JP2000019490A - Reflection type polymer-dispersed liquid crystal display device - Google Patents

Reflection type polymer-dispersed liquid crystal display device

Info

Publication number
JP2000019490A
JP2000019490A JP10181995A JP18199598A JP2000019490A JP 2000019490 A JP2000019490 A JP 2000019490A JP 10181995 A JP10181995 A JP 10181995A JP 18199598 A JP18199598 A JP 18199598A JP 2000019490 A JP2000019490 A JP 2000019490A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
polymer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10181995A
Other languages
Japanese (ja)
Other versions
JP2000019490A5 (en
Inventor
Nobuhiko Ichikawa
市川信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP10181995A priority Critical patent/JP2000019490A/en
Publication of JP2000019490A publication Critical patent/JP2000019490A/en
Publication of JP2000019490A5 publication Critical patent/JP2000019490A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a reflection type polymer-dispersed liq. crystal display device bright, broad in visual field, and excellent in visibility by providing a retroreflection layer on the side opposite to the observation side of a polymer- dispersed liq. crystal layer. SOLUTION: A polymer-dispersed liq. crystal(PD) 10 is interposed between a transparent substrate 11 and a substrate 12, and a retroreflection layer 20 is arranged in place of a conventional mirror on a surface of substrate 12 on the side opposite to the observation side of PD liq. crystal 10. Here, the retroreflection layer 20 has a characteristic of making incident light reflect to direction nearly opposite to the direction (making retroreflect) and the characteristic does not depend on the direction of the incident light. A paint contg. large number of transparent fine beads and a film contg. large numbers of transparent fine beads have a characteristic of the retroreflection. Light illuminating pixel in a transparent state is reflected in the normal reflecting direction to enter the eye, and the pixel to be seen does not become dark. This phenomenon rather prevents a problem to cause the extreme deterioration of visibility by the black and white reversal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射型高分子分散
型液晶表示装置に関し、特に、正反射方向から見ても見
やすい反射型高分子分散型液晶表示装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective polymer-dispersed liquid crystal display, and more particularly to a reflective polymer-dispersed liquid crystal display which is easy to see even in a regular reflection direction.

【0002】[0002]

【従来の技術】従来から高分子分散型液晶表示装置が注
目されている。図4を参照にして高分子分散型液晶の原
理を説明する。図4(a)は高分子分散型液晶に電場を
印加しない場合、図4(b)は印加した場合を示し、高
分子マトリックス2中に液晶1が分散されており、高分
子マトリックス2の屈折率が液晶1の常光屈折率に略一
致するように設定されている。図4(a)のスイッチが
開いて電源3からの電圧が透明電極4、4間に印加され
ない状態では、液晶1がランダムな状態にあるため、空
間的な屈折率の差異が生じ、入射光5は前方への散乱光
(前方散乱光)6と後方への散乱光(後方散乱光)7と
に散乱される。図4(b)の透明電極4、4間に電圧が
印加された状態では、液晶1が電界方向に配列し、その
結果液晶1と高分子マトリックス2の屈折率差が減少
し、入射光5は散乱を受けずに直進光8として透過する
ので、透明状態になる。
2. Description of the Related Art Conventionally, polymer-dispersed liquid crystal display devices have been receiving attention. The principle of the polymer dispersed liquid crystal will be described with reference to FIG. 4A shows the case where no electric field is applied to the polymer dispersed liquid crystal, and FIG. 4B shows the case where the electric field is applied. The liquid crystal 1 is dispersed in the polymer matrix 2 and the refraction of the polymer matrix 2 is shown. The index is set so as to substantially match the ordinary light refractive index of the liquid crystal 1. In the state where the switch from FIG. 4A is opened and the voltage from the power supply 3 is not applied between the transparent electrodes 4, the liquid crystal 1 is in a random state, so that a spatial difference in the refractive index occurs and the incident light is changed. 5 is scattered by forward scattered light (forward scattered light) 6 and backward scattered light (backward scattered light) 7. When a voltage is applied between the transparent electrodes 4 and 4 in FIG. 4B, the liquid crystal 1 is arranged in the direction of the electric field, and as a result, the difference in the refractive index between the liquid crystal 1 and the polymer matrix 2 is reduced, and the incident light 5 Is transmitted as straight light 8 without being scattered, and thus becomes transparent.

【0003】このような高分子分散型液晶を用いた液晶
表示装置(以下、PD液晶表示装置と呼ぶ。)が提案さ
れている。PD液晶表示装置は、その原理から偏光板を
用いる必要がなく、電場を加えるか加えないかに応じ
て、液晶が透明状態、散乱状態に変化するため、非常に
明るく、例えば裏面に鏡面部材を配することにより、略
ペーパーホワイト表示が可能である。
A liquid crystal display device using such a polymer dispersed liquid crystal (hereinafter referred to as a PD liquid crystal display device) has been proposed. The PD liquid crystal display device does not need to use a polarizing plate due to its principle, and the liquid crystal changes to a transparent state or a scattering state depending on whether an electric field is applied or not. Therefore, the PD liquid crystal display is very bright. By doing so, substantially paper white display is possible.

【0004】図5に従来のモノクロの反射型PD液晶表
示装置の概略の構成を示す。ただし、画素電極、対向電
極は図示を省く。上記のような高分子分散型液晶(以
下、PD液晶と呼ぶ。)10は透明基板11と基板12
の間に挟持され、PD液晶10の観察側と反対側の基板
12表面には、ミラー13が配置されている。そして、
この反射型PD液晶表示装置は代表的に3つの画素X,
Y,Zからなるものとする。いま、画素X,Zは電圧が
印加されておらず、画素Yには電圧が印加されていると
すると、画素X,Zは散乱状態、画素Yは透明状態にあ
るので、適当な入射角で外光(周囲の環境光)14がこ
の反射型PD液晶表示装置に入射すると、画素X,Zは
散乱状態にあるので、後方散乱光はそのまま、前方散乱
光はミラー13で一旦反射されてこの反射型PD液晶表
示装置の正面に位置する観察者の目に入り略白く見え
る。画素Yは透明状態であるので、外光14はミラー1
3で正反射されて反射型PD液晶表示装置の正面方向に
は進まないので、略黒に見える。
FIG. 5 shows a schematic configuration of a conventional monochrome reflective PD liquid crystal display device. However, the pixel electrode and the counter electrode are not shown. The polymer-dispersed liquid crystal (hereinafter referred to as PD liquid crystal) 10 as described above includes a transparent substrate 11 and a substrate 12.
A mirror 13 is disposed on the surface of the substrate 12 opposite to the observation side of the PD liquid crystal 10 and sandwiched between them. And
This reflective PD liquid crystal display device typically has three pixels X,
It is assumed to be composed of Y and Z. Now, assuming that no voltage is applied to the pixels X and Z and a voltage is applied to the pixel Y, the pixels X and Z are in the scattering state and the pixel Y is in the transparent state. When external light (surrounding ambient light) 14 is incident on the reflective PD liquid crystal display device, the pixels X and Z are in a scattering state. It looks almost white in the eyes of an observer located in front of the reflective PD liquid crystal display device. Since the pixel Y is in a transparent state, the external light 14
Since the light is specularly reflected at 3 and does not travel in the front direction of the reflective PD liquid crystal display device, it looks almost black.

【0005】図6に従来のカラーの反射型PD液晶表示
装置の概略の構成を示す。この場合も、画素電極、対向
電極は図示を省く。この構成は、基本的に図5のPD液
晶10の観察側の透明基板11表面に、R(赤色)透過
Rフィルター15R、G(緑色)透過Gフィルター15
G、B(青色)透過Bフィルター15Bのアレーからな
るカラーフィルター15を配置したもので、この場合も
代表的に3つの画素R,G,Bからなるものとする。い
ま、画素R,Bは電圧が印加されておらず、画素Gには
電圧が印加されているとすると、画素R,Bは散乱状
態、画素Gは透明状態にあるので、適当な入射角で外光
(周囲の環境光)14がこのカラー反射型PD液晶表示
装置に入射すると、画素R,Bは散乱状態にあるため、
それぞれR透過Rフィルター15R、B透過Bフィルタ
ー15Bを透過したR光、B光の後方散乱光はそのま
ま、前方散乱光はミラー13で一旦反射されてこの反射
型PD液晶表示装置の正面に位置する観察者の目に入
り、それぞれ赤色、青色に見える。画素Gは透明状態で
あるので、外光14はミラー13で正反射されてこの反
射型PD液晶表示装置の正面方向には進まないので、略
黒に見える。
FIG. 6 shows a schematic configuration of a conventional color reflective PD liquid crystal display device. Also in this case, the pixel electrode and the counter electrode are not shown. This configuration basically includes an R (red) transmission R filter 15R and a G (green) transmission G filter 15 on the surface of the transparent substrate 11 on the observation side of the PD liquid crystal 10 in FIG.
A color filter 15 composed of an array of G, B (blue) transmission B filters 15B is arranged, and also in this case, it is assumed that the color filter 15 is typically composed of three pixels R, G, B. Now, assuming that no voltage is applied to the pixels R and B and a voltage is applied to the pixel G, the pixels R and B are in the scattering state and the pixel G is in the transparent state. When external light (surrounding ambient light) 14 is incident on the color reflective PD liquid crystal display device, the pixels R and B are in a scattering state.
The back scattered light of the R light and B light transmitted through the R transmission R filter 15R and the B transmission B filter 15B respectively remains unchanged, and the forward scattered light is once reflected by the mirror 13 and is located in front of the reflective PD liquid crystal display device. It enters the observer's eyes and looks red and blue, respectively. Since the pixel G is in a transparent state, the external light 14 is specularly reflected by the mirror 13 and does not proceed in the front direction of the reflective PD liquid crystal display device, so that it looks almost black.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の反射型PD液晶表示装置の場合に、PD液晶
の裏面にミラー配する場合、透明状態にある部分(画
素)の照明光(外光)の正反射方向ではその正反射光が
目に入り、黒く見えずむしろ白黒反転して著しく視認性
を低下させてしまう。
However, in the case of such a conventional reflection type PD liquid crystal display device, when a mirror is arranged on the back surface of the PD liquid crystal, illumination light (external light) of a portion (pixel) in a transparent state is provided. In the specular reflection direction of (1), the specular reflection light enters the eyes, and does not look black, but rather reverses black and white, significantly lowering the visibility.

【0007】そこで、裏面に黒色部材を配してその透明
状態にある部分を黒表示部にすることが考えられるが、
散乱状態となっている部分はペーパーホワイトにならな
い。これは、前方散乱光がこの黒色部材で吸収されて観
察側へ戻らないため、灰色になるからである。
In view of this, it is conceivable to arrange a black member on the back surface and make the transparent portion a black display portion.
The portion in the scattering state does not become paper white. This is because the forward scattered light is absorbed by this black member and does not return to the observation side, so that it becomes gray.

【0008】本発明は従来技術のこのような問題点に鑑
みてなされたものであり、その目的は、明るく、広視野
で、視認性の良い反射型高分子分散型液晶表示装置を提
供することである。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a reflective polymer-dispersed liquid crystal display device that is bright, has a wide field of view, and has good visibility. It is.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の反射型高分子分散型液晶表示装置は、高分子分散型
液晶層の観察側とは反対側に再帰反射層を設けたことを
特徴とするものである。
According to a first aspect of the present invention, there is provided a reflective polymer-dispersed liquid crystal display device having a retroreflective layer provided on a side opposite to an observation side of a polymer-dispersed liquid crystal layer. It is a feature.

【0010】この場合に、再帰反射層として、微細な透
明ビーズを多数含有する塗料層あるいは微細な透明ビー
ズを多数含有するフィルム、コーナーキューブミラーあ
るいはコーナーキューブプリズムを並列させた構造のも
の等を用いることができる。
In this case, as the retroreflective layer, a paint layer containing a large number of fine transparent beads, a film containing a large number of fine transparent beads, a corner cube mirror or a structure in which corner cube prisms are arranged in parallel are used. be able to.

【0011】また、高分子分散型液晶層の観察側に、異
なる複数の色フィルターを周期的に配列してなるカラー
フィルターを配置してカラー反射型高分子分散型液晶表
示装置とすることができる。
A color reflection type polymer dispersion type liquid crystal display device can be obtained by disposing a color filter comprising a plurality of different color filters arranged periodically on the observation side of the polymer dispersion type liquid crystal layer. .

【0012】本発明においては、高分子分散型液晶層の
観察側とは反対側に再帰反射層を設けたので、透明状態
にある画素の照明光が正反射方向に反射して光が目に入
り、黒く見えずむしろ白黒反転して著しく視認性を低下
させてしまう問題が防止できると共に、明るく、コント
ラストが高く、色度が高く、広視野で視認性の良い反射
型高分子分散型液晶表示装置を可能にする。
In the present invention, since the retroreflective layer is provided on the side opposite to the observation side of the polymer-dispersed liquid crystal layer, the illumination light of the pixel in the transparent state is reflected in the regular reflection direction and the light is reflected on the eye. A reflective polymer-dispersed liquid crystal display that is bright, has high contrast, has high chromaticity, and has good visibility in a wide field of view. Enable the device.

【0013】[0013]

【発明の実施の形態】以下、本発明の反射型高分子分散
型液晶表示装置(以下、反射型PD液晶表示装置と呼
ぶ。)を実施例に基づいて説明する。図1は、本発明に
基づくモノクロの反射型PD液晶表示装置の実施例の概
略の構成を示す図である。ただし、画素電極、対向電極
は図示を省く。前記したような高分子分散型液晶(以
下、PD液晶と呼ぶ。)10は透明基板11と基板12
の間に挟持され、PD液晶10の観察側と反対側の基板
12表面には、従来のミラーに代わって本発明において
は再帰反射層20が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a reflective polymer dispersed liquid crystal display device (hereinafter referred to as a reflective PD liquid crystal display device) of the present invention will be described with reference to embodiments. FIG. 1 is a diagram showing a schematic configuration of an embodiment of a monochrome reflective PD liquid crystal display device according to the present invention. However, the pixel electrode and the counter electrode are not shown. The polymer-dispersed liquid crystal (hereinafter referred to as PD liquid crystal) 10 as described above includes a transparent substrate 11 and a substrate 12.
In the present invention, a retroreflective layer 20 is disposed on the surface of the substrate 12 opposite to the observation side of the PD liquid crystal 10 in place of the conventional mirror.

【0014】ここで、再帰反射層20とは、入射光をそ
の方向と略反対の方向へ反射させる(再帰反射させる)
特性を有するもので、この特性は入射光の方向によらに
ものである。再帰反射をするものに、微細な透明ビーズ
を多数含有する塗料、微細な透明ビーズを多数含有する
フィルムがある。微細な透明ビーズ21は、図3(a)
に示すように、入射光22を内部で反射させ、入射光2
2と略反対方向に進む光23として反射させる再帰反射
特性を有するものであり、このような微細な透明ビーズ
を多数含有する塗料又はフィルム(例えば、3M社製
ScotchLite)が再帰反射層20として用いら
れる。また、図3(b)に示すようなコーナーキューブ
ミラー24を並列させたものも再帰反射をする。コーナ
ーキューブミラー24は3つの反射面25、26、27
からなり、それらの反射面は相互に略90°の角度をな
すもので、微細な透明ビーズ21と同様に、入射光22
と略反対方向に進む光23として反射させる再帰反射特
性を有するものである。このようなコーナーキューブミ
ラー24を並列させたものを上記の再帰反射層20とし
て用いることができる。なお、反射面25、26、27
の間の透明媒質で埋めたコーナーキューブプリズムも同
様の再帰反射特性を有するので、このコーナーキューブ
プリズムを並列させたものも再帰反射層20として用い
ることができる。
The retroreflective layer 20 reflects incident light in a direction substantially opposite to that direction (retroreflects).
Characteristics, which are dependent on the direction of the incident light. As a material that performs retroreflection, there are a paint containing many fine transparent beads and a film containing many fine transparent beads. The fine transparent beads 21 are shown in FIG.
As shown in the figure, the incident light 22 is internally reflected, and the incident light 2
2 has a retroreflective property of reflecting as light 23 traveling in a direction substantially opposite to that of the paint 2 or a paint (for example, manufactured by 3M Company) containing a large number of such fine transparent beads.
ScotchLite) is used as the retroreflective layer 20. In addition, a parallel arrangement of corner cube mirrors 24 as shown in FIG. 3B also performs retroreflection. The corner cube mirror 24 has three reflecting surfaces 25, 26, 27
These reflecting surfaces form an angle of about 90 ° with each other, and like the fine transparent beads 21, the incident light 22.
It has a retroreflective characteristic of reflecting as light 23 traveling in a direction substantially opposite to the above. A parallel arrangement of such corner cube mirrors 24 can be used as the retroreflective layer 20 described above. The reflection surfaces 25, 26, 27
Since the corner cube prism filled with a transparent medium between them has the same retroreflection characteristics, a parallel arrangement of the corner cube prisms can also be used as the retroreflection layer 20.

【0015】図1に戻り、この反射型PD液晶表示装置
は代表的に3つの画素X,Y,Zからなるものとする。
いま、画素X,Zは電圧が印加されておらず、画素Yに
は電圧が印加されているとすると、画素X,Zは散乱状
態、画素Yは透明状態にあるので、適当な入射角で外光
(周囲の環境光)14がこの反射型PD液晶表示装置に
入射すると、画素X,Zは散乱状態にあるので、後方散
乱光はそのまま、前方散乱光は再帰反射層20で一旦再
帰反射されてこの反射型PD液晶表示装置の前方に位置
する観察者の目に入り略白く見える。画素Yは透明状態
であるので、外光14は再帰反射層20で外光14の入
射方向と反対方向にのみ再帰反射光16として反射さ
れ、外光14の入射方向以外の方向には反射されないの
で、略黒に見える。この場合、外光14は正反射方向A
へも反射されないので、従来のように透明状態にある画
素Yからその正反射方向Aに位置する観察者の目に反射
光が入り、その画素Yが黒く見えず白黒反転してしまう
現象は発生しない。したがって、どの方向から観察して
も十分にコントラストが高く、明るく、白黒反転のな
い、広視野で視認性の良いモノクロの反射型高分子分散
型液晶表示装置が実現できる。
Returning to FIG. 1, it is assumed that this reflective PD liquid crystal display device typically includes three pixels X, Y, and Z.
Now, assuming that no voltage is applied to the pixels X and Z and a voltage is applied to the pixel Y, the pixels X and Z are in the scattering state and the pixel Y is in the transparent state. When external light (ambient ambient light) 14 enters this reflective PD liquid crystal display device, the pixels X and Z are in a scattering state, so that the backward scattered light remains as it is and the forward scattered light is once retroreflected by the retroreflective layer 20. Then, the light enters the eyes of an observer located in front of the reflective PD liquid crystal display device and looks almost white. Since the pixel Y is in a transparent state, the external light 14 is reflected by the retroreflective layer 20 as the retroreflective light 16 only in the direction opposite to the incident direction of the external light 14, and is not reflected in directions other than the incident direction of the external light 14. So it looks almost black. In this case, the external light 14 has a regular reflection direction A
As a result, the reflected light enters the observer's eyes located in the regular reflection direction A from the pixel Y in the transparent state, and the pixel Y does not look black and is inverted in black and white as in the related art. do not do. Therefore, it is possible to realize a monochrome reflective polymer dispersed liquid crystal display device having a sufficiently high contrast, a high brightness, no black-and-white inversion, and a wide field of view and good visibility even when viewed from any direction.

【0016】この場合、外光14の入射方向と反対の方
向へ透明画素Yからの反射光16が進むが、反射型液晶
表示装置の観察者は、外光14の入射方向からは観察す
ることはほとんどないので、この反射光16は問題にな
らない。
In this case, the reflected light 16 from the transparent pixel Y travels in a direction opposite to the incident direction of the external light 14, but the observer of the reflective liquid crystal display device must observe from the incident direction of the external light 14. The reflected light 16 is not a problem because there is almost no reflection light.

【0017】図2は、本発明に基づくカラーの反射型P
D液晶表示装置の概略の構成を示す図である。この場合
も、画素電極、対向電極は図示を省く。この構成は、基
本的に図1のPD液晶10の観察側の透明基板11表面
に、R(赤色)透過Rフィルター15R、G(緑色)透
過Gフィルター15G、B(青色)透過Bフィルター1
5Bのアレーからなるカラーフィルター15を配置した
もので、この場合も代表的に3つの画素R,G,Bから
なるものとする。いま、画素R,Bは電圧が印加されて
おらず、画素Gには電圧が印加されているとすると、画
素R,Bは散乱状態、画素Gは透明状態にあるので、適
当な入射角で外光(周囲の環境光)14がこのカラー反
射型PD液晶表示装置に入射すると、画素R,Bは散乱
状態にあるため、それぞれR透過Rフィルター15R、
B透過Bフィルター15Bを透過したR光、B光の後方
散乱光はそのまま、前方散乱光は再帰反射層20で一旦
再帰反射されてこの反射型PD液晶表示装置の前方に位
置する観察者の目に入り、それぞれ赤色、青色に見え
る。画素Gは透明状態であるので、外光14は再帰反射
層20で外光14の入射方向と反対方向にのみ再帰反射
光16として反射され、外光14の入射方向以外の方向
には反射されないので、略黒に見える。
FIG. 2 shows a color reflective P according to the present invention.
It is a figure which shows the schematic structure of a D liquid crystal display device. Also in this case, the pixel electrode and the counter electrode are not shown. This configuration basically includes an R (red) transmission R filter 15R, a G (green) transmission G filter 15G, and a B (blue) transmission B filter 1 on the surface of the transparent substrate 11 on the observation side of the PD liquid crystal 10 in FIG.
A color filter 15 composed of a 5B array is arranged. In this case, it is also assumed that the color filter 15 typically includes three pixels R, G, and B. Now, assuming that no voltage is applied to the pixels R and B and a voltage is applied to the pixel G, the pixels R and B are in the scattering state and the pixel G is in the transparent state. When external light (ambient ambient light) 14 enters this color reflection type PD liquid crystal display device, the pixels R and B are in a scattering state, and therefore, the R transmission R filter 15R,
The back scattered light of the R light and the B light transmitted through the B transmission B filter 15B remains unchanged, while the forward scattered light is once retroreflected by the retroreflection layer 20, and the eyes of an observer located in front of the reflective PD liquid crystal display device. And looks red and blue respectively. Since the pixel G is in a transparent state, the external light 14 is reflected by the retroreflective layer 20 only as a retroreflective light 16 in a direction opposite to the incident direction of the external light 14 and is not reflected in a direction other than the incident direction of the external light 14. So it looks almost black.

【0018】このカラーのの反射型PD液晶表示装置の
場合も、外光14は正反射方向Aへも反射されないの
で、従来のように透明状態にある画素Yからその正反射
方向Aに位置する観察者の目に反射光が入り、その画素
Yが黒く見えず白黒反転してしまう現象は発生しない。
したがって、どの方向から観察しても十分にコントラス
トが高く、明るく、色度が高く、白黒反転のない、広視
野で視認性の良いカラーの反射型高分子分散型液晶表示
装置が実現できる。
Also in the case of this color reflective PD liquid crystal display device, since the external light 14 is not reflected in the regular reflection direction A, it is located in the regular reflection direction A from the pixel Y in a transparent state as in the prior art. The phenomenon that the reflected light enters the observer's eyes and the pixel Y does not look black and is inverted between black and white does not occur.
Therefore, it is possible to realize a color reflective polymer dispersed liquid crystal display device which has a sufficiently high contrast, is bright, has high chromaticity, has no black-and-white reversal, has a wide field of view, and has good visibility even when viewed from any direction.

【0019】以上、本発明の反射型高分子分散型液晶表
示装置を実施例に基づいて説明してきたが、本発明はこ
れら実施例に限定されず種々の変形が可能である。例え
ば、図1、図2の構成において、基板12を透明基板と
し、再帰反射層20をその観察側と反対側に配置するよ
うにしてもよい。
Although the reflection type polymer dispersed liquid crystal display device of the present invention has been described based on the embodiments, the present invention is not limited to these embodiments, and various modifications can be made. For example, in the configuration of FIGS. 1 and 2, the substrate 12 may be a transparent substrate, and the retroreflective layer 20 may be disposed on the side opposite to the observation side.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
の反射型高分子分散型液晶表示装置によると、高分子分
散型液晶層の観察側とは反対側に再帰反射層を設けたの
で、透明状態にある画素の照明光が正反射方向に反射し
て光が目に入り、黒く見えずむしろ白黒反転して著しく
視認性を低下させてしまう問題が防止できると共に、明
るく、コントラストが高く、色度が高く、広視野で視認
性の良い反射型高分子分散型液晶表示装置を可能にす
る。
As is apparent from the above description, according to the reflective polymer dispersed liquid crystal display device of the present invention, the retroreflective layer is provided on the polymer dispersed liquid crystal layer on the side opposite to the observation side. It is possible to prevent the problem that the illumination light of the pixel in the transparent state is reflected in the specular reflection direction and the light enters the eyes, and does not look black, but rather inverts black and white and significantly lowers the visibility, and is bright and has high contrast. And a reflective polymer dispersed liquid crystal display device having high chromaticity and good visibility in a wide field of view.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づくモノクロ反射型高分子分散型液
晶表示装置の実施例の概略の構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a monochrome reflective polymer dispersed liquid crystal display device according to the present invention.

【図2】本発明に基づくカラー反射型高分子分散型液晶
表示装置の概略の構成を示す。
FIG. 2 shows a schematic configuration of a color reflective polymer dispersed liquid crystal display device according to the present invention.

【図3】本発明で用いる再帰反射層の代表的構成を説明
するための図である。
FIG. 3 is a diagram illustrating a typical configuration of a retroreflective layer used in the present invention.

【図4】高分子分散型液晶の原理を説明するための図で
ある。
FIG. 4 is a diagram for explaining the principle of a polymer-dispersed liquid crystal.

【図5】従来のモノクロ反射型高分子分散型液晶表示装
置の概略の構成を示す図である。
FIG. 5 is a diagram showing a schematic configuration of a conventional monochrome reflective polymer dispersed liquid crystal display device.

【図6】従来のカラー反射型高分子分散型液晶表示装置
の概略の構成を示す図である。
FIG. 6 is a diagram showing a schematic configuration of a conventional color reflection type polymer dispersion type liquid crystal display device.

【符号の説明】[Explanation of symbols]

1…液晶 2…高分子マトリックス 3…電源 4…透明電極 5…入射光 6…前方散乱光 7…後方散乱光 8…直進光 10…PD液晶(高分子分散型液晶) 11…観察側透明基板 12…基板 14…外光(周囲の環境光) 15…カラーフィルター 15R…R透過Rフィルター 15G…G透過Gフィルター 15B…B透過Rフィルター 16…再帰反射光 20…再帰反射層 21…透明ビーズ 22…入射光 23…再帰反射光 24…コーナーキューブミラー 25、26、27…反射面 A…外光の正反射方向 R,G,B,X,Y,Z…画素 DESCRIPTION OF SYMBOLS 1 ... Liquid crystal 2 ... Polymer matrix 3 ... Power supply 4 ... Transparent electrode 5 ... Incident light 6 ... Forward scattered light 7 ... Back scattered light 8 ... Straight light 10 ... PD liquid crystal (polymer dispersed liquid crystal) 11 ... Observation side transparent substrate DESCRIPTION OF SYMBOLS 12 ... Substrate 14 ... External light (surrounding ambient light) 15 ... Color filter 15R ... R transmission R filter 15G ... G transmission G filter 15B ... B transmission R filter 16 ... Retroreflection light 20 ... Retroreflection layer 21 ... Transparent beads 22 ... incident light 23 ... retroreflected light 24 ... corner cube mirror 25,26,27 ... reflective surface A ... specular reflection direction of external light R, G, B, X, Y, Z ... pixel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子分散型液晶層の観察側とは反対側
に再帰反射層を設けたことを特徴とする反射型高分子分
散型液晶表示装置。
1. A reflective polymer-dispersed liquid crystal display device comprising a retroreflective layer provided on the opposite side of the polymer-dispersed liquid crystal layer from the observation side.
【請求項2】 請求項1において、前記再帰反射層が、
微細な透明ビーズを多数含有する塗料層あるいは微細な
透明ビーズを多数含有するフィルムからなることを特徴
とする反射型高分子分散型液晶表示装置。
2. The method according to claim 1, wherein the retroreflective layer comprises:
A reflective polymer-dispersed liquid crystal display device comprising a paint layer containing a large number of fine transparent beads or a film containing a large number of fine transparent beads.
【請求項3】 請求項1において、前記再帰反射層が、
コーナーキューブミラーあるいはコーナーキューブプリ
ズムを並列させた構造のものであることを特徴とする反
射型高分子分散型液晶表示装置。
3. The method according to claim 1, wherein the retroreflective layer comprises:
A reflective polymer dispersed liquid crystal display device having a structure in which a corner cube mirror or a corner cube prism is arranged in parallel.
【請求項4】 請求項1から3の何れか1項において、
前記高分子分散型液晶層の観察側に、異なる複数の色フ
ィルターを周期的に配列してなるカラーフィルターが配
置されていることを特徴とする反射型高分子分散型液晶
表示装置。
4. In any one of claims 1 to 3,
A reflective polymer-dispersed liquid crystal display device, wherein a color filter in which a plurality of different color filters are periodically arranged is arranged on the observation side of the polymer-dispersed liquid crystal layer.
JP10181995A 1998-06-29 1998-06-29 Reflection type polymer-dispersed liquid crystal display device Pending JP2000019490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10181995A JP2000019490A (en) 1998-06-29 1998-06-29 Reflection type polymer-dispersed liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10181995A JP2000019490A (en) 1998-06-29 1998-06-29 Reflection type polymer-dispersed liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2000019490A true JP2000019490A (en) 2000-01-21
JP2000019490A5 JP2000019490A5 (en) 2005-10-13

Family

ID=16110492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10181995A Pending JP2000019490A (en) 1998-06-29 1998-06-29 Reflection type polymer-dispersed liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2000019490A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107519A (en) * 2000-03-31 2002-04-10 Sharp Corp Reflection type display unit, retroreflector
JP2002198184A (en) * 2000-10-18 2002-07-12 Sharp Corp Light-emitting display element
US6788366B2 (en) 2001-12-26 2004-09-07 Sharp Kabushiki Kaisha Display device including corner cube array
US6819507B2 (en) 2001-02-20 2004-11-16 Sharp Kabushiki Kaisha Optical element like corner cube retroreflector and reflective display device including such an optical element
US7045278B2 (en) 2002-06-27 2006-05-16 Sharp Kabushiki Kaisha Corner cube array and method of making the corner cube array
US7098137B2 (en) 2001-12-13 2006-08-29 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array, and display device
US7098976B2 (en) 2001-06-15 2006-08-29 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array and reflective type display device
US7216992B2 (en) 2005-02-01 2007-05-15 Sharp Kabushiki Kaisha Reflective display device
US7220008B2 (en) 2005-02-17 2007-05-22 Sharp Kabushiki Kaisha Reflective display device
JP2007171647A (en) * 2005-12-22 2007-07-05 Fujifilm Corp Filter with black matrix and liquid crystal display device
US7522243B2 (en) 2002-03-01 2009-04-21 Sharp Kabushiki Kaisha Display device and method for fabricating the display device
US7952661B2 (en) 2006-08-31 2011-05-31 Sharp Kabushiki Kaisha Reflection type display device and its manufacturing method
US8040473B2 (en) 2005-12-21 2011-10-18 Fujifilm Corporation Multilayer black-matrix-equipped filter and liquid crystal display
JP2012026157A (en) * 2010-07-23 2012-02-09 Taisei Corp Reflector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107519A (en) * 2000-03-31 2002-04-10 Sharp Corp Reflection type display unit, retroreflector
JP2002198184A (en) * 2000-10-18 2002-07-12 Sharp Corp Light-emitting display element
US6819507B2 (en) 2001-02-20 2004-11-16 Sharp Kabushiki Kaisha Optical element like corner cube retroreflector and reflective display device including such an optical element
US7098976B2 (en) 2001-06-15 2006-08-29 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array and reflective type display device
US7518676B2 (en) 2001-06-15 2009-04-14 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array and reflective type display device
US7360907B2 (en) 2001-12-13 2008-04-22 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array, and display device
US7098137B2 (en) 2001-12-13 2006-08-29 Sharp Kabushiki Kaisha Micro corner cube array, method of making the micro corner cube array, and display device
US6788366B2 (en) 2001-12-26 2004-09-07 Sharp Kabushiki Kaisha Display device including corner cube array
US7522243B2 (en) 2002-03-01 2009-04-21 Sharp Kabushiki Kaisha Display device and method for fabricating the display device
US7045278B2 (en) 2002-06-27 2006-05-16 Sharp Kabushiki Kaisha Corner cube array and method of making the corner cube array
US7216992B2 (en) 2005-02-01 2007-05-15 Sharp Kabushiki Kaisha Reflective display device
US7220008B2 (en) 2005-02-17 2007-05-22 Sharp Kabushiki Kaisha Reflective display device
US8040473B2 (en) 2005-12-21 2011-10-18 Fujifilm Corporation Multilayer black-matrix-equipped filter and liquid crystal display
JP2007171647A (en) * 2005-12-22 2007-07-05 Fujifilm Corp Filter with black matrix and liquid crystal display device
US7952661B2 (en) 2006-08-31 2011-05-31 Sharp Kabushiki Kaisha Reflection type display device and its manufacturing method
JP2012026157A (en) * 2010-07-23 2012-02-09 Taisei Corp Reflector

Similar Documents

Publication Publication Date Title
KR101135868B1 (en) Mirror with built-in display
EP0886169B1 (en) Reflective liquid crystal display device
JP3575024B2 (en) Reflective color liquid crystal device and electronic equipment using the same
US6317180B1 (en) Liquid crystal device and electronic apparatus using the same having two absorptive polarizers, a reflective polarizer, and a backlight
US20020176036A1 (en) Liquid crystal display device
US7564518B2 (en) Reflective cholesteric displays employing circular polarizers with the polarity of the front polarizer opposite to both the back polarizer and the bragg reflection
JP3776039B2 (en) Display device having corner cube array
JP3337028B2 (en) Liquid crystal devices and electronic equipment
KR100302279B1 (en) Liquid crystal display device
JP2000019490A (en) Reflection type polymer-dispersed liquid crystal display device
JPH04212124A (en) Display
JP3345772B2 (en) Liquid crystal devices and electronic equipment
JP2000019490A5 (en)
JP2846104B2 (en) Display device
JP4507223B2 (en) Color display device
JP3389924B2 (en) Liquid crystal devices and electronic equipment
JP4123294B2 (en) Liquid crystal display
JP3337029B2 (en) Liquid crystal devices and electronic equipment
JP2840126B2 (en) Display device
JPH06258627A (en) Liquid crystal display device
JP2001108983A (en) Reflection liquid crystal display device and translucent reflection liquid crystal display device
JPH11109341A (en) Liquid crystal display device
JP2003140143A (en) Liquid crystal device and electronic appliance
JP2000330100A (en) Liquid crystal device and electronic apparatus
JP2005141267A (en) Liquid crystal display device and method of manufacturing liquid crystal display

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071121