JP2000015065A - Hollow fiber membrane carrying catalyst - Google Patents

Hollow fiber membrane carrying catalyst

Info

Publication number
JP2000015065A
JP2000015065A JP18856498A JP18856498A JP2000015065A JP 2000015065 A JP2000015065 A JP 2000015065A JP 18856498 A JP18856498 A JP 18856498A JP 18856498 A JP18856498 A JP 18856498A JP 2000015065 A JP2000015065 A JP 2000015065A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
catalyst
photocatalyst
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18856498A
Other languages
Japanese (ja)
Inventor
Hideyuki Kimura
秀行 木村
Yosuke Nagano
洋介 永野
Makoto Oda
誠 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18856498A priority Critical patent/JP2000015065A/en
Publication of JP2000015065A publication Critical patent/JP2000015065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To decompose captured microorganisms and organic foreign matters and to extend the service life of hollow fiber membranes by a method in which a catalyst for decomposing the microorganisms and organic foreign matters in fluid captured by the hollow fiber membranes is carried on the surfaces of the membranes having numbers of pores and/or on the inside surfaces of the pores. SOLUTION: In a hollow fiber membrane 1 which is used in a water purifier, a water conditioner for producing alkali ion water, acidic water, and soft water, and a water quality improving device, numbers of pores 2 are bored in the surface, and a catalyst is carried on the surface and on the inside surfaces of the pores 2. A photocatalyst is used as the catalyst 3, and light is required to develop a catalytic function. For example, when titanium oxide (titanium dioxide) is used as the photocatalyst, ultraviolet light 400 nm, preferably 380 nm or below, in wavelength is necessary. Zinc sulfide, cadmium sulfide, iron (III) oxide, and others are named as the photocatalyst other than titanium oxide. When light is unavailable, a metal catalyst of silver, copper, and others can be used as the catalyst 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄化,抗菌,防汚
等の機能が要求される清潔・衛生志向の機器、特に浄水
器,アルカリイオン水や酸性水および軟水を生成する整
水器,水改質器等に用いられる微生物や有機系異物を捕
獲する中空糸膜およびそれを利用した中空糸膜フルター
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clean and sanitary equipment which requires functions such as purification, antibacterial and antifouling, especially a water purifier, a water purifier for producing alkaline ionized water, acidic water and soft water, The present invention relates to a hollow fiber membrane used for a water reformer and the like, which captures microorganisms and organic foreign substances, and a hollow fiber membrane filter using the same.

【0002】[0002]

【従来の技術】たとえば、雑誌工業材料(Vol.45、
No.10/1997年10月号)の28ページ(東大/
藤嶋教授著)に記載されているように、光触媒の最も大
きな特性の一つは表面反応であり、空気や水等の流体中
の物質が光触媒の表面に来て、接触して初めて光触媒反
応の対象となる。このため、光触媒機能を効率的に発揮
させるには、物質が接触する光触媒の表面積をできる限
り大きくすることが非常に重要である。
2. Description of the Related Art For example, magazine industrial materials (Vol. 45,
No. 28 pages of October / October 1997 issue)
As described by Prof. Fujishima), one of the biggest characteristics of photocatalyst is surface reaction. When a substance in a fluid such as air or water comes to the surface of the photocatalyst and contacts it, Be eligible. For this reason, it is very important to increase the surface area of the photocatalyst in contact with the substance as much as possible in order to exhibit the photocatalytic function efficiently.

【0003】この点を考慮した光触媒の担持に関する従
来技術として、たとえば特開平1−234729号公報および
特開平8−99041号公報がある。
[0003] As a prior art relating to the loading of a photocatalyst in consideration of this point, there are, for example, JP-A-1-234729 and JP-A-8-99041.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の特開平
1−234729 号公報では、光触媒(二酸化チタン系)をハ
ニカム状の活性炭に担持している。また、特開平8−990
41号公報では、光触媒(二酸化チタン系)を多孔質の薄
膜に構成している。これらの従来技術では、表面積の拡
大化が図られ、流体中の微生物や有機系異物の分解には
有効であるが、流体中の微生物や有機系異物を積極的に
捕獲する手段は採られていない。つまり、光触媒表面で
捕獲されなかった(接触しなかった)流体中の微生物や
有機系異物は、そのまま素通りしてしまう。
SUMMARY OF THE INVENTION The above prior art is disclosed in
In JP-A-234729, a photocatalyst (titanium dioxide-based) is supported on honeycomb-shaped activated carbon. Also, JP-A-8-990
In Japanese Patent Publication No. 41, a photocatalyst (titanium dioxide) is formed into a porous thin film. In these prior arts, the surface area is increased, which is effective for decomposing microorganisms and organic foreign substances in the fluid, but means for actively capturing the microorganisms and organic foreign substances in the fluid is employed. Absent. In other words, microorganisms and organic foreign substances in the fluid not captured (not contacted) on the photocatalyst surface pass through as they are.

【0005】本発明の目的は、光触媒等の触媒の表面積
の広大化を図ると共に、流体中の微生物や有機系異物を
積極的に捕獲する手段も具備し、該流体中の微生物や有
機系異物をほぼ完全に捕獲し、該捕獲した微生物や有機
系異物を効率よく分解処理(浄化,殺菌・抗菌,脱臭
等)することである。
SUMMARY OF THE INVENTION It is an object of the present invention to increase the surface area of a catalyst such as a photocatalyst, and to provide a means for positively capturing microorganisms and organic foreign substances in a fluid. Is almost completely captured, and the captured microorganisms and organic foreign substances are efficiently decomposed (purified, sterilized / antibacterial, deodorized, etc.).

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、表面に多数の微細孔を有する中空糸膜
の表面および/または該微細孔内面に該中空糸膜で捕獲
した流体中の微生物や有機系異物を分解処理する触媒を
担持した。該触媒は光触媒等で構成される。さらに、該
触媒を担持した中空糸膜を多数束ねて中空糸膜フィルタ
ーを構成し、該中空糸膜の微細孔で飲料水等の水を浄化
すると共に、該中空糸膜の微細孔で捕獲した微生物や有
機系異物を該触媒により分解処理した。
According to the present invention, in order to achieve the above object, the present invention relates to a hollow fiber membrane having a large number of micropores on its surface and / or a fluid captured on the inner surface of the micropores by the hollow fiber membrane. And a catalyst for decomposing microbes and organic foreign substances. The catalyst is composed of a photocatalyst or the like. Furthermore, a number of hollow fiber membranes carrying the catalyst were bundled to form a hollow fiber membrane filter, and water such as drinking water was purified by the fine holes of the hollow fiber membrane and captured by the fine holes of the hollow fiber membrane. Microorganisms and organic foreign substances were decomposed with the catalyst.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例に係る触
媒担持中空糸膜の構造を、図1以降の図をもとに説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a catalyst-carrying hollow fiber membrane according to one embodiment of the present invention will be described below with reference to FIGS.

【0008】図1は触媒を担持した中空糸膜の部分斜視
図で、1が中空糸膜、2がその表面に開けられた多数の
微細孔で、3が該中空糸膜1の表面および微細孔2の内
面にまで担持した触媒である。1aは中空糸膜の外側、
1bは中空糸膜の内側を示している。図2は、図1の部
分断面図で、微細孔2の二つ分を示している。
FIG. 1 is a partial perspective view of a hollow fiber membrane supporting a catalyst, 1 is a hollow fiber membrane, 2 is a large number of fine holes formed in the surface thereof, and 3 is the surface of the hollow fiber membrane 1 and fine pores. The catalyst is supported on the inner surface of the hole 2. 1a is the outside of the hollow fiber membrane,
1b shows the inside of the hollow fiber membrane. FIG. 2 is a partial cross-sectional view of FIG.

【0009】ここで、表面に担持する触媒3としては光
触媒がよいが、該光触媒に触媒機能を発揮させるには光
が必要になる。たとえば、光触媒として酸化チタン(二
酸化チタン)を用いると、光として波長が400ナノメ
ートル(nm)、望ましくは380ナノメートル以下の
紫外線が必要になる。該紫外線は、紫外線ランプ,ブラ
ックライト等で当然得られるが、太陽光や蛍光灯にも若
干量含まれているので、それを利用することもできる。
なお、酸化チタン以外の光触媒を利用することも当然可
能で、その場合必要な光の波長域は酸化チタンとは異な
ることになり、利用する光触媒に応じて適切な波長域の
光を照射しなければならない。酸化チタン以外の光触媒
としては、硫化亜鉛,硫化カドミウム,酸化第二鉄等が
ある。
Here, the catalyst 3 supported on the surface is preferably a photocatalyst, but light is required for the photocatalyst to exert its catalytic function. For example, when titanium oxide (titanium dioxide) is used as a photocatalyst, ultraviolet light having a wavelength of 400 nanometers (nm), preferably 380 nanometers or less, is required as light. The ultraviolet rays can be naturally obtained by an ultraviolet lamp, a black light, or the like, but the sunlight or the fluorescent lamp is also contained in a small amount, so that it can be used.
It is naturally possible to use a photocatalyst other than titanium oxide, in which case the necessary wavelength range of light will be different from that of titanium oxide, and light of an appropriate wavelength range must be irradiated according to the photocatalyst to be used. Must. Photocatalysts other than titanium oxide include zinc sulfide, cadmium sulfide, and ferric oxide.

【0010】また、光が得にくい状況では、表面に担持
する触媒3として銀系や銅系等の金属系触媒を利用して
もよい。この場合、光触媒に比べると触媒機能(微生物
等の分解能)が劣る場合が多いが、該銀系や銅系の触媒
では光がなくても触媒機能を発揮させることができる。
なお、光触媒と銀系や銅系の触媒3を混合して中空糸膜
1の表面に担持してもよい。この場合、光が得られる場
合は光触媒が効率よく働き、光が得られない場合は銀系
や銅系触媒が働き、常に触媒機能を発揮させることがで
きる。
In a situation where it is difficult to obtain light, a metal catalyst such as a silver catalyst or a copper catalyst may be used as the catalyst 3 supported on the surface. In this case, the catalytic function (resolution of microorganisms and the like) is often inferior to the photocatalyst, but the silver-based or copper-based catalyst can exert its catalytic function without light.
The photocatalyst and the silver-based or copper-based catalyst 3 may be mixed and supported on the surface of the hollow fiber membrane 1. In this case, when light can be obtained, the photocatalyst works efficiently, and when light cannot be obtained, a silver-based or copper-based catalyst works, and the catalyst function can always be exerted.

【0011】中空糸膜1の表面および微細孔2の内面に
触媒3を担持する方法は特に制限されるものではない
が、スプレー,コーティング,被覆等による担持法でよ
い。また、場合によっては、中空糸膜1を構成する材料
内に触媒3を直接練り込んでもよい。中空糸膜1の材料
としては、ポリプロピレン,ポリエチレン,ポリスルフ
ォン等の樹脂製繊維でもよい。また、該触媒3は、中空
糸膜1の表面と微細孔2の内面にまですべて担持するの
が最も望ましいが、状況によってはいずれか一方のみで
あってもよい。
The method of supporting the catalyst 3 on the surface of the hollow fiber membrane 1 and the inner surface of the micropores 2 is not particularly limited, but may be a supporting method such as spraying, coating and coating. In some cases, the catalyst 3 may be directly kneaded into the material constituting the hollow fiber membrane 1. As a material of the hollow fiber membrane 1, resin fibers such as polypropylene, polyethylene, and polysulfone may be used. It is most desirable that the catalyst 3 be supported on both the surface of the hollow fiber membrane 1 and the inner surface of the micropores 2. However, depending on the situation, only one of them may be supported.

【0012】次に、図3を用いて本発明の作用を述べ
る。図3は図1に示す中空糸膜1の片側断面図である。
今、一例として、中空糸膜1表面を流れる流体として水
を、また触媒3として光触媒(酸化チタン等)を考え
る。図3において、対象となる微生物や有機系異物5を
含んだ水4が、水圧等により中空糸膜外側1aを右側か
ら左へ向かって流れながら、多数の微細孔2を通過後、
中空糸膜内側1bに流れ込むとすると、微生物や有機系
異物5は微細孔2およびその付近で積極的に捕獲され
る。図において、5aは微細孔2内で、5bは微細孔2
入り口で、5cは微細孔2間で捕獲された様子を示して
いる。
Next, the operation of the present invention will be described with reference to FIG. FIG. 3 is a one-side sectional view of the hollow fiber membrane 1 shown in FIG.
Now, as an example, consider water as a fluid flowing on the surface of the hollow fiber membrane 1 and a photocatalyst (such as titanium oxide) as the catalyst 3. In FIG. 3, water 4 containing the target microorganisms and organic foreign matter 5 flows from the right side to the left side of the hollow fiber membrane 1a by water pressure or the like, and after passing through many micropores 2,
When flowing into the inside 1b of the hollow fiber membrane, microorganisms and organic foreign matter 5 are actively captured in the micropore 2 and its vicinity. In the figure, 5a is in the fine hole 2 and 5b is in the fine hole 2.
At the entrance, reference numeral 5c indicates a state captured between the fine holes 2.

【0013】一般に、中空糸膜1の直径は0.4 ミリメ
ートル(mm)前後で、その表面に開けられる微細孔2の
大きさは概略0.01から0.5マイクロメートルであ
り、これに対し微生物や有機系異物5の大きさは概略
0.2 から数マイクロメートルのオーダであるため、該
水中の微生物や有機系異物5は該微細孔2で強制的に、
かつほぼ完全に捕獲される。
In general, the diameter of the hollow fiber membrane 1 is about 0.4 millimeter (mm), and the size of the micropores 2 formed in the surface thereof is approximately 0.01 to 0.5 micrometers. Since the size of the microorganisms and organic foreign matter 5 is on the order of about 0.2 to several micrometers, the microorganisms and organic foreign matter 5 in the water are forcibly forced through the micropores 2.
And almost completely captured.

【0014】従来の中空糸膜1では、その表面等に触媒
が担持されていないので、前記捕獲した微生物や有機系
異物5はそのまま微細孔2の付近および中空糸膜1の表
面に留まり、微生物5の繁殖の危険性があり、さらに短
い周期の定期的なメンテナンスや交換が必要になる。
In the conventional hollow fiber membrane 1, since no catalyst is supported on the surface or the like, the captured microorganisms and organic foreign substances 5 remain near the micropores 2 and on the surface of the hollow fiber membrane 1 as they are. There is a danger of breeding 5 and requires even shorter periodic maintenance and replacement.

【0015】しかし、本発明では、中空糸膜1の表面お
よび微細孔2の内面に光触媒3が担持されているので、
外部から到達する光6により光触媒機能が発揮され、該
中空糸膜1で強制的に捕獲された水4中の微生物や有機
系異物5が効率よく分解され、微生物5等の繁殖の危険
性は極めて少なくなる。
However, in the present invention, since the photocatalyst 3 is supported on the surface of the hollow fiber membrane 1 and the inner surface of the micropores 2,
The photocatalyst function is exhibited by the light 6 arriving from the outside, and the microorganisms and organic foreign substances 5 in the water 4 forcibly captured by the hollow fiber membrane 1 are efficiently decomposed, and the danger of propagation of the microorganisms 5 and the like is high. Extremely low.

【0016】なお、通水中(水使用時)だけでなく止水
後も持続して光6が該光触媒3に届く構成にしておけ
ば、その間も上記光触媒3の分解・殺菌作用が継続して
行われ、より効果的である。ここで、光触媒として酸化
チタンを用いた場合、光6として波長が約380ナノメ
ートル以下の紫外線を含んだ光線を照射する。
If the light 6 reaches the photocatalyst 3 not only during the passage of water (when water is used) but also after the water is stopped, the decomposition / sterilization of the photocatalyst 3 continues during that time. Done and more effective. Here, when titanium oxide is used as the photocatalyst, the light 6 is irradiated with a light beam containing ultraviolet light having a wavelength of about 380 nm or less.

【0017】図4は本発明の他の実施例で、図2のA部
に相当する。触媒3として粒子径が10ナノメートルの
オーダの超微粒子状の光触媒3aを担持した例である。
FIG. 4 shows another embodiment of the present invention, and corresponds to a portion A in FIG. This is an example in which an ultrafine photocatalyst 3a having a particle diameter of the order of 10 nanometers is supported as the catalyst 3.

【0018】図5は本発明の他の実施例で、中空糸膜1
を多数(たとえば数百本から数千本)束ねて構成した中空
糸膜フィルター7を密閉された容器8(カートリッジ)
内に収納した浄水器用カートリッジフィルターである。
9は対象水4の処理前水流入口、10は処理後水流出口
であり、該カートリッジフィルター8内の中空糸膜フィ
ルター7で微生物5等の積極的捕獲と、効率よい分解処
理が行われる。
FIG. 5 shows another embodiment of the present invention.
A container 8 (cartridge) in which a hollow fiber membrane filter 7 configured by bundling (for example, several hundred to several thousand)
It is a cartridge filter for water purifier stored inside.
Reference numeral 9 denotes a water inlet before the treatment of the target water 4, and 10 denotes a water outlet after the treatment. The hollow fiber membrane filter 7 in the cartridge filter 8 actively captures the microorganisms 5 and the like and performs an efficient decomposition treatment.

【0019】このため、従来のような捕獲だけのカート
リッジフィルターに比べフィルターの長寿命化が可能と
なり、交換形のカートリッジフィルターでは交換周期を
長くできる。このように中空糸膜フィルター7を構成す
ると、中空糸膜1の面積をかなり広くとることができ、
その表面および微細孔2の内面に担持する光触媒の全表
面積も大幅な広大化が図れる。
For this reason, the life of the filter can be made longer than that of a conventional cartridge filter which only captures, and the replacement cycle can be made longer with an exchangeable cartridge filter. When the hollow fiber membrane filter 7 is configured as described above, the area of the hollow fiber membrane 1 can be considerably increased,
The entire surface area of the photocatalyst supported on the surface and the inner surface of the micropores 2 can be greatly increased.

【0020】ここで、図のように触媒3として光触媒を
利用すると、外部から光6の照射が必要になるので、該
容器8は光触媒に触媒機能を発揮させる光6(たとえば
紫外線)を容易に透過させる透過率のよい材質で構成す
る必要がある。さらに、あわせて、中空糸膜1の汚れ具
合が外部から観察できるように、該容器8は光の透過率
のよい材質であって、かつ透明な材質であってもよい。
一例として、透明なプラスチックやガラスでもよい。
Here, if a photocatalyst is used as the catalyst 3 as shown in the figure, irradiation of the light 6 from the outside is necessary, so that the container 8 easily emits the light 6 (for example, ultraviolet light) which causes the photocatalyst to exert a catalytic function. It is necessary to be made of a material having a good transmittance for transmission. In addition, the container 8 may be made of a material having a high light transmittance and a transparent material so that the degree of contamination of the hollow fiber membrane 1 can be observed from the outside.
As an example, transparent plastic or glass may be used.

【0021】なお、該カートリッジフィルター8内に
は、光触媒3を担持した中空糸膜フィルター7だけでな
く、大きな汚れを採る不織布フィルターや活性炭等の浄
化手段を合わせて設けてもよい。この場合、該浄化手段
にも抗菌材等を被覆,担持するのがよい。
The cartridge filter 8 may be provided with not only the hollow fiber membrane filter 7 carrying the photocatalyst 3 but also a purifying means such as a non-woven fabric filter for removing large dirt or activated carbon. In this case, it is preferable to coat and carry the antibacterial material or the like also on the purifying means.

【0022】図6は図5の該カートリッジフィルター8
を水道の蛇口11に固定する浄水器12に取り付けた実
施例で、13は該カートリッジフィルター8を収納する
カセットである。該カートリッジフィルター8は交換可
能になっている。蛇口直結型浄水器12の形状は前記形
状に制限されない。また、水道蛇口直結でなく、据え置
き型やビルトイン型であってもよいし、水道に連結しな
いポット型および携帯型,災害・非常用浄水器等であっ
ても差し支えない。
FIG. 6 shows the cartridge filter 8 of FIG.
Is attached to a water purifier 12 which is fixed to a tap 11 of a water supply, and 13 is a cassette for accommodating the cartridge filter 8. The cartridge filter 8 is replaceable. The shape of the tap water purifier 12 is not limited to the above shape. Instead of being directly connected to a water tap, it may be of a stationary type or a built-in type, or may be a pot type not connected to water supply, a portable type, a disaster / emergency water purifier, or the like.

【0023】該中空糸膜フィルター7を容器8内に収納
した図5のようなカートリッジフィルターは、浄水器だ
けでなく、アルカリイオン水や酸性水および軟水を生成
する整水器や水改質器等にも利用でき、さらに中空糸膜
1や微細孔2の大きさ、直径を用途に合わせて選定すれ
ば排水浄化等の水処理にも応用できる。
The cartridge filter as shown in FIG. 5 in which the hollow fiber membrane filter 7 is housed in a container 8 is not only a water purifier but also a water conditioner or a water reformer for producing alkaline ionized water, acidic water and soft water. If the size and the diameter of the hollow fiber membrane 1 and the micropores 2 are selected according to the application, it can be applied to water treatment such as wastewater purification.

【0024】[0024]

【発明の効果】本発明によれば、多数の微細孔2を有す
る中空糸膜1の表面および該微細孔2の内面に触媒機能
を発揮する光触媒等の触媒3が担持されているため、流
体中の微生物や小さな有機系異物5および汚れ,かび,
異物等が該中空糸膜1で積極的に捕獲され、かつ、捕獲
により触媒3の表面に接触している微生物や有機系異物
5は触媒機能により効率よく分解処理されるので、中空
糸膜1の使用寿命を従来より長くできる。
According to the present invention, since the surface of the hollow fiber membrane 1 having a large number of micropores 2 and the inner surface of the micropores 2 carry a catalyst 3 such as a photocatalyst having a catalytic function, a fluid Microorganisms and small organic foreign matter 5 and dirt, mold,
Foreign matter and the like are actively captured by the hollow fiber membrane 1, and microorganisms and organic foreign matter 5 contacting the surface of the catalyst 3 by the capture are efficiently decomposed by the catalytic function. Service life can be made longer than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である中空糸膜の部分斜視図。FIG. 1 is a partial perspective view of a hollow fiber membrane according to an embodiment of the present invention.

【図2】図1の中空糸膜の部分断面図。FIG. 2 is a partial cross-sectional view of the hollow fiber membrane of FIG.

【図3】図1の中空糸膜の片側断面図。FIG. 3 is a half sectional view of the hollow fiber membrane of FIG.

【図4】超微粒子状の光触媒を担持した中空糸膜。FIG. 4 shows a hollow fiber membrane supporting a photocatalyst in the form of ultrafine particles.

【図5】カートリッジフィルターの斜視図。FIG. 5 is a perspective view of a cartridge filter.

【図6】カートリッジフィルターを取り付けた浄水器の
斜視図。
FIG. 6 is a perspective view of a water purifier to which a cartridge filter is attached.

【符号の説明】[Explanation of symbols]

1…中空糸膜、2…微細孔、3…触媒、4…水、5…微
生物等、6…光、7…中空糸膜フィルター、8…カート
リッジ、9…処理前水流入口、10…処理後水流出口、
11…蛇口、12…浄水器、13…カセット。
DESCRIPTION OF SYMBOLS 1 ... Hollow fiber membrane, 2 ... Micropore, 3 ... Catalyst, 4 ... Water, 5 ... Microorganism, etc. 6 ... Light, 7 ... Hollow fiber membrane filter, 8 ... Cartridge, 9 ... Water inlet before treatment, 10 ... After treatment Water outlet,
11: faucet, 12: water purifier, 13: cassette.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/72 101 C02F 1/72 101 (72)発明者 織田 誠 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 4D006 GA02 HA01 HA91 HA95 JA15Z JA18Z JA25A KB04 KB30 MA01 MC22 MC23 MC62 PB24 PC51 4D037 AA02 AB03 AB04 BA18 CA03 4D050 AA01 AA04 AB04 AB06 BB20 BC06 BC09 BD02 CA09 4G069 AA03 BA04A BA04B BA48A BB04A BB04B BB09B BC31B BC32B BC35B BC36B BC66B CA10 CA11 CA17 FB23 FB24Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) C02F 1/72 101 C02F 1/72 101 (72) Inventor Makoto Oda 502, Kandachicho, Tsuchiura-shi, Ibaraki Pref. F-term in mechanical laboratory (reference) 4D006 GA02 HA01 HA91 HA95 JA15Z JA18Z JA25A KB04 KB30 MA01 MC22 MC23 MC62 PB24 PC51 4D037 AA02 AB03 AB04 BA18 CA03 4D050 AA01 AA04 AB04 AB06 BB20 BC06 BC09 BD02 CA09 4G069 AA03B04B04B04B04B04A BC35B BC36B BC66B CA10 CA11 CA17 FB23 FB24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】表面に多数の微細孔を有する中空糸膜の表
面、または該微細孔内面の少なくともどちらか一方に該
中空糸膜で捕獲した流体中の微生物や有機系異物を分解
する触媒を担持したことを特徴とする触媒担持中空糸
膜。
1. A catalyst for decomposing microorganisms and organic foreign substances in a fluid captured by a hollow fiber membrane on at least one of the surface of a hollow fiber membrane having a large number of micropores on its surface or the inner surface of the micropores. A catalyst-carrying hollow fiber membrane which is carried.
【請求項2】該触媒の一つが光の照射によって触媒機能
を発揮する光触媒であり、該捕獲した微生物や有機系異
物を該光触媒機能により分解することを特徴とする請求
項1に記載の触媒担持中空糸膜。
2. The catalyst according to claim 1, wherein one of the catalysts is a photocatalyst which exhibits a catalytic function by light irradiation, and decomposes the captured microorganisms and organic foreign substances by the photocatalytic function. Supported hollow fiber membrane.
【請求項3】該流体が水であって、該中空糸膜を多数束
ねて構成した中空糸膜フィルターにより該水を浄化する
と共に、該中空糸膜により捕獲した微生物や有機系異物
を該触媒により分解処理することを特徴とする請求項1
又は請求項2に記載の触媒担持中空糸膜。
3. The method according to claim 1, wherein the fluid is water, and the water is purified by a hollow fiber membrane filter formed by bundling the hollow fiber membranes, and the microorganisms and organic foreign substances captured by the hollow fiber membranes are removed by the catalyst. 2. A decomposition process according to claim 1.
Or the catalyst-carrying hollow fiber membrane according to claim 2.
【請求項4】該中空糸膜フィルターは容器内に収納され
たカートリッジフィルターであり、該容器は光触媒に触
媒機能を発揮させる光を容易に透過させる材質で構成さ
れていることを特徴とする請求項1から3のいずれか1
項に記載の触媒担持中空糸膜。
4. The hollow fiber membrane filter is a cartridge filter housed in a container, and the container is made of a material that easily transmits light that causes the photocatalyst to exhibit a catalytic function. Any one of items 1 to 3
Item 7. The catalyst-supporting hollow fiber membrane according to item 1.
【請求項5】該光触媒が酸化チタンであり、該酸化チタ
ンに照射する光が紫外線を含む光であることを特徴とす
る請求項1から4のいずれか1項に記載の触媒担持中空
糸膜。
5. The catalyst-carrying hollow fiber membrane according to claim 1, wherein the photocatalyst is titanium oxide, and the light applied to the titanium oxide is light containing ultraviolet rays. .
JP18856498A 1998-07-03 1998-07-03 Hollow fiber membrane carrying catalyst Pending JP2000015065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18856498A JP2000015065A (en) 1998-07-03 1998-07-03 Hollow fiber membrane carrying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18856498A JP2000015065A (en) 1998-07-03 1998-07-03 Hollow fiber membrane carrying catalyst

Publications (1)

Publication Number Publication Date
JP2000015065A true JP2000015065A (en) 2000-01-18

Family

ID=16225905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18856498A Pending JP2000015065A (en) 1998-07-03 1998-07-03 Hollow fiber membrane carrying catalyst

Country Status (1)

Country Link
JP (1) JP2000015065A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254074A (en) * 2001-02-28 2002-09-10 Toray Ind Inc Water purifier
WO2005084792A1 (en) * 2004-02-18 2005-09-15 Hitachi Chemical Co., Ltd. Supporting unit for micro fluid system
JP2006224017A (en) * 2005-02-18 2006-08-31 Suetomi Engineering:Kk Photocatalytic tube for water treatment
WO2011092987A1 (en) * 2010-01-26 2011-08-04 パナソニック電工株式会社 Water purification apparatus
US8480971B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
CN103861467A (en) * 2013-12-28 2014-06-18 太平洋水处理工程有限公司 Low-temperature hydrothermal method for preparing strong hydrophilic anti-pollution composite membrane and application of membrane
WO2014093349A3 (en) * 2012-12-10 2014-08-07 Nitto Denko Corporation Disinfecting water device
US8865090B2 (en) 2002-02-25 2014-10-21 Hitachi Chemical Co., Ltd. Micro fluid system support and manufacturing method thereof
US8945157B2 (en) 2009-09-25 2015-02-03 Boston Scientific Scimed, Inc. Devices for approximating tissue and related methods of use
CN113750826A (en) * 2020-06-03 2021-12-07 天津工业大学 Preparation method of photocatalytic composite porous membrane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686872B2 (en) * 2001-02-28 2011-05-25 東レ株式会社 Water purifier
JP2002254074A (en) * 2001-02-28 2002-09-10 Toray Ind Inc Water purifier
US8865090B2 (en) 2002-02-25 2014-10-21 Hitachi Chemical Co., Ltd. Micro fluid system support and manufacturing method thereof
US8889084B2 (en) 2002-02-25 2014-11-18 Hitachi Chemical Company, Ltd. Micro fluid system support and manufacturing method thereof
WO2005084792A1 (en) * 2004-02-18 2005-09-15 Hitachi Chemical Co., Ltd. Supporting unit for micro fluid system
KR100927288B1 (en) 2004-02-18 2009-11-18 히다치 가세고교 가부시끼가이샤 Support Unit for Micro Fluid System
US8480971B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
US8480970B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
JP2006224017A (en) * 2005-02-18 2006-08-31 Suetomi Engineering:Kk Photocatalytic tube for water treatment
US8945157B2 (en) 2009-09-25 2015-02-03 Boston Scientific Scimed, Inc. Devices for approximating tissue and related methods of use
US9610081B2 (en) 2009-09-25 2017-04-04 Boston Scientific Scimed, Inc. Devices for approximating tissue and related methods of use
WO2011092987A1 (en) * 2010-01-26 2011-08-04 パナソニック電工株式会社 Water purification apparatus
WO2014093349A3 (en) * 2012-12-10 2014-08-07 Nitto Denko Corporation Disinfecting water device
US9738543B2 (en) 2012-12-10 2017-08-22 Nitto Denko Corporation Disinfecting water device
CN103861467A (en) * 2013-12-28 2014-06-18 太平洋水处理工程有限公司 Low-temperature hydrothermal method for preparing strong hydrophilic anti-pollution composite membrane and application of membrane
CN113750826A (en) * 2020-06-03 2021-12-07 天津工业大学 Preparation method of photocatalytic composite porous membrane
CN113750826B (en) * 2020-06-03 2022-11-25 天津工业大学 Preparation method of photocatalytic composite porous membrane

Similar Documents

Publication Publication Date Title
KR100397659B1 (en) Photocatalyst powder for environmental purification, polymer composition containing the powder and molded article thereof, and processes for producing these
RU2699623C2 (en) Methods and apparatus for producing purified gaseous hydrogen peroxide
KR20190020442A (en) Air purifier unit with ultraviolet photo catalysis and air purifier apparatus comprising the same
KR20100061665A (en) Uv air treatment method and device
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
JP3493393B2 (en) Photocatalytic powder for environmental purification, powder-containing polymer composition and molded article thereof, and methods for producing them
KR102184694B1 (en) Air Cleaning Filter Using Visible Light Excitation Photocatalyst and Manufacturing Method Thereof
US7754158B2 (en) Filter assembly for air purifier
JP2000015065A (en) Hollow fiber membrane carrying catalyst
KR100383035B1 (en) Aquarium purifier using photocatalytic decomposer
JP2002036418A (en) Film material with photocatalytic function
KR20050020065A (en) Air purifier
JP2000167355A (en) Purifying apparatus
KR101240509B1 (en) Sensor network system using stationary optical source
JPH11267419A (en) Sheet structural body
JP2000152983A (en) Air cleaner
JP2003126227A (en) Apparatus and method for treating polluted air
JP3776955B2 (en) Photocatalytic reactor cartridge and photocatalytic reactor
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
JP2001218820A (en) Deodorizing device
JP4066041B2 (en) Water purification equipment
JP2001293071A (en) Deodorizing equipment and photocatalyst
KR100384586B1 (en) Apparatus for purifying fluid using photocatalyst
JPH11179154A (en) Method and apparatus for cleaning of air pollution hazardous substance
CN215982997U (en) Be applied to fine cloth board module of drawer type glass of clarifier