JP2000012901A - Manufacture of gallium nitride-based compound semiconductor single crystal - Google Patents

Manufacture of gallium nitride-based compound semiconductor single crystal

Info

Publication number
JP2000012901A
JP2000012901A JP17891698A JP17891698A JP2000012901A JP 2000012901 A JP2000012901 A JP 2000012901A JP 17891698 A JP17891698 A JP 17891698A JP 17891698 A JP17891698 A JP 17891698A JP 2000012901 A JP2000012901 A JP 2000012901A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
gallium nitride
compound semiconductor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17891698A
Other languages
Japanese (ja)
Inventor
Yoji Seki
洋二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP17891698A priority Critical patent/JP2000012901A/en
Publication of JP2000012901A publication Critical patent/JP2000012901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress thermal deformations due to the growth of epitaxial layer and prevent breakages of the epitaxial layer or substrate by growing a single-crystal film made of gallium nitride-based compound semiconductor on both front and the rear surfaces of a single-crystal substrate. SOLUTION: After cleaning and drying a (001) plane NdGaO3 single-crystal substrate, it is set to a hydride VPE device. Then the temperatures of the substrate and raw material Ga are raised and kept, while supplying N2 gas. HCl gas diluted with the N2 gas is allowed to flow from the upstream side of the Ga, and the Ga is bypassed and an NH3 gas is supplied to the vicinity of the substrate, so that a thin film comprising a first GaN layer is grown on both front and rear surfaces of the substrate. Next, the substrate is heated up in an atmosphere of N2 gas, and the HCl gas diluted with the N2 gas is supplied from the upstream side of the Ga and the Ga is bypassed and the NH3 gas is supplied to the vicinity of the substrate, thereby coursing a second GaN layer to grow on the first GaN layer on the both front and rear surfaces of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光デバイス,電子
デバイスなどの半導体デバイスの製造に用いられる窒化
ガリウム系化合物半導体単結晶の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride-based compound semiconductor single crystal used for manufacturing a semiconductor device such as an optical device and an electronic device.

【0002】[0002]

【従来の技術】窒化ガリウム系化合物半導体(例えば、
InxGayAl1-x-yN)(0≦x,y;x+y≦1;
ただし、x=1,y=0の場合は除く)は、禁制帯幅が
広く、短波長発光素子,耐環境素子として期待され、広
く研究されてきた。
2. Description of the Related Art Gallium nitride-based compound semiconductors (for example,
In x Ga y Al 1-xy N) (0 ≦ x, y; x + y ≦ 1;
However, x = 1 and y = 0 are excluded), which have wide bandgap, are expected as short-wavelength light-emitting elements and environment-resistant elements, and have been widely studied.

【0003】しかしながら、この窒化ガリウム系の化合
物半導体においては、未だ大型のバルク結晶が得られな
いため、異種結晶(例えばサファイアα−Al23)上
へのヘテロエピタキシーによってGaN等の薄膜単結晶
を形成したものが基板として用いられてきた。
However, in this gallium nitride-based compound semiconductor, since a large bulk crystal cannot be obtained yet, a thin film single crystal such as GaN is formed by heteroepitaxy on a heterogeneous crystal (for example, sapphire α-Al 2 O 3 ). Have been used as substrates.

【0004】ところが、サファイアに代表されるよう
に、多くの場合、基板に用いられる異種結晶とその上に
成膜される窒化ガリウム系化合物半導体薄膜との格子不
整合性が大きく、欠陥や熱歪みなどが発生し易いため、
窒化ガリウム系化合物半導体単結晶は品質的に問題を抱
えるものであった。
However, in many cases, as represented by sapphire, the heterogeneous crystal used for the substrate has a large lattice mismatch between the gallium nitride-based compound semiconductor thin film formed thereon and defects and thermal distortion. Etc. are likely to occur,
Gallium nitride-based compound semiconductor single crystals have problems in quality.

【0005】そこで、本発明者等は、窒化ガリウム系化
合物半導体をヘテロエピタキシーによって成長させる際
に、種々の優れた特性を備える異種結晶基板の材料の一
つとして希土類Gaペロブスカイトに代表される希土類
13(3B)族ペロブスカイトを用いた窒化ガリウム系
化合物半導体単結晶の成長方法および窒化ガリウム系化
合物半導体装置を提案した(特願平7−526233
号)。
[0005] In view of the above, the present inventors have proposed that when growing a gallium nitride-based compound semiconductor by heteroepitaxy, a rare-earth element represented by rare-earth Ga perovskite is one of the materials for a hetero-crystal substrate having various excellent characteristics. A method of growing a gallium nitride-based compound semiconductor single crystal using a (3B) group perovskite and a gallium nitride-based compound semiconductor device have been proposed (Japanese Patent Application No. 7-526233).
issue).

【0006】この成長技術によれば、例えば希土類13
(3B)族ペロブスカイトの一種としてNdGaO3
基板として用い、その基板上にGaNをエピタキシャル
成長させる場合には、格子不整合を1.2%程度とする
ことができた。
According to this growth technique, for example, rare earth 13
When NdGaO 3 is used as a substrate as a kind of (3B) group perovskite and GaN is epitaxially grown on the substrate, the lattice mismatch can be reduced to about 1.2%.

【0007】この格子不整合性は、サファイアやその代
替品として用いられるSiCを基板とした場合と比較し
ても非常に小さく、窒化ガリウム系化合物半導体単結晶
のヘテロエピタキシーに有効であると期待される。
[0007] This lattice mismatch is very small as compared with the case where sapphire or SiC used as a substitute thereof is used as a substrate, and is expected to be effective for heteroepitaxy of a gallium nitride-based compound semiconductor single crystal. You.

【0008】[0008]

【発明が解決しようとする課題】しかし、希土類13
(3B)族ペロブスカイトを窒化ガリウム系化合物半導
体のヘテロエピタキシー用基板として用いる場合におい
て、例えばNdGaO3を基板として窒化ガリウム系化
合物半導体単結晶をエピタキシャル成長させると、基板
とエピタキシャル層との熱膨張係数の差によって生じる
熱歪みに起因して、成長終了後の冷却時に基板およびエ
ピタキシャル層の双方が小片状に砕けて破壊されてしま
うという重大な問題を生じる場合があった。
However, rare earth 13
In the case where a group 3B perovskite is used as a substrate for heteroepitaxy of a gallium nitride-based compound semiconductor, for example, when a gallium nitride-based compound semiconductor single crystal is epitaxially grown using NdGaO 3 as a substrate, a difference in thermal expansion coefficient between the substrate and the epitaxial layer is obtained. There is a case where a serious problem occurs that both the substrate and the epitaxial layer are broken into small pieces and broken at the time of cooling after the growth, due to the thermal strain caused by the growth.

【0009】本発明は上述のような問題を解決すべく案
出されたものであり、エピタキシャル層の成長に伴う熱
歪みを抑制して基板やエピタキシャル層の破壊を防止す
ることのできる窒化ガリウム系化合物半導体単結晶の製
造方法を提供することを主目的とするものである。
The present invention has been devised to solve the above-described problems, and a gallium nitride-based material capable of suppressing thermal strain accompanying growth of an epitaxial layer and preventing breakage of a substrate or an epitaxial layer. It is a primary object of the present invention to provide a method for producing a compound semiconductor single crystal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、単結晶基板上に窒化ガリウム系化合物半
導体の単結晶を製造する方法において、前記単結晶基板
の表裏両面に窒化ガリウム系化合物半導体の単結晶膜を
成長させるようにしたものである。
In order to achieve the above object, the present invention provides a method of manufacturing a single crystal of a gallium nitride-based compound semiconductor on a single crystal substrate. A single crystal film of a system compound semiconductor is grown.

【0011】これにより、単結晶基板の表裏両面に形成
される窒化ガリウム系化合物半導体の単結晶のエピタキ
シャル層と当該基板との熱膨張係数の差に起因する熱歪
みによる応力は、基板の表裏において相殺されるため、
基板自体や成長した窒化ガリウム系化合物半導体単結晶
膜の破壊を有効に防止することができ、また、当該単結
晶膜を前記単結晶基板から破壊せずに剥離させることに
より窒化ガリウム系化合物半導体単結晶を効率良く得る
ことができる。しかも成長用基板を破壊せずに回収する
ことができるので経済性が高く、窒化ガリウム系化合物
半導体単結晶の製造コストの低減に貢献することができ
る。
As a result, stress due to thermal strain caused by a difference in thermal expansion coefficient between the single crystal epitaxial layer of the gallium nitride-based compound semiconductor formed on the front and back surfaces of the single crystal substrate and the substrate is reduced on both sides of the substrate. To be offset
Destruction of the substrate itself or the grown gallium nitride-based compound semiconductor single crystal film can be effectively prevented, and the gallium nitride-based compound semiconductor single-crystal film can be peeled off from the single crystal substrate without being broken. Crystals can be obtained efficiently. In addition, since the growth substrate can be recovered without being destroyed, economic efficiency is high, and it is possible to contribute to a reduction in the manufacturing cost of the gallium nitride-based compound semiconductor single crystal.

【0012】また、上記単結晶基板として、1または2
種類以上の希土類元素を含む希土類13(3B)族ペロ
ブスカイトの単結晶を用いることができる。
Further, as the single crystal substrate, 1 or 2
A single crystal of a rare earth 13 (3B) group perovskite containing more than one kind of rare earth element can be used.

【0013】また、上記窒化ガリウム系化合物半導体単
結晶の製造方法において、第1の温度条件下で上記単結
晶基板の表裏両面に第1の窒化ガリウム層を成長させる
第1の成膜工程と、上記単結晶基板を不活性ガス雰囲気
中で所定温度まで昇温させ熱処理する熱処理工程と、前
記熱処理工程後に、前記第1の温度条件より高温に設定
される第2の温度条件下で表裏両面の前記第1の窒化ガ
リウム層の上に第2の窒化ガリウム層を成長させる第2
の成膜工程とを少なくとも有するようにすることができ
る。
[0013] In the method for producing a gallium nitride-based compound semiconductor single crystal, a first film forming step of growing a first gallium nitride layer on both front and back surfaces of the single crystal substrate under a first temperature condition; A heat treatment step in which the single crystal substrate is heated to a predetermined temperature in an inert gas atmosphere and heat-treated, and after the heat treatment step, the front and back surfaces of the front and back surfaces are set under a second temperature condition higher than the first temperature condition. Growing a second gallium nitride layer on the first gallium nitride layer;
And at least a film forming step.

【0014】これにより、例えば第1層のGaNが剥が
れるという不具合を解消することができる。
Thus, the disadvantage that, for example, the first layer of GaN is peeled off can be solved.

【0015】なお、上記第1の成膜工程における第1の
温度条件は、400℃〜750℃、好ましくは550℃
〜650℃、形成する第1の窒化ガリウム層の膜厚は、
20nm〜350nm、好ましくは80nm〜120n
mとすることが望ましい。
The first temperature condition in the first film forming step is 400 ° C. to 750 ° C., preferably 550 ° C.
To 650 ° C., the thickness of the first gallium nitride layer to be formed is:
20 nm to 350 nm, preferably 80 nm to 120 n
m is desirable.

【0016】400℃未満ではGaNが成膜せず、80
0℃を超えると基板と原料ガスが反応するため好ましく
なく、又、80nm未満だと基板を完全に被覆すること
ができず、120nmを超えると生成する膜質が悪いた
め好ましくない。
At a temperature lower than 400 ° C., GaN is not formed,
If the temperature exceeds 0 ° C., the substrate and the raw material gas react with each other. If it is less than 80 nm, the substrate cannot be completely covered. If it exceeds 120 nm, the quality of the film formed is not preferable.

【0017】また、上記熱処理工程における所定温度
は、800℃〜1200℃、好ましくは950℃〜10
50℃とするとよい。この範囲外では、第1の窒化ガリ
ウム層が緩衝層あるいは保護膜としての機能が低下する
ので好ましくない。
The predetermined temperature in the heat treatment step is 800 to 1200 ° C., preferably 950 to 10 ° C.
The temperature should be 50 ° C. Outside this range, the function of the first gallium nitride layer as a buffer layer or a protective film is undesirably reduced.

【0018】また、上記熱処理工程における不活性ガス
雰囲気は、N2ガス雰囲気とすると効果的である。
Further, it is effective that the inert gas atmosphere in the heat treatment step is an N 2 gas atmosphere.

【0019】また、上記第2の成膜工程における第2の
温度条件は、800℃〜1200℃、好ましくは950
℃〜1050℃とすることが望ましい。
The second temperature condition in the second film forming step is 800 ° C. to 1200 ° C., preferably 950 ° C.
It is desirable that the temperature be set to 10 to 1050C.

【0020】800℃未満では成膜速度が遅く、120
0℃を超えると生成する膜質が悪いため好ましくない。
If the temperature is lower than 800 ° C., the film forming speed is low,
If the temperature exceeds 0 ° C., the quality of the formed film is poor, which is not preferable.

【0021】さらに、上記13(3B)族元素として、
Al,Ga,Inのうち少なくとも1種類を含むように
することができる。
Further, as the 13 (3B) group element,
At least one of Al, Ga, and In can be included.

【0022】このようにして製造した良質の窒化ガリウ
ム系化合物半導体単結晶を用いることにより、熱的,化
学的に安定な高性能の青色発光ダイオードや半導体レー
ザ等の半導体装置を作成することが可能となる。
By using the high-quality gallium nitride-based compound semiconductor single crystal manufactured as described above, a semiconductor device such as a high-performance blue light-emitting diode or semiconductor laser that is thermally and chemically stable can be manufactured. Becomes

【0023】[0023]

【発明の実施の形態】ここで、本発明の実施形態の一例
について説明する。
Here, an example of an embodiment of the present invention will be described.

【0024】なお、本実施形態では、希土類ガリウムペ
ロブスカイトの一種としてNdGaO3の単結晶基板の
(001)面上に窒化ガリウム系化合物半導体としての
GaN単結晶を成長させる場合について述べる。
In this embodiment, a case where a GaN single crystal as a gallium nitride-based compound semiconductor is grown on a (001) plane of a single crystal substrate of NdGaO 3 as a kind of rare earth gallium perovskite will be described.

【0025】まず、厚さ350μmの(001)面Nd
GaO3単結晶基板を有機溶剤で洗浄し、乾燥させた後
に、ハイドライドVPE(HVPE)装置にセットし
た。
First, a (001) plane Nd having a thickness of 350 μm
The GaO 3 single crystal substrate was washed with an organic solvent, dried, and then set in a hydride VPE (HVPE) device.

【0026】この際に、前記基板は、HVPE装置内に
設けられた石英製のウェハー保持具によって基板の表裏
両面にガス流が十分に接触するように固定保持される。
即ち、左右対称な石英製の反応管に対して、基板の両面
が対称となり、且つ、ガスの流れをさえぎらないよう
に、反応管の略中央に水平又は垂直に固定保持される。
At this time, the substrate is fixed and held by a quartz wafer holder provided in the HVPE apparatus so that the gas flow sufficiently contacts both the front and back surfaces of the substrate.
That is, with respect to a symmetrical quartz reaction tube, both surfaces of the substrate are symmetrical, and are horizontally or vertically fixed and held substantially at the center of the reaction tube so as not to interrupt the gas flow.

【0027】次いで、窒素ガスを流しながら、基板部の
温度を600℃に、Ga原料の温度を850℃に昇温し
て保持した。
Then, the temperature of the substrate was raised to 600 ° C., and the temperature of the Ga raw material was raised to 850 ° C. while flowing nitrogen gas.

【0028】そして、Ga原料の上流側から窒素
(N2)ガスで希釈されたHClガスを流し、同時にG
a原料をバイパスして基板の近傍にNH3ガスを流し
て、基板の表裏両面に第1のGaN層の薄膜を10分間
成長させた。
Then, HCl gas diluted with nitrogen (N 2 ) gas is flowed from the upstream side of the Ga raw material,
The NH 3 gas was flowed in the vicinity of the substrate by bypassing the source a, and a thin film of the first GaN layer was grown on both the front and back surfaces of the substrate for 10 minutes.

【0029】これにより得られた第1のGaN層の薄膜
の厚さは約100nmであった。
The thickness of the thin film of the first GaN layer thus obtained was about 100 nm.

【0030】続いて不活性ガスとしてのN2ガスの雰囲
気中で基板部の温度を1000℃まで昇温し、Ga原料
の上流側からN2ガスで希釈されたHClガスを流すと
同時にGa原料をバイパスして基板の近傍にNH3ガス
を流して、基板の表裏両面側の前記第1のGaN層の上
に第2のGaN層を30分間にわたって成長させた。
Subsequently, the temperature of the substrate portion is raised to 1000 ° C. in an atmosphere of N 2 gas as an inert gas, and HCl gas diluted with N 2 gas is flowed from the upstream side of the Ga raw material. Then, an NH 3 gas was flowed near the substrate, bypassing the above, and a second GaN layer was grown over 30 minutes on the first GaN layer on both the front and back surfaces of the substrate.

【0031】これにより、基板の表裏両面側にそれぞれ
約50μmの厚さのGaN厚膜を形成することができ
た。
As a result, a GaN thick film having a thickness of about 50 μm was formed on each of the front and back surfaces of the substrate.

【0032】そして、冷却後に基板をHVPE装置から
取り出し、基板の表裏両面側に、裏面を金属板で補強し
た特殊粘着テープを貼付し、当該粘着テープを表裏両面
から所定の引っ張り力を同時に加えることにより、前記
GaN厚膜を基板から粘着テープごと剥離した。
After cooling, the substrate is taken out of the HVPE apparatus, and a special adhesive tape whose back surface is reinforced with a metal plate is attached to both front and back surfaces of the substrate, and the adhesive tape is simultaneously subjected to a predetermined pulling force from both front and back surfaces. As a result, the GaN thick film was peeled off from the substrate together with the adhesive tape.

【0033】これにより、表裏両面から1枚ずつ計2枚
のGaNエピタキシャルウェハーを破壊することなく無
傷で得ることができた。
As a result, a total of two GaN epitaxial wafers, one from each of the front and back surfaces, could be obtained without damage without damage.

【0034】なお、このようにしてGaNエピタキシャ
ルウェハーを剥離させた後のNdGaO3基板を調べた
ところ、基板自体にも何等損傷は生じていなかった。
When the NdGaO 3 substrate from which the GaN epitaxial wafer was peeled was examined, no damage was found on the substrate itself.

【0035】また、上記2枚のGaNエピタキシャルウ
ェハーを観察したところ、何れもその表面に異常成長が
見られない平坦な鏡面状のエピタキシャル膜であった。
When the two GaN epitaxial wafers were observed, both of them were flat mirror-like epitaxial films with no abnormal growth observed on their surfaces.

【0036】さらに、X線回折分析した結果、良質な膜
質の(0001)面の単結晶であることが確認された。
Further, as a result of X-ray diffraction analysis, it was confirmed that the film was a (0001) plane single crystal having good film quality.

【0037】このように、本発明に係る製造方法によれ
ば、希土類ガリウムペロブスカイトの単結晶基板の表裏
両面に形成されるGaN単結晶のエピタキシャル層と当
該基板との熱膨張係数の差に起因する熱歪みによる応力
を、基板の表裏で相殺させることができるので、基板お
よび成長したGaN単結晶が小片状に破壊されてしまう
事態を有効に防止することができることが確認できた。
As described above, according to the manufacturing method of the present invention, the difference is caused by the difference in the thermal expansion coefficient between the GaN single crystal epitaxial layer formed on the front and back surfaces of the rare earth gallium perovskite single crystal substrate and the substrate. Since the stress due to the thermal strain can be offset on the front and back of the substrate, it has been confirmed that the substrate and the grown GaN single crystal can be effectively prevented from being broken into small pieces.

【0038】また、成長したGaN単結晶は、表裏両面
側においてともに良質であることも実験的に確かめるこ
とができた。
It was also experimentally confirmed that the grown GaN single crystal had good quality on both the front and back surfaces.

【0039】したがって、面積の比較的大きな希土類ガ
リウムペロブスカイトの単結晶基板を用いて、その表裏
両面にGaN等を成長させることにより大面積の窒化ガ
リウム系化合物半導体単結晶のウェハーを容易かつ効率
良く製造することが期待できる。
Therefore, a large-area gallium nitride-based compound semiconductor single crystal wafer can be easily and efficiently manufactured by growing GaN or the like on the front and back surfaces of a rare-earth gallium perovskite single crystal substrate having a relatively large area. Can be expected.

【0040】しかも、NdGaO3等の希土類ガリウム
ペロブスカイトの単結晶基板は、上述のように再利用可
能な状態(但し、再研磨等は必要である)で回収するこ
とができるので経済性も高く、GaN単結晶等の製造コ
ストを低減することができるという効果もある。
In addition, the single-crystal substrate of rare earth gallium perovskite such as NdGaO 3 can be recovered in a reusable state (however, re-polishing or the like is necessary) as described above, so that economic efficiency is high. There is also an effect that the manufacturing cost of a GaN single crystal or the like can be reduced.

【0041】また、本実施形態のように成長速度の大き
なハイドライドVPE法によってGaN等を成長させる
ならば短時間で効率良く窒化ガリウム系化合物半導体単
結晶の厚膜を形成することができる。
If GaN or the like is grown by the hydride VPE method having a high growth rate as in this embodiment, a gallium nitride-based compound semiconductor single crystal thick film can be efficiently formed in a short time.

【0042】また、ハイドライドVPE法等を用いる場
合には、結晶のエピタキシャル成長過程で不純物をドー
ピングすることにより、導電性の窒化ガリウム系化合物
半導体単結晶を製造することも可能である。
In the case where the hydride VPE method or the like is used, a conductive gallium nitride-based compound semiconductor single crystal can be manufactured by doping impurities during the epitaxial growth process of the crystal.

【0043】なお、本実施形態では、希土類ガリウムペ
ロブスカイトとしてNdGaO3単結晶基板を用い、G
aN単結晶を成長させる場合について説明したが、これ
に限られるものではなく、その他の1または2種類以上
の希土類元素を含む希土類13(3B)族ペロブスカイ
トの単結晶基板上にGaN以外の窒化ガリウム系化合物
半導体単結晶を成長させる場合にも適用することができ
る。
In this embodiment, an NdGaO 3 single crystal substrate is used as a rare earth gallium perovskite,
Although the case of growing an aN single crystal has been described, the present invention is not limited to this, and gallium nitride other than GaN may be formed on a single crystal substrate of a rare earth 13 (3B) group perovskite containing one or more kinds of rare earth elements. The present invention can also be applied to the case of growing a system compound semiconductor single crystal.

【0044】また、本実施形態では、不活性ガスとして
2ガスを用いる場合について述べたがこれに限定され
ずその他の不活性ガスを用いることも可能である。
In this embodiment, the case where N 2 gas is used as the inert gas has been described. However, the present invention is not limited to this, and other inert gases can be used.

【0045】[0045]

【発明の効果】本発明は、単結晶基板上に窒化ガリウム
系化合物半導体の単結晶を製造する方法において、前記
単結晶基板の表裏両面に窒化ガリウム系化合物半導体の
単結晶膜を成長させるようにしたので、ウェハ状の単結
晶基板の表裏両面に形成される窒化ガリウム系化合物半
導体の単結晶のエピタキシャル層と当該基板との熱膨張
係数の差に起因する熱歪みによる応力は、基板の表裏に
おいて相殺されるため、基板自体や成長した窒化ガリウ
ム系化合物半導体単結晶膜の破壊を有効に防止すること
ができ、また、当該単結晶膜を前記単結晶基板から破壊
せずに剥離させることにより窒化ガリウム系化合物半導
体単結晶を効率良く得ることができるという優れた効果
があり、しかも成長用基板を破壊せずに回収することが
できるので経済性が高く、窒化ガリウム系化合物半導体
単結晶の製造コストの低減に貢献することができるとい
う効果がある。
According to the present invention, there is provided a method of manufacturing a single crystal of a gallium nitride compound semiconductor on a single crystal substrate, wherein a single crystal film of a gallium nitride compound semiconductor is grown on both front and back surfaces of the single crystal substrate. Therefore, the stress due to thermal strain caused by the difference in thermal expansion coefficient between the epitaxial layer of the gallium nitride-based compound semiconductor formed on the front and back surfaces of the wafer-like single crystal substrate and the substrate, Since these are offset, destruction of the substrate itself or the grown gallium nitride-based compound semiconductor single crystal film can be effectively prevented, and the single crystal film can be separated from the single crystal substrate without destruction by nitriding. Gallium-based compound semiconductor single crystal has an excellent effect of being able to be obtained efficiently, and is economical because it can be recovered without destroying the growth substrate. High, there is an effect that it is possible to contribute to reduction in the manufacturing cost of the gallium nitride-based compound semiconductor single crystal.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA40 CA40 CA57 CA67 CA73 CA77 5F045 AB14 AC12 AC13 AD08 AD09 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AF13 AF16 BB12 BB13 CA10 CA12 DP09 DQ08 HA16  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 5F041 AA40 CA40 CA57 CA67 CA73 CA77 5F045 AB14 AC12 AC13 AD08 AD09 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AF13 AF16 BB12 BB13 CA10 CA12 DP09 DQ08 HA16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板上に窒化ガリウム系化合物半導
体の単結晶を製造する方法において、 前記単結晶基板の表裏両面に窒化ガリウム系化合物半導
体の単結晶膜を成長させることを特徴とする窒化ガリウ
ム系化合物半導体単結晶の製造方法。
1. A method for manufacturing a single crystal of a gallium nitride-based compound semiconductor on a single crystal substrate, wherein a single crystal film of a gallium nitride-based compound semiconductor is grown on both front and back surfaces of the single crystal substrate. A method for producing a gallium-based compound semiconductor single crystal.
【請求項2】上記単結晶基板として、1または2種類以
上の希土類元素を含む希土類13(3B)族ペロブスカ
イトの単結晶を用いることを特徴とする請求項1に記載
の窒化ガリウム系化合物半導体単結晶の製造方法。
2. The gallium nitride-based compound semiconductor according to claim 1, wherein a single crystal of a rare earth 13 (3B) group perovskite containing one or more rare earth elements is used as the single crystal substrate. Method for producing crystals.
【請求項3】請求項1または請求項2に記載の窒化ガリ
ウム系化合物半導体単結晶の製造方法において、 第1の温度条件下で上記単結晶基板の表裏両面に第1の
窒化ガリウム層を成長させる第1の成膜工程と、 上記単結晶基板を不活性ガス雰囲気中で所定温度まで昇
温させる熱処理する熱処理工程と、 前記熱処理工程後に、前記第1の温度条件より高温に設
定される第2の温度条件下で表裏両面の前記第1の窒化
ガリウム層の上に第2の窒化ガリウム層を成長させる第
2の成膜工程と、 を少なくとも有することを特徴とする窒化ガリウム系化
合物半導体単結晶の製造方法。
3. The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 1, wherein a first gallium nitride layer is grown on both front and back surfaces of the single crystal substrate under a first temperature condition. A first film forming step to be performed, a heat treatment step of performing a heat treatment for raising the temperature of the single crystal substrate to a predetermined temperature in an inert gas atmosphere, and a second step of setting a temperature higher than the first temperature condition after the heat treatment step. A second film-forming step of growing a second gallium nitride layer on the first gallium nitride layer on both the front and back surfaces under the temperature condition of 2. Method for producing crystals.
【請求項4】上記第1の成膜工程における第1の温度条
件は、400℃〜750℃、好ましくは550℃〜65
0℃であり、形成する第1の窒化ガリウム層の膜厚は、
20nm〜350nm、好ましくは80nm〜120n
mであることを特徴とする請求項3に記載の窒化ガリウ
ム系化合物半導体単結晶の製造方法。
4. The first temperature condition in the first film forming step is 400 ° C. to 750 ° C., preferably 550 ° C. to 65 ° C.
0 ° C., and the thickness of the first gallium nitride layer to be formed is:
20 nm to 350 nm, preferably 80 nm to 120 n
The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 3, wherein m is m.
【請求項5】上記熱処理工程における所定温度は、80
0℃〜1200℃、好ましくは950℃〜1050℃で
あることを特徴とする請求項3または請求項4に記載の
窒化ガリウム系化合物半導体単結晶の製造方法。
5. The predetermined temperature in the heat treatment step is 80.
The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 3, wherein the temperature is 0 ° C. to 1200 ° C., preferably 950 ° C. to 1050 ° C.
【請求項6】上記熱処理工程における不活性ガス雰囲気
は、N2ガス雰囲気であることを特徴とする請求項3か
ら請求項5の何れかに記載の窒化ガリウム系化合物半導
体単結晶の製造方法。
6. The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 3, wherein the inert gas atmosphere in the heat treatment step is an N 2 gas atmosphere.
【請求項7】上記第2の成膜工程における第2の温度条
件は、800℃〜1200℃、好ましくは950℃〜1
050℃であることを特徴とする請求項3から請求項6
の何れかに記載の窒化ガリウム系化合物半導体単結晶の
製造方法。
7. The second temperature condition in the second film forming step is 800 to 1200 ° C., preferably 950 to 1 ° C.
7. The temperature is 050 ° C.
The method for producing a gallium nitride-based compound semiconductor single crystal according to any one of the above.
【請求項8】上記13(3B)族元素として、Al,G
a,Inのうち少なくとも1種類を含むことを特徴とす
る請求項2から請求項7の何れかに記載の窒化ガリウム
系化合物半導体単結晶の製造方法。
8. The group 13 (3B) element, Al, G
The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 2, wherein at least one of a and In is included.
JP17891698A 1998-06-25 1998-06-25 Manufacture of gallium nitride-based compound semiconductor single crystal Pending JP2000012901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17891698A JP2000012901A (en) 1998-06-25 1998-06-25 Manufacture of gallium nitride-based compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17891698A JP2000012901A (en) 1998-06-25 1998-06-25 Manufacture of gallium nitride-based compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2000012901A true JP2000012901A (en) 2000-01-14

Family

ID=16056904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17891698A Pending JP2000012901A (en) 1998-06-25 1998-06-25 Manufacture of gallium nitride-based compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2000012901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065429A1 (en) * 2002-01-28 2003-08-07 Nikko Materials Co., Ltd. GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD
KR100595177B1 (en) * 2000-02-10 2006-07-03 엘지전자 주식회사 method for fabricating nitride light emitting device
WO2009001833A1 (en) * 2007-06-26 2008-12-31 Sumco Corporation Epitaxial wafer and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595177B1 (en) * 2000-02-10 2006-07-03 엘지전자 주식회사 method for fabricating nitride light emitting device
WO2003065429A1 (en) * 2002-01-28 2003-08-07 Nikko Materials Co., Ltd. GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD
WO2009001833A1 (en) * 2007-06-26 2008-12-31 Sumco Corporation Epitaxial wafer and method for manufacturing the same
JP5146848B2 (en) * 2007-06-26 2013-02-20 株式会社Sumco Epitaxial wafer manufacturing method
TWI418648B (en) * 2007-06-26 2013-12-11 Sumco Corp Epitaxial wafer and its manufacturing method

Similar Documents

Publication Publication Date Title
US9543393B2 (en) Group III nitride wafer and its production method
US20130137246A1 (en) Method of producing group iii nitride semiconductor growth substrate
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
JP4150527B2 (en) Crystal production method
JP4063336B2 (en) Recovery of surface-conditioned silicon carbide substrates
TW200933705A (en) Group III nitride semiconductor and a manufacturing method thereof
JP2002050585A (en) Method for growing crystal of semiconductor
JP2002053399A (en) Nitride semiconductor substrate and method for producing the same
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JPH1179897A (en) Crystal growth for gallium nitride thick film
JP2011093803A (en) Method for manufacturing gallium nitride-based compound semiconductor single crystal
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
JP4355232B2 (en) GaN compound semiconductor crystal manufacturing method and GaN compound semiconductor crystal
JP2004273964A (en) Growing method of semiconductor single crystal
JP3649786B2 (en) Treatment liquid for perovskite type single crystal and processing method for perovskite type single crystal
KR100890085B1 (en) Method for manufacturing substrate of Nitride chemical semiconductor
JP2003218043A (en) METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JPS5948793B2 (en) Gallium nitride crystal growth method
JP2002211999A (en) Method of producing crystal growth substrate of group iii nitride-based compound semiconductor
JP2002237458A (en) Method for manufacturing nitride semiconductor substrate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122