JP2000021359A - Battery can and battery using it - Google Patents

Battery can and battery using it

Info

Publication number
JP2000021359A
JP2000021359A JP10183795A JP18379598A JP2000021359A JP 2000021359 A JP2000021359 A JP 2000021359A JP 10183795 A JP10183795 A JP 10183795A JP 18379598 A JP18379598 A JP 18379598A JP 2000021359 A JP2000021359 A JP 2000021359A
Authority
JP
Japan
Prior art keywords
battery
thickness
manufactured
alloy layer
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10183795A
Other languages
Japanese (ja)
Other versions
JP3600017B2 (en
Inventor
Susumu Kitaoka
進 北岡
Akira Iwase
彰 岩瀬
Masatoshi Uno
正敏 羽野
Hisashi Komeno
永 米野
Mamoru Iida
守 飯田
Takashi Shimizu
隆士 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18379598A priority Critical patent/JP3600017B2/en
Publication of JP2000021359A publication Critical patent/JP2000021359A/en
Application granted granted Critical
Publication of JP3600017B2 publication Critical patent/JP3600017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery can, by which a battery post-preservation characteristic can be improved, and a battery using it by increasing a battery can inside volume by means of a DI method and reducing battery contact resistance. SOLUTION: In a battery can 6 using a DI method, a tin-nickel alloy layer 2 with a thickness of 0.05-0.30 μm is formed on the outermost surface of the can inner circumference side face, so that micro-cracks are generated on the can inside face. Consequently, surface roughness of the can inside face is increased, a battery internal resistance is reduced, and a battery post-preservation characteristic is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、DI工法を用いた
電池缶及びそれを用いた電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery can using the DI method and a battery using the same.

【0002】[0002]

【従来の技術】電池缶の製造方法としては、プレス機に
よる深絞り工程を複数工程繰り返すことにより所定形状
の電池缶を製作する工法(以下「絞り単独工法」と称
す。)と、特開平5−89861号公報などで知られて
いる、プレス機による深絞り工程によってカップ状中間
製品を製作した後、シゴキダイスを用いシゴキ工程によ
って前記カップ状中間製品から所定形状の電池缶を製作
するDI工法(Drawand Ironing工法)
が知られている。
2. Description of the Related Art As a method of manufacturing a battery can, a method of manufacturing a battery can of a predetermined shape by repeating a plurality of deep drawing steps by a press machine (hereinafter, referred to as a "drawing alone method"), and Japanese Patent Laid-Open No. H05-1993. After producing a cup-shaped intermediate product by a deep drawing process using a press machine known in, for example, JP-A-89861, a DI method for producing a battery can having a predetermined shape from the cup-shaped intermediate product by a squeezing process using a sword die. Drawing Ironing method)
It has been known.

【0003】「DI工法」は「絞り単独工法」に比較
し、工程数の削減による生産性の向上、缶側周壁の肉厚
減少による軽量化及び容量アップ、応力腐食の低減等の
長所があり、その利用率が高まってきている。
[0003] The "DI method" has advantages over the "drawing only method" in that the number of processes is reduced, the productivity is reduced by reducing the thickness of the can side peripheral wall, the capacity is increased, and stress corrosion is reduced. , Its utilization is increasing.

【0004】従来の「DI工法」を用いた電池缶の製造
方法は次のようである。
[0004] A conventional method for manufacturing a battery can using the "DI method" is as follows.

【0005】例えば板厚0.4mmの鋼板に両面ニッケ
ルメッキを1〜5μm厚で施し、その後耐食性を高める
為に焼鈍を行った材料を、先ず深絞り工程でカップ状中
間製品に成形し、その後、シゴキ工程で側周部のシゴキ
板厚を0.2mmまで薄くした電池缶を製造する。シゴ
キ工程では通常チタンナイトライド及びチタンカーバイ
トの表面処理を行った超硬の金型を使用している。これ
は、ニッケルメッキ鋼板と金型の滑り性を高めるために
行っている。使用する鋼板としては、機械的性質の加工
性指標ランクホード値(r値)で1.2を超える材料を
使用している。
[0005] For example, a steel plate having a thickness of 0.4 mm is subjected to nickel plating on both sides with a thickness of 1 to 5 µm and then annealed to enhance corrosion resistance, and then formed into a cup-shaped intermediate product in a deep drawing process, Then, a battery can is manufactured in which the thickness of the squeeze plate at the side periphery is reduced to 0.2 mm in the squeeze process. In the squeezing process, a superhard metal mold which is usually surface-treated with titanium nitride and titanium carbide is used. This is performed to enhance the slipperiness between the nickel-plated steel sheet and the mold. As the steel sheet to be used, a material having a workability index rank ford value (r value) of mechanical properties exceeding 1.2 is used.

【0006】これは、深絞り用の鋼板を用いることによ
り、缶ちぎれを起こさずに製缶する為である。
[0006] The purpose of this is to use a steel sheet for deep drawing so that cans can be produced without tearing the can.

【0007】[0007]

【発明が解決しようとする課題】ところが上記従来の
「DI工法」で電池缶を製造すると、シゴキ工程によっ
て缶側面の板厚が薄くなるので内容積が大きくなる長所
はあるが、逆に、シゴキ工程時に電池缶表面をシゴクの
で缶表面が平滑化し、電池内の活物質との接触面積が少
なくなり、電池内部抵抗が高くなり、その結果電池特性
が劣るという短所がある。その1例を表1に示す。
However, when a battery can is manufactured by the above-mentioned conventional "DI method", the thickness of the side of the can is reduced by the squeezing process, so that there is an advantage that the inner volume is increased. During the process, the surface of the battery can is roughened so that the surface of the can is smoothed, the contact area with the active material in the battery is reduced, the internal resistance of the battery is increased, and as a result, the battery characteristics are poor. One example is shown in Table 1.

【0008】[0008]

【表1】 [Table 1]

【0009】電池特性は特に、電池を組立ててから時間
が経過した後に使用する場合の保存後特性で顕著に表わ
れる。これは電池保存時に、活物質が膨張して、缶表面
との接触が不均一となる為に発生する。これに対して
「絞り単独工法」で製缶された缶は、表面が粗面な為電
池を保存しても活物質が缶に食らいつき接触抵抗の上昇
を押さえられるのでこのような問題は発生しない。しか
し、シゴキ工程が無いので缶側厚が薄くできないので絶
対的な活物質の量は少ないという欠点がある。
The battery characteristics are particularly remarkable in the characteristics after storage when used after a lapse of time since the battery was assembled. This occurs because the active material expands during battery storage and the contact with the can surface becomes uneven. On the other hand, such a problem does not occur in the can made by the “drawing-only method” because the active material erodes the can and suppresses an increase in contact resistance even when storing the battery because the surface is rough. . However, since there is no squeezing step, the thickness on the can side cannot be reduced, so that there is a disadvantage that the absolute amount of the active material is small.

【0010】本発明は「DI工法」を用いて電池缶内容
積を増加させることができるとともに、シゴキ工程を行
っても缶表面が粗面であるようにし、これにより缶内面
表面粗度が増加し、缶と電池活物質との接触が高まり、
内部抵抗が低減され、電池保存後特性の向上を図ること
ができる電池缶を提供することを目的とする。
According to the present invention, the internal volume of the battery can is increased by using the "DI method", and the surface of the can is made rough even after the squeezing process, thereby increasing the surface roughness of the inner surface of the can. And the contact between the can and the battery active material increases,
It is an object of the present invention to provide a battery can with reduced internal resistance and improved characteristics after battery storage.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するために、プレス機による深絞り工程によってカップ
状中間製品を製作した後、シゴキダイスを用いたシゴキ
工程によって前記カップ状中間製品から所定形状の電池
缶を製作するDI工法によって製作された電池缶におい
て、底厚より側厚が薄く、かつ底厚が0.2〜0.7m
m、側厚が0.1〜0.3mmである有底金属缶であっ
て、この有底金属缶は鋼板からなり、少なくとも缶内周
側面の最表面に錫ニッケル合金層が0.05〜0.30
μmの厚みで形成されていることを特徴とする。
According to the present invention, in order to achieve the above object, a cup-shaped intermediate product is manufactured by a deep drawing process using a press machine, and then a predetermined process is performed from the cup-shaped intermediate product by a squeezing process using a sword die. In a battery can manufactured by the DI method for manufacturing a battery can having a shape, the side thickness is smaller than the bottom thickness, and the bottom thickness is 0.2 to 0.7 m.
m, a bottomed metal can having a side thickness of 0.1 to 0.3 mm, the bottomed metal can being made of a steel plate, and having a tin-nickel alloy layer of at least 0.05 to the outermost surface of the inner peripheral side surface of the can. 0.30
It is characterized by being formed with a thickness of μm.

【0012】本発明では、最表面に錫ニッケル合金層を
形成した鋼板を用い、「DI工法」を行うことにより、
缶内周側面の錫ニッケル合金層を0.05μm〜0.3
0μmの厚みに形成している。その際、電池缶を製缶す
るシゴキ率を考慮して鋼板での錫ニッケル合金層の厚み
の調整を行うことが重要である。
In the present invention, by using a steel sheet having a tin-nickel alloy layer formed on the outermost surface and performing the “DI method”,
The tin-nickel alloy layer on the inner peripheral side of the can is
It is formed to a thickness of 0 μm. At that time, it is important to adjust the thickness of the tin-nickel alloy layer in the steel sheet in consideration of the squeezing rate at which the battery can is made.

【0013】本発明で、鋼板の最表面に錫ニッケル合金
層を形成した理由として、接触抵抗が低い、融点が低
い、耐薬品製に優れている等が挙げられる。
In the present invention, the tin-nickel alloy layer is formed on the outermost surface of the steel sheet because of its low contact resistance, low melting point, and excellent chemical resistance.

【0014】特に最表面に錫ニッケル合金層という金属
間化合物を生成させることで鋼板表面硬度が高硬度化
し、その鋼板を「DI工法」で形成することにより、製
缶方向と垂直方向にマイクロクラックを発生する。その
結果缶内面積が増加し、低内部抵抗の電池を得ることが
できる。
In particular, by forming an intermetallic compound called a tin-nickel alloy layer on the outermost surface, the surface hardness of the steel sheet is increased, and by forming the steel sheet by the “DI method”, micro cracks are formed in the direction perpendicular to the can-making direction. Occurs. As a result, the area inside the can is increased, and a battery with low internal resistance can be obtained.

【0015】「DI工法」を用いて製缶した電池缶内周
側面の最表面の錫ニッケル合金層の厚みはグロー放電発
光分光分析等により、測定することができる。
The thickness of the tin-nickel alloy layer on the outermost surface on the inner peripheral side of the battery can manufactured by the "DI method" can be measured by glow discharge emission spectroscopy.

【0016】図3の構成図に示したように、例えば製缶
後の電池缶6の内周側面6aは、最表面の錫ニッケル合
金層2が0.20μm、純ニッケル層3が0.50μ
m、鉄ニッケル層4が0.55μmとなる。このように
製缶された電池缶の表面は、図4に示されたように缶内
周側面6aにマイクロクラックが発生して缶粗度は図5
に示す従来の電池缶内周側面に比べて粗面化しているこ
とが解る。このマイクロクラックの発生により表面積が
増大し、電池内部抵抗が低減される。
As shown in the configuration diagram of FIG. 3, for example, the inner peripheral side surface 6a of the battery can 6 after the can production is such that the outermost tin-nickel alloy layer 2 is 0.20 μm and the pure nickel layer 3 is 0.50 μm.
m, the iron-nickel layer 4 is 0.55 μm. The surface of the battery can thus manufactured has microcracks on the inner peripheral side surface 6a as shown in FIG.
It can be seen that the surface is roughened as compared with the conventional battery can inner peripheral side shown in FIG. Due to the generation of the microcracks, the surface area increases, and the internal resistance of the battery decreases.

【0017】電池缶内周側面にマイクロクラックが発生
するメガニズムは次のとおりである。すなわち鋼板の上
にニッケルメッキ、次いで錫メッキを施した後、鋼板を
焼鈍することにより、錫ニッケル合金層が形成され、金
属間化合物の影響で鋼板表面が高硬度化し、それを「D
I工法」を用いて製缶することでマイクロクラックが発
生する。
Meganism in which microcracks occur on the inner peripheral side surface of the battery can is as follows. That is, after the steel plate is subjected to nickel plating and then tin plating, the steel plate is annealed to form a tin-nickel alloy layer, and the surface of the steel plate is hardened by the influence of the intermetallic compound.
Microcracks are generated by making cans using the "I method".

【0018】缶内周側面の最表面の錫ニッケル合金層の
厚みが0.05μm未満の場合は、マイクロクラックの
発生量が少なく電池特性の向上幅が少ない為、不適切で
ある。逆に前記厚みが0.30μmを超える場合では、
鋼板表面硬度が高硬度化して製缶時に缶ちぎれが発生し
て、DI工法の製缶が不可能である。
If the thickness of the tin-nickel alloy layer on the outermost surface of the inner peripheral side surface of the can is less than 0.05 μm, it is not appropriate because the amount of microcracks is small and the improvement in battery characteristics is small. Conversely, when the thickness exceeds 0.30 μm,
The surface hardness of the steel sheet is increased, and can tears occur during can making, making it impossible to make cans by the DI method.

【0019】本発明では鋼板の板厚、換言すれば製缶後
の電池缶の底厚を0.2mm〜0.7mmの範囲として
いる。板厚が0.2mm未満であると製缶後の底部強度
が低下して端子としての役割に支障をきたす恐れがあ
る。又、安全性についてもアルカリ乾電池において電池
を過放電した際に、合剤の膨れ等により底部が破断する
現象、或いはスポット溶接時に穴があく等の不良が発生
するので好ましくない。
In the present invention, the thickness of the steel plate, in other words, the bottom thickness of the battery can after the can is made in the range of 0.2 mm to 0.7 mm. If the plate thickness is less than 0.2 mm, the strength of the bottom after the can is reduced, which may hinder the role as a terminal. In addition, safety is not preferred because, when the battery is over-discharged in an alkaline dry battery, the bottom portion is broken due to swelling of the mixture, or a defect such as a hole is formed during spot welding.

【0020】逆に、前記板厚が0.7mmを超える鋼板
を用いると缶側周部の板厚を薄くするのにシゴキダイス
が数多く必要となり、製缶に不適切となる。
Conversely, if a steel sheet having a thickness of more than 0.7 mm is used, a large number of squeezing dies are required to reduce the thickness of the peripheral portion of the can, which is unsuitable for can making.

【0021】本発明では製缶後の電池缶の側厚を0.1
mm〜0.3mmの範囲としている。側厚が0.1mm
未満であると側面の強度が弱く又同時に封口部の強度も
弱いので安全上問題がある。逆に側厚が0.3mmを超
えると内容積の充填量の低下になり、「DI工法」のメ
リットがなくなる。
In the present invention, the side thickness of the battery can after the can is made 0.1
mm to 0.3 mm. Side thickness is 0.1mm
If it is less than this, there is a problem in safety since the strength of the side surface is weak and the strength of the sealing portion is also weak at the same time. Conversely, when the side thickness exceeds 0.3 mm, the filling amount of the internal volume decreases, and the merit of the “DI method” is lost.

【0022】本発明において、製缶時にアルミナコーテ
ィングの金型を使用すると好適である。その理由は錫ニ
ッケル合金層との滑り性を合わせる為である。従来用い
ていたチタンカーバイト、チタンナイトライトでは、滑
り性が悪い為に製缶時に缶ちぎれが発生する場合があ
る。
In the present invention, it is preferable to use a mold coated with alumina at the time of can making. The reason is to match the slipperiness with the tin-nickel alloy layer. In the case of titanium carbide and titanium nitrite which have been used in the past, can slipping may occur during can making due to poor slipperiness.

【0023】本発明において、製缶時に水溶性潤滑剤を
用いると好適である。その理由は、「DI工法」によ
り、缶内面にマイクロクラックが発生し、そのマイクロ
クラック内に製缶時に使用する油分が残らないようにす
るためである。マイクロクラック内に油分が残ると抵抗
の上昇が発生する。例えば水溶性潤滑剤として、塩素系
潤滑剤などを用いれば、洗浄工程において、溶剤を使用
せずにお湯を用いることにより、湯分を落とすことがで
きる。
In the present invention, it is preferable to use a water-soluble lubricant during can-making. The reason is that micro cracks are generated on the inner surface of the can by the “DI method”, and the oil used during can making does not remain in the micro cracks. If oil remains in the micro crack, the resistance increases. For example, if a chlorine-based lubricant or the like is used as the water-soluble lubricant, hot water can be removed by using hot water without using a solvent in the cleaning step.

【0024】また本発明において、機械的性質の加工性
指標ランクホード値(r値)が1.0から1.2の材料
を用いると好適である。従来は、機械的性質の加工性指
標ランクホード値(r値)が1.2を超えるものを用い
ていたが錫ニッケル合金層を最表面に形成した鋼板を用
いると従来品より加工性が良いので、r値が1.0〜
1.2のものを用いることができる。r値が1.0未満
だとカップ製缶途中にアール部が破断してしまい製造で
きず、又r値が1.2を超えると相対的にカップ耳部
(カップ壁縁部の最大高さと最低高さの高低差)が大き
くなり、その後「DI工法」を行うことにより、耳部が
助長され、パンチから缶を取り外す際カップ壁縁部の最
大高さ部に力が集中する為、その部分がちぎれ、屑が金
型内に入り打痕が発生する。
In the present invention, it is preferable to use a material having a rank property (r value) of 1.0 to 1.2 for the workability index of mechanical properties. Conventionally, a workability index rank-hord value (r-value) of mechanical properties exceeding 1.2 was used. However, when a steel sheet having a tin-nickel alloy layer formed on the outermost surface is used, workability is better than conventional products. , R value is 1.0 to
1.2 can be used. If the r value is less than 1.0, the radius is broken in the middle of the cup can to make it impossible to manufacture, and if the r value exceeds 1.2, the cup ear portion (the maximum height of the cup wall edge and the The difference between the height of the minimum height) and the “DI method” after that, the ears are encouraged, and when removing the can from the punch, the force concentrates on the maximum height of the edge of the cup wall. The part is torn off, and debris enters the mold and dents occur.

【0025】以上のことにより、「DI工法」を用いた
電池缶において、缶内面積を増加し、缶と電池活物質と
の接触を高め、電池内部抵抗が低減され、電池保存後特
性の向上を図ることができる。
As described above, in the battery can using the “DI method”, the area inside the can is increased, the contact between the can and the battery active material is increased, the internal resistance of the battery is reduced, and the characteristics after storage of the battery are improved. Can be achieved.

【0026】上記構成の電池缶に発電素子を収納して電
池とすると、上記特性を有する電池となる。例えば、正
極合剤の集電体の役目も果たすアルカリマンガン乾電池
の電池缶として、上記電池缶を用いる。
When the battery is housed in the battery can having the above configuration, the battery has the above characteristics. For example, the above-mentioned battery can is used as a battery can of an alkaline manganese dry battery which also functions as a current collector of a positive electrode mixture.

【0027】[0027]

【発明の実施の形態】本発明の実施形態を実施例に基い
て以下説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples.

【0028】(実施例1)電池缶素材として、厚さ0.
4mmの鋼板1の両面に各々厚さ2.5μmのニッケル
メッキを施し、缶内面に相当する側にのみさらに錫メッ
キを0.2μmの厚さで施し、合金層を形成させる為に
バッチ焼鈍工程を行う。その際の鋼板断面の構成図は、
図1に示す通り、錫は熱処理を行うことにより、ニッケ
ル面に拡散し、錫ニッケル合金層2となりその厚みは
0.40μmとなる。その下の純ニッケル層3の厚み
は、1.2μm、最下層の鉄ニッケル合金層4の厚み
は、1.1μmとなっている。このように製造された電
池缶素材をフープ材としてプレス機に供給し、プレス機
において周知の深絞り工程で、電池缶素材を所定形状に
打抜き、深絞りを行うことで、図2に示すようなカップ
状中間製品5を得る。この際カップ状中間製品5の底部
と側周部における肉厚、錫ニッケル合金層の厚み、純ニ
ッケル層の厚み、鉄ニッケル合金層の厚みは、前記電池
缶素材のそれと基本的には同一である。
(Example 1) As a material for a battery can, a material having a thickness of 0.1 mm was used.
A 4 mm steel plate 1 is nickel-plated on both sides with a thickness of 2.5 μm each, and only a side corresponding to the inner surface of the can is further tin-plated with a thickness of 0.2 μm, and a batch annealing process is performed to form an alloy layer. I do. The configuration diagram of the steel plate cross section at that time is
As shown in FIG. 1, the tin diffuses to the nickel surface by performing the heat treatment to form a tin-nickel alloy layer 2 having a thickness of 0.40 μm. The thickness of the underlying pure nickel layer 3 is 1.2 μm, and the thickness of the lowermost iron-nickel alloy layer 4 is 1.1 μm. The battery can material thus manufactured is supplied to a press as a hoop material, and in a well-known deep drawing step, the battery can material is punched into a predetermined shape and subjected to deep drawing, as shown in FIG. A cup-shaped intermediate product 5 is obtained. At this time, the thickness of the cup-shaped intermediate product 5 at the bottom and the side periphery, the thickness of the tin-nickel alloy layer, the thickness of the pure nickel layer, and the thickness of the iron-nickel alloy layer are basically the same as those of the battery can material. is there.

【0029】次に、図2に示す絞り兼シゴキ機を用いて
カップ状中間製品5に、1段の深絞り加工と3段のシゴ
キ加工を一挙に施して、図3に示す側厚を0.2mmま
で薄くした電池缶6を製作する。この絞り兼シゴキ機
は、パンチ7、絞りダイス8、シゴキダイス9、ストリ
ッパー10等を備えている。
Next, the cup-shaped intermediate product 5 is subjected to one-step deep drawing and three-step squeezing using the squeezing and squeezing machine shown in FIG. 2 so that the side thickness shown in FIG. The battery can 6 having a thickness as small as 0.2 mm is manufactured. The squeezing and squeezing machine includes a punch 7, an squeezing die 8, a squeezing die 9, a stripper 10, and the like.

【0030】元厚0.4mmから側厚0.2mmまで5
0%シゴいたことにより、図3に示す缶内周側面の錫ニ
ッケル合金層2の厚みは0.20μmとなる。その下の
純ニッケル層3の厚みは0.6μm、最下層の鉄ニッケ
ル合金層4の厚みは0.55μmとなっている。
5 from the original thickness of 0.4 mm to the side thickness of 0.2 mm
Due to the 0% stiffness, the thickness of the tin-nickel alloy layer 2 on the inner peripheral side surface of the can shown in FIG. 3 becomes 0.20 μm. The thickness of the underlying pure nickel layer 3 is 0.6 μm, and the thickness of the lowermost iron-nickel alloy layer 4 is 0.55 μm.

【0031】以上のように製缶された電池缶を用い図6
に示す単3形アルカリ乾電池を試作し評価を行った。図
6において、6は電池缶で、その中へ二酸化マンガンと
黒鉛からなる円筒状に成型された正極合剤11を挿入加
圧して、セパレータ12を正極合剤11の中空部に挿入
し、その内側に電解液と、か性カリ、粘性物質及び亜鉛
粉末からなる負極ゲル状物質13とを注入し、破裂防止
機構を備える封口体14の中央部に負極集電体15と負
極端子底板16を一体化した部品をワッシャー17を間
に入れ圧入した物を電池缶6開口部付近に円周状に設け
た溝上に乗せ、電池缶6の開口部が封口体14の嵌合部
に強く密着するようにして封口し、最後に電池外周部に
外装ラベル18を巻いて電池を構成した。
Using the battery can manufactured as described above, FIG.
AA-size alkaline dry batteries shown in Table 3 were prototyped and evaluated. In FIG. 6, reference numeral 6 denotes a battery can, into which a cylindrical positive electrode mixture 11 made of manganese dioxide and graphite is inserted and pressurized, and a separator 12 is inserted into the hollow portion of the positive electrode mixture 11, and An electrolyte solution and a negative gel material 13 made of caustic potash, a viscous material and zinc powder are injected into the inside, and a negative current collector 15 and a negative terminal bottom plate 16 are placed in the center of a sealing body 14 having a rupture prevention mechanism. The integrated component is put on a groove provided circumferentially near the opening of the battery can 6 with the washer 17 interposed therebetween and the press-fitted object is placed on the groove of the battery can 6 so that the opening of the battery can 6 closely adheres to the fitting portion of the sealing body 14. The battery was constructed by closing the outer cover 18 and wrapping the outer label 18 around the outer periphery of the battery.

【0032】以上のように構成した電池の評価として、
電池組立直後に放電する初度放電と保存後特性の加速評
価である保存後放電を行った。保存特性は、加速評価と
して、60℃の恒温層中に1ケ月電池を保存しておきそ
の後室温(20℃)に戻して室温中で放電させる評価法
である。放電試験としては1500mAの定電流で連続
放電を行い0.9Vまでの放電持続時間の評価を行い、
指数化したもので比較を行った。従来品についてはそれ
ぞれ100とした。
As an evaluation of the battery constructed as described above,
Initial discharge, which is discharged immediately after battery assembly, and discharge after storage, which is an accelerated evaluation of characteristics after storage, were performed. The storage characteristics are an evaluation method in which a battery is stored for one month in a constant temperature layer at 60 ° C., then returned to room temperature (20 ° C.) and discharged at room temperature for accelerated evaluation. As a discharge test, a continuous discharge was performed at a constant current of 1500 mA, and a discharge duration up to 0.9 V was evaluated.
The comparison was made using indexed data. Each of the conventional products was set to 100.

【0033】以下に、電池特性の一覧を表2に示す。Table 2 below shows a list of battery characteristics.

【0034】[0034]

【表2】 [Table 2]

【0035】表2の結果を見て解るように本発明品の電
池缶を用いたアルカリ乾電池は、従来品(100)に比
較し、初度放電において105、保存後放電で300と
著しく特性改良を図ることができた。
As can be seen from the results in Table 2, the alkaline dry battery using the battery can of the present invention has a remarkably improved characteristic of 105 in the initial discharge and 300 in the discharge after storage as compared with the conventional product (100). I was able to plan.

【0036】(実施例2)電池缶素材として、以下の3
種類の試作を行ない電池評価を行った。厚さ0.4mm
の鋼板1の両面に各々厚さ2.5μmのニッケルメッキ
を施し、缶内面に相当する側のみにさらに錫メッキを
0.03μm、0.05μm、0.30μmの厚みで施
し、合金層を形成させる為にバッチ焼鈍工程を行う。そ
の際の鋼板断面の構成図は、図1に示す通り、錫は熱処
理を行うことにより、ニッケル面に拡散し、錫ニッケル
合金層2となりその厚みはそれぞれ0.06μm、0.
10μm、0.60μmとなる。その下の純ニッケル層
3の厚みは1.55μm、1.40μm、0.87μ
m、最下層の鉄ニッケル合金層4の厚みは1.10μ
m、1.10μm、1.10μmとなっている。このよ
うに製造された電池缶素材を用い実施例1と同様の方法
で製缶を行った。
(Example 2) As a battery can material, the following 3
Various types of prototypes were manufactured and battery evaluation was performed. 0.4mm thick
Nickel plating with a thickness of 2.5 μm on both sides of the steel sheet 1 and tin plating with a thickness of 0.03 μm, 0.05 μm and 0.30 μm only on the side corresponding to the inner surface of the can to form an alloy layer A batch annealing step is performed in order to perform this. As shown in FIG. 1, the configuration of the cross section of the steel plate at this time is such that tin is diffused to the nickel surface by heat treatment to form a tin-nickel alloy layer 2 having a thickness of 0.06 μm and a thickness of 0.06 μm, respectively.
10 μm and 0.60 μm. The thickness of the pure nickel layer 3 thereunder is 1.55 μm, 1.40 μm, 0.87 μm.
m, the thickness of the lowermost iron-nickel alloy layer 4 is 1.10 μm
m, 1.10 μm, and 1.10 μm. Using the battery can material thus manufactured, can manufacturing was performed in the same manner as in Example 1.

【0037】元厚0.4mmから側厚0.2mmまで5
0%シゴいたことにより、図3の缶内周側面の錫ニッケ
ル合金層2の厚みは0.03μm、0.05μm、0.
30μmとなる。その下の純ニッケル層3の厚みは0.
78μm、0.70μm、0.44μm、最下層の鉄ニ
ッケル合金層4の厚みは、0.55μm、0.55μ
m、0.55μmとなっている。
5 from the original thickness of 0.4 mm to the side thickness of 0.2 mm
Due to the 0% stiffness, the thickness of the tin-nickel alloy layer 2 on the inner peripheral side surface of the can in FIG.
It is 30 μm. The thickness of the pure nickel layer 3 thereunder is 0.1 mm.
78 μm, 0.70 μm, 0.44 μm, the thickness of the lowermost iron-nickel alloy layer 4 is 0.55 μm, 0.55 μm
m, 0.55 μm.

【0038】以上のように製缶された電池缶を用い実施
例1同様の電池組立方法で電池を作成し評価を行った。
Using the battery can manufactured as described above, a battery was prepared in the same manner as in Example 1 and evaluated.

【0039】図7の電池保存後特性の一覧結果を見て解
るように缶内周側面の最表面にある錫ニッケル合金層の
厚みが0.05μm未満の0.03μmだと、従来品
(100)に対して105と放電特性の改良を十分に図
ることができない。また、前記錫ニッケル合金層の厚み
が0.30μmでも従来品(100)に対して310で
あり、特性は横ばいである。前記錫ニッケル合金層の厚
みが0.30μmを超えた電池缶を試作したところ、製
缶時に缶ちぎれが発生し、製缶不可能であった。
As can be seen from the list of characteristics of the battery after storage shown in FIG. ), The discharge characteristics cannot be sufficiently improved to 105. Even when the thickness of the tin-nickel alloy layer is 0.30 μm, it is 310 with respect to the conventional product (100), and the characteristics are flat. When a battery can having a tin-nickel alloy layer thickness of more than 0.30 μm was trial manufactured, the can was broken during can making, making it impossible.

【0040】なお上記実施例では、合金層を形成する為
にバッチ焼鈍を用いたが連続焼鈍やバッチ焼鈍プラス連
続焼鈍を行った場合においても同様の効果を得ることが
できる。
In the above embodiment, batch annealing was used to form the alloy layer. However, the same effect can be obtained when continuous annealing or batch annealing plus continuous annealing is performed.

【0041】[0041]

【発明の効果】以上のように本発明によれば、缶内面粗
度を増加させることにより、内部抵抗を低減させ、電池
保存後特性の向上を図ることのできる電池缶および電池
を提供することができる。
As described above, according to the present invention, it is possible to provide a battery can and a battery capable of reducing internal resistance by increasing the inner surface roughness of the can and improving characteristics after battery storage. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に用いた電池缶素材の断面構
成図。
FIG. 1 is a sectional configuration view of a battery can material used in an embodiment of the present invention.

【図2】「DI工法」を示す概略断面図。FIG. 2 is a schematic sectional view showing the “DI method”.

【図3】本発明の実施形態における電池缶の断面構成
図。
FIG. 3 is a cross-sectional configuration diagram of a battery can in the embodiment of the present invention.

【図4】その電池缶内周側面の表面走査電子顕微鏡によ
り得られた表面図。
FIG. 4 is a surface view of the inner peripheral side surface of the battery can obtained by a surface scanning electron microscope.

【図5】従来の電池缶における内周側面の表面走査電子
顕微鏡により得られた表面図。
FIG. 5 is a surface view of the inner peripheral side surface of a conventional battery can obtained by a surface scanning electron microscope.

【図6】アルカリ乾電池を示す一部切欠き断面図。FIG. 6 is a partially cutaway sectional view showing an alkaline dry battery.

【図7】電池保存特性を示すグラフ。FIG. 7 is a graph showing battery storage characteristics.

【符号の説明】[Explanation of symbols]

1 鋼板 2 錫ニッケル合金層 3 純ニッケル層 4 鉄ニッケル合金層 5 カップ状中間製品 6 電池缶 7 パンチ 8 絞りダイス 9 シゴキダイス 10 ストリッパー 11 正極合剤 12 セパレータ 13 負極ゲル状物質 14 封口体 15 負極集電体 16 負極端子底板 17 ワッシャー 18 外装ラベル REFERENCE SIGNS LIST 1 steel plate 2 tin-nickel alloy layer 3 pure nickel layer 4 iron-nickel alloy layer 5 cup-shaped intermediate product 6 battery can 7 punch 8 drawing die 9 sword die 10 stripper 11 positive electrode mixture 12 separator 13 negative electrode gel material 14 sealing body 15 negative electrode collection Conductor 16 Negative terminal bottom plate 17 Washer 18 Exterior label

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽野 正敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 米野 永 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 飯田 守 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 清水 隆士 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA03 AA04 CC06 DD01 DD18 DD26 KK00 KK01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masatoshi Hano 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Eiji Yoneno 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. ( 72) Inventor Mamoru Iida 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. DD01 DD18 DD26 KK00 KK01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プレス機による深絞り工程によってカッ
プ状中間製品を製作した後、シゴキダイスを用いたシゴ
キ工程によって前記カップ状中間製品から所定形状の電
池缶を製作するDI工法によって製作された電池缶にお
いて、底厚より側厚が薄く、かつ底厚が0.2〜0.7
mm、側厚が0.1〜0.3mmである有底金属缶であ
って、この有底金属缶は鋼板からなり、少なくとも缶内
周側面の最表面に錫ニッケル合金層が0.05〜0.3
0μmの厚みで形成されていることを特徴とする電池
缶。
1. A battery can manufactured by a DI method in which a cup-shaped intermediate product is manufactured by a deep drawing process using a press machine, and then a battery can of a predetermined shape is manufactured from the cup-shaped intermediate product by a squeezing process using a sword die. In the above, the side thickness is smaller than the bottom thickness, and the bottom thickness is 0.2 to 0.7.
mm, a bottomed metal can having a side thickness of 0.1 to 0.3 mm, the bottomed metal can being made of a steel plate, and having a tin-nickel alloy layer of at least 0.05 to the outermost surface of the inner peripheral side surface of the can. 0.3
A battery can having a thickness of 0 μm.
【請求項2】 DI工法のシゴキ工程において、アルミ
コーティングを施した金型を用いたことを特徴とする請
求項1記載の電池缶。
2. The battery can according to claim 1, wherein a die coated with aluminum is used in the squeezing step of the DI method.
【請求項3】 機械的性質である加工性指標ランクホー
ド値(r値)が1.0〜1.2の鋼板材料を用いて有底
金属缶が製作されたものである請求項1又は2記載の電
池缶。
3. The bottomed metal can is manufactured using a steel sheet material having a workability index rank ford value (r-value) of 1.0 to 1.2, which is a mechanical property. Battery can.
【請求項4】 DI工法のシゴキ工程において、水溶性
潤滑剤を用いて有底金属缶が製作されたものである請求
項1、2又は3記載の電池缶。
4. The battery can according to claim 1, wherein the bottomed metal can is manufactured by using a water-soluble lubricant in the squeezing process of the DI method.
【請求項5】 請求項1〜4のいずれかに記載の電池缶
に発電要素を収納してなる電池。
5. A battery comprising a power generation element housed in the battery can according to claim 1.
JP18379598A 1998-06-30 1998-06-30 Battery can and battery using the same Expired - Fee Related JP3600017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18379598A JP3600017B2 (en) 1998-06-30 1998-06-30 Battery can and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18379598A JP3600017B2 (en) 1998-06-30 1998-06-30 Battery can and battery using the same

Publications (2)

Publication Number Publication Date
JP2000021359A true JP2000021359A (en) 2000-01-21
JP3600017B2 JP3600017B2 (en) 2004-12-08

Family

ID=16142064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18379598A Expired - Fee Related JP3600017B2 (en) 1998-06-30 1998-06-30 Battery can and battery using the same

Country Status (1)

Country Link
JP (1) JP3600017B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084647A1 (en) * 2000-04-28 2001-11-08 Matsushita Electric Industrial Co., Ltd. Cell tube and method of manufacturing the cell tube
JP2003535447A (en) * 2000-05-26 2003-11-25 ザ ジレット カンパニー Forming method for electrochemical cell case
US6703160B2 (en) 2000-04-13 2004-03-09 Fmc Corporation, Lithium Division Battery pack or battery providing increased heat dissipation
US7078125B2 (en) 2002-12-10 2006-07-18 Fuji Photo Film Co., Ltd. Apparatus
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same
KR100850157B1 (en) * 2005-04-15 2008-08-04 마쯔시다덴기산교 가부시키가이샤 Rectangular lithium secondary battery
US7419743B2 (en) 2005-04-04 2008-09-02 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium battery resistant to breakage of the porous heat resistant layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703160B2 (en) 2000-04-13 2004-03-09 Fmc Corporation, Lithium Division Battery pack or battery providing increased heat dissipation
WO2001084647A1 (en) * 2000-04-28 2001-11-08 Matsushita Electric Industrial Co., Ltd. Cell tube and method of manufacturing the cell tube
JP2003535447A (en) * 2000-05-26 2003-11-25 ザ ジレット カンパニー Forming method for electrochemical cell case
US7078125B2 (en) 2002-12-10 2006-07-18 Fuji Photo Film Co., Ltd. Apparatus
US7419743B2 (en) 2005-04-04 2008-09-02 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium battery resistant to breakage of the porous heat resistant layer
KR100857962B1 (en) * 2005-04-04 2008-09-09 마쯔시다덴기산교 가부시키가이샤 Cylindrical lithium secondary battery
KR100850157B1 (en) * 2005-04-15 2008-08-04 마쯔시다덴기산교 가부시키가이샤 Rectangular lithium secondary battery
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same

Also Published As

Publication number Publication date
JP3600017B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US6929880B1 (en) Square cell container and method of manufacturing the cell container
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
CN1233048C (en) Method of forming casing electrochemical cell
JP2007027046A (en) Battery can and method of manufacturing same
EP2051313A1 (en) Battery can and battery using the same
US5849430A (en) Structure of an electrode of a secondary battery
JPS60180058A (en) Manufacture of battery and its can
KR20020080441A (en) Square battery container, method of manufacturing the container, and square battery using the container
JP3600017B2 (en) Battery can and battery using the same
KR100455013B1 (en) Cell tube and method of manufacturing the cell tube
JP2003208876A (en) Square battery can and manufacturing method thereof, and square battery using the same
JP3567577B2 (en) Battery can and manufacturing method thereof
US5787752A (en) Method to manufacture cell-cans
JP3671551B2 (en) Battery can and method for producing dry battery using the can
JP3759553B2 (en) Battery can and manufacturing method thereof
JP2615529B2 (en) Battery can and method of manufacturing the same
JP3022771B2 (en) Method of manufacturing cylindrical battery case
KR20230109949A (en) secondary battery
JP2001313008A (en) Battery can, its manufacturing method and battery
JP5851177B2 (en) Positive electrode can for lithium battery, lithium battery and method for producing the same
JPH08255598A (en) Manufacture of battery can
JP2009076420A (en) Battery can, battery using the same, and method of manufacturing the same
JP2000285874A (en) Battery can and manufacture thereof
JP2000285874A5 (en)
JP3681799B2 (en) Button-type alkaline battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees