JP2000001770A - Vapor deposition apparatus for generating trigger discharge by using transformer - Google Patents

Vapor deposition apparatus for generating trigger discharge by using transformer

Info

Publication number
JP2000001770A
JP2000001770A JP10171942A JP17194298A JP2000001770A JP 2000001770 A JP2000001770 A JP 2000001770A JP 10171942 A JP10171942 A JP 10171942A JP 17194298 A JP17194298 A JP 17194298A JP 2000001770 A JP2000001770 A JP 2000001770A
Authority
JP
Japan
Prior art keywords
trigger
vapor deposition
deposition material
electrode
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10171942A
Other languages
Japanese (ja)
Other versions
JP4049891B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Yoshihiro Yamamoto
佳宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Nichicon Corp
Original Assignee
Ulvac Inc
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nichicon Corp filed Critical Ulvac Inc
Priority to JP17194298A priority Critical patent/JP4049891B2/en
Publication of JP2000001770A publication Critical patent/JP2000001770A/en
Application granted granted Critical
Publication of JP4049891B2 publication Critical patent/JP4049891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a higher-purity thin film by using a coaxial type vacuum arc vapor deposition source. SOLUTION: This vapor deposition apparatus 10 is so constituted that an arc discharge is induced by a trigger discharge and the material constituting a material 43 for vapor deposition is released in a large amt. into a vacuum vessel 1, by which the thin film is formed. A trigger power source 20 for generating the trigger discharge has a pulse power source 21 and a transformer 22. The pulse voltage formed by this pulse power source 21 is impressed to the primary winding 22a in this transformer 22. The amplified pulse voltage is outputted from the secondary winding 22b and is impressed to a trigger electrode 42. There is thus no capacitor in a route where the trigger current flows and a resonance circuit is not formed in the vapor deposition apparatus 10. Then, the AC current does not flow to the trigger electrode and the intrusion of the material constituting the trigger electrode in the form of an impurity into the thin film does not occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸着装置に関し、特
に、同軸型真空アーク蒸着源を有する蒸着装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition apparatus, and more particularly to a vapor deposition apparatus having a coaxial vacuum arc vapor deposition source.

【0002】[0002]

【従来の技術】金属や誘電体材料等の薄膜は、半導体装
置や液晶表示装置に不可欠なものとなっており、スパッ
タリング法、蒸着法、CVD法等の種々の薄膜形成方法
が開発されている。
2. Description of the Related Art Thin films such as metals and dielectric materials are indispensable for semiconductor devices and liquid crystal display devices, and various thin film forming methods such as sputtering, vapor deposition, and CVD have been developed. .

【0003】それらの形成方法のうち、膜厚制御性に優
れ、高品質の薄膜を形成できることから、近年では同軸
型真空アーク蒸着源を用いた蒸着装置が注目されてい
る。
[0003] Among these forming methods, a vapor deposition apparatus using a coaxial vacuum arc vapor deposition source has recently attracted attention because of its excellent film thickness controllability and the ability to form a high quality thin film.

【0004】図4を参照し、符号110は、従来技術の
蒸着装置であり、真空槽101を有している。真空槽1
01底面には、同軸型真空アーク蒸着源103が配置さ
れており、天井側には基板ホルダ105が配置されてい
る。
[0004] Referring to FIG. 4, reference numeral 110 denotes a conventional vapor deposition apparatus having a vacuum chamber 101. Vacuum chamber 1
01, a coaxial vacuum arc evaporation source 103 is arranged, and a substrate holder 105 is arranged on the ceiling side.

【0005】同軸型真空アーク蒸着源103の模式的な
断面図を図3(a)に示す。この同軸型真空アーク蒸着源
103は、円筒形形状のアノード電極130を有してお
り、該アノード電極130内には、カソード部140が
配置されている。カソード部140は、絶縁管141
と、トリガ電極142と、蒸着材料143と、取付台1
45とを有している。
FIG. 3A is a schematic sectional view of the coaxial vacuum arc evaporation source 103. The coaxial vacuum arc evaporation source 103 has a cylindrical anode electrode 130, and a cathode section 140 is arranged in the anode electrode 130. The cathode section 140 is provided with an insulating tube 141.
, Trigger electrode 142, vapor deposition material 143, mounting table 1
45.

【0006】絶縁管141は、円筒形形状にされてお
り、取付台145と蒸着材料143は円柱形形状に成形
され、絶縁管141内部に挿入されている。絶縁管14
1内部では、取付台145は奥側に、蒸着材料143は
先端付近に配置されており、蒸着材料143の下端部
は、取付台145の上端部に密着固定され、上端部は絶
縁管141先端から突き出されている。
The insulating tube 141 is formed in a cylindrical shape, and the mounting base 145 and the vapor deposition material 143 are formed into a cylindrical shape and inserted into the inside of the insulating tube 141. Insulation tube 14
1, the mounting base 145 is disposed on the back side and the vapor deposition material 143 is disposed near the front end. The lower end of the vapor deposition material 143 is fixed to the upper end of the mounting base 145 in close contact, and the upper end of the insulating tube 141 Protruded from.

【0007】絶縁管141の先端には、リング形形状の
トリガ電極142が装着されており、従って、蒸着材料
143側面とトリガ電極142表面とは、非接触の状態
で近接配置されている。
A ring-shaped trigger electrode 142 is mounted on the tip of the insulating tube 141. Therefore, the side surface of the vapor deposition material 143 and the surface of the trigger electrode 142 are arranged close to each other in a non-contact state.

【0008】真空槽101の外部には、トリガ電源12
0とアーク電源147とが配置されている。各電源12
0、147の負電位側の端子は、それぞれ取付台145
に共通に接続されている。他方、トリガ電源120の正
電位側の端子はトリガ電極142に接続されており、ア
ーク電源147の正電位側の端子はアノード電極130
に接続されている。
A trigger power supply 12 is provided outside the vacuum chamber 101.
0 and an arc power supply 147 are arranged. Each power supply 12
Terminals 0 and 147 on the negative potential side are respectively attached to the mounting base 145.
Are connected in common. On the other hand, a positive potential terminal of the trigger power supply 120 is connected to the trigger electrode 142, and a positive potential terminal of the arc power supply 147 is connected to the anode electrode 130.
It is connected to the.

【0009】この蒸着装置110を用いて薄膜を形成す
る場合には、基板108を基板ホルダ105に保持さ
せ、真空槽101内部を真空排気しながら基板108を
加熱する。
When a thin film is formed using the vapor deposition apparatus 110, the substrate 108 is held by the substrate holder 105, and the substrate 108 is heated while the inside of the vacuum chamber 101 is evacuated.

【0010】基板108が所定温度まで昇温した後、ア
ーク電源147を起動し、アノード電極130に正電圧
を印加し、蒸着材料143に、取付台145を介して負
電圧を印加する。
After the temperature of the substrate 108 is raised to a predetermined temperature, the arc power supply 147 is activated, a positive voltage is applied to the anode electrode 130, and a negative voltage is applied to the deposition material 143 via the mounting base 145.

【0011】トリガ電源120内には、直流電圧源12
1とコンデンサ122と抵抗123とスパークギャップ
124が設けられており、コンデンサ122の一端とス
パークギャップ124の一端は互いに接続され(直列接
続)、スパークギャップ124の他端はトリガ電源12
0の正電位側の端子にされ、コンデンサ122の他端は
負電位側の端子にされている。
The trigger power supply 120 includes a DC voltage source 12
1, a capacitor 122, a resistor 123, and a spark gap 124. One end of the capacitor 122 and one end of the spark gap 124 are connected to each other (series connection), and the other end of the spark gap 124 is connected to the trigger power supply 12.
0 is a terminal on the positive potential side, and the other end of the capacitor 122 is a terminal on the negative potential side.

【0012】従って、コンデンサ122から見た場合、
スパークギャップ124が有するギャップと、トリガ電
極142と蒸着材料143との間のギャップとは直列に
なっている。
Therefore, when viewed from the capacitor 122,
The gap of the spark gap 124 and the gap between the trigger electrode 142 and the deposition material 143 are in series.

【0013】トリガ電源120内では、直流電圧源12
1と定刻123とが直列接続された回路が、コンデンサ
122に対して並列接続されており、直流電圧源121
は、抵抗123で電流制限された状態で、コンデンサ1
22を充電するように構成されている。
In the trigger power supply 120, the DC voltage source 12
1 and an on-time 123 are connected in parallel to a capacitor 122, and a DC voltage source 121
Is the capacitor 1 in a state where the current is limited by the resistor 123.
22 is configured to be charged.

【0014】トリガ電極142と蒸着材料143との間
のギャップは絶縁管141の厚みと等しく、非常に小さ
い。しかも、トリガ電極142と蒸着材料143との間
の耐圧は絶縁管141表面で沿面放電が生じる電圧であ
るから、トリガ電極142と蒸着材料143との間の耐
圧は、スパークギャップ124の耐圧に比べて非常に低
い。
The gap between the trigger electrode 142 and the vapor deposition material 143 is equal to the thickness of the insulating tube 141 and is very small. Moreover, since the withstand voltage between the trigger electrode 142 and the deposition material 143 is a voltage at which creeping discharge occurs on the surface of the insulating tube 141, the withstand voltage between the trigger electrode 142 and the deposition material 143 is smaller than the withstand voltage of the spark gap 124. And very low.

【0015】従って、直流電圧源121が起動され、コ
ンデンサ122への充電が開始され、コンデンサ122
の電圧が次第に上昇し、スパークギャップ124の耐圧
以上の電圧になると、スパークギャップ124内で放電
が発生し、それに伴ってトリガ電極142と蒸着材料1
43の間にトリガ放電が発生する。
Therefore, the DC voltage source 121 is activated, charging of the capacitor 122 is started, and the capacitor 122 is charged.
Gradually rises to a voltage higher than the withstand voltage of the spark gap 124, a discharge is generated in the spark gap 124, and accordingly, the trigger electrode 142 and the vapor deposition material 1 are discharged.
During 43, a trigger discharge occurs.

【0016】図3(b)の符号i1は、トリガ放電によっ
て流れたトリガ電流を示しており、そのトリガ電流i1
により、蒸着材料143側面が部分的に蒸発し、蒸着材
料143の蒸気が放出され、アノード電極130内の圧
力が上昇する。その結果、アノード電極130と蒸着材
料143との間の絶縁耐圧が低下し、蒸着材料143の
側面と、アノード電極130との間でアーク放電が発生
する。
The symbol i 1 in FIG. 3B indicates a trigger current flowing by the trigger discharge, and the trigger current i 1
Thereby, the side surface of the evaporation material 143 is partially evaporated, the vapor of the evaporation material 143 is released, and the pressure in the anode electrode 130 increases. As a result, the withstand voltage between the anode electrode 130 and the deposition material 143 decreases, and an arc discharge occurs between the side surface of the deposition material 143 and the anode electrode 130.

【0017】アーク放電によって、アノード電極130
内周面から蒸着材料143側面に向けてアーク電流i2
が流れると、アーク電流i2は大電流であるため、蒸着
材料143側面が溶融し、トリガ放電のときよりも大量
の蒸気が放出される。
The arc discharge causes the anode electrode 130
The arc current i 2 from the inner peripheral surface toward the side surface of the deposition material 143
Flows, the arc current i 2 is a large current, so that the side surface of the vapor deposition material 143 is melted, and a larger amount of vapor is released than in the trigger discharge.

【0018】蒸着材料143と取付台145とは円柱形
形状に成形されているため、アーク電流i2は、カソー
ド部140内を直線的に流れる。アーク電流i2が流れ
ることにより磁界が形成されると、その磁界は、正電荷
に対してアーク電流i2の向きとは反対方向、即ち、真
空槽1内に向ける方向の力Fを及ぼす。
Since the vapor deposition material 143 and the mounting table 145 are formed in a columnar shape, the arc current i 2 flows linearly in the cathode section 140. When a magnetic field is formed by the flow of the arc current i 2 , the magnetic field exerts a force F on the positive charge in a direction opposite to the direction of the arc current i 2 , that is, in a direction toward the inside of the vacuum chamber 1.

【0019】蒸着材料143から成る蒸気中には、正に
帯電した微小粒子151が含まれているため、蒸着材料
143側面から様々な方向に飛び出した微小粒子151
は力Fの影響を受け、アノード電極130の開口部14
9から真空槽101内に向けて放出される。
Since the vapor composed of the vapor deposition material 143 contains the positively charged fine particles 151, the fine particles 151 protrude from the side surface of the vapor deposition material 143 in various directions.
Is affected by the force F, and the opening 14 of the anode electrode 130 is
9 is discharged into the vacuum chamber 101.

【0020】蒸着材料143の延長線上には基板108
が位置しており、真空槽101内に放出された微小粒子
151は基板108方向に飛行し、基板108に到達す
ると、その表面に薄膜を成長させる。
On the extension of the evaporation material 143, the substrate 108
Are positioned, and the fine particles 151 released into the vacuum chamber 101 fly in the direction of the substrate 108 and, when reaching the substrate 108, grow a thin film on the surface thereof.

【0021】ところで、アーク電流i2が流れると、微
小粒子151の他に、蒸着材料143の構成物質から成
る巨大粒子152も同時に放出されるが、その巨大粒子
152は、無電荷であるか、電荷を有していても、電荷
量に比べて質量が大きいので、力Fによる曲げ量が少な
く、その結果、巨大粒子152はアノード電極130の
内周面に付着し、真空槽101内には放出されない。
By the way, when the arc current i 2 flows, in addition to the fine particles 151, the giant particles 152 made of the constituent material of the vapor deposition material 143 are also emitted, and the giant particles 152 have no charge. Even if it has an electric charge, since the mass is larger than the electric charge, the amount of bending due to the force F is small, and as a result, the giant particles 152 adhere to the inner peripheral surface of the anode electrode 130, and remain in the vacuum chamber 101. Not released.

【0022】このように、アーク電流i2が流れている
間に、微小粒子151が薄膜を成長させるが、アーク電
流i2は大電流であるため、アーク電源147の消耗が
大きく、アーク電源147の出力電圧がアーク放電を維
持できなくなる程度まで低下すると、自動的にアーク放
電は停止する。
As described above, while the arc current i 2 is flowing, the fine particles 151 grow a thin film. However, since the arc current i 2 is a large current, the arc power supply 147 is greatly consumed and the arc power supply 147 When the output voltage of the device drops to such an extent that the arc discharge cannot be maintained, the arc discharge stops automatically.

【0023】従って、1回のトリガ放電によって放出さ
れる微小粒子151の量は、アーク電源147の電源能
力によって決まるので、必要なだけトリガ放電を繰り返
し発生させることで、所望膜厚の薄膜を形成できる。
Accordingly, since the amount of the fine particles 151 emitted by one trigger discharge is determined by the power supply capability of the arc power supply 147, the trigger discharge is repeatedly generated as necessary to form a thin film having a desired film thickness. it can.

【0024】上記のような蒸着装置110は、トリガ放
電の回数によって膜厚を精密に制御することができ、し
かも、巨大粒子152が基板108に到達せず、良質の
薄膜を形成できることから、Ta、NiFe、Cu、C
o、FeMn等の、高性能磁気薄膜を製造する場合に盛
んに用いられている。
In the vapor deposition apparatus 110 as described above, the film thickness can be precisely controlled by the number of trigger discharges, and since the giant particles 152 do not reach the substrate 108 and a high-quality thin film can be formed, , NiFe, Cu, C
o, FeMn, and the like, are widely used when manufacturing high-performance magnetic thin films.

【0025】ところが上記基板108表面に形成された
薄膜を精密に分析してみると、蒸着材料143以外の物
質が不純物として検出される場合がある。その不純物を
同定してみると、トリガ電極142を構成している金属
物質と同じ金属物質であり、従って、不純物はトリガ電
極142に由来すると考えられる。近年では、薄膜の高
純度化、高品質化が増々求められているため、形成され
る薄膜中に上記のような不純物を混入させない蒸着装置
が求められている。
However, when the thin film formed on the surface of the substrate 108 is precisely analyzed, substances other than the deposition material 143 may be detected as impurities. When the impurity is identified, it is considered that the impurity is derived from the trigger electrode 142 because the metal is the same as the metal constituting the trigger electrode 142. In recent years, since higher purity and higher quality of a thin film have been increasingly required, a vapor deposition apparatus which does not mix the above-described impurities into a formed thin film has been required.

【0026】[0026]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、同軸型真空アーク蒸着源により、高純度の薄膜
を形成できる技術を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a technique for forming a high-purity thin film by using a coaxial vacuum arc evaporation source. To provide.

【0027】[0027]

【課題を解決するための手段】上記のように、トリガ放
電はアーク放電を誘起するために必要であるが、従来の
ようなトリガ電源120では、トリガ放電が発生した
後、コンデンサ122の電圧が低下し、一旦トリガ電流
がゼロになると、トリガ放電は終了するものと考えられ
ていた。
As described above, the trigger discharge is necessary to induce the arc discharge. However, in the conventional trigger power supply 120, after the trigger discharge occurs, the voltage of the capacitor 122 is reduced. It was thought that the trigger discharge would end once it had dropped and the trigger current had reached zero.

【0028】本発明の発明者等は、コンデンサ122や
スパークギャップ124を用いたトリガ電源120に
は、コンデンサ122の容量性成分の他、配線が有する
誘導性成分により、トリガ電極142とトリガ電源12
0の間に共振回路が形成されてしまい、トリガ電極14
2に交流電流が流れていることを見出した。
The inventor of the present invention has stated that the trigger electrode 142 and the trigger power supply 12 are provided to the trigger power supply 120 using the capacitor 122 and the spark gap 124 by the inductive component of the wiring in addition to the capacitive component of the capacitor 122.
0, a resonance circuit is formed, and the trigger electrode 14
2. It was found that an alternating current was flowing in No. 2.

【0029】交流電流が流れる場合、電流がトリガ電極
142から蒸着材料143に向けて流れる間は、蒸着材
料143が蒸発するが、それとは逆に、電流がトリガ電
極142に流れ込むと、トリガ電極142を構成する物
質が放出され、アーク電流が形成する磁界により、基板
108方向に飛ばされ、薄膜中に混入してしまうことが
分かった。上記のような不都合を防止するためには、共
振回路が形成されないようにすればよく、そのためには
コンデンサ122を用いないトリガ電源が必要となる。
When an alternating current flows, the vapor deposition material 143 evaporates while the current flows from the trigger electrode 142 toward the vapor deposition material 143. Conversely, when the current flows into the trigger electrode 142, the trigger electrode 142 evaporates. It is found that the substance constituting is discharged, is sputtered toward the substrate 108 by the magnetic field formed by the arc current, and is mixed into the thin film. In order to prevent the above-described inconvenience, it is only necessary to prevent a resonance circuit from being formed, and for that purpose, a trigger power supply not using the capacitor 122 is required.

【0030】本発明は上記知見に基いて創作されたもの
であり、請求項1記載の発明は、アノード電極と蒸着材
料との間に電圧を印加した状態で、トリガ電極と前記蒸
着材料との間にトリガ放電を発生させ、前記アノード電
極と前記蒸着材料との間にアーク放電を誘起させ、前記
蒸着材料を蒸発させ、成膜対象物表面に薄膜を形成する
蒸着装置であって、一次巻線と二次巻線とが磁気結合さ
れたトランスと、パルス電圧を発生させるパルス電源と
を有し、前記一次巻線に前記パルス電圧を印加し、前記
二次巻線に誘起された電圧を前記トリガ電極と前記蒸着
材料との間に印加し、前記トリガ放電を発生させるよう
に構成されたことを特徴とする。
The present invention has been made on the basis of the above findings, and the invention according to claim 1 is a method in which a voltage is applied between an anode electrode and a vapor deposition material while a trigger electrode and the vapor deposition material are connected to each other. A vapor discharge device for generating a trigger discharge between the anode electrode and the vapor deposition material, inducing an arc discharge between the anode electrode and the vapor deposition material, evaporating the vapor deposition material, and forming a thin film on the surface of the film formation target; A transformer in which a line and a secondary winding are magnetically coupled, and a pulse power supply that generates a pulse voltage, apply the pulse voltage to the primary winding, and reduce a voltage induced in the secondary winding. It is configured to be applied between the trigger electrode and the deposition material to generate the trigger discharge.

【0031】請求項2記載の発明は、請求項1記載の蒸
着装置であって、前記一次巻線と前記二次巻線の巻数比
は、前記二次巻線が、前記一次巻線に印加された電圧を
増幅するように設定されていることを特徴とする。
According to a second aspect of the present invention, in the vapor deposition apparatus according to the first aspect, the winding ratio of the primary winding to the secondary winding is such that the secondary winding is applied to the primary winding. The amplified voltage is set to be amplified.

【0032】本発明は上記のように構成されており、ア
ノード電極と蒸着材料との間に電圧を印加した状態で、
トリガ電極と蒸着材料との間にトリガ放電を発生させ、
アノード電極と蒸着材料との間にアーク放電を誘起さ
せ、アーク電極と対向する蒸着材料の側面部分を蒸発さ
せ、アーク電極に向けて飛行する正のイオンをアーク電
流が形成する磁界で曲げ、アーク電極の開放口から真空
槽内に放出させ、成膜対象物表面に到達させて薄膜を成
長させるようになっている。
The present invention is configured as described above, and in a state where a voltage is applied between the anode electrode and the deposition material,
Generating a trigger discharge between the trigger electrode and the deposition material,
An arc discharge is induced between the anode electrode and the vapor deposition material, the side surface of the vapor deposition material facing the arc electrode is evaporated, and positive ions flying toward the arc electrode are bent by a magnetic field formed by the arc current, thereby forming an arc. The film is released into the vacuum chamber from the opening of the electrode, and reaches the surface of the film-forming target to grow a thin film.

【0033】そして、本発明の蒸着装置は、一次巻線と
二次巻線とが磁気結合されたトランスと、パルス電圧を
発生させるパルス電源とを有しており、一次巻線にパル
ス電圧を印加し、二次巻線に誘起された電圧をトリガ電
極と蒸着材料との間に印加することでトリガ放電を発生
させるように構成されている。
The vapor deposition apparatus of the present invention has a transformer in which a primary winding and a secondary winding are magnetically coupled, and a pulse power supply for generating a pulse voltage. The pulse voltage is applied to the primary winding. The trigger discharge is generated by applying a voltage induced in the secondary winding between the trigger electrode and the deposition material.

【0034】従って、トリガ電流が流れる経路中に容量
性成分が存在せず、共振回路が形成されないので、トリ
ガ電極に交流電流は流れず、トリガ電極を構成する物質
が真空槽内に放出されないようになっている。
Therefore, since no capacitive component exists in the path through which the trigger current flows, and no resonance circuit is formed, no alternating current flows to the trigger electrode, and the material constituting the trigger electrode is not released into the vacuum chamber. It has become.

【0035】また、トランス内では、一次巻線の巻数と
二次巻線の巻数が、二次巻線が、一次巻線に印加された
電圧を増幅するように比率が設定されている。従って、
パルス電源の負担が少なく、容易にトリガ放電を発生さ
せられるようになっている。
In the transformer, the ratio of the number of turns of the primary winding to the number of turns of the secondary winding is set so that the secondary winding amplifies the voltage applied to the primary winding. Therefore,
The load on the pulse power source is small, and the trigger discharge can be easily generated.

【0036】[0036]

【発明の実施の形態】図1を参照し、符号10は本発明
の蒸着装置であり、真空槽1を有している(真空槽1の
全体は図示しない)。真空槽1の底壁には、同軸型真空
アーク蒸着源3が配置されている。同軸型真空アーク蒸
着源3は、底板48と、アノード電極30と、カソード
部40とを有しており、底板48は真空槽1の底壁に固
定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 10 denotes a vapor deposition apparatus of the present invention, which has a vacuum chamber 1 (the entire vacuum chamber 1 is not shown). A coaxial vacuum arc evaporation source 3 is arranged on the bottom wall of the vacuum chamber 1. The coaxial vacuum arc evaporation source 3 has a bottom plate 48, an anode electrode 30, and a cathode unit 40, and the bottom plate 48 is fixed to a bottom wall of the vacuum chamber 1.

【0037】アノード電極30は、円筒形形状の金属材
料で構成されており、下端を底板48上に固定され、上
端の開放部分を真空槽1天井側に向けられている。カソ
ード部40は、絶縁管41と、取付台45と、蒸着材料
43と、トリガ電極42とを有している。絶縁管41
は、円筒形形状にされており、取付台45と蒸着材料4
3は円柱形形状に成形され、絶縁管41内部に挿入され
ている。
The anode 30 is made of a cylindrical metal material, and has a lower end fixed on the bottom plate 48 and an open upper end directed toward the ceiling of the vacuum chamber 1. The cathode section 40 has an insulating tube 41, a mounting base 45, a deposition material 43, and a trigger electrode. Insulating tube 41
Has a cylindrical shape, and the mounting table 45 and the vapor deposition material 4
3 is formed into a cylindrical shape and inserted into the insulating tube 41.

【0038】絶縁管41内部では、取付台45は奥側
に、蒸着材料43は先端付近に配置されており、蒸着材
料43の下端部は、取付台45の上端部に密着固定さ
れ、上端部は、絶縁管41先端から突き出されている。
Inside the insulating tube 41, the mounting base 45 is disposed on the back side, and the vapor deposition material 43 is disposed near the front end. The lower end of the vapor deposition material 43 is tightly fixed to the upper end of the mounting base 45. Project from the tip of the insulating tube 41.

【0039】トリガ電極42は、リング形形状に形成さ
れており、絶縁管41の先端に装着されている。従っ
て、蒸着材料43側面とトリガ電極42表面とは、非接
触の状態で近接配置されている。
The trigger electrode 42 is formed in a ring shape and is mounted on the tip of the insulating tube 41. Therefore, the side surface of the deposition material 43 and the surface of the trigger electrode 42 are arranged close to each other in a non-contact state.

【0040】真空槽1の外部には、トリガ電源20とア
ーク電源47が配置されており、各電源20、47の負
電位側の端子は、取付台45を介して蒸着材料43に共
通に接続され、トリガ電源20の正電位側の端子はトリ
ガ電極42に接続され、アーク電源47の正電位側の端
子はアノード電極30に接続されている。
A trigger power supply 20 and an arc power supply 47 are arranged outside the vacuum chamber 1, and the terminals on the negative potential side of each of the power supplies 20 and 47 are commonly connected to the vapor deposition material 43 via a mounting base 45. The terminal on the positive potential side of the trigger power supply 20 is connected to the trigger electrode 42, and the terminal on the positive potential side of the arc power supply 47 is connected to the anode electrode 30.

【0041】トリガ電源20は、パルス電圧を発生させ
るパルス電源21と、トランス22(パルストランス)を
有している。トランス22内には、一次巻線22aと、
該一次巻線22aと磁気結合した二次巻線22bとが設け
られており、一次巻線22aの両端はパルス電源21の
正電位側の端子と負電位側の端子にそれぞれ接続されて
いる。
The trigger power supply 20 has a pulse power supply 21 for generating a pulse voltage, and a transformer 22 (pulse transformer). In the transformer 22, a primary winding 22a,
A primary winding 22a is magnetically coupled with a secondary winding 22b. Both ends of the primary winding 22a are connected to a positive potential terminal and a negative potential terminal of the pulse power supply 21, respectively.

【0042】他方、二次巻線22bの一端は、トリガ電
源20の正電位側の端子にされており、従って、トリガ
電極42に接続されている。二次巻線22bの他端はパ
ルス電源21の負電位側の端子と接続され、その部分が
トリガ電源20の負電位側の端子にされており、従っ
て、二次巻線22bの他端は、取付台45を介して蒸着
材料43に接続されている。
On the other hand, one end of the secondary winding 22 b is connected to the positive potential terminal of the trigger power supply 20, and is therefore connected to the trigger electrode 42. The other end of the secondary winding 22b is connected to a terminal on the negative potential side of the pulse power supply 21, and that portion is used as a terminal on the negative potential side of the trigger power supply 20, so that the other end of the secondary winding 22b is , Is connected to the vapor deposition material 43 via the mounting base 45.

【0043】上記のような構成の蒸着装置10を用い、
蒸着材料43を構成する物質の薄膜を形成する場合、真
空槽1内に基板8を配置し、内部を真空排気しながら基
板8を所定温度まで昇温させた後、アーク電源47を起
動し、アノード電極30と蒸着材料43の間に100V
程度の電圧を印加しておく(印加電圧の極性は、アノー
ド電極30側が正電圧である)。その状態でパルス電源
21を動作させ、一次巻線22aの両端にパルス電圧を
印加する。
Using the vapor deposition apparatus 10 configured as described above,
When forming a thin film of the substance constituting the vapor deposition material 43, the substrate 8 is placed in the vacuum chamber 1, the substrate 8 is heated to a predetermined temperature while evacuating the inside, and then the arc power supply 47 is activated. 100 V between the anode electrode 30 and the deposition material 43
(Applied voltage is positive on the anode electrode 30 side). In this state, the pulse power supply 21 is operated to apply a pulse voltage to both ends of the primary winding 22a.

【0044】トランス22内では、一次巻線22aと二
次巻線22bの巻数比は10倍に設定されており、一次
巻線22aの両端に印加された電圧の10倍の電圧が二
次巻線22bの両端に現れるようになっている。
In the transformer 22, the turn ratio between the primary winding 22a and the secondary winding 22b is set to 10 times, and a voltage 10 times the voltage applied to both ends of the primary winding 22a is applied to the secondary winding. It appears at both ends of the line 22b.

【0045】一次巻線22aに印加されたパルス電圧の
ピーク値が200Vであった場合、二次巻線22bに
は、2kVの電圧が現れ、その電圧がトリガ電極42と
蒸着材料43の間に印加される(極性はトリガ電極42
側が正電圧である)。
When the peak value of the pulse voltage applied to the primary winding 22a is 200 V, a voltage of 2 kV appears on the secondary winding 22b, and the voltage is applied between the trigger electrode 42 and the deposition material 43. Applied (the polarity is the trigger electrode 42
Side is positive voltage).

【0046】2kVの電圧値は、トリガ電極42と蒸着
材料43との間で、絶縁管41表面上で沿面放電を発生
させるのに十分な大きさであり、従って、二次巻線22
bに現れた電圧により、トリガ電極42と蒸着材料43
との間にトリガ放電が発生し、トリガ電極42から蒸着
材料43に向けてトリガ電流が流れる。
The voltage value of 2 kV is large enough to cause a creeping discharge between the trigger electrode 42 and the vapor deposition material 43 on the surface of the insulating tube 41, and therefore, the secondary winding 22
b, the trigger electrode 42 and the vapor deposition material 43
A trigger discharge occurs between the trigger electrode 42 and the trigger electrode 42 and a trigger current flows from the trigger electrode 42 toward the deposition material 43.

【0047】トリガ電流が流れ、蒸着材料43が一部蒸
発すると、アノード電極30内の圧力が上昇し、その結
果、アノード電極30と蒸着材料43の間にアーク放電
が誘起される。
When a trigger current flows and the evaporation material 43 partially evaporates, the pressure in the anode electrode 30 increases, and as a result, an arc discharge is induced between the anode electrode 30 and the evaporation material 43.

【0048】アーク放電によって流れるアーク電流は1
000〜1500A程度の大電流であり、そのアーク電
流によって蒸着材料43側面が溶融し、蒸着材料43を
構成する物質が蒸気となって大量に放出される。その蒸
気中に含まれる正に帯電した微小粒子51には、アーク
電流が流れる方向とは逆向きの力が加わるので、アーク
電極30の開放口から真空槽1内に放出され、基板8方
向に向けて飛行し、その表面に付着して薄膜を成長させ
る。アーク電源47が消耗し、アーク放電が終了する
と、アーク電源47の回復を待ってトリガ放電を発生さ
せ、アーク放電を誘起させて薄膜を成長させる。
The arc current flowing by the arc discharge is 1
The current is a large current of about 000 to 1500 A, and the side of the vapor deposition material 43 is melted by the arc current, and a large amount of the substance constituting the vapor deposition material 43 is released as vapor. The positively charged microparticles 51 contained in the vapor are subjected to a force in a direction opposite to the direction in which the arc current flows, and are released from the opening of the arc electrode 30 into the vacuum chamber 1 and toward the substrate 8. It flies toward and attaches to its surface to grow a thin film. When the arc power supply 47 is consumed and the arc discharge ends, a trigger discharge is generated after the recovery of the arc power supply 47, and the arc discharge is induced to grow the thin film.

【0049】このように、必要な回数だけ繰り返しトリ
ガ放電を発生させ、薄膜が所望の膜厚に形成された後、
基板8を真空槽1外に搬出し、他の基板を搬入すると、
薄膜形成作業を続行することができる。
As described above, the trigger discharge is repeatedly generated a required number of times, and after the thin film is formed to a desired thickness,
When the substrate 8 is carried out of the vacuum chamber 1 and another substrate is carried in,
The thin film forming operation can be continued.

【0050】上記のトリガ電源20を用いてトリガ放電
を発生させる場合、トリガ電源20内にはコンデンサは
設けられておらず、共振回路は形成されていない。従っ
て、トリガ放電が生じた際に、トリガ電極42に交流電
流は流れず、トリガ電極42を構成する物質が蒸発する
こともない。
When trigger discharge is generated using the trigger power supply 20, no capacitor is provided in the trigger power supply 20 and no resonance circuit is formed. Therefore, when the trigger discharge occurs, no AC current flows through the trigger electrode 42, and the material constituting the trigger electrode 42 does not evaporate.

【0051】図2(a)は、上記トリガ電源20を用いた
場合にトリガ電極42に流れる電流を示したグラフであ
る。トリガ電極43には、交流電流は流れていない。同
図(b)は、従来技術のトリガ電源120を用いた場合の
トリガ電極142に流れる電流を示したグラフである。
コンデンサ122の容量の影響で共振回路が形成され、
トリガ放電の発生初期に、ごく短時間の間、トリガ電極
142に交流電流が流れていることが分かる。
FIG. 2A is a graph showing a current flowing through the trigger electrode 42 when the trigger power supply 20 is used. No alternating current flows through the trigger electrode 43. FIG. 6B is a graph showing a current flowing through the trigger electrode 142 when the trigger power supply 120 of the related art is used.
A resonance circuit is formed under the influence of the capacitance of the capacitor 122,
It can be seen that an alternating current flows through the trigger electrode 142 for a very short time at the beginning of the occurrence of the trigger discharge.

【0052】以上説明したように、本発明の蒸着装置を
用いれば、トリガ電極43に交流電流が流れず、形成さ
れる薄膜中にトリガ電極43を構成する物質が混入する
ことはない。
As described above, when the vapor deposition apparatus of the present invention is used, no alternating current flows through the trigger electrode 43, and the material constituting the trigger electrode 43 does not enter the formed thin film.

【0053】なお、上記トランス22にはパルストラン
スを用いた。通常の電源用トランスは、一次巻線に印加
された正弦波を二次巻線に伝達するために設計されてい
るのに対し、パルストランスは、一次巻線22aに印加
されたパルス電圧の波形を歪めずに二次巻線22bに伝
達できるように設計されている。従って、トリガ電極4
2に加えられるパルス電圧のdV/dtの値が大きく、
トリガ放電が発生しやすくなっている。
A pulse transformer was used as the transformer 22. Whereas a normal power transformer is designed to transmit a sine wave applied to a primary winding to a secondary winding, a pulse transformer is a waveform of a pulse voltage applied to a primary winding 22a. Is designed to be transmitted to the secondary winding 22b without distortion. Therefore, the trigger electrode 4
2. The value of dV / dt of the pulse voltage applied to 2 is large,
Trigger discharge is likely to occur.

【0054】また、このトランス22では、二次巻線2
2bにトリガ電流が流れるため、大電流を流せる設計に
なっている。このように、本発明のトランス22では、
トリガ電極42に高電圧のパルス電圧を印加でき、大電
流のトリガ電流を流せるものが適している。
In the transformer 22, the secondary winding 2
Since a trigger current flows through 2b, it is designed to allow a large current to flow. Thus, in the transformer 22 of the present invention,
It is suitable that a high-voltage pulse voltage can be applied to the trigger electrode 42 and a large-current trigger current can flow.

【0055】[0055]

【発明の効果】本発明によれば、同軸型真空アーク蒸着
源を用い、より高純度の薄膜を形成することが可能にな
る。
According to the present invention, a thin film with higher purity can be formed using a coaxial vacuum arc evaporation source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の蒸着装置FIG. 1 shows an example of a vapor deposition apparatus according to the present invention.

【図2】(a):本発明の蒸着装置のトリガ電極に流れる
電流を示すグラフ (b):従来技術の蒸着装置のトリガ電極に流れる電流を
示すグラフ
2A is a graph showing a current flowing through a trigger electrode of the vapor deposition apparatus of the present invention. FIG. 2B is a graph showing a current flowing through a trigger electrode of a conventional vapor deposition apparatus.

【図3】(a)、(b):同軸型真空アーク蒸着源の動作原
理を説明するための図
FIGS. 3A and 3B are diagrams for explaining the operation principle of a coaxial vacuum arc evaporation source.

【図4】同軸型真空アーク蒸着源を用いた従来技術の蒸
着装置を説明するための図
FIG. 4 is a view for explaining a conventional vapor deposition apparatus using a coaxial vacuum arc vapor deposition source.

【符号の説明】[Explanation of symbols]

1……真空槽 3……同軸型真空アーク蒸着源 8
……成膜対象物 10……蒸着装置 20……トリ
ガ電源 21……パルス電源 22……トランス
22a……一次巻線 22b……二次巻線 30…
…アノード電極42……トリガ電極 43……蒸着材
1. Vacuum chamber 3. Coaxial vacuum arc evaporation source 8
... Film formation target 10... Vapor deposition device 20... Trigger power supply 21... Pulse power supply 22.
22a: primary winding 22b: secondary winding 30
... Anode electrode 42 ... Trigger electrode 43 ... Evaporation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 佳宏 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 3K084 AA03 AA14 BB03 BC05 BD04 4K029 BD01 CA01 CA03 DB08 DB17 DD06  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoshihiro Yamamoto 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Vacuum Engineering Co., Ltd. F-term (reference) 3K084 AA03 AA14 BB03 BC05 BD04 4K029 BD01 CA01 CA03 DB08 DB17 DD06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アノード電極と蒸着材料との間に電圧を印
加した状態で、トリガ電極と前記蒸着材料との間にトリ
ガ放電を発生させ、前記アノード電極と前記蒸着材料と
の間にアーク放電を誘起させ、前記蒸着材料を蒸発さ
せ、成膜対象物表面に薄膜を形成する蒸着装置であっ
て、 一次巻線と二次巻線とが磁気結合されたトランスと、 パルス電圧を発生させるパルス電源とを有し、 前記一次巻線に前記パルス電圧を印加し、前記二次巻線
に誘起された電圧を前記トリガ電極と前記蒸着材料との
間に印加し、前記トリガ放電を発生させるように構成さ
れたことを特徴とする蒸着装置。
1. A trigger discharge is generated between a trigger electrode and said deposition material while a voltage is applied between said anode electrode and said deposition material, and an arc discharge is generated between said anode electrode and said deposition material. And a vapor-deposition device for evaporating the vapor-deposition material to form a thin film on the surface of a film-forming target, comprising: a transformer in which a primary winding and a secondary winding are magnetically coupled; and a pulse for generating a pulse voltage. A power supply; applying the pulse voltage to the primary winding; applying a voltage induced in the secondary winding between the trigger electrode and the deposition material to generate the trigger discharge. A vapor deposition apparatus characterized in that:
【請求項2】前記一次巻線と前記二次巻線の巻数比は、
前記二次巻線が、前記一次巻線に印加された電圧を増幅
するように設定されていることを特徴とする請求項1記
載の蒸着装置。
2. The winding ratio of the primary winding and the secondary winding is as follows:
The vapor deposition apparatus according to claim 1, wherein the secondary winding is set to amplify a voltage applied to the primary winding.
JP17194298A 1998-06-18 1998-06-18 Vapor deposition equipment that generates a trigger discharge using a transformer Expired - Lifetime JP4049891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17194298A JP4049891B2 (en) 1998-06-18 1998-06-18 Vapor deposition equipment that generates a trigger discharge using a transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17194298A JP4049891B2 (en) 1998-06-18 1998-06-18 Vapor deposition equipment that generates a trigger discharge using a transformer

Publications (2)

Publication Number Publication Date
JP2000001770A true JP2000001770A (en) 2000-01-07
JP4049891B2 JP4049891B2 (en) 2008-02-20

Family

ID=15932675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17194298A Expired - Lifetime JP4049891B2 (en) 1998-06-18 1998-06-18 Vapor deposition equipment that generates a trigger discharge using a transformer

Country Status (1)

Country Link
JP (1) JP4049891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242825A (en) * 2008-03-28 2009-10-22 Ulvac Japan Ltd Method for embedding metallic material using coaxial vacuum arc vapor deposition source
JP2010095801A (en) * 2010-02-01 2010-04-30 Ulvac Japan Ltd Evaporation source
CN107837989A (en) * 2017-12-08 2018-03-27 沈阳天通电气有限公司 The vacuum of radiator for transformer inner chamber draws paint and vacuum quick drying paint equipment and technique

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242825A (en) * 2008-03-28 2009-10-22 Ulvac Japan Ltd Method for embedding metallic material using coaxial vacuum arc vapor deposition source
JP2010095801A (en) * 2010-02-01 2010-04-30 Ulvac Japan Ltd Evaporation source
CN107837989A (en) * 2017-12-08 2018-03-27 沈阳天通电气有限公司 The vacuum of radiator for transformer inner chamber draws paint and vacuum quick drying paint equipment and technique
CN107837989B (en) * 2017-12-08 2023-03-10 沈阳天通电气有限公司 Vacuum paint sucking and vacuum quick-drying equipment and process for radiator inner cavity of transformer

Also Published As

Publication number Publication date
JP4049891B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
US3763031A (en) Rf sputtering apparatus
US5126032A (en) Process and apparatus for reactively coating a substrate
US20140291140A1 (en) Method and apparatus for plasma generation
JP2009057637A (en) Ionized physical vapor deposition apparatus using helical magnetic resonance coil
KR20010033787A (en) Plasma device including a powered non-magnetic metal member between a plasma ac excitation source and the plasma
JP2006310101A (en) Coaxial magnetized plasma production device and film forming device using coaxial magnetized plasma production device
US20070034498A1 (en) Pulsed magnetron sputtering deposition with preionization
US20210050181A1 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
Kugel et al. Copious electron emission from triglycine sulfate ferroelectric crystals
JP2000001770A (en) Vapor deposition apparatus for generating trigger discharge by using transformer
JPH06346236A (en) Direct current reactive plasma deposition apparatus for electrical insulating material using shielded secondary anode
JP4725969B2 (en) Coaxial vacuum arc vapor deposition source and vapor deposition apparatus using the same
JP2001011606A (en) Vapor deposition equipment having co-axial vacuum arc vapor deposition source
JP4535625B2 (en) Vapor deposition source and vapor deposition apparatus
JPH11350115A (en) Vapor deposition apparatus using coaxial vacuum arc vapor deposition source
JPH11246964A (en) Vapor deposition source and vapor deposition apparatus
JP4086964B2 (en) Coaxial vacuum arc deposition source and deposition apparatus having auxiliary anode electrode
JPH11172419A (en) Thin film forming device and thin film formation
JP4229736B2 (en) Coaxial vacuum arc deposition source, vacuum deposition apparatus using the same, and thin film forming method
JP4149565B2 (en) Coaxial vacuum arc evaporation source for high purity thin film formation
JP2002053950A (en) Method and apparatus for depositing film on insulating substrate
JPH07258844A (en) Film forming device utilizing discharge plasma of magnetic neutral line
JP5025991B2 (en) Arc evaporation source, film deposition equipment
JP2000008157A (en) Vapor deposition device using coaxial type vacuum arc vapor depositing source
JP2009179835A (en) Coaxial vacuum arc vapor deposition source and vacuum vapor deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term