JP2000018167A - Pump starter controller of water supply system - Google Patents

Pump starter controller of water supply system

Info

Publication number
JP2000018167A
JP2000018167A JP10188976A JP18897698A JP2000018167A JP 2000018167 A JP2000018167 A JP 2000018167A JP 10188976 A JP10188976 A JP 10188976A JP 18897698 A JP18897698 A JP 18897698A JP 2000018167 A JP2000018167 A JP 2000018167A
Authority
JP
Japan
Prior art keywords
pressure
pump
water
pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10188976A
Other languages
Japanese (ja)
Inventor
Tetsuya Ito
徹也 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teral Kyokuto Inc
Original Assignee
Teral Kyokuto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teral Kyokuto Inc filed Critical Teral Kyokuto Inc
Priority to JP10188976A priority Critical patent/JP2000018167A/en
Publication of JP2000018167A publication Critical patent/JP2000018167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce pressure fluctuation by shortening the time from the start of supplying a large amount of water until there is a steady water supply when operation of the pump is stopped. SOLUTION: In addition to a conventional method for starting the pump when the pressure within the piping decreases to the pump starting pressure, the pressure within the piping is measured at a predetermined cycle using a time count function within the controller and a pressure detected by the pressure detector when the pump is stopped. When the pressure change ratio becomes equal to or greater than a predetermined value, the signal for starting the pump is sent from the processing section of the controller to the motor of the pump even when the pressure within the discharge pipe has not decreased to the pump starting pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、集合住宅やビル
等に給水する、可変速ポンプを使用した給水装置のポン
プ始動制御の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in pump start control of a water supply device using a variable speed pump for supplying water to an apartment house or a building.

【0002】[0002]

【従来の技術】従来、給水装置はポンプとこのポンプを
駆動するモータ、ポンプに接続された吸込み配管と吐出
配管、吐出配管に接続された圧力タンク、圧力検出器及
び該圧力検出器からの信号によりポンプの運転、停止、
運転回転数を制御する制御装置とから構成され、受水槽
又は配水管からの水を需要先に加圧給水するようになっ
ている。ポンプの停止中に水を使用開始した時には、配
管内の圧力がポンプ始動圧力まで低下したことを検知し
て、ポンプを始動するようにしていた。
2. Description of the Related Art Conventionally, a water supply device has a pump, a motor for driving the pump, a suction pipe and a discharge pipe connected to the pump, a pressure tank connected to the discharge pipe, a pressure detector, and a signal from the pressure detector. Start, stop,
And a control device for controlling the number of operating revolutions, and pressurizes and supplies water from a water receiving tank or a water distribution pipe to a demand destination. When water is started to be used while the pump is stopped, the pump is started upon detecting that the pressure in the pipe has decreased to the pump starting pressure.

【0003】[0003]

【発明が解決しようとする課題】この場合、使用開始時
の流量が多いと、使用開始から、ポンプを始動して安定
して供給できるようになるまでの圧力変動が大きく、安
定するまでの時間も長くなっていた。
In this case, if the flow rate at the start of use is large, the pressure fluctuation from the start of use to the point at which the pump can be started to be able to supply the fuel stably is large, and the time required for the pressure to stabilize is large. Was also getting longer.

【0004】[0004]

【課題を解決するための手段】このような給水装置で
は、ポンプの停止中に大量の水を使用開始した時には、
できるだけ早くポンプを始動すれば、水の安定供給まで
の時間短縮及び圧力変動の軽減が可能になる。この発明
は、配管内の圧力がポンプ始動圧力まで低下した時にポ
ンプを始動する従来の方法に加えて、ポンプ停止中に制
御装置内の計時機能と圧力検出器の検出圧力を使用し、
定められた周期で配管内の圧力を測定し、圧力変化率が
予め定められた値以上になった時には、吐出管内の圧力
がポンプ始動圧力まで低下していなくても、ポンプを始
動する信号を制御装置の処理部からポンプのモータに送
るようにしている。
In such a water supply device, when a large amount of water starts to be used while the pump is stopped,
If the pump is started as soon as possible, it is possible to shorten the time until a stable supply of water and reduce pressure fluctuations. The present invention uses the timekeeping function in the control device and the detected pressure of the pressure detector while the pump is stopped, in addition to the conventional method of starting the pump when the pressure in the pipe drops to the pump starting pressure,
The pressure in the pipe is measured at a predetermined cycle, and when the pressure change rate becomes equal to or more than a predetermined value, a signal for starting the pump is output even if the pressure in the discharge pipe does not decrease to the pump starting pressure. The processing section of the control device sends the data to the pump motor.

【0005】[0005]

【作用】この発明の給水装置のポンプ始動制御装置の説
明に入る前に、従来の給水装置の構成を図2に、その動
作を図3で説明する。図2において、給水装置1は吸込
み配管2からの水をポンプ3に送り、モータ4により駆
動される。少流量検出装置5、逆止弁6、圧力タンク
7、圧力検出器8等を備えた吐出配管9がポンプ3に備
えられ、配管内の流量、圧力等の検出値を制御装置10
の演算部10aに送る。演算部10aは少流量検出装置
5、圧力検出器8からの信号によりポンプの運転停止、
運転回転数などの信号を駆動部10bに出力し、給水装
置1の運転を制御する。給水装置1は制御装置10から
の指令に従い、需要先11へ受水槽12の水を供給す
る。
Before the description of the pump start control device of the water supply apparatus of the present invention, the configuration of a conventional water supply apparatus will be described with reference to FIG. 2 and its operation will be described with reference to FIG. In FIG. 2, a water supply device 1 sends water from a suction pipe 2 to a pump 3 and is driven by a motor 4. The pump 3 is provided with a discharge pipe 9 provided with a low flow rate detecting device 5, a check valve 6, a pressure tank 7, a pressure detector 8, and the like, and controls a detected value of a flow rate, a pressure, and the like in the pipe.
To the calculation unit 10a. The operation unit 10a stops the operation of the pump based on signals from the low flow rate detection device 5 and the pressure detector 8,
A signal such as the operating rotation speed is output to the drive unit 10b to control the operation of the water supply device 1. The water supply device 1 supplies water in the water receiving tank 12 to the demand destination 11 according to a command from the control device 10.

【0006】図3はポンプの圧力−流量曲線を示すグラ
フで、その横軸はポンプの吐出流量を、縦軸は吐出管内
の圧力を示す。hmin は受水槽の水面又は吸込み配管内
の圧力を水頭に換算した値と需要先の最高点の高さの差
に、需要先最高点にある給水器具の必要圧力を加えた値
である。hmax は最大給水量を送水するのに必要なポン
プの吐出圧力である。曲線aは吐出配管以降の管路抵抗
曲線を示し、曲線bは流量0の時の圧力がhmin となる
回転数Nmin の、曲線cは最高回転数Nmax の時のそれ
ぞれ吐出流量と圧力の関係を示した曲線である。hon
ポンプの始動時の、hoff はポンプ停止時の吐出管内圧
力をそれぞれ示す。
FIG. 3 is a graph showing a pressure-flow rate curve of the pump. The horizontal axis indicates the discharge flow rate of the pump, and the vertical axis indicates the pressure in the discharge pipe. h min is a value obtained by adding the required pressure of the water supply device at the highest point of the demand to the difference between the value obtained by converting the pressure in the water surface of the receiving tank or the pressure in the suction pipe into the water head and the height of the highest point of the demand. h max is the discharge pressure of the pump required to deliver the maximum water supply. Curve a shows a pipeline resistance curve after the discharge pipe, curve b shows the rotation speed N min at which the pressure at the time of flow rate 0 is h min, and curve c shows the discharge flow rate and the pressure at the maximum rotation speed N max. 3 is a curve showing the relationship. h on indicates the pressure in the discharge pipe when the pump is started, and h off indicates the pressure in the discharge pipe when the pump is stopped.

【0007】定速運転を行っている状態の給水装置の使
用水量が変化した場合の動作は次のようになる。今、ポ
ンプは回転数N0 で、吐出流量Q0 、吐出管内の圧力を
0に保つように運転しているものとする(運転点
0 )。給水量がQ0 からQ1 に増加した場合、吐出圧
力はh′0 まで低下し、運転点は同P′0 に移る。この
圧力は圧力検出器8から演算部10aに伝えられ、演算
部10aは吐出管内9の圧力を、この流量の送水に必要
な管内圧力h1 まで増加するように、ポンプ回転数増速
指令を駆動部10bに発する。その結果ポンプはN1
転まで増速し、必要な給水量Q1 を供給するのに必要な
給水圧h1 で運転する(運転点P1 )。
[0007] The operation of the water supply device in the state where the constant-speed operation is performed when the used water amount changes is as follows. Now, it is assumed that the pump is operating at the rotation speed N 0 to maintain the discharge flow rate Q 0 and the pressure in the discharge pipe at h 0 (operating point P 0 ). If the water supply is increased from Q 0 to Q 1, discharge pressure 'drops to 0, the operating point the P' h goes to zero. This pressure is transmitted to the arithmetic unit 10a from the pressure detector 8, an arithmetic unit 10a is the pressure in the discharge tube 9, so as to increase to pipe pressure h 1 required for water in the flow rate, the pump speed acceleration command Emitted to the drive unit 10b. As a result the pump Hayashi increased until N 1 rotates, operated at supply pressure h 1 required to supply the water quantity Q 1 required (operating point P 1).

【0008】給水量がQ0 からQ2 に減少した場合、吐
出圧力はh″0 まで上昇し、運転点は同P″0 点に移
る。この圧力は圧力検出器8から演算部10aに伝えら
れ、演算部10aは吐出配管内9の圧力を、この流量の
送水に必要な管内圧力h2 まで減少するように、ポンプ
回転数減速指令を処理部10bに発する。その結果ポン
プはN2 回転まで減速し、必要な給水量Q2 を供給する
のに必要な給水圧h2 で運転する(運転点P2 )。
When the amount of supplied water decreases from Q 0 to Q 2 , the discharge pressure increases to h ″ 0 , and the operating point shifts to the P ″ 0 point. This pressure is transmitted to the arithmetic unit 10a from the pressure detector 8, an arithmetic unit 10a is the pressure in the discharge pipe 9, so as to reduce to a pressure within the pipe h 2 required for water in the flow rate, the pump speed deceleration instruction Emitted to the processing unit 10b. As a result the pump is slowed to N 2 rotates, it operates at supply pressure h 2 required to supply the water quantity Q 2 required (operating point P 2).

【0009】次にポンプ始動時の作用を説明する。需要
先11で水の使用を開始した時、その直後は圧力タンク
7に蓄積されていた水が供給されるが、同時に圧力タン
ク7吐出配管9内の圧力が下がる。吐出配管9内圧力が
始動圧力hon以下に下がるとポンプ3が始動する。ポン
プ3が始動し、回転数がNmin まで上昇した後は、運転
中の回転数、吐出配管9内の圧力等の信号が制御装置1
0の演算部10aに送られ、演算部10aで目標圧力を
演算し、この目標値に吐出配管9内の圧力が一致するよ
うポンプ回転数を調節し、一致する回転数に到達した時
点で定速運転に入る。
Next, the operation at the time of starting the pump will be described. When the use of water is started at the demand destination 11, immediately after that, the water stored in the pressure tank 7 is supplied, but at the same time, the pressure in the discharge pipe 9 of the pressure tank 7 decreases. When the pressure in the discharge pipe 9 falls below starting pressure h on the pump 3 is started. After the pump 3 starts and the number of rotations increases to N min , signals such as the number of rotations during operation and the pressure in the discharge pipe 9 are transmitted to the control device 1.
The target pressure is calculated by the arithmetic unit 10a, the target pressure is calculated by the arithmetic unit 10a, and the pump speed is adjusted so that the pressure in the discharge pipe 9 matches the target value. Enter fast driving.

【0010】水の使い始めには圧力変動があるが、安定
するまでの時間及びその間の圧力変動状態は使い始めの
量による。流量が比較的少ない10リットル/分程度で
使用された場合の状況を図4及び図5で説明する。時刻
1 で水を使用し始めると、hoff に保たれていた配管
内圧力は徐々に低下し、ポンプ始動圧力honまで低下す
るとポンプが始動される。ポンプは回転数Nmin 以上に
ならないと送水できないので、始動からNmin 回転に達
するまでの時間Tsの間は圧力は降下し続け、ポンプが
回転数Nmin を越えると圧力は徐々に高くなってくる。
この時の最低圧力をhJoとする。ポンプがNmin 回転に
達した時から、その時のポンプ回転数における目標圧力
(配管抵抗曲線とその回転数の時のポンプの特性曲線の
交点の圧力、回転数Nmin の時はhmin )と管内圧力h
Joの差に応じた回転数の増加量△NJ1を演算し、Nmin
に加算して次の目標回転数NJ1とその回転数に達した時
の目標圧力hJ1を定め、変速を開始する。
[0010] There is a pressure fluctuation at the beginning of use of water, but the time until stabilization and the state of pressure fluctuation during that time depend on the amount of water used. The situation when the flow rate is relatively low and is used at about 10 liters / minute will be described with reference to FIGS. When you start using the water at time T 1, pipe pressure was maintained at h off gradually decreases, the pump is started drops to the pump starting pressure h on. Since the pump cannot supply water until the rotation speed reaches Nmin or more, the pressure continues to drop during the time Ts from the start to reach the Nmin rotation, and the pressure gradually increases when the pump exceeds the rotation speed Nmin. come.
The minimum pressure at this time is defined as h Jo . From the time the pump has reached N min rotation, the target pressure at the pump speed at that time (the pipe resistance curve pressure at the intersection of the characteristic curve of the pump when the number of revolutions, when the rotational speed N min is h min) and Pipe pressure h
Calculate the increase amount of rotation speed 数 N J1 according to the difference of Jo , and calculate N min
To determine the next target rotation speed N J1 and the target pressure h J1 when the rotation speed is reached, and start shifting.

【0011】回転数がNJ1に達した時の目標圧力はhJ1
であるが、使用流量はQ1 であるので、実際の管内圧力
はhJ1より高いhJ'1 になる。従ってhJ1とhJ'1 との
差に応じた回転数△NJ2を減算した値NJ2回転、圧力h
J2を目標に変速を開始する。このような行程を繰り返し
て、ポンプ回転数はQJ とaとの交点J3 を通る性能で
あるNJ3に収束していく。水の使用を開始して回転数が
J3に収束するまでの時間は図5のTJ であり、ポンプ
が始動してからの圧力変動は△hJ である。
The target pressure when the rotational speed reaches N J1 is h J1
Although, since the working flow is Q 1, the actual pipe pressure becomes higher h J'1 than h J1. Therefore, a value N J2 obtained by subtracting the rotation speed △ N J2 according to the difference between h J1 and h J′1, and the pressure h
Start shifting with J2 as the target. By repeating such a stroke, the pump rotational speed converges to N J3 , which is the performance passing through the intersection J 3 between Q J and a. The time from the start of using water until the rotation speed converges to N J3 is T J in FIG. 5, and the pressure fluctuation after the pump starts is Δh J.

【0012】次に上記説明の場合より多い30リットル
/分程度の水を使用した時の現象を図6、図7で説明す
る。時刻T1 で水を使用し始めると、hoff に保たれて
いた配管内圧力は急激に低下し、ポンプ始動圧力hon
で低下するとポンプが始動される。ポンプは回転数N
min 以上にならないと送水できないので、始動からNmi
n 回転に達するまでの時間Tsの間は圧力は降下し続
け、ポンプが回転数Nminを越えると圧力は徐々に高く
なってくる。この時の最低圧力をhMoとするが、配管内
の圧力降下は急激なために、hMoは実揚程hgeod付近ま
で低下している。ポンプがNmin 回転に達した時から、
その時のポンプ回転数における目標圧力(配管抵抗曲線
とその回転数の時のポンプの特性曲線の交点の圧力、回
転数Nmin の時はhmin )と管内圧力hMoの差に応じた
回転数の増加量△NM1を演算し、Nmi n に加算して次の
目標回転数NM1とその回転数に達した時の目標圧力hM1
を定め、変速を開始する。
Next, the phenomenon when more water of about 30 liters / minute is used than in the case described above will be described with reference to FIGS. When you start using the water at time T 1, pipe pressure was maintained at h off drops sharply, the pump is started drops to the pump starting pressure h on. Pump speed N
can not be water and not more than min, N mi from the start
The pressure during the time Ts required to reach the n rotation continues to drop, the pump pressure exceeds the rotational speed N min are coming gradually increased. The minimum pressure at this time is defined as h Mo , but since the pressure drop in the pipe is sharp, h Mo has decreased to near the actual head h geod . From when the pump reaches N min revolutions,
Target pressure (pipe resistance curve intersection pressure characteristic curve of the pump at the time of the rotational speed, h min when the rotational speed N min) in the pump rotational speed when the rotational speed corresponding to the difference between the pipe pressure h Mo increment △ n M1 calculates the, n mi and added to n and the target pressure when it reaches its speed and the next target speed n M1 h M1
And start shifting.

【0013】この後の経過は、10リットル/分程度で
水を使用し始めた時と同様の行程を繰り返し、ポンプ回
転数はQM とaとの交点M4 を通る性能であるNM4に収
束する。水の使用を開始して回転数がNM4に収束するま
での時間は図7のTM であり、ポンプが始動してからの
圧力変動は△hM である。
The subsequent process repeats the same process as when water is started to be used at about 10 liters / minute, and the pump speed is reduced to N M4 , which is the performance passing through the intersection M 4 between Q M and a. Converge. The time from the start of using water until the rotation speed converges to NM4 is T M in FIG. 7, and the pressure fluctuation after the pump starts is Δh M.

【0014】TJ とTM 、△hJ と△hM とを比較する
と、TJ <TM 、△hJ <△hM である。このように、
従来の給水装置は、使用開始時の流量が多いと、使用開
始から安定して供給できるようになるまでの圧力変動が
大きく、時間も長くなるという問題があった。
Comparing T J and T M , Δh J and Δh M , T J <T M and Δh J <Δh M. in this way,
The conventional water supply apparatus has a problem that if the flow rate at the start of use is large, the pressure fluctuation from the start of use to stable supply becomes large, and the time becomes long.

【0015】次に、この発明による給水装置のポンプ始
動制御装置の説明に入る。需要先で水を使用した場合の
給水装置の圧力検出器設置部分の配管内圧力と時間との
関係を図8、図9で説明する。図9において、横軸は時
間を、ti は配管内圧力のサンプリング時刻を表し、サ
ンプリング間隔は配管内の圧力の変動速度に追従できる
値△tに設定してある。演算部では圧力のサンプリング
毎に圧力変化率(hi- 1 −hi )/△tの値を計算して
いる。縦軸は配管内の圧力を表し、hoff 、h On、h
min 、hgeodは図3と同様である。
Next, the pump of the water supply apparatus according to the present invention is started.
The description of the dynamic control device will begin. When water is used at the destination
The time between the pressure in the piping and the time
The relationship will be described with reference to FIGS. In FIG. 9, the horizontal axis represents time
Between, tiIndicates the sampling time of piping pressure, and
The sampling interval can follow the fluctuation speed of the pressure in the piping
The value is set to Δt. Sampling of pressure in the calculation unit
Pressure change rate (hi- 1-Hi) / △ t
I have. The vertical axis represents the pressure in the pipe, hoff, H On, H
min, HgeodIs similar to FIG.

【0016】ポンプ停止中、時刻ti-3 とti-2 との間
で、配管内の圧力低下率が予め設定された値以上になる
流量Q1 (上記の流量が多い場合の説明と比較可能なよ
うに、30リットル/分程度とする)で水が使用され始
めたと仮定する。時刻ti で吐出配管9内の圧力を測定
し、圧力変化率を計算した時点で、時刻ti-1 とti
の間の変化率が、予め設定してある値より大きいことが
判明している。それにより、演算部はポンプの始動指令
を出し、ポンプは運転を開始する。水を使用し始めてポ
ンプを始動するまでの時間は、配管内圧力がポンプ始動
圧力まで下がった後に始動する場合より短い。従って配
管内最低圧力も図9のhi −honだけ高い。この場合の
最低圧力をhi0とすると、ポンプ回転数がNmin 回転に
達した後はhK0とhmin の差に応じた目標回転数、圧力
を演算して回転数制御を開始し、前に説明した経過を経
て運転点がK3 になるように収束していく。hi0とh
minの差は配管内圧力がポンプの始動圧力まで低下して
ポンプを始動した場合よりも少ないので、回転数の変更
幅が少なく、回転数の変更に要する時間が短く、圧力変
動も少なくなる。
While the pump is stopped, between the times t i-3 and t i-2 , the flow rate Q 1 at which the pressure drop rate in the pipe becomes equal to or higher than a predetermined value (see the description of the case where the flow rate is large) At about 30 liters / minute for comparison purposes). The pressure in the discharge pipe 9 at time t i measured at the time of calculating the rate of pressure change, the change rate between time t i-1 and t i is found to be greater than the set in advance value are doing. As a result, the calculation unit issues a pump start command, and the pump starts operating. The time from the start of using water to the start of the pump is shorter than the case where the pump is started after the pressure in the piping has decreased to the pump start pressure. Accordingly pipe minimum pressure is high only h i -h on the FIG. Assuming that the minimum pressure in this case is h i0 , after the pump rotation speed reaches N min rotation, the target rotation speed and pressure corresponding to the difference between h K0 and h min are calculated, and rotation speed control is started. operating point through the course of the description converges such that K 3 in. h i0 and h
Since the difference in min is smaller than when the pump is started after the pressure in the pipe has decreased to the starting pressure of the pump, the range of change in the number of rotations is small, the time required for changing the number of rotations is short, and pressure fluctuations are reduced.

【0017】図1はこの発明による制御方法の実施例を
示す、ポンプ停止中の吐出配管9内の圧力検出動作とポ
ンプ始動の順序を示すフロー図である。なお、部品構成
は従来の装置を示す図2と同様である。901ステップ
で圧力検出器8により、時刻ti における信号で、配管
内圧力を読み込む。902ステップで同様に時刻ti+ 1
における配管内圧力を読む。903ステップで圧力変化
率dhi+1 =(hi −hi+1 )/△tを計算する。90
4ステップでdhi+1 がポンプを始動する値HSより大
きいかどうかを判別し、大きい場合は906ステップに
進み、ポンプを始動する。小さい場合は905ステップ
に進み、hi+1 がポンプ始動圧力honより低いかどうか
を判別する。低い場合は906ステップに進み、ポンプ
を始動する。高い場合は902ステップに戻り、配管内
の圧力を読み込む。ポンプが始動し、Nmin 回転に達す
るまでの間は、目標回転数をNmax として加速する。9
07ステップで回転数がNmin に達したことが確認でき
たら、908ステップに進み、目標圧力をhmin に設定
して、909ステップでその時の配管内圧力を測定し、
910ステップ以降回転数制御を開始する。
FIG. 1 is a flow chart showing an embodiment of the control method according to the present invention, showing the order of the pressure detecting operation in the discharge pipe 9 and the pump start-up when the pump is stopped. The component configuration is the same as that of FIG. 2 showing the conventional device. In step 901, the pressure in the pipe is read by the pressure detector 8 using the signal at the time t i . Similarly, at time 902, the time t i + 1
Read the pressure in the piping at. Pressure change rate 903 step dh i + 1 = calculate the (h i -h i + 1) / △ t. 90
In four steps, it is determined whether or not dh i + 1 is larger than a value HS for starting the pump. If it is larger, the process proceeds to step 906 to start the pump. If smaller, the process proceeds to 905, h i + 1 to determine whether less than the pump starting pressure h on. If it is low, proceed to step 906 to start the pump. If it is higher, the process returns to step 902 and the pressure in the pipe is read. Until the pump starts and reaches the Nmin rotation, the pump is accelerated with the target rotation speed set to Nmax . 9
When it is confirmed that the rotation speed has reached N min in step 07, the process proceeds to step 908, the target pressure is set to h min , and the pressure in the pipe at that time is measured in step 909,
The rotation speed control is started after step 910.

【0018】HSの値は圧力タンクの容量、ポンプ始動
圧力、ポンプ停止圧力、圧力タンクの保有水量等から予
め求めておき、演算部にあるメモリに給水装置を制御す
るためのプログラムとともに記憶させておくか、または
外部から入力する等の方法で、給水装置の制御に使用す
る。
The value of HS is obtained in advance from the capacity of the pressure tank, the pump starting pressure, the pump stopping pressure, the amount of water held in the pressure tank, and the like, and is stored in a memory in an arithmetic unit together with a program for controlling the water supply device. It is used to control the water supply device by leaving it or inputting it from outside.

【0019】[0019]

【発明の効果】この発明により、給水装置に接続された
需要先で水を使用した時に、流量の多少に係わらす、始
動時の圧力低下及び変動を少なくするとともに、安定し
て給水出来るまでの時間を短くすることが可能になる。
According to the present invention, when water is used at a demand destination connected to a water supply device, the pressure drop and fluctuation at the time of starting, which is related to the flow rate, can be reduced, and the water can be supplied stably. The time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による、ポンプ始動時の制御方法の実
施例を示すフローチャートである。
FIG. 1 is a flowchart showing an embodiment of a control method when starting a pump according to the present invention.

【図2】従来の給水装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a conventional water supply device.

【図3】定速で運転中のポンプの使用流量が変化した時
のポンプ回転数の変化を説明するためのグラフである。
FIG. 3 is a graph for explaining a change in pump rotation speed when a used flow rate of a pump operating at a constant speed changes.

【図4】従来の給水装置において、ポンプ停止中に比較
的少ない流量で水を使い始めた時のポンプの回転数の変
化を示す図である。
FIG. 4 is a diagram showing a change in the number of revolutions of the pump when water is started to be used at a relatively small flow rate while the pump is stopped in the conventional water supply device.

【図5】従来の給水装置において、ポンプ停止中に比較
的少ない流量で水を使い始めた時の配管内圧力の時間経
過を示す図である。
FIG. 5 is a diagram showing a lapse of time of pressure in a pipe when water is started to be used at a relatively small flow rate while the pump is stopped in the conventional water supply device.

【図6】従来の給水装置において、ポンプ停止中に比較
的多い流量で水を使い始めた時のポンプの回転数の変化
を示す図である。
FIG. 6 is a diagram showing a change in the number of revolutions of the pump when water is started to be used at a relatively large flow rate while the pump is stopped in the conventional water supply device.

【図7】従来の給水装置において、ポンプ停止中に比較
的多い流量で水を使い始めた時の配管内圧力の時間経過
を示す図である。
FIG. 7 is a diagram showing a lapse of time of a pressure in a pipe when water is started to be used at a relatively large flow rate while the pump is stopped in the conventional water supply device.

【図8】この発明の制御方法を使用した給水装置におい
て、ポンプ停止中に比較的多い流量で水を使い始めた時
のポンプの回転数の変化を示す図である。
FIG. 8 is a diagram showing a change in the number of revolutions of the pump when the water supply device using the control method of the present invention starts using water at a relatively large flow rate while the pump is stopped.

【図9】この発明の制御方法を使用した給水装置におい
て、ポンプ停止中に比較的多い流量で水を使い始めた時
の配管内圧力の時間経過を示す図である。
FIG. 9 is a diagram showing a lapse of time of pressure in a pipe when water is started to be used at a relatively large flow rate while the pump is stopped in the water supply apparatus using the control method of the present invention.

【符号の説明】[Explanation of symbols]

1 給水装置 2 吸込み配管 3 ポンプ 4 モータ 5 少水量検出器 6 逆止弁 7 圧力タンク 8 圧力検出器 9 吐出配管 10 制御装置 10a 演算部 10b 処理部 11 需要先 12 受水槽 DESCRIPTION OF SYMBOLS 1 Water supply apparatus 2 Suction pipe 3 Pump 4 Motor 5 Low-water-volume detector 6 Check valve 7 Pressure tank 8 Pressure detector 9 Discharge pipe 10 Control device 10a Calculation part 10b Processing part 11 Demand destination 12 Receiving tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポンプとこのポンプを駆動する可変速モ
ータ、ポンプに接続された吸込み配管と吐出配管、吐出
配管に接続された圧力タンク、圧力検出器及び該圧力検
出器からの信号によりポンプの運転、停止、運転回転数
を制御する制御装置とから構成され、吐出管内の圧力が
ポンプ始動圧力まで低下した時にポンプを始動させ、受
水槽又は配水管からの水を需要先に加圧給水するように
した給水装置において、 制御装置内に、ポンプ停止中に周期的に圧力検出器から
の圧力をサンプリングし、サンプリングされた配管内圧
力の変化率が、予め定められた基準値と比較して基準値
以上になった時に、吐出管内の圧力がポンプ始動圧力ま
で低下していない場合でも、ポンプ始動信号を発するよ
うにした演算部を設けることを特徴とする、給水装置の
ポンプ始動制御装置。
1. A pump, a variable speed motor for driving the pump, a suction pipe and a discharge pipe connected to the pump, a pressure tank connected to the discharge pipe, a pressure detector, and a signal from the pressure detector. The pump is started when the pressure in the discharge pipe drops to the pump starting pressure, and pressurized water is supplied from the water receiving tank or the distribution pipe to the demand destination. In the water supply device, the pressure from the pressure detector is periodically sampled while the pump is stopped in the control device, and the rate of change of the sampled pressure in the pipe is compared with a predetermined reference value. A water supply means for generating a pump start signal even when the pressure in the discharge pipe has not decreased to the pump start pressure when the pressure becomes equal to or higher than the reference value; Pump start control device of the location.
JP10188976A 1998-07-03 1998-07-03 Pump starter controller of water supply system Pending JP2000018167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188976A JP2000018167A (en) 1998-07-03 1998-07-03 Pump starter controller of water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188976A JP2000018167A (en) 1998-07-03 1998-07-03 Pump starter controller of water supply system

Publications (1)

Publication Number Publication Date
JP2000018167A true JP2000018167A (en) 2000-01-18

Family

ID=16233228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188976A Pending JP2000018167A (en) 1998-07-03 1998-07-03 Pump starter controller of water supply system

Country Status (1)

Country Link
JP (1) JP2000018167A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161613A (en) * 2004-12-03 2006-06-22 Ebara Corp Water-supplying device and starting method thereof
US7408538B2 (en) 2001-08-29 2008-08-05 Microsoft Corporation Enhanced scrolling
WO2010091454A1 (en) * 2009-02-13 2010-08-19 Davey Water Products Pty Ltd Controller for a liquid supply pump
JP2011027118A (en) * 2004-12-03 2011-02-10 Ebara Corp Method for starting water supply device
WO2014175248A1 (en) * 2013-04-26 2014-10-30 株式会社 荏原製作所 Pump device
JP2014214715A (en) * 2013-04-26 2014-11-17 株式会社荏原製作所 Pump device
JP2014214743A (en) * 2013-04-30 2014-11-17 株式会社荏原製作所 Pump device
JP2018009525A (en) * 2016-07-14 2018-01-18 株式会社荏原製作所 Water supply device
JP2019127844A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
CN113090514A (en) * 2021-04-09 2021-07-09 优众新能源(深圳)股份有限公司 Water pump starting method and water pump

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408538B2 (en) 2001-08-29 2008-08-05 Microsoft Corporation Enhanced scrolling
JP2011027118A (en) * 2004-12-03 2011-02-10 Ebara Corp Method for starting water supply device
JP4694184B2 (en) * 2004-12-03 2011-06-08 株式会社荏原製作所 Water supply apparatus and starting method thereof
JP2006161613A (en) * 2004-12-03 2006-06-22 Ebara Corp Water-supplying device and starting method thereof
EP2396554A4 (en) * 2009-02-13 2017-05-24 Davey Water Products Pty Ltd Controller for a liquid supply pump
WO2010091454A1 (en) * 2009-02-13 2010-08-19 Davey Water Products Pty Ltd Controller for a liquid supply pump
EP2396554A1 (en) * 2009-02-13 2011-12-21 Davey Water Products Pty Ltd Controller for a liquid supply pump
JP2012229699A (en) * 2010-11-08 2012-11-22 Ebara Corp Method for starting water supply system and water supply system
JP2014214715A (en) * 2013-04-26 2014-11-17 株式会社荏原製作所 Pump device
WO2014175248A1 (en) * 2013-04-26 2014-10-30 株式会社 荏原製作所 Pump device
JP2014214743A (en) * 2013-04-30 2014-11-17 株式会社荏原製作所 Pump device
JP2018009525A (en) * 2016-07-14 2018-01-18 株式会社荏原製作所 Water supply device
JP2019127844A (en) * 2018-01-22 2019-08-01 株式会社荏原製作所 Pump unit
CN113090514A (en) * 2021-04-09 2021-07-09 优众新能源(深圳)股份有限公司 Water pump starting method and water pump

Similar Documents

Publication Publication Date Title
US9181953B2 (en) Controlling pumps for improved energy efficiency
JP2000018167A (en) Pump starter controller of water supply system
CN108631666B (en) Motor control method and motor control device
CN114281119B (en) Water pressure control method, secondary water supply system, electronic device, and storage medium
JP6389532B2 (en) How to stop pumps and pump station equipment
JPH08159079A (en) Revolution control water supply system with pressure fluctuation restraining function
JP2005351252A (en) Method for delivering liquid from multiple tanks and device for delivering liquid
JP4047980B2 (en) Operation method of pumps connected in parallel
JPH10103251A (en) Automatic water supply device
JP5358206B2 (en) Water supply equipment
JP2000170687A (en) Controlling device for feed water supply system at start and release of parallel operation
JP4641594B2 (en) Control method of variable speed water supply device
JPH08159078A (en) Revolution control water supply system with small water quantity stop function
JPH1182362A (en) Controller of water supply system comprising plural pumps
KR101605111B1 (en) Apparatus and method of driving booster pump for saving power
JPS6122157B2 (en)
KR100957544B1 (en) Method for controlling operation pattern of booster pump system
JP2001211694A (en) Governor control system for water-wheel generator
JP4001573B2 (en) Pump device
JP3433416B2 (en) Liquid automatic shipping equipment
JP2002054577A (en) Controlling method for pump
JP2527164B2 (en) Water supply device control method
JP2019152178A (en) Water supply device and control method for water supply device
JP2005194970A (en) Method and device for controlling delivery pressure of pump
JP2516193B2 (en) Pressure tank type water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802