JP2000015096A - Production of catalyst - Google Patents

Production of catalyst

Info

Publication number
JP2000015096A
JP2000015096A JP10189220A JP18922098A JP2000015096A JP 2000015096 A JP2000015096 A JP 2000015096A JP 10189220 A JP10189220 A JP 10189220A JP 18922098 A JP18922098 A JP 18922098A JP 2000015096 A JP2000015096 A JP 2000015096A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
carrier
substrate
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10189220A
Other languages
Japanese (ja)
Other versions
JP3580136B2 (en
Inventor
Yasutomo Goto
康友 後藤
Yoshiaki Fukushima
喜章 福嶋
Hiroaki Wakayama
博昭 若山
Shinji Inagaki
伸二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP18922098A priority Critical patent/JP3580136B2/en
Priority to EP98940586A priority patent/EP0934819A4/en
Priority to PCT/JP1998/003822 priority patent/WO1999010167A1/en
Priority to US09/297,051 priority patent/US6194650B1/en
Publication of JP2000015096A publication Critical patent/JP2000015096A/en
Application granted granted Critical
Publication of JP3580136B2 publication Critical patent/JP3580136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst characterized by that a catalyst component such as a noble metal or the like is arranged in a lightly disparsed manner in the carrier and excellent in durability. SOLUTION: A noble metal bonding process for dispersing and bonding a noble metal 2 to the surface 11 of a base material 1, a carrier coating process coating the noble metal 2 with a carrier substance 3 and a base material removing process removing the porous base material 1 are performed to obtain a noble metal supported catalyst 20 wherein the noble metal 2 is supported on the carrier substance 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,貴金属等の触媒成分が高分散さ
れ,かつ耐久性に優れた触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst in which a catalyst component such as a noble metal is highly dispersed and which has excellent durability.

【0002】[0002]

【従来技術】貴金属担持触媒としては,従来,ゼオライ
トのような酸点を有する多孔体の担体物質に,貴金属塩
の溶液を用いて含浸担持,もしくはイオン交換担持した
ものが数多く報告されている。しかしながら,ゼオライ
トのように酸点,つまりイオン交換サイトが多いものに
おいては,水熱耐久試験を行うと,脱Al(ゼオライト
構造中の4配位が6配位になる)による担体物質の結晶
構造の破壊により,担体物質に担持した貴金属が粒子成
長しやすいという問題がある。そこで,例えば,特開平
4−176337号公報には,Si/Al比が40以上
1000未満の高シリカゼオライトの担体物質に貴金属
を担持した排ガス浄化用触媒が開示されている。Si/
Al比の大きなゼオライトは,脱Alに基づく貴金属の
粒子成長が抑制される。
2. Description of the Related Art As a noble metal-supported catalyst, there have hitherto been reported a large number of catalysts in which a porous carrier material having an acid point such as zeolite is impregnated or ion-exchanged by using a solution of a noble metal salt. However, in the case of zeolite, which has many acid sites, that is, ion exchange sites, the hydrothermal durability test shows that the crystal structure of the carrier material due to the removal of Al (4 coordination in the zeolite structure becomes 6 coordination). There is a problem that the noble metal supported on the carrier substance easily grows due to the destruction of the particles. Therefore, for example, Japanese Patent Application Laid-Open No. 4-176337 discloses an exhaust gas purifying catalyst in which a noble metal is supported on a high silica zeolite carrier material having a Si / Al ratio of 40 or more and less than 1000. Si /
Zeolite with a large Al ratio suppresses the growth of noble metal particles based on the removal of Al.

【0003】[0003]

【解決しようとする課題】しかし,Si/Al比の大き
なゼオライトでは,少ないイオン交換サイトに貴金属の
担持が集中するために,貴金属を高分散に担持すること
が困難である。また,ゼオライト上では貴金属が動きや
すいために,粒子成長が生じ易く,耐久性に優れている
とは言い難い。
However, in the case of a zeolite having a large Si / Al ratio, it is difficult to support the noble metal with high dispersion because the noble metal is concentrated on a small number of ion exchange sites. In addition, since the noble metal easily moves on zeolite, particle growth easily occurs, and it is hard to say that the durability is excellent.

【0004】本発明はかかる従来の問題点に鑑み,担体
に対して貴金属等の触媒成分が高分散配置されており,
かつ耐久性の優れた触媒の製造方法を提供しようとする
ものである。
The present invention has been made in view of the above-mentioned conventional problems, and a catalyst component such as a noble metal is arranged in a highly dispersed state on a carrier.
Another object of the present invention is to provide a method for producing a catalyst having excellent durability.

【0005】[0005]

【課題の解決手段】請求項1の発明は,基材の表面に触
媒成分を分散付着させる触媒成分付着工程と,該触媒成
分の上に担体物質を被覆する担体被覆工程と,その後,
上記基材を除去する基材除去工程とを行ない,上記担体
物質に上記触媒成分を担持してなる触媒を得ることを特
徴とする触媒の製造方法にある。
According to the first aspect of the present invention, there is provided a catalyst component attaching step of dispersing and attaching a catalyst component to a surface of a substrate, a carrier coating step of coating a carrier material on the catalyst component, and thereafter,
And a substrate removing step of removing the substrate to obtain a catalyst in which the catalyst component is carried on the carrier substance.

【0006】また,請求項2の発明は,多孔質基材の孔
壁表面に触媒成分としての貴金属を分散付着させる貴金
属付着工程と,該貴金属の上に担体物質を被覆する担体
被覆工程と,その後,上記多孔質基材を除去する基材除
去工程とを行ない,上記担体物質に上記貴金属を担持し
てなる貴金属担持触媒を得ることを特徴とする貴金属担
持触媒の製造方法にある。
[0006] The invention of claim 2 further comprises a noble metal attaching step of dispersing and attaching a noble metal as a catalyst component to the pore wall surface of the porous substrate, a carrier coating step of coating a carrier substance on the noble metal, Thereafter, there is provided a method for producing a noble metal-supported catalyst, comprising performing a base material removing step of removing the porous base material to obtain a noble metal-supported catalyst in which the noble metal is supported on the carrier substance.

【0007】上記発明において最も注目すべきことは,
基材表面に触媒成分を分散付着させ,次いでその上に担
体物質を被覆し,次いで上記基材を除去することにあ
る。
The most remarkable point in the above invention is that
It consists in dispersing and depositing the catalyst component on the surface of the substrate, then coating the support material thereon, and then removing the substrate.

【0008】次に,本発明の作用効果につき説明する。
本発明においては,基材表面に触媒成分を分散付着させ
るため,触媒成分は粒子サイズの小さい触媒成分として
高分散配置される。そして,その上に担体物質が被覆さ
れる。そのため,触媒成分は,担体物質の表面に,略均
一に,密度高く,粒状に高分散された状態にある。それ
故,本発明により得られた触媒は触媒活性が高い。
Next, the function and effect of the present invention will be described.
In the present invention, in order to disperse and attach the catalyst component to the surface of the substrate, the catalyst component is highly dispersed as a catalyst component having a small particle size. Then, a carrier material is coated thereon. Therefore, the catalyst component is in a state of being substantially uniformly, densely and highly dispersed in a granular form on the surface of the carrier material. Therefore, the catalyst obtained according to the present invention has high catalytic activity.

【0009】また,後述する図1に示すごとく,触媒成
分の粒子の後方部分が担体物質に埋め込まれた状態にあ
るため,触媒成分と担体物質との相互作用が強く,触媒
成分の動きが制限される。それ故,触媒成分同志が結合
して粒成長するシンタリングを起しにくい。それ故,本
発明により得られた触媒は,耐久性に優れている。ま
た,得られた貴金属担持触媒に,更に上記貴金属付着工
程と上記担体被覆工程と貴金属化及び担体化工程を繰り
返すことにより,更に高活性な触媒を得ることが可能で
ある。
Further, as shown in FIG. 1 to be described later, since the rear part of the particles of the catalyst component is embedded in the carrier material, the interaction between the catalyst component and the carrier material is strong, and the movement of the catalyst component is restricted. Is done. Therefore, sintering in which the catalyst components are combined to grow grains hardly occurs. Therefore, the catalyst obtained according to the present invention has excellent durability. Further, by repeating the noble metal-adhering step, the carrier coating step, and the noble metal-forming and carrier-forming step on the obtained noble metal-supported catalyst, a more highly active catalyst can be obtained.

【0010】次に,まず,上記触媒成分付着工程につき
説明する。本発明において,基材としては,多孔質基材
が特に作用効果が大きい。多孔質基材とは,表面に多数
の孔を有する基材をいう。このような多孔質基材として
は,例えば活性炭等の多孔質炭素,多孔質アルミや多孔
質タンタル等の多孔質金属,多孔質シリカ,多孔質アル
ミナ,多孔質アルミナシリカ,多孔質酸化ルテニウム,
多孔質酸化バナジウム,多孔質酸化インジウム,多孔質
酸化錫,多孔質酸化ニッケル等の金属および/または半
金属の導電性を持つ酸化物からなる多孔体,或いはポリ
オレフィン,ポリウレタン等の高分子発泡体などを用い
ることができる。
Next, the catalyst component attaching step will be described first. In the present invention, a porous substrate is particularly effective as a substrate. The porous substrate refers to a substrate having a large number of pores on the surface. Examples of such a porous substrate include porous carbon such as activated carbon, porous metal such as porous aluminum and porous tantalum, porous silica, porous alumina, porous alumina silica, porous ruthenium oxide, and the like.
Porous body made of metal and / or metalloid conductive oxide such as porous vanadium oxide, porous indium oxide, porous tin oxide, porous nickel oxide, or polymer foam such as polyolefin, polyurethane, etc. Can be used.

【0011】上記の中,特に活性炭は比表面積が高く,
貴金属を多量に分散付着できるので,好ましい。また,
上記基材としては,熱処理・酸/塩基処理等により除去
しやすいものが好ましい。特に活性炭は,焼成等により
容易に除去できるのでより好ましい。
Of the above, activated carbon has a particularly high specific surface area.
This is preferable because a large amount of noble metal can be dispersed and attached. Also,
As the above-mentioned base material, a material which can be easily removed by heat treatment, acid / base treatment or the like is preferable. In particular, activated carbon is more preferable because it can be easily removed by firing or the like.

【0012】次に,上記触媒成分としては貴金属又はC
eO2等の助触媒が挙げられる。貴金属としては,貴金
属担持触媒の用途に応じて,Pt,Rh,Pd,Ir,
Ruなどを用いることができる。上記基材の表面に貴金
属等の触媒成分を分散付着させる貴金属付着工程として
は,例えばCVDコート法,溶液浸漬法,後述する超臨
界コート法を用いることができる。特に超臨界コート法
は,均一な触媒成分層を短時間で形成することができる
ので,より好ましい。
Next, as the catalyst component, noble metal or C
A co-catalyst such as eO 2 may be used. As the noble metal, Pt, Rh, Pd, Ir,
Ru or the like can be used. As a noble metal deposition step for dispersing and depositing a catalyst component such as a noble metal on the surface of the base material, for example, a CVD coating method, a solution dipping method, and a supercritical coating method described later can be used. In particular, the supercritical coating method is more preferable because a uniform catalyst component layer can be formed in a short time.

【0013】上記CVD法は,減圧下に上記貴金属等の
触媒成分を上記表面に蒸着させる方法である。また,上
記溶液浸漬法は例えば貴金属塩(例えば塩化白金塩)の
水溶液等の溶液中に,上記基材を浸漬する方法である。
The CVD method is a method in which a catalyst component such as the noble metal is deposited on the surface under reduced pressure. The solution immersion method is a method of immersing the base material in a solution such as an aqueous solution of a noble metal salt (for example, platinum chloride salt).

【0014】また,上記超臨界コート法は,超臨界流体
に触媒成分の反応前駆体を溶解して前駆体流体を作製す
る溶解工程と,該前駆体流体に対して,反応開始剤を含
有させた基材を接触させて,上記前駆体と反応開始剤と
を反応させ,該基材の表面に反応生成物としての貴金属
等の触媒成分もしくはその前駆体をコーティングするコ
ート工程とからなる。
The supercritical coating method comprises dissolving a reaction precursor of a catalyst component in a supercritical fluid to prepare a precursor fluid, and adding a reaction initiator to the precursor fluid. A coating step of bringing the precursor into contact with the substrate and reacting the precursor with the reaction initiator, and coating the surface of the substrate with a catalyst component such as a noble metal or a precursor thereof as a reaction product.

【0015】上記超臨界流体とは,通常,物質の臨界点
以上の温度及び圧力下におかれた流体を示す。しかし,
本発明における超臨界流体とは,少なくとも臨界点の温
度以上である流体であり,圧力は上記の定義の範囲であ
る必要はない。この状態の流体は,液体と同等の溶解能
力と,気体に近い拡散性,粘性を有する物質である。そ
のため,微細孔内にまで容易,かつ迅速に多量の反応前
駆体を運ぶことができる。上記溶解能力は,温度,圧
力,エントレーナー(添加物)等により調整できる。
[0015] The supercritical fluid generally refers to a fluid placed at a temperature and pressure higher than the critical point of a substance. However,
The supercritical fluid in the present invention is a fluid having a temperature at or above the critical point, and the pressure does not need to be in the above-defined range. The fluid in this state is a substance having the same dissolving ability as a liquid, and diffusivity and viscosity similar to a gas. Therefore, a large amount of the reaction precursor can be easily and quickly carried into the micropores. The above dissolving ability can be adjusted by temperature, pressure, entrainer (additive) and the like.

【0016】上記の超臨界流体としては,例えば,メタ
ン,エタン,プロパン,ブタン,エチレン,プロピレン
等の炭化水素,メタノール,エタノール,プロパノー
ル,iso−プロパノール,ブタノール,iso−ブタ
ノール,sec−ブタノール,tert−ブタノール等
のアルコール,アセトン,メチルエチルケトン等のケト
ン類,二酸化炭素,水,アンモニア,塩素,クロロホル
ム,フレオン類等を用いることができる。
Examples of the above supercritical fluid include hydrocarbons such as methane, ethane, propane, butane, ethylene and propylene, methanol, ethanol, propanol, iso-propanol, butanol, iso-butanol, sec-butanol and tert. Alcohols such as butanol, ketones such as acetone and methyl ethyl ketone, carbon dioxide, water, ammonia, chlorine, chloroform, freons and the like can be used.

【0017】また,反応前駆体の超臨界流体への溶解度
を調整するために,メタノール,エタノール,プロパノ
ール等のアルコール,アセトン,エチルメチルケトン等
のケトン類,ベンゼン,トルエン,キシレン等の芳香族
炭化水素等をエントレーナとして用いることができる。
In order to adjust the solubility of the reaction precursor in the supercritical fluid, alcohols such as methanol, ethanol and propanol, ketones such as acetone and ethyl methyl ketone, and aromatic carbons such as benzene, toluene and xylene are used. Hydrogen or the like can be used as the entrainer.

【0018】上記の貴金属の反応前駆体としては,貴金
属のアルコキシド,貴金属のアセチルアセテート,貴金
属の有機酸塩,貴金属の硝酸塩,貴金属のオキシ塩化
物,貴金属の塩化物等の単独,又は2種以上よりなる混
合物を用いることができる。
As the reaction precursor of the noble metal, alkoxide of the noble metal, acetyl acetate of the noble metal, organic acid salt of the noble metal, nitrate of the noble metal, oxychloride of the noble metal, chloride of the noble metal or the like, or two or more kinds thereof Can be used.

【0019】上記の反応開始剤としては,上記反応前駆
体に対するものとして水がある。OH基などの多孔質基
材の表面官能基を反応開始剤として用いることもでき
る。
As the above-mentioned reaction initiator, there is water as one for the above-mentioned reaction precursor. Surface functional groups of the porous substrate such as OH groups can be used as the reaction initiator.

【0020】上記反応開始剤を上記基材に含有させる方
法としては,例えば気層接触法,液層接触法等がある。
基材が細孔を有する場合,反応開始剤を含む気体,液体
と接触させることで容易に,反応開始剤を含有させるこ
とができる。反応生成物である貴金属層のコーティング
厚みは,反応開始剤の量および/または反応前駆体の量
を調整することによって,クラスターから層状にまで調
整できる。
As a method for incorporating the above-mentioned reaction initiator into the above-mentioned base material, there are, for example, a gas layer contact method and a liquid layer contact method.
When the base material has pores, the reaction initiator can be easily contained by contact with a gas or liquid containing the reaction initiator. The coating thickness of the reaction product noble metal layer can be adjusted from a cluster to a layer by adjusting the amount of the reaction initiator and / or the amount of the reaction precursor.

【0021】例えば,反応開始剤が水および/またはO
H基等の基材の表面官能基であり,基材が活性炭の場
合,活性炭中の水分量は,活性炭が接する雰囲気中の水
分量を調整することにより,活性炭の表面積,等温吸着
線等のデータをもとに加減できる。また,OH基等の活
性炭の表面官能基の量は,活性炭の賦活条件を最適化す
ることによって調整できる。このようにして,所定の貴
金属を数原子のクラスターから種々の厚みにまで設計す
ることが可能である。
For example, if the initiator is water and / or O
H is a surface functional group of the base material such as H group. When the base material is activated carbon, the amount of water in the activated carbon is adjusted by adjusting the amount of water in the atmosphere where the activated carbon comes into contact with the surface area of the activated carbon, the isothermal adsorption line, etc. Can be adjusted based on data. Further, the amount of the surface functional groups of the activated carbon such as OH groups can be adjusted by optimizing the activation conditions of the activated carbon. In this way, it is possible to design a predetermined noble metal from a cluster of several atoms to various thicknesses.

【0022】なお,従来,多孔質基材の表面に貴金属を
担持する方法としては,貴金属塩を水,エタノール等の
溶媒に溶かして,これを多孔質基材の表面にコートする
方法が提案されている。しかし,このように液体を溶媒
とした溶液のコート方法では,液体の表面張力が高いた
め,多孔質基材の細孔内まで十分に溶媒が入らず,コー
ト層が基材の細孔を塞いでしまうことがある。そのた
め,この方法では多孔質基材自体は比表面積が大きいも
のの,この表面を充分に活用して,貴金属を分散付着さ
せることは困難である。
Conventionally, as a method of supporting a noble metal on the surface of a porous substrate, there has been proposed a method of dissolving a noble metal salt in a solvent such as water or ethanol and coating the same on the surface of the porous substrate. ing. However, in the method of coating a solution using a liquid as a solvent, the solvent does not sufficiently enter the pores of the porous substrate because the surface tension of the liquid is high, and the coat layer blocks the pores of the substrate. May be lost. Therefore, in this method, although the porous substrate itself has a large specific surface area, it is difficult to make full use of this surface to disperse and attach the noble metal.

【0023】次に,上記担体被覆工程について説明す
る。本工程においては,上記のごとく多孔質基材の孔壁
表面に分散付着させた触媒成分としての貴金属の上に担
体物質を被覆する。担体物質は,例えば孔壁表面の全表
面を被覆するように形成する。上記担体物質としては,
金属酸化物,金属窒化物,金属炭化物,金属,有機高分
子などがある。上記金属酸化物としては,Al23,S
iO2,Fe23,ZrO2,SnO2,TiO2などがあ
る。
Next, the carrier coating step will be described. In this step, the carrier material is coated on the noble metal as a catalyst component dispersed and attached to the pore wall surface of the porous substrate as described above. The carrier material is formed, for example, to cover the entire surface of the pore wall surface. As the above carrier material,
Examples include metal oxides, metal nitrides, metal carbides, metals, and organic polymers. Al 2 O 3 , S
There are iO 2 , Fe 2 O 3 , ZrO 2 , SnO 2 , TiO 2 and the like.

【0024】金属窒化物としては,窒化ケイ素,窒化ア
ルミニウム,窒化ホウ素,窒化炭素などがある。金属炭
化物としては,炭化カルシウム,炭化ケイ素,炭化タン
グステン,炭化鉄,炭化ナトリウム,炭化ホウ素,炭化
マンガン等がある。また,有機高分子としては,ポリオ
レフィン,ポリウレタンなどの発泡高分子をはじめ各種
有機高分子を担体として使用することができる。上記担
体物質を被覆する方法としては,上記貴金属付着工程に
示したCVDコート法,溶液浸漬法,超臨界コート法が
ある。
Examples of the metal nitride include silicon nitride, aluminum nitride, boron nitride, carbon nitride and the like. Examples of the metal carbide include calcium carbide, silicon carbide, tungsten carbide, iron carbide, sodium carbide, boron carbide, and manganese carbide. As the organic polymer, various organic polymers such as foamed polymers such as polyolefin and polyurethane can be used as carriers. As a method for coating the carrier material, there are the CVD coating method, the solution immersion method, and the supercritical coating method shown in the above-mentioned noble metal deposition step.

【0025】上記の超臨界コート法は,上記金属酸化物
等の担体物質用の原料(例えば,Al,Si等の金属の
化合物)からなる反応前駆体を超臨界流体に溶解して前
駆体流体を作製する溶解工程と,該前駆体流体に対して
反応開始剤を含有させると共に,上記貴金属を分散付着
させた基材を接触させて,上記前駆体と反応開始剤とを
反応させ,上記貴金属及び基材表面上に反応生成物であ
る担体物質をコーティングするコート工程とからなる。
In the above-mentioned supercritical coating method, a reaction precursor composed of a raw material for a carrier material such as the above-mentioned metal oxide (for example, a compound of a metal such as Al or Si) is dissolved in a supercritical fluid to form a precursor fluid. A dissolving step for preparing the precursor fluid, and a reaction initiator is contained in the precursor fluid, and the base material on which the noble metal is dispersed and adhered is brought into contact with the precursor fluid so that the precursor reacts with the reaction initiator. And a coating step of coating the substrate material with a carrier material as a reaction product.

【0026】上記の反応前駆体としては,上記金属酸化
物及び金属窒化物を構成する金属または/および半金属
のアルコキシド,金属または/および半金属のアセチル
アセテート,金属または/および半金属の有機酸塩,金
属または/および半金属の硝酸塩,金属または/および
半金属のオキシ塩化物,金属または/および半金属の塩
化物等がある。また,上記有機高分子を構成する有機モ
ノマー,有機ダイマー,有機トリマー,有機テトラマー
などを用いることが可能である。そして,それらの1種
又は2種以上よりなる化合物および/または,それら化
合物の1種又は2種以上よりなる混合物を用いることが
できる。また,必要に応じてコート工程を繰り返すこと
により,頑丈な担体を作製できる。
Examples of the reaction precursor include metal or metalloid alkoxide, metal or metalloid acetylacetate, and metal or metalloid organic acid constituting the metal oxide and metal nitride. Salt, metal or / and metalloid nitrate, metal or / metalloid oxychloride, metal // metalloid chloride and the like. Further, it is possible to use an organic monomer, an organic dimer, an organic trimer, an organic tetramer, or the like that constitutes the organic polymer. Then, one or more of these compounds and / or a mixture of one or more of these compounds can be used. Further, by repeating the coating step as required, a sturdy carrier can be produced.

【0027】次に,基材除去工程としては,基材が活性
炭等の多孔質炭素の場合は,酸化雰囲気下で加熱し,炭
素を酸化して,一酸化炭素および/または二酸化炭素に
分解し,基材を除去する方法がある。この加熱時に,上
記の担体物質原料は,金属酸化物等の担体物質に変化す
る。また,超臨界コート法において用いた上記貴金属の
反応前駆体,或いは上記溶液浸漬法において用いた貴金
属塩は,上記の加熱時に触媒成分としての貴金属に変化
する。
Next, in the substrate removing step, when the substrate is porous carbon such as activated carbon, the substrate is heated in an oxidizing atmosphere to oxidize the carbon and decompose it into carbon monoxide and / or carbon dioxide. , There is a method of removing the base material. At the time of this heating, the above-mentioned carrier material raw material is changed into a carrier material such as a metal oxide. In addition, the reaction precursor of the noble metal used in the supercritical coating method or the noble metal salt used in the solution immersion method changes into a noble metal as a catalyst component during the heating.

【0028】また,上記基材除去において,上記基材が
多孔質金属の場合は,塩酸,フッ酸等の酸や,水酸化ナ
トリウム水溶液等のアルカリにより溶解し,基材を除去
することができる。この場合,上記担体物質原料は加熱
や,重合促進剤の添加などにより,上記基材の除去工程
よりも前に担体物質に変化させておくことが好ましい。
また,貴金属塩の貴金属化は,上記基材の除去の前又は
後に,加熱もしくは光照射等の処理により行う。
When the substrate is made of a porous metal, the substrate can be removed by dissolving with an acid such as hydrochloric acid or hydrofluoric acid or an alkali such as an aqueous sodium hydroxide solution. . In this case, it is preferable to convert the raw material of the carrier material into a carrier material before the step of removing the base material by heating or adding a polymerization accelerator.
The noble metal salt is converted to a noble metal by a treatment such as heating or light irradiation before or after the removal of the base material.

【0029】特に,上記担体物質が有機高分子である場
合においては,上記の酸化雰囲気下での加熱による基材
除去は好ましくなく,上記酸,アルカリもしくは有機溶
剤を用いた基材の溶解除去が好ましい。以上の工程によ
り,担体物質に貴金属等の触媒成分を担持した,触媒が
得られる。
In particular, when the carrier substance is an organic polymer, the removal of the substrate by heating in an oxidizing atmosphere is not preferable, and the removal of the substrate by dissolution using the acid, alkali or organic solvent is not preferable. preferable. Through the above steps, a catalyst in which a catalyst component such as a noble metal is supported on a carrier material is obtained.

【0030】本発明により得られた触媒は,触媒成分と
しての貴金属などを選択することにより,排気ガス浄化
用,石油化学工業用,煙道ガス浄化用,有機物分解用等
多くの用途に用いることができる。
The catalyst obtained according to the present invention can be used in various applications such as exhaust gas purification, petrochemical industry, flue gas purification, organic matter decomposition, etc. by selecting a noble metal or the like as a catalyst component. Can be.

【0031】[0031]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる,貴金属担持触媒の製造方
法につき,図1を用いて説明する。本例の製造方法は,
基材1の表面11に貴金属2を分散付着させる貴金属付
着工程(図1A,B)と,該貴金属2の上に担体物質3
を被覆する担体被覆工程(図1B,C)と,その後,上
記基材1を除去する基材除去工程(図1C,D)とを行
なう。これにより,上記担体物質3に上記貴金属2を担
持してなる貴金属担持触媒20を得る(図1D)。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 A method for producing a noble metal-supported catalyst according to an embodiment of the present invention will be described with reference to FIG. The manufacturing method of this example
A noble metal attaching step of dispersing and attaching the noble metal 2 to the surface 11 of the base material 1 (FIGS. 1A and 1B);
And a substrate removing step of removing the substrate 1 (FIGS. 1C and D). Thus, a noble metal-supported catalyst 20 in which the noble metal 2 is supported on the carrier material 3 is obtained (FIG. 1D).

【0032】本例によれば,基材1の表面11に貴金属
2を分散付着させるため,貴金属2は粒子サイズの小さ
い触媒成分として高分散配置される。そして,その上に
担体物質3が被覆される。そのため,貴金属2は,担体
物質3の表面に,略均一に,密度高く,粒状に高分散さ
れた状態にある。それ故,貴金属担持触媒は触媒活性が
高い。
According to this embodiment, the noble metal 2 is dispersed and adhered to the surface 11 of the substrate 1, so that the noble metal 2 is highly dispersed as a catalyst component having a small particle size. Then, the carrier substance 3 is coated thereon. Therefore, the noble metal 2 is in a state of being substantially uniformly, densely and highly dispersed in the form of particles on the surface of the carrier material 3. Therefore, the noble metal supported catalyst has high catalytic activity.

【0033】また,図1(D)に示すごとく,貴金属2
の粒子の後方部分が担体物質3に埋め込まれた状態にあ
るため,貴金属2と担体物質3との相互作用が強く,貴
金属2の動きが制限される。それ故,貴金属2同志が結
合して粒成長する,シンタリングの抑制効果が大きい。
それ故,本例より得られた貴金属担持触媒20は,耐久
性に優れている。
Further, as shown in FIG.
Since the rear part of the particles is embedded in the carrier material 3, the interaction between the noble metal 2 and the carrier material 3 is strong, and the movement of the noble metal 2 is restricted. Therefore, the effect of suppressing sintering, in which two noble metals bond and grow grains, is large.
Therefore, the noble metal-supported catalyst 20 obtained from this example has excellent durability.

【0034】実施形態例2 次に,実施例及び比較例につき説明する。 (実施例1)本例は,貴金属付着工程及び担体被覆工程
を,超臨界コート法により行なった。即ち,高圧反応器
内において,基材としての活性炭素繊維(大阪瓦斯,リ
ノベスA)の存在下で,貴金属の反応前駆体としての白
金ジアセチルアセトナト錯体{Pt(acac)2↓}
を溶解したアセトン溶液(0.7g/l)を,超臨界二
酸化炭素(150℃,345atm)に溶解させた。こ
の状態で3時間保持した。その後,超臨界二酸化炭素を
減圧,除去した後に,室温で10時間乾燥し,前駆体A
を得た(貴金属付着工程)。
Embodiment 2 Next, examples and comparative examples will be described. (Example 1) In this example, a precious metal deposition step and a carrier coating step were performed by a supercritical coating method. That is, in a high-pressure reactor, a platinum diacetylacetonato complex {Pt (acac) 2 ↓} as a reaction precursor of a noble metal in the presence of an activated carbon fiber (Osaka Gas, Renoves A) as a substrate.
Was dissolved in supercritical carbon dioxide (150 ° C., 345 atm). This state was maintained for 3 hours. Thereafter, the supercritical carbon dioxide was removed under reduced pressure, and dried at room temperature for 10 hours.
Was obtained (precious metal attachment step).

【0035】次に,上記の前駆体Aの存在下で,反応前
駆体としての担体物質原料のテトラエチルオルトシリケ
ート(TEOS)2mlを超臨界二酸化炭素(150
℃,345atm)に溶解させた。この状態で3時間保
持した。その後,超臨界二酸化炭素を減圧,除去した
(担体被覆工程)。
Next, in the presence of the precursor A, 2 ml of tetraethyl orthosilicate (TEOS) as a carrier material as a reaction precursor was added to supercritical carbon dioxide (150
345 atm). This state was maintained for 3 hours. Thereafter, the supercritical carbon dioxide was removed under reduced pressure (carrier coating step).

【0036】その後,室温で10時間乾燥した後,空気
中,500℃で2時間熱処理を施し,上記多孔質基材を
除去すると共に上記TEOSを酸化してSiO2からな
る担体物質とした(基材除去工程)。また,上記加熱に
より,上記白金ジアセチルアセトナト錯体は触媒成分と
してのPtとなる。
Thereafter, after drying at room temperature for 10 hours, a heat treatment is performed in air at 500 ° C. for 2 hours to remove the porous substrate and oxidize the TEOS to obtain a carrier material composed of SiO 2 (base material). Material removal process). Further, by the heating, the platinum diacetylacetonato complex becomes Pt as a catalyst component.

【0037】これにより,SiO2の担体物質にPtを
担持した貴金属担持触媒を得た。
As a result, a noble metal-supported catalyst in which Pt was supported on a SiO 2 support material was obtained.

【0038】(実施例2)本例は,貴金属付着工程は超
臨界コート法を,担体被覆工程は溶液浸漬法を用いた。
実施例1と同様に,活性炭素繊維(大阪瓦斯 リノベス
A)の存在下で,白金ジアセチルアセトナト錯体{Pt
(acac)2↓}の溶解したアセトン溶液(0.7g
/l)を超臨界二酸化炭素(150℃,345atm)
に溶解させた。この状態で3時間保持した。その後,超
臨界二酸化炭素を減圧,除去した後に,室温で10時間
乾燥し,前駆体Aを得た(貴金属付着工程)。
Example 2 In this example, a supercritical coating method was used for the noble metal deposition step, and a solution immersion method was used for the carrier coating step.
As in Example 1, in the presence of activated carbon fiber (Osaka Gas Renoves A), platinum diacetylacetonato complex {Pt
(Acac) 2 ↓} dissolved acetone solution (0.7g
/ L) with supercritical carbon dioxide (150 ° C, 345 atm)
Was dissolved. This state was maintained for 3 hours. Thereafter, the supercritical carbon dioxide was removed under reduced pressure and dried at room temperature for 10 hours to obtain a precursor A (precious metal attachment step).

【0039】次に,前駆体Aをテトラエチルオルトシリ
ケート(TEOS)に室温で浸漬した。次いで,ろ過す
ることにより余剰のTEOSを取り除いた後,室温で1
0時間乾燥した。次いで,空気中,500℃で2時間熱
処理を施し,実施例1と同様の,SiO2担体にPtを
担持した貴金属担持触媒を得た。
Next, the precursor A was immersed in tetraethylorthosilicate (TEOS) at room temperature. Then, after removing excess TEOS by filtration, the solution was cooled to room temperature for 1 hour.
Dried for 0 hours. Next, heat treatment was performed in air at 500 ° C. for 2 hours to obtain a noble metal-supported catalyst in which Pt was supported on a SiO 2 support in the same manner as in Example 1.

【0040】(比較例1)シリカからなる多孔体1g
に,該多孔体120gに対してPtが2gになるよう
に,ジニトロジアンミン白金塩水溶液を定量して加え,
1時間,室温で攪拌した後,加熱し,蒸発乾固した。そ
れを空気中,500℃で2時間熱処理を施し,上記白金
塩をPtとなし,上記多孔体にPtを担持した貴金属担
持触媒を得た。
Comparative Example 1 1 g of porous body made of silica
Then, an aqueous solution of dinitrodiammine platinum salt was quantified and added so that Pt was 2 g per 120 g of the porous material,
After stirring for 1 hour at room temperature, it was heated and evaporated to dryness. It was heat-treated in air at 500 ° C. for 2 hours to convert the platinum salt to Pt to obtain a noble metal-supported catalyst having Pt supported on the porous body.

【0041】『評価法』上記各貴金属担持触媒につい
て,空気中,900℃で5時間,加熱処理することによ
り,耐久試験を行った。そして,それぞれのPtの粒径
をX線回折により求めた。その結果を表1に示す。
[Evaluation Method] Each of the noble metal-supported catalysts was subjected to a heat treatment in air at 900 ° C. for 5 hours to perform a durability test. Then, the particle size of each Pt was determined by X-ray diffraction. Table 1 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】上記表1より知られるごとく,耐久試験前
における触媒成分としてのPtは,いずれの貴金属担持
触媒においても,X線回折によって感知できる大きさ以
下の微細粒径であった。しかし,上記耐久試験後におい
ては,比較例では粒成長のためにPt粒径が110nm
と大きくなっている。これに対して,本例にかかる実施
例1,2においては,粒成長が極めて少ないことが分
る。
As can be seen from Table 1, Pt as a catalyst component before the durability test had a fine particle size smaller than a size detectable by X-ray diffraction in any noble metal-supported catalyst. However, after the endurance test, in the comparative example, the Pt particle size was 110 nm due to grain growth.
And has become larger. On the other hand, in Examples 1 and 2 according to this example, it can be seen that the grain growth is extremely small.

【0044】[0044]

【発明の効果】本発明によれば,担体に対して貴金属等
の触媒成分が高分散配置されており,かつ耐久性の優れ
た触媒の製造方法を提供ことができる。
According to the present invention, it is possible to provide a method for producing a catalyst in which a catalyst component such as a noble metal is arranged in a highly dispersed manner with respect to a carrier and which has excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,貴金属担持触媒の製造
方法の工程を示す説明図。
FIG. 1 is an explanatory view showing steps of a method for producing a noble metal-supported catalyst in a first embodiment.

【符号の説明】[Explanation of symbols]

1...基材, 11...表面, 2...貴金属, 3...担体物質, 1. . . Base material, 11. . . Surface, 2. . . Precious metals, 3. . . Carrier material,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若山 博昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 稲垣 伸二 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G069 AA03 AA08 AA09 BA02B BC32A BC33A BC69A EB19 ED06 FA02 FB14 FB30 FB31 FB77 FB80  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Wakayama 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (72) Inventor Shinji Inagaki, Nagakute-cho, Aichi-gun, Aichi-gun 41, Yokomichi, F-term in Toyota Central R & D Laboratories Co., Ltd. 4G069 AA03 AA08 AA09 BA02B BC32A BC33A BC69A EB19 ED06 FA02 FB14 FB30 FB31 FB77 FB80

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材の表面に触媒成分を分散付着させる
触媒成分付着工程と,該触媒成分の上に担体物質を被覆
する担体被覆工程と,その後,上記基材を除去する基材
除去工程とを行ない,上記担体物質に上記触媒成分を担
持してなる触媒を得ることを特徴とする触媒の製造方
法。
1. A catalyst component attaching step of dispersing and attaching a catalyst component to a surface of a substrate, a carrier coating step of coating a carrier material on the catalyst component, and a substrate removing step of removing the substrate. And obtaining a catalyst comprising the above-mentioned catalyst component supported on the above-mentioned carrier substance.
【請求項2】 多孔質基材の孔壁表面に触媒成分として
の貴金属を分散付着させる貴金属付着工程と,該貴金属
の上に担体物質を被覆する担体被覆工程と,その後,上
記多孔質基材を除去する基材除去工程とを行ない,上記
担体物質に上記貴金属を担持してなる貴金属担持触媒を
得ることを特徴とする貴金属担持触媒の製造方法。
2. A noble metal deposition step of dispersing and depositing a noble metal as a catalyst component on the pore wall surface of a porous substrate, a carrier coating step of coating a carrier substance on the noble metal, and thereafter, the porous substrate And removing the substrate to obtain a noble metal-supported catalyst in which the noble metal is supported on the carrier material.
JP18922098A 1997-08-27 1998-07-03 Catalyst production method Expired - Fee Related JP3580136B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18922098A JP3580136B2 (en) 1998-07-03 1998-07-03 Catalyst production method
EP98940586A EP0934819A4 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
PCT/JP1998/003822 WO1999010167A1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
US09/297,051 US6194650B1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922098A JP3580136B2 (en) 1998-07-03 1998-07-03 Catalyst production method

Publications (2)

Publication Number Publication Date
JP2000015096A true JP2000015096A (en) 2000-01-18
JP3580136B2 JP3580136B2 (en) 2004-10-20

Family

ID=16237587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922098A Expired - Fee Related JP3580136B2 (en) 1997-08-27 1998-07-03 Catalyst production method

Country Status (1)

Country Link
JP (1) JP3580136B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239161A (en) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc Catalyst for cleaning up noxious gas at low temperature
US6793793B2 (en) 2000-08-24 2004-09-21 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
WO2008069003A1 (en) * 2006-12-05 2008-06-12 Tanaka Kikinzoku Kogyo K. K. Exhaust gas purification catalyst and method for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239161A (en) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc Catalyst for cleaning up noxious gas at low temperature
US6793793B2 (en) 2000-08-24 2004-09-21 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
WO2008069003A1 (en) * 2006-12-05 2008-06-12 Tanaka Kikinzoku Kogyo K. K. Exhaust gas purification catalyst and method for production thereof
EP2047902A1 (en) * 2006-12-05 2009-04-15 Tanaka Kikinzoku Kogyo K.K. Exhaust gas purification catalyst and method for production thereof
US7781367B2 (en) 2006-12-05 2010-08-24 Tanaka Kikinzoku Kogyo K.K. Exhaust gas cleaning catalyst and process for producing the same
EP2047902A4 (en) * 2006-12-05 2012-06-06 Tanaka Precious Metal Ind Exhaust gas purification catalyst and method for production thereof

Also Published As

Publication number Publication date
JP3580136B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3362668B2 (en) Manufacturing method of metal carrier
CA2470025C (en) Carbon nanotube-containing structures, methods of making, and processes using same
US3331787A (en) Method of preparing an oxidation catalyst
EP2295376A2 (en) Carbon nanotube-containing structures, methods of making, and processes using same
CN1400923A (en) Catalyst, method of making, and reactions using the catalyst
US20050103990A1 (en) Composites based on carbon nanotubes or nanofibers deposited on an activated support for use in catalysis
EP1832345A1 (en) Catalyst for exhaust gas purification
KR20040039951A (en) A Method for Coating Double-Layered Particles of Metal-Metal Oxide and Depositing Active Catalyst Particles onto Metal Substrates for Preparing Metal Monolith Catalyst Modules
EP0361952A1 (en) Catalytic washcoat
EP0993338B1 (en) Use of catalyst with high sulphur tolerance for hydrogenation
JP2001170500A (en) Porous body, method of producing the same and exhaust gas purification catalyst using the porous body
JP4063807B2 (en) Exhaust gas purification catalyst
JP3362669B2 (en) Photocatalyst manufacturing method
KR950009708B1 (en) Method of catalytic combustion using heat-resistand catalyst
JP3050558B2 (en) Catalyst support material and method for producing such support material
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
JP3580136B2 (en) Catalyst production method
JP2003033658A (en) Method of manufacturing metal-containing binary catalyst for dewaxing
JP2006297348A (en) Catalyst for clarifying exhaust gas
JP2007069095A (en) Carrier of catalyst for nox purification
JP5025148B2 (en) Exhaust gas purification catalyst
US20030022788A1 (en) Ceramic catalyst body
RU2653360C1 (en) Method of preparation of the catalyst
JP2002173370A (en) Titania-based porous body and catalyst
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees