Vickers hardness is 250 or more, or the thickness is more than 1.5 mm, the impact resistance is reduced. The current collector plate 6 having a Vickers hardness of 50 or less or a thickness of 0.1 mm or less does not have sufficient strength. Decrease. In addition, Vickers hardness is 250
Or a current collector plate thicker than 1.5 mm,
It does not deform at all when subjected to an impact. In other words, since there is no cushioning effect, the welded portion between the band-shaped connecting portion and the current collector plate is easily detached, and the impact strength is reduced.

【0042】[0042]

【実施例】以下の工程で、SCサイズの円筒型ニッケル
−水素電池を試作し、金属薄板の厚さとビッカース硬
度、および集電板のビッカース硬度を変更して、それぞ
れの良品率を測定した。
EXAMPLE In the following steps, a cylindrical nickel-hydrogen battery of SC size was experimentally manufactured, and the yield rate of each of them was measured by changing the thickness and Vickers hardness of the metal thin plate and the Vickers hardness of the current collector plate.

【0043】以下の工程で、ニッケル−水素電池の外装
缶に挿入する電極群を製作した。 a.第1極板である正極板の製作 (1) 下記の工程で金属多孔体を作製する。連続気泡の
ポリウレタンフォームであるスポンジ状の有機多孔体
を、導電処理した後、電解槽のメッキ液に浸漬してメッ
キする。メッキした有機多孔体を、750℃の温度で所
定時間ばい焼して、有機多孔体の樹脂成分を除去し、さ
らに、還元雰囲気で焼結して金属多孔体を製作する。こ
の工程で製作された金属多孔体は、目付を約600g/
2とし、多孔度を95%とし、厚みを約2.0mmと
する発泡ニッケルである。
In the following steps, an electrode group to be inserted into an outer can of a nickel-hydrogen battery was manufactured. a. Production of positive electrode plate as first electrode plate (1) A porous metal body is produced in the following steps. The sponge-like organic porous body, which is an open-celled polyurethane foam, is subjected to a conductive treatment and then immersed in a plating solution in an electrolytic cell for plating. The plated organic porous body is roasted at a temperature of 750 ° C. for a predetermined time to remove a resin component of the organic porous body, and then sintered in a reducing atmosphere to produce a metal porous body. The porous metal body manufactured in this step has a basis weight of about 600 g /
m 2 , a porosity of 95%, and a thickness of about 2.0 mm.

【0044】(2) 下記のものを混練して、正極の活物
質スラリーとする。 水酸化ニッケル粉末…………………………………………90重量部 (2.5wt%の亜鉛と、1wt%のコバルトを共沈成分として含有) コバルト粉末…………………………………………………10重量部 酸化亜鉛粉末……………………………………………………3重量部 ヒドロキシプロピルセルロース0.2重量%水溶液……50重量部
(2) The following are kneaded to prepare a positive electrode active material slurry. Nickel hydroxide powder 90 parts by weight (containing 2.5 wt% of zinc and 1 wt% of cobalt as a coprecipitating component) Cobalt powder ... ... 10 parts by weight zinc oxide powder ... 3 parts by weight hydroxypropylcellulose 0.2 parts by weight % Aqueous solution ... 50 parts by weight

【0045】(3) 作製した正極の活物質スラリーを、
金属多孔体の空隙に充填した。充填量は、ロール圧延後
の活物質密度が約2.91g/cc−voidとなるよ
うに調整した。その後、乾燥し、厚みが約0.70mm
となるように口ール圧延を行った。さらに短冊状に切断
し、金属薄板10を溶接する帯状連結部7に対し、垂直
方向の超音波振動を加える超音波剥離等により活物質を
除去した。そして図8に示すように、基板9の露出する
帯状連結部7のある第1極板1とする。
(3) The prepared positive electrode active material slurry is
The voids of the porous metal body were filled. The filling amount was adjusted so that the active material density after roll rolling was about 2.91 g / cc-void. Then, dried, about 0.70mm thick
Roll rolling was performed so that Further, it was cut into strips, and the active material was removed by ultrasonic peeling or the like in which ultrasonic vibration in the vertical direction was applied to the band-like connecting portion 7 to which the metal sheet 10 was welded. Then, as shown in FIG. 8, the first electrode plate 1 having the strip-shaped connecting portion 7 where the substrate 9 is exposed is obtained.

【0046】第1極板は、以下の工程で活物質を製造す
ることもできる。図12に示すように、活物質を充填す
る前に、金属多孔体を所定の幅で平行にロール圧延す
る。ロール圧延の幅は、帯状連結部7の幅の2倍の約5
mmとし、圧延後の厚さを0.5mmとする。このよう
に圧延した金属多孔体の基板9に、上記の活物質スラリ
ーを充填して圧延する。その後、図12の矢印で示す位
置で切断して、短冊状の第1極板を作製する。その後、
帯状連結部7となる薄く圧延された部分に沿って、圧縮
空気を噴射し、あるいはブラシ等を使用して、活物質を
除去して基板を露出させる。
For the first electrode plate, an active material can be produced by the following steps. As shown in FIG. 12, before filling the active material, the porous metal body is roll-rolled in parallel with a predetermined width. The width of the roll rolling is about 5 times, which is twice the width of
mm, and the thickness after rolling is 0.5 mm. The above-mentioned active material slurry is filled into the rolled porous metal substrate 9 and rolled. Then, it cut | disconnects in the position shown by the arrow of FIG. 12, and produces a strip-shaped 1st polar plate. afterwards,
The active material is removed along the thinly rolled portion to be the strip-shaped connecting portion 7 by blowing compressed air or using a brush or the like to expose the substrate.

【0047】(4) 基板9の露出した帯状連結部7に、
抵抗電気溶接により金属薄板10を接着する。帯状連結
部7と金属薄板10との接着には、直径1.5mmの銅
を溶接用電極棒として使用し、2mm間隔で抵抗電気溶
接した。金属薄板10には、ニッケルリボンを使用し、
幅1.5mmとした。
(4) The exposed strip-shaped connecting portion 7 of the substrate 9
The metal sheet 10 is bonded by resistance electric welding. For bonding between the strip-shaped connecting portion 7 and the metal thin plate 10, copper having a diameter of 1.5 mm was used as a welding electrode rod, and resistance electric welding was performed at intervals of 2 mm. A nickel ribbon is used for the metal sheet 10,
The width was 1.5 mm.

【0048】金属薄板の厚さとビッカース硬度をパラメ
ータとして、複数の試作電池を作製する。試作電池1〜
13は、金属薄板の厚さを、0.01〜0.50mmの
範囲で設定している。このとき使用した金属薄板は、幅
1.5mm、ビッカース硬度150のニッケルリボン
で、また集電板はビッカース硬度150、厚さ0.40
mmのニッケルメッキをした鉄を使用した。
Using the thickness of the metal sheet and Vickers hardness as parameters, a plurality of prototype batteries are manufactured. Prototype batteries 1
No. 13 sets the thickness of the metal sheet in the range of 0.01 to 0.50 mm. The thin metal plate used at this time was a nickel ribbon having a width of 1.5 mm and a Vickers hardness of 150, and the current collector plate had a Vickers hardness of 150 and a thickness of 0.40.
mm nickel-plated iron was used.

【0049】さらに、金属薄板のビッカース硬度を30
〜350まで変更して、試作電池14〜22を作製す
る。このとき使用した金属薄板は、幅1.5mm、厚さ
を0.07mmとするニッケルリボンであり、また集電
板は前記と同じくビッカース硬度150、厚さ0.40
mmのニッケルメッキをした鉄を使用した。
Further, the Vickers hardness of the metal sheet is set to 30.
Prototype batteries 14 to 22 are manufactured by changing the range from 350 to 350. The thin metal plate used at this time was a nickel ribbon having a width of 1.5 mm and a thickness of 0.07 mm, and the current collector plate had a Vickers hardness of 150 and a thickness of 0.40 as described above.
mm nickel-plated iron was used.

【0050】b.第2極板である負極板の製作 (1) 水素吸蔵合金の作製と粉砕 ミッシュメタル(La、Ce、Nd、Pr等の希土類元
素の混合物)と、ニッケルと、コバルトと、アルミニウ
ムと、マンガンを、元素比で1.0:3.4:0.8:
0.2:0.6に秤量して混合し、これをルツボに入れ
て高周波溶解炉で溶融した後冷却し、下記の組成式の水
素吸蔵合金電極を作製する。 Mm1.0Ni3.4Co0.8Al0.2Mn0.6 そして、得られた水素吸蔵合金の鋳塊を、あらかじめ粗
粉砕した後、不活性ガス中で平均粒径が60μmとなる
ように粉砕する。
B. Production of negative electrode plate as second electrode plate (1) Production and pulverization of hydrogen storage alloy Misch metal (mixture of rare earth elements such as La, Ce, Nd, Pr), nickel, cobalt, aluminum and manganese , With an elemental ratio of 1.0: 3.4: 0.8:
The mixture is weighed in a ratio of 0.2: 0.6, mixed, put into a crucible, melted in a high frequency melting furnace, and then cooled to produce a hydrogen storage alloy electrode having the following composition formula. And Mm 1.0 Ni 3.4 Co 0.8 Al 0.2 Mn 0.6, an ingot of the resulting hydrogen absorbing alloy, after previously roughly pulverized, the average particle size in an inert gas is pulverized so that 60 [mu] m.

【0051】(2) 水素吸蔵合金スラリーの作製 粉砕した水素吸蔵合金の粉末に、結着剤としてポリエチ
レンオキサイド粉末を添加し、さらにイオン交換水を添
加、混練してスラリーとする。結着剤であるポリエチレ
ンオキサイド粉末の添加量は、水素吸蔵合金に対して
1.0重量%とする。
(2) Preparation of Hydrogen Storage Alloy Slurry Polyethylene oxide powder is added as a binder to the pulverized hydrogen storage alloy powder, and ion-exchanged water is further added and kneaded to form a slurry. The added amount of the polyethylene oxide powder as the binder is 1.0% by weight based on the hydrogen storage alloy.

【0052】(3) スラリーをパンチングメタルである
基板の両面に塗着した。塗着量は、圧延後の活物質密度
が5g/ccとなるように調整した。その後、乾燥、圧
延を行った後、所定寸法に切断を行い、第2極板である
負極板とした。スラリーは、パンチングメタルの下縁に
帯状連結部7ができるように、下縁を残して塗着した。
また、パンチングメタルの全面にスラリーを塗着した
後、乾燥し、下縁の活物質を除去して帯状連結部を設け
ることもできる。
(3) The slurry was applied to both surfaces of a substrate which was a punching metal. The coating amount was adjusted so that the active material density after rolling was 5 g / cc. Then, after drying and rolling, it was cut to a predetermined size to obtain a negative electrode plate as a second electrode plate. The slurry was applied leaving a lower edge so that a strip-shaped connecting portion 7 was formed on the lower edge of the punched metal.
Alternatively, the slurry may be applied to the entire surface of the punching metal, dried, and the lower edge of the active material may be removed to provide a strip-shaped connecting portion.

【0053】以上の工程で製作した第1極板と第2極板
を、ポリオレフィン製不織布からなるセバレータを介し
て捲回し渦巻状の電極群とし、渦巻電極を作製した。こ
の渦巻電極の上端端部に突出する金属薄板10に、集電
板を抵抗電気溶接にて溶着する。集電板は、円板状で厚
さ0.40mmのニッケルメッキをした鉄製の板を使用
した。この集電板のビッカース硬度は、試作電池のパラ
メータとして、30〜350で変更して、試作電池23
〜31を作製した。
The first electrode plate and the second electrode plate manufactured in the above steps were wound through a separator made of a polyolefin nonwoven fabric to form a spiral electrode group, and a spiral electrode was manufactured. A current collector is welded to the metal sheet 10 projecting from the upper end of the spiral electrode by resistance welding. As the current collecting plate, a disk-shaped nickel-plated iron plate having a thickness of 0.40 mm was used. The Vickers hardness of this current collector plate was changed as a parameter of the prototype battery from 30 to 350, and the
To 31 were prepared.

【0054】以上の方法で作製した第1極板、第2極板
を使用して、円筒型のニッケル−水素電池の試作電池を
作製した。
Using the first electrode plate and the second electrode plate manufactured by the above-described method, a cylindrical nickel-hydrogen battery prototype was manufactured.

【0055】[試作電池1〜13]試作電池1〜13
は、金属薄板の厚さをパラメータとして、0.01〜
0.50mmの範囲で設定している。金属薄板として、
幅1.5mm、ビッカース硬度150のニッケルリボン
を使用し、また集電板としてビッカース硬度150、厚
さ0.40mmのニッケルメッキを施した鉄製の板を使
用した。
[Prototype Batteries 1 to 13] Prototype Batteries 1 to 13
Is 0.01 to 0.01 with the thickness of the metal sheet as a parameter.
It is set in the range of 0.50 mm. As a metal sheet,
A nickel ribbon having a width of 1.5 mm and a Vickers hardness of 150 was used, and a nickel-plated iron plate having a Vickers hardness of 150 and a thickness of 0.40 mm was used as a current collector.

【0056】各試作電池の金属薄板10の厚さは、0.
01〜0.50mmの範囲で変更して、試作電池を1〜
13まで作製した。0.01〜0.07mmまでは0.
02mm毎に変更し、以後は0.10mm〜0.50m
mまで0.05mm毎に厚さを変更した。
The thickness of the metal thin plate 10 of each prototype battery is set to be 0.1 mm.
By changing the range from 01 to 0.50 mm,
Up to 13 were produced. 0.1 to 0.01 to 0.07 mm.
Change every 02mm, then 0.10mm ~ 0.50m
m, the thickness was changed every 0.05 mm.

【0057】上記のようにして試作した試作電池1〜1
3の、良品率を測定する。ここにおいて、良品率とは電
池100個に対する良品の数を表しており、とくに端子
が接続状態にあって使用できるかどうかで判断してい
る。つまり、各試作電池は一つの条件について同じ電池
をそれぞれ100個作製し、そのうちの良品の個数を計
数した。
Prototype batteries 1 to 1 prototyped as described above
3. The non-defective rate is measured. Here, the non-defective rate indicates the number of non-defective articles per 100 batteries, and it is determined in particular whether the terminals are in a connected state and can be used. That is, for each prototype battery, 100 identical batteries were produced under one condition, and the number of non-defective batteries was counted.

【0058】ここでは、良品率として、溶接良品率、組
立良品率、衝撃良品率の3つを測定した。溶接良品率と
は、電池の作製過程で金属薄板と集電板とを溶着した段
階で、次の工程で使用できる率、つまり溶着直後に端子
が正常である割合を示す。また、組立不良率とは、正常
に溶着できた端子を使用して電池の作製を続行した場
合、製造工程終了時において第1極板と第2極板がショ
ートする内部ショートがない率、つまり溶接良品率10
0%とした電池の製造直後に端子が正常である割合を示
す。さらに、衝撃不良品とは、完成した正常な電池を1
mの高さから鉄板上に100回落下させた後に、電池が
使用可能な率、つまり正常に組み立てられた電池に衝撃
を与えても端子が剥離しない割合を示す。
Here, three good product rates were measured: a good product rate for welding, a good product rate for assembly, and a good product rate for impact. The non-defective welding rate indicates a rate at which a thin metal plate and a current collecting plate are welded in a process of manufacturing a battery and can be used in the next step, that is, a rate at which a terminal is normal immediately after welding. In addition, the assembly failure rate is a rate at which, when a battery is continuously manufactured using terminals that have been successfully welded, there is no internal short-circuit between the first electrode plate and the second electrode plate at the end of the manufacturing process. Good welding rate 10
Immediately after the production of the battery, which is 0%, the ratio of normal terminals is shown. In addition, a shock-defective product is a completed normal battery.
After dropping 100 times from the height of m onto the iron plate, the rate at which the battery can be used, that is, the rate at which the terminals are not peeled off even when a normally assembled battery is subjected to an impact.

【0059】金属薄板の厚さを0.01〜0.50mm
とした電池の、溶接良品率、組立良品率、衝撃良品率を
測定した結果を表1に示す。
The thickness of the metal sheet is set to 0.01 to 0.50 mm
Table 1 shows the measurement results of the non-defective welding rate, the non-defective assembly rate, and the non-defective impact rate of the battery.

【0060】[0060]

【表1】 [Table 1]

【0061】表1に示すように、金属薄板の厚さが0.
03mm以下である試作電池1、2は溶接良品率、衝撃
良品率共に極めて悪かった。金属薄板の厚さが0.05
mmである試作電池3で、溶接良品率、衝撃率は80%
となる。さらに金属薄板の厚みが0.07mm以上で
は、溶接良品率、組立良品率、衝撃良品率すべてが極め
て良好な結果を示した。また、試作電池11が示すよう
に、金属薄板の厚さが0.40mmで、溶接良品率、組
立良品率、衝撃良品率はすべて99%となった。第1極
板の厚みは0.5mmであるから、第1極板の厚さの8
0%である0.40mmまで、極めて溶接良品率、組立
良品率、衝撃良品率が高いことが判る。しかし、試作電
池12、13が示すように、金属薄板の厚さが0.45
mm以上になると、組立良品率が低下した。組立良品率
が悪くなった原因は、第1極板と第2極板がショートし
たためであった。ショート部分は帯状連結部と活物質充
填部との充填境界であり、この部分で基板である発泡ニ
ッケルの骨格が突出した状態となった。
As shown in Table 1, the thickness of the thin metal plate was set to 0.
Prototype batteries 1 and 2 having a diameter of 03 mm or less were extremely poor in both the good welding rate and the good impact rate. Metal sheet thickness is 0.05
mm, the yield rate of non-defective products and the impact rate are 80%.
Becomes Further, when the thickness of the metal sheet was 0.07 mm or more, all of the good welding rate, the good assembling rate, and the good impact rate showed extremely good results. In addition, as shown by the prototype battery 11, the thin metal sheet had a thickness of 0.40 mm, and the good welding rate, the good assembly rate, and the good impact rate were all 99%. Since the thickness of the first electrode plate is 0.5 mm, the thickness of the first electrode plate is 8 mm.
It can be seen that up to 0.40 mm, which is 0%, the ratio of non-defective welding, non-defective assembly, and non-defective impact is extremely high. However, as shown by the prototype batteries 12 and 13, the thickness of the thin metal plate was 0.45.
mm, the non-defective assembly rate decreased. The reason why the assembling non-defective rate deteriorated was that the first electrode plate and the second electrode plate were short-circuited. The short portion is a filling boundary between the band-like connecting portion and the active material filling portion, and the skeleton of the foamed nickel serving as the substrate protrudes at this portion.

【0062】[試作電池14〜22]次に、金属薄板の
ビッカース硬度をパラメータとする試作電池14〜22
を作製した。使用した金属薄板は、幅1.5mm、厚さ
を0.07mmとするニッケルリボンであり、また集電
板は、前記試作電池1〜13と同じく、ビッカース硬度
150、厚さ0.40mmのニッケルメッキを施した鉄
板を使用した。
[Prototype batteries 14 to 22] Next, the prototype batteries 14 to 22 using the Vickers hardness of the thin metal plate as a parameter.
Was prepared. The thin metal plate used was a nickel ribbon having a width of 1.5 mm and a thickness of 0.07 mm, and the current collector plate was made of nickel having a Vickers hardness of 150 and a thickness of 0.40 mm, similarly to the prototype batteries 1 to 13. A plated iron plate was used.

【0063】金属薄板のビッカース硬度は、30〜35
0の範囲で変更した。ビッカース硬度30〜70まで
は、20毎に変更し、100〜350までは50刻みと
した。表2に、金属薄板のビッカース硬度を30〜35
0として試作した試作電池の、良品率を測定した結果を
示す。
The Vickers hardness of the metal sheet is 30 to 35.
Changed within the range of 0. The Vickers hardness was changed every 20 until the Vickers hardness was 30 to 70, and was set in 50 steps from 100 to 350. Table 2 shows that the Vickers hardness of the metal sheet is 30 to 35.
The result of measuring the non-defective rate of the prototype battery prototyped as 0 is shown.

【0064】[0064]

【表2】 [Table 2]

【0065】表2に示すように、金属薄板のビッカース
硬度は、50〜250の範囲で、溶接良品率、組立良品
率、衝撃良品率が極めて優れた結果を示した。試作電池
14のビッカース硬度30では、組立良品率のみ99%
と高いが、溶接良品率、衝撃良品率はそれぞれ85%、
60%で、若干低下している。またビッカース硬度30
0以上の試作電池21、22は、溶接良品率は99%と
高いものの、組立良品率と衝撃良品率は若干低下した。
したがって、最も良い結果を示すのは、金属薄板のビッ
カース硬度が50〜250の範囲となる。
As shown in Table 2, when the Vickers hardness of the metal sheet was in the range of 50 to 250, the results of the excellent welding rate, the excellent assembly rate, and the excellent impact rate were extremely excellent. With a Vickers hardness of 30 of the prototype battery 14, only 99% of non-defective products were assembled.
But the good welding rate and the good impact rate are 85% each,
At 60%, it is slightly lower. Vickers hardness 30
Although the non-prototype batteries 21 and 22 having a value of 0 or more had a high weld non-defective rate of as high as 99%, the assembly non-defective rate and the impact non-defective rate slightly decreased.
Therefore, the best results are obtained when the Vickers hardness of the sheet metal is in the range of 50 to 250.

【0066】[試作電池23〜31]さらに、集電板の
ビッカース硬度をパラメータとする試作電池23〜31
を作製した。ここで使用した金属薄板は、幅1.5m
m、厚さ0.07mm、ビッカース硬度150とするニ
ッケルリボンである。集電板は、厚さ0.40mmのニ
ッケルメッキを施した鉄板を使用した。
[Prototype Batteries 23 to 31] Prototype batteries 23 to 31 using the Vickers hardness of the current collector as a parameter
Was prepared. The metal sheet used here is 1.5 m wide
m, thickness 0.07 mm, and Vickers hardness 150. As the current collector plate, a 0.40 mm-thick nickel-plated iron plate was used.

【0067】集電板のビッカース硬度は、上記試作電池
14〜22の金属薄板のビッカース硬度と同じく、30
〜350の範囲で変更した。集電板のビッカース硬度
を、30〜70までは20刻み、100〜350までは
50刻みとしている。表3に、集電板のビッカース硬度
を30〜350として試作した試作電池の、溶接良品
率、組立良品率、衝撃良品率を測定した結果を示す。
The Vickers hardness of the current collector plate is 30 as in the case of the Vickers hardness of the thin metal plates of the prototype batteries 14 to 22.
Changed in the range of ~ 350. The Vickers hardness of the current collector plate is 20 steps from 30 to 70, and 50 steps from 100 to 350. Table 3 shows the results of measuring the percentage of good welding, the percentage of non-defective products, and the percentage of non-defective products of the trial batteries manufactured with the Vickers hardness of the current collector plate being 30 to 350.

【0068】[0068]

【表3】 [Table 3]

【0069】上記表3に示すように、集電板のビッカー
ス硬度についても、前記金属薄板のビッカース硬度の試
験と同じく、50〜250の範囲で高い結果を示した。
試作電池23が示す集電板のビッカース硬度30では、
組立良品率は99%と高いが、溶接良品率85%、衝撃
良品率30%であった。またビッカース硬度300で
は、試作電池30が示すように、溶接良品率が90%、
組立良品率が89%となって若干低下する。ビッカース
硬度350では、さらに溶接良品率、組立良品率、衝撃
良品率が低下した。
As shown in Table 3 above, the Vickers hardness of the current collector plate was high in the range of 50 to 250 as in the Vickers hardness test of the thin metal plate.
In the Vickers hardness 30 of the current collector plate indicated by the prototype battery 23,
Although the non-defective product rate was as high as 99%, the non-defective product rate was 85% and the non-defective product rate was 30%. Further, at the Vickers hardness of 300, as shown by the prototype battery 30, the non-defective welding rate is 90%,
The assembling non-defective rate is 89%, which is slightly lowered. At a Vickers hardness of 350, the percentage of good welds, the percentage of good assemblies, and the percentage of good impacts further decreased.

【0070】[0070]

【発明の効果】本発明の電池は、電極群と集電板との溶
着を確実にして、電気的接続の遮断やショートを防止
し、高率放電特性でしかも信頼性の高い電池にできる特
長を実現する。それは本発明の電池が、帯状連結部に溶
着される金属薄板の厚さとビッカース硬度を最適値とし
て、溶着が確実に行えかつ使用時の耐衝撃性も向上して
いるからである。特に本発明の電池は、電池の製造工程
において、電極群の帯状連結部に十分な強度をもって確
実に溶着する厚さを集電板は有している。また同時に、
金属薄板のビッカース硬度を、製造時に必要な変形が十
分行える硬度としているので、電池製造時の内部ショー
ト等のトラブルも避けることができ、歩止まりを良くで
きる特長も実現する。
The battery of the present invention has a feature that the battery is reliably welded between the electrode group and the current collector plate to prevent interruption or short circuit of the electrical connection, and has a high rate discharge characteristic and high reliability. To achieve. This is because the battery of the present invention can be reliably welded and has improved impact resistance during use, with the thickness and Vickers hardness of the thin metal sheet welded to the strip-shaped connecting portion being set as the optimum values. In particular, in the battery of the present invention, the current collector plate has a thickness enough to be reliably welded to the band-like connecting portion of the electrode group with sufficient strength in the battery manufacturing process. At the same time,
Since the Vickers hardness of the thin metal plate is set to a value that allows sufficient deformation required during manufacturing, troubles such as an internal short circuit during battery manufacturing can be avoided, and features that can improve yield can be realized.

【0071】さらに加えて、適度な緩衝性と十分な強度
とを有する本発明の電池は、電池製造後の使用時におい
ても、電池を落としたりぶつけたりした際の衝撃で、電
極板と集電板との電気接続が断たれ難い構造として耐衝
撃性を向上し、高性能で信頼性の高い電池を提供でき
る。
In addition, the battery of the present invention, which has a moderate buffering property and sufficient strength, can be connected to the electrode plate by the impact of dropping or hitting the battery even during use after the battery is manufactured. As a structure in which the electrical connection with the plate is hard to be broken, the impact resistance is improved, and a high-performance and highly reliable battery can be provided.

【0072】また本発明の電池は、金属薄板の溶着され
た帯状連結部と溶着される集電板のビッカース硬度と厚
さとを、十分な強度と製造時の変形が十分行えるバラン
スを保った最適な範囲とすることで、より確実な溶着を
実現している。特に、本発明の電池によって、従来の焼
結式電極でなく、非焼結式電極を使用して、コスト低減
と高エネルギー密度化とを同時に実現できる優れた電池
をさらに便利に使用できる。それは本発明が、高率放電
可能な非焼結電極を製造するにおいて、本発明の電池に
係る最適な硬度とすることで、集電板と電極群との電気
的な接続を強固にでき、製造時および使用時における端
子の剥離事故を防止できるからである。
Further, in the battery of the present invention, the Vickers hardness and thickness of the welded band-like connecting portion of the metal thin plate and the current collector plate to be welded are optimally balanced with sufficient strength and sufficient deformation at the time of manufacturing. With such a range, more reliable welding is realized. In particular, according to the battery of the present invention, an excellent battery capable of simultaneously realizing cost reduction and high energy density can be more conveniently used by using a non-sintered electrode instead of a conventional sintered electrode. That is, in the present invention, in producing a non-sintered electrode capable of high-rate discharge, by setting the optimal hardness according to the battery of the present invention, it is possible to strengthen the electrical connection between the current collector plate and the electrode group, This is because terminal peeling accidents during manufacturing and use can be prevented.

【0073】焼結式電極は、パンチングメタル等の基板
を使用しているが、非焼結式電極では、発泡ニッケルな
どの3次元金属多孔体を基板として使用している。た
だ、3次元金属多孔体を基板とする非焼結式極板は、集
電板との溶接が難しく、集電性が不十分となることがあ
り、また衝撃によって端子が剥離するおそれがある。こ
れに対し本発明の電池は、帯状連結部に溶着される金属
薄板の厚さを、十分な強度を保持しつつ、省スペースを
も維持した最適な範囲に調整している。さらに硬度も、
十分に衝撃に耐える程高く、一方で製造時の溶着が十分
に行えるよう低く、最適に調整することにより、耐衝撃
性を向上している。また本発明の電池は、金属薄板の溶
着された帯状連結部と溶着される集電板の硬度を、十分
な強度と製造時の変形が十分行えるバランスを保った最
適な範囲とすることで、耐衝撃性をより向上している。
The sintered electrode uses a substrate such as a punching metal, while the non-sintered electrode uses a three-dimensional porous metal such as foamed nickel as the substrate. However, a non-sintered electrode plate using a three-dimensional porous metal substrate as a substrate is difficult to weld to a current collector plate, and may have insufficient current collecting properties, and may cause a terminal to peel off due to an impact. . On the other hand, in the battery of the present invention, the thickness of the thin metal plate to be welded to the band-shaped connecting portion is adjusted to an optimum range while maintaining sufficient strength and also saving space. In addition, the hardness,
High enough to withstand the impact, but low enough to allow for sufficient welding during manufacturing, and optimally adjusted to improve impact resistance. Further, the battery of the present invention, by setting the hardness of the current-collecting plate to be welded to the band-like connecting portion of the thin metal plate to be welded, to an optimal range that has a sufficient strength and a balance that allows sufficient deformation during manufacturing. Improves impact resistance.

【0074】さらにまた本発明の請求項3に記載される
電池は、集電板に貫通孔と共に突起を設けており、溶着
をさらに容易にかつ確実に行うことができる。このた
め、低コストおよび高率放電のみならず、信頼性をさら
に向上して、安全で便利に使用できる極めて使い勝手の
良い電池を提供できる特長が実現される。
Further, in the battery according to the third aspect of the present invention, the current collector plate is provided with the projections together with the through holes, so that welding can be performed more easily and reliably. Therefore, not only low-cost and high-rate discharge, but also reliability is further improved, and a feature that a safe and convenient battery that can be used extremely easily can be provided is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池に内蔵される電極群の極板に集電板を接続
する状態を示す分解斜視図
FIG. 1 is an exploded perspective view showing a state in which a current collector is connected to an electrode plate of an electrode group incorporated in a battery.

【図2】リード板を溶着した極板の一例を示す平面図FIG. 2 is a plan view showing an example of an electrode plate to which a lead plate is welded;

【図3】従来の電池の一部断面正面図FIG. 3 is a partial cross-sectional front view of a conventional battery.

【図4】電極群に集電板を押圧して接続する状態を示す
拡大断面図
FIG. 4 is an enlarged cross-sectional view showing a state in which a current collector is pressed and connected to an electrode group.

【図5】帯状連結部と充填境界が折れ曲がって内部ショ
ートを起こす一例を示す拡大断面図
FIG. 5 is an enlarged cross-sectional view showing an example in which a band-shaped connecting portion and a filling boundary are bent to cause an internal short circuit.

【図6】帯状連結部と充填境界が折れ曲がって内部ショ
ートを起こす他の一例を示す拡大断面図
FIG. 6 is an enlarged cross-sectional view showing another example in which the band-shaped connecting portion and the filling boundary are bent to cause an internal short circuit.

【図7】本発明の一実施例の電池の一部断面正面図FIG. 7 is a partial cross-sectional front view of a battery according to one embodiment of the present invention.

【図8】図7に示す電池の第1極板の展開図FIG. 8 is a developed view of a first electrode plate of the battery shown in FIG. 7;

【図9】図7に示す電池の電極群の積層構造を示す拡大
断面図
9 is an enlarged cross-sectional view showing a laminated structure of the electrode group of the battery shown in FIG.

【図10】図7に示す電池の集電板の展開図FIG. 10 is a developed view of a current collector of the battery shown in FIG. 7;

【図11】図10に示す集電板の拡大断面図11 is an enlarged cross-sectional view of the current collector shown in FIG.

【図12】第1極板の製造方法の一例を示す平面図FIG. 12 is a plan view showing an example of a method for manufacturing a first electrode plate.

【符号の説明】[Explanation of symbols]

1…第1極板 2…第2極板 3…セパレータ 4…電極群 5…外装缶 6…集電板 6A…リード板 6B
…中心孔 6C…スリット 6D…貫通孔 6E…突起 7…帯状連結部 8…活物質充填部 9…基板 10…金属薄板 11…封口板 12…端子 13…保護テープ
DESCRIPTION OF SYMBOLS 1 ... 1st electrode plate 2 ... 2nd electrode plate 3 ... Separator 4 ... Electrode group 5 ... Outer can 6 ... Current collector plate 6A ... Lead plate 6B
... Central hole 6C ... Slit 6D ... Through hole 6E ... Protrusion 7 ... Strip-like connecting part 8 ... Active material filling part 9 ... Substrate 10 ... Metal thin plate 11 ... Sealing plate 12 ... Terminal 13 ... Protective tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 為実 茂人 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA02 BB06 BB11 CC03 EE04 HH00 HH01 HH03 5H022 AA04 BB01 BB11 CC08 CC12 CC19 CC21 EE03 5H028 AA05 BB04 BB05 BB07 CC05 CC12 EE01 HH00 HH01 HH05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeto Tamemi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Nori Ikukawa Keihanhondori, Moriguchi-shi, Osaka 2-5-5 Sanyo Electric Co., Ltd. F term (reference) 5H017 AA02 BB06 BB11 CC03 EE04 HH00 HH01 HH03 5H022 AA04 BB01 BB11 CC08 CC12 CC19 CC21 EE03 5H028 AA05 BB04 BB05 BB07 CC05 CC12 EE01 HH00H01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板とからなる第1極板(1)
と第2極板(2)をセパレータ(3)を介して積層している電
極群(4)と、この電極群(4)を収納している外装缶(5)
と、第1極板(1)に電気接続されて、第1極板(1)を一方
の端子に電気的に接続する集電板(6)とを備え、 第1極板(1)は、金属3次元多孔体の基板(9)に活物質を
充填している非焼結式電極であって基板(9)を露出させ
ている帯状連結部(7)を有し、この基板(9)を露出させて
いる帯状連結部(7)に金属薄板(10)を溶着しており、金
属薄板(10)の溶着された帯状連結部(7)を集電板(6)の複
数部分に溶着して電気接続してなる電池において、 帯状連結部(7)に溶着される金属薄板(10)が、厚さを
0.07mm以上で第1極板(1)の80%の厚さよりも
薄くし、かつ、ビッカース硬度を50以上で250以下
とすることを特徴とする電池。
A first electrode plate (1) comprising a positive electrode plate and a negative electrode plate
And a second electrode plate (2) with a separator (3) interposed therebetween, and an electrode group (4), and an outer can (5) containing the electrode group (4)
And a current collector plate (6) electrically connected to the first electrode plate (1) and electrically connecting the first electrode plate (1) to one terminal. The first electrode plate (1) A non-sintered electrode having a three-dimensional porous metal substrate (9) filled with an active material and having a strip-shaped connecting portion (7) exposing the substrate (9); A metal sheet (10) is welded to the strip-shaped connecting part (7) exposing the metal sheet (10), and the welded strip-shaped connecting part (7) of the metal sheet (10) is attached to a plurality of portions of the current collector (6). In the battery which is welded and electrically connected, the thin metal plate (10) welded to the strip-shaped connecting portion (7) has a thickness of 0.07 mm or more and a thickness of 80% or more of the first electrode plate (1). A battery having a small thickness and a Vickers hardness of 50 or more and 250 or less.
【請求項2】 集電板(6)が、ビッカース硬度を50以
上で250以下として、厚さを0.1〜1.5mmとす
る金属板である請求項1に記載される電池。
2. The battery according to claim 1, wherein the current collector plate (6) is a metal plate having a Vickers hardness of 50 or more and 250 or less and a thickness of 0.1 to 1.5 mm.
【請求項3】 集電板(6)が、外装缶(5)の内形よりも小
さい外形であって、電極群(4)の端部に対向して配設さ
れており、かつ、複数の貫通孔(6D)を有すると共に、貫
通孔(6D)の周縁に、電極群(4)の帯状連結部(7)に向かっ
て突出している突起(6E)を有し、突起(6E)が第1極板
(1)の帯状連結部(7)に複数部分で溶着されてなる請求項
1に記載される電池。
The current collector plate (6) has an outer shape smaller than the inner shape of the outer can (5), and is disposed to face an end of the electrode group (4). Along with the through-hole (6D), the periphery of the through-hole (6D) has a projection (6E) protruding toward the band-like connecting portion (7) of the electrode group (4), and the projection (6E) has 1st electrode
2. The battery according to claim 1, wherein the battery is welded at a plurality of portions to the band-like connecting portion (7) of (1).
【請求項4】 金属3次元多孔体が、発泡ニッケル、又
は、ニッケル繊維多孔体である請求項1に記載される電
池。
4. The battery according to claim 1, wherein the three-dimensional porous metal body is foamed nickel or a nickel fiber porous body.
【請求項5】 金属3次元多孔体の基板が、帯状連結部
(7)でプレスされて高密度に圧縮されてなる請求項1に
記載される電池。
5. The method according to claim 5, wherein the three-dimensional porous metal substrate is a band-shaped connecting portion.
2. The battery according to claim 1, wherein the battery is pressed in (7) and compressed to high density.
【請求項6】 電極群(4)が、第1極板(1)と第2極板
(2)とをセパレータ(3)を介して積層して渦巻状に捲回し
てなる渦巻電極で、集電板(6)が渦巻電極の端部に接近
して配設されてなる円板状である請求項1に記載される
電池。
6. An electrode group comprising a first electrode plate and a second electrode plate.
A spiral electrode formed by laminating (2) with a separator (3) and spirally winding, and a disk-shaped current collector (6) arranged close to the end of the spiral electrode The battery according to claim 1, which is:
JP18722398A 1998-07-02 1998-07-02 battery Expired - Lifetime JP3649909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18722398A JP3649909B2 (en) 1998-07-02 1998-07-02 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18722398A JP3649909B2 (en) 1998-07-02 1998-07-02 battery

Publications (2)

Publication Number Publication Date
JP2000021384A true JP2000021384A (en) 2000-01-21
JP3649909B2 JP3649909B2 (en) 2005-05-18

Family

ID=16202231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18722398A Expired - Lifetime JP3649909B2 (en) 1998-07-02 1998-07-02 battery

Country Status (1)

Country Link
JP (1) JP3649909B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286290A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2009064704A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Battery
CN101326659B (en) * 2006-06-02 2011-04-20 松下电器产业株式会社 Secondary battery
JP2011176137A (en) * 2010-02-24 2011-09-08 Tdk Corp Electrochemical device
WO2021222648A1 (en) * 2020-04-29 2021-11-04 Nextech Batteries, Inc. Method for attaching a conductive tab to an electrode and assembly therein
CN114207918A (en) * 2019-08-08 2022-03-18 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric power tool, and electric vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286290A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Battery
JP4610395B2 (en) * 2005-03-31 2011-01-12 三洋電機株式会社 battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
CN101326659B (en) * 2006-06-02 2011-04-20 松下电器产业株式会社 Secondary battery
JP2009064704A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Battery
JP2011176137A (en) * 2010-02-24 2011-09-08 Tdk Corp Electrochemical device
CN114207918A (en) * 2019-08-08 2022-03-18 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric power tool, and electric vehicle
CN114207918B (en) * 2019-08-08 2024-05-10 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, and electric vehicle
WO2021222648A1 (en) * 2020-04-29 2021-11-04 Nextech Batteries, Inc. Method for attaching a conductive tab to an electrode and assembly therein

Also Published As

Publication number Publication date
JP3649909B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP3831525B2 (en) battery
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JP2000077054A (en) Battery and its manufacture
JP4429569B2 (en) Nickel metal hydride storage battery
JP3649909B2 (en) battery
EP0801430A1 (en) Alkaline storage batteries and method for making nickel electrodes thereof
EP0901179B1 (en) Alkaline storage battery
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
US6984251B2 (en) Alkaline storage battery and process for producing the same
JP3893856B2 (en) Square alkaline storage battery
JPH11233107A (en) Alkaline storage battery using nonsintred type electrode, and its manufacture
JP2001023605A (en) Manufacture of battery
JP4334386B2 (en) battery
JP2010165689A (en) Cylindrical battery and method for manufacturing the same
JP2000268847A (en) Alkaline storage battery and its manufacture
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JPH11191410A (en) Sealed alkaline storage battery
JPH10302755A (en) Pole plate of alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH0547366A (en) Rectangular metal hydride storage battery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JP2002280057A (en) Alkaline secondary battery
JP2002170544A (en) Battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190225

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term