ITTO20090870A1 - PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS - Google Patents

PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS Download PDF

Info

Publication number
ITTO20090870A1
ITTO20090870A1 IT000870A ITTO20090870A ITTO20090870A1 IT TO20090870 A1 ITTO20090870 A1 IT TO20090870A1 IT 000870 A IT000870 A IT 000870A IT TO20090870 A ITTO20090870 A IT TO20090870A IT TO20090870 A1 ITTO20090870 A1 IT TO20090870A1
Authority
IT
Italy
Prior art keywords
process according
catalyst
precursor
mixture
stage
Prior art date
Application number
IT000870A
Other languages
Italian (it)
Inventor
Raffaele Corvino
Liberata Guadagno
Generoso Iannuzzo
Pasquale Longo
Annaluisa Mariconda
Carlo Naddeo
Marialuigia Raimondo
Salvatore Russo
Vittoria Vittoria
Original Assignee
Alenia Aeronautica Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alenia Aeronautica Spa filed Critical Alenia Aeronautica Spa
Priority to ITTO2009A000870A priority Critical patent/IT1396311B1/en
Priority to EP10190778.0A priority patent/EP2325254B1/en
Priority to ES10190778.0T priority patent/ES2588919T3/en
Priority to US12/944,608 priority patent/US8481615B2/en
Publication of ITTO20090870A1 publication Critical patent/ITTO20090870A1/en
Application granted granted Critical
Publication of IT1396311B1 publication Critical patent/IT1396311B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • B29C73/22Auto-repairing or self-sealing arrangements or agents the article containing elements including a sealing composition, e.g. powder being liberated when the article is damaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Description

"Procedimento di preparazione di compositi autoriparantisi ad alta efficienza per applicazioni strutturali" "Preparation process of high efficiency self-healing composites for structural applications"

DESCRIZIONE DESCRIPTION

La presente invenzione si riferisce al settore dei polimeri e compositi polimerici termoindurenti con funzione strutturale. The present invention relates to the field of thermosetting polymeric polymers and composites with a structural function.

Questi materiali sono usati in numerose svariate applicazioni, tra cui veicoli di trasporto (aerei, veicoli spaziali, battelli, navi, auto, ecc.), componentistica elettronica (ad uso professionale, civile, industriale e hobbistico), articoli sportivi, ecc. Peraltro, in esercizio, essi sono soggetti a danni imputabili alla formazione di microcricche che si generano nella struttura per effetto di sollecitazioni di varia natura, ad esempio: a) vibrazioni meccaniche o comunque varie tipologie di stress meccanici, b) brusche variazioni di temperatura, c) irraggiamento dovuto a radiazioni ad elevata energia inducenti rottura diretta o indiretta di legami chimici (luce UV, raggi γ, ecc.), d) contatti voluti o occasionali con sostanze chimiche dannose per la struttura, e) diversi fattori che in combinazione possono contribuire a compromettere l’integrità della struttura. These materials are used in many different applications, including transport vehicles (airplanes, spacecraft, boats, ships, cars, etc.), electronic components (for professional, civil, industrial and hobby use), sports articles, etc. Moreover, in operation, they are subject to damage attributable to the formation of micro-cracks that are generated in the structure due to stresses of various kinds, for example: a) mechanical vibrations or in any case various types of mechanical stress, b) sudden changes in temperature, c) irradiation due to high energy radiations inducing direct or indirect breaking of chemical bonds (UV light, γ rays, etc.), d) intentional or occasional contacts with chemical substances harmful to the structure, e) various factors which in combination can contribute to compromising the integrity of the structure.

Per ridurre i danni causati dalle diverse sollecitazioni e aumentare quindi il tempo di utilizzo, la sicurezza e l’affidabilità di tali materiali, sono stati proposti e sviluppati svariati sistemi atti a renderli in grado di sviluppare processi di autoriparazione attivati dall’insorgenza stessa delle microcricche, come ad esempio indicato nei documenti brevettuali US-6 518 330 e WO-2009/113 025. Secondo quanto descritto in tali documenti, nella matrice del materiale polimerico sono disperse polveri di catalizzatore di reazione di metatesi ad apertura di anello, e microcapsule contenenti un monomero reattivo suscettibile di polimerizzare a seguito di una reazione di metatesi ad apertura di anello e successivamente di reticolare. To reduce the damage caused by the various stresses and therefore increase the time of use, safety and reliability of these materials, various systems have been proposed and developed to enable them to develop self-repair processes activated by the onset itself. of the microcracks, as for example indicated in the patent documents US-6 518 330 and WO-2009/113 025. According to what described in these documents, in the matrix of the polymeric material, powders of reaction catalyst of ring-opening metathesis are dispersed, and microcapsules containing a reactive monomer susceptible to polymerize following a reaction of ring-opening metathesis and subsequently crosslinking.

Pertanto, quando una crepa che si forma in tale materiale raggiunge una microcapsula, la rompe, causando la fuoriuscita del monomero. Quest’ultimo, venendo a contatto con il catalizzatore, polimerizza e successivamente reticola così da otturare la crepa e ripristinare la continuità strutturale della matrice. Un campo di elezione per l’impiego di questi materiali à ̈ quello dei componenti aeronautici strutturali. Therefore, when a crack that forms in this material reaches a microcapsule, it breaks it, causing the monomer to escape. The latter, coming into contact with the catalyst, polymerizes and subsequently crosslinks so as to close the crack and restore the structural continuity of the matrix. A field of choice for the use of these materials is that of structural aeronautical components.

Per la preparazione della matrice di tali materiali compositi si miscela un precursore del polimero termoindurente con un agente di indurimento e li si fa reagire ad elevate temperature, così da ottenere la matrice di polimero termoindurente. In tale miscela sono altresì già presenti le microcapsule contenenti il monomero reattivo e le particelle solide di catalizzatore di metatesi, così da rimanere inglobati nella matrice formatasi per garantire, in caso di necessità insorte successivamente nell’impiego del materiale, la funzionalità di autoriparazione sopra menzionata. To prepare the matrix of these composite materials, a precursor of the thermosetting polymer is mixed with a hardening agent and reacted at high temperatures, so as to obtain the thermosetting polymer matrix. In this mixture are also already present the microcapsules containing the reactive monomer and the solid particles of metathesis catalyst, so as to remain incorporated in the matrix formed to ensure, in case of need arising later in the use of the material, the functionality of self-repair mentioned above.

Secondo la tecnica nota, il catalizzatore per la reazione di metatesi à ̈ inglobato nei precursori della matrice polimerica sotto forma di particelle solide, ovvero polveri a cui corrispondono diverse morfologie e modificazioni cristallografiche (cfr. “Supporting Information†, G. O. Wilson, M. M. Caruso, N. T. Reimer, S. R. White, N. R. Sottos, J. S. Moore. Chem. Mater., 2008, 20, 3288-3297). According to the known technique, the catalyst for the metathesis reaction is incorporated in the precursors of the polymeric matrix in the form of solid particles, or powders to which different morphologies and crystallographic modifications correspond (see â € œSupporting Informationâ €, G. O. Wilson, M. M. Caruso , N. T. Reimer, S. R. White, N. R. Sottos, J. S. Moore. Chem. Mater., 2008, 20, 3288-3297).

In pratica, la concentrazione effettiva del catalizzatore dipende dalla disponibilità delle relative particelle sui piani della frattura e dalla velocità di dissoluzione del catalizzatore nel monomero reattivo all’interno della matrice polimerica. Anche con concentrazioni elevate di particelle di catalizzatore esposto sui piani della frattura, l’effettiva concentrazione del catalizzatore potrebbe essere relativamente bassa in corrispondenza di limitate velocità di dissoluzione del catalizzatore. La velocità di dissoluzione del catalizzatore dipende non solo dalla natura chimica dei vari componenti, ma anche da parametri morfologici e strutturali del catalizzatore, come ad es. disponibilità locale, dimensione e modificazione cristallografica delle particelle. In practice, the effective concentration of the catalyst depends on the availability of the relative particles on the fracture planes and on the speed of dissolution of the catalyst in the reactive monomer inside the polymeric matrix. Even with high concentrations of exposed catalyst particles on the fracture planes, the actual catalyst concentration may be relatively low at low catalyst dissolution rates. The speed of dissolution of the catalyst depends not only on the chemical nature of the various components, but also on the morphological and structural parameters of the catalyst, such as eg. local availability, size and crystallographic modification of particles.

Nel complesso si à ̈ quindi riscontrato in pratica che la presenza di catalizzatore sotto forma di polveri cristalline comporta alcune criticità che riguardano l’omogenea disponibilità del catalizzatore in tutte le zone in cui si può potenzialmente sviluppare una microcricca, compromettendo l’efficacia del processo di autoriparazione. Overall, it was therefore found in practice that the presence of catalyst in the form of crystalline powders involves some critical issues concerning the homogeneous availability of the catalyst in all areas where a microcrack can potentially develop, compromising the effectiveness of the self-repair process.

Scopo della presente invenzione à ̈ quindi quello di fornire un procedimento per la preparazione di un materiale composito autoriparantesi, esente dagli inconvenienti sopra evidenziati. The object of the present invention is therefore to provide a process for the preparation of a self-healing composite material, free from the drawbacks highlighted above.

Tale scopo viene raggiunto grazie a un procedimento per la preparazione di un materiale composito autoriparantesi comprendente una matrice di polimero epossidico nella quale sono dispersi un catalizzatore di reazione di metatesi ad apertura di anello e vessel contenenti almeno un monomero atto a polimerizzare a seguito di una reazione di metatesi ad apertura di anello, detto procedimento comprendendo la fase preliminare di disperdere a livello molecolare detto catalizzatore in una miscela contenente almeno un precursore di detto polimero epossidico, e quindi le fasi di: This purpose is achieved thanks to a process for the preparation of a self-healing composite material comprising an epoxy polymer matrix in which a ring-opening metathesis reaction catalyst and vessel containing at least one monomer suitable for polymerizing following a reaction are dispersed. of ring-opening metathesis, said process comprising the preliminary step of dispersing said catalyst at the molecular level in a mixture containing at least one precursor of said epoxy polymer, and then the steps of:

- dispersione nella miscela di detti vessel e di un agente di indurimento di detto precursore, il quale agente à ̈ scelto dal gruppo consistente di ammine terziarie, e - dispersion in the mixture of said vessels and of a hardening agent of said precursor, which agent is selected from the group consisting of tertiary amines, and

- indurimento della miscela mediante almeno un primo stadio di riscaldamento condotto ad una temperatura compresa fra 70 e 90°C per un durata compresa fra 1 e 5 ore, ed un secondo stadio di riscaldamento condotto ad una temperatura compresa fra 90 e 170°C per un durata compresa fra 2 e 3 ore. - hardening of the mixture by means of at least a first stage of heating carried out at a temperature between 70 and 90 ° C for a duration of between 1 and 5 hours, and a second stage of heating carried out at a temperature of between 90 and 170 ° C for a duration between 2 and 3 hours.

Con il termine „vessel†si intende nella presente descrizione qualsiasi recipiente atto a contenere il monomero reattivo, ad esempio microcapsule di diverse dimensioni, di forma sferica e/o ellissoidale, o capillari cavi di vetro o altro materiale, così come suggerito in C. Dry, M. Corsaw, Cem. Conc. Res., 2003, 33, 1723, C. Dry, Int. Patent 2007/005657 2007, C. Dry, Comp. Struct. 1996, 35, 263, C. Dry, N. Sottos, Proc. SPIE, Vol. 1916, 438, (1993), e C. Dry, W. Mcmillan, Smart Mater. Struct. 1997, 6, 35, nonchà ̈ microcanali creati in fase di indurimento, così come proposto in K. S. Toohey, N.R. Sottos, S. R. White, Exp. Mech. 2009, 49, 707, K. S. Toohey, PhD. Thesis, University of Illinois at Urbana-Champaign 2007 e K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, R. Scott, Nature Materials 2007, 6, 581. The term â € žvesselâ € means in the present description any container suitable for containing the reactive monomer, for example microcapsules of different sizes, spherical and / or ellipsoidal, or hollow capillaries of glass or other material, as suggested in C. Dry, M. Corsaw, Cem. Conc. Res., 2003, 33, 1723, C. Dry, Int. Patent 2007/005657 2007, C. Dry, Comp. Struct. 1996, 35, 263, C. Dry, N. Sottos, Proc. SPIE, Vol. 1916, 438, (1993), and C. Dry, W. Mcmillan, Smart Mater. Struct. 1997, 6, 35, as well as microchannels created in the hardening phase, as proposed in K. S. Toohey, N.R. Sottos, S. R. White, Exp. Mech. 2009, 49, 707, K. S. Toohey, PhD. Thesis, University of Illinois at Urbana-Champaign 2007 and K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, R. Scott, Nature Materials 2007, 6, 581.

Grazie al procedimento dell’invenzione, il catalizzatore viene disperso nella matrice polimerica a livello molecolare con una distribuzione sostanzialmente omogenea, che prescinde dalla sua particolare modificazione cristallografica e dai suoi parametri morfologici e non ne compromette l'attività. Di conseguenza, la sua efficacia sarà ottimale quando verrà in contatto con il/i monomero/i reattivo/i durante i processi di autoriparazione, e potrà così essere utilizzato in quantità comparativamente ridotte. Thanks to the process of the invention, the catalyst is dispersed in the polymeric matrix at the molecular level with a substantially homogeneous distribution, which is independent of its particular crystallographic modification and its morphological parameters and does not compromise its activity. Consequently, its effectiveness will be optimal when it comes into contact with the reactive monomer (s) during self-repair processes, and can thus be used in comparatively small quantities.

In linea di principio, à ̈ possibile utilizzare qualsivoglia precursore di polimero epossidico, ad esempio diglicidiletere di bisfenolo A (DGEBA), diglicidiletere di bisfenolo F (DGEBF), poliglicidiletere di novolacca fenolo-formaldeide, poliglicidiletere di novolacca o-cresolo-formaldeide, N,N,N’,N’,-tetraglicidilmetilendianilina, novolacca bisfenolo A, triglicidiletere di trisfenol-metano, triglicidil p-amminofenolo, 3,4-epossicicloesilmetil-3,4-epossicicloesano carbossilato e loro miscele. In principle, any epoxy polymer precursor can be used, for example bisphenol A diglycidyl ether (DGEBA), bisphenol F diglycidyl ether (DGEBF), novolac polyglycidyl ether phenol-formaldehyde, novolac polyglycidyl ether or-cresol-formaldehyde , N, Nâ € ™, Nâ € ™, -tetraglycidylmethylenedianiline, bisphenol A novolac, triglycidyl ether of trisphenol-methane, triglycidyl p-aminophenol, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and mixtures thereof.

Il precursore del polimero epossidico può inoltre essere addizionato di uno o più diluenti reattivi e/o flessibilizzanti in quantità perferibilmente compresa fra 5 e 40 parti in peso per 100 parti in peso di precursore. Tali diluenti reattivi e flessibilizzanti sono preferibilmente esteri o eteri includenti una catena alifatica comprendente almeno 7 atomi di carbonio ed almeno un anello ossiranico, come ad esempio glicidil-esteri, alchilglicidil-eteri, 1,4–butandiolo diglicidil etere, ottil-, decil-, glicidil-eteri e loro miscele. The precursor of the epoxy polymer can also be added with one or more reactive diluents and / or flexibilizers in quantities preferably between 5 and 40 parts by weight per 100 parts by weight of precursor. Such reactive and flexibilizing diluents are preferably esters or ethers including an aliphatic chain comprising at least 7 carbon atoms and at least one oxirane ring, such as for example glycidyl esters, alkylglycidyl ethers, 1,4⠀ "butanediol diglycidyl ether, octyl-, decyl -, glycidyl ethers and their mixtures.

Il precursore del polimero epossidico può inoltre essere addizionato di un additivo tenacizzante: ad esempio polimeri iper-ramificati che non causano incrementi di viscosità del polimero epossidico favorendo la miscelazione e rendendolo adatta all’iniezione o all’aspirazione come previsto dalla tecnologia VARTM. Qualora siano richiesti effetti tenacizzanti consistenti, à ̈ possibile aggiungere al precursore polimeri aromatici a basso peso molecolare in grado di dar luogo a fenomeni di separazione di fase e quindi a un’efficiente tenacizzazione della matrice. The precursor of the epoxy polymer can also be added with a toughening additive: for example hyper-branched polymers that do not cause viscosity increases of the epoxy polymer, favoring mixing and making it suitable for injection or suction as required by the VARTM technology. If consistent toughening effects are required, it is possible to add low molecular weight aromatic polymers to the precursor capable of giving rise to phase separation phenomena and therefore to an efficient toughening of the matrix.

La matrice epossidica può inoltre comprendere fibre di carbonio o nanotubi di carbonio in una quantità compresa fra 0,1 e 3,0 parti in peso per 100 parti di matrice. The epoxy matrix may further comprise carbon fibers or carbon nanotubes in an amount ranging from 0.1 to 3.0 parts by weight per 100 parts of matrix.

L’agente di indurimento del precursore à ̈ scelto dal gruppo consistente delle ammine terziarie, ad esempio 2,4,6-tris(dimetilamminometil)fenolo, trietilendiammina, N,N-dimetilpiperidina, benzildimetilammina, 2-(dimetilammino-metil)fenolo e loro miscele. The precursor curing agent is selected from the group consisting of tertiary amines, for example 2,4,6-tris (dimethylaminomethyl) phenol, triethylenediamine, N, N-dimethylpiperidine, benzyldimethylamine, 2- (dimethylamino-methyl) phenol and their mixtures.

Nel procedimento dell’invenzione si possono in generale utilizzare catalizzatori di Grubbs di prima e seconda generazione, nonché catalizzatori di Hoveyda-Grubbs di prima e seconda generazione. Esempi specifici di tali catalizzatori sono benzilidenebis(tricicloesilfosfina)diclororutenio (G1); 1,3-bis-(2,4,6-trimetilfenil)-2-imidazolidinilidene)(diclorofenilmetilene)(tricicloesilfosfina)rutenio (G2); dicloro(o-isoprossifenilmetilene)(tricicloesilfosfina)rutenio (HG1); (1,3-bis-(2,4,6-trimetilfenil)-2-imidazolidinilidene)dicloro(o-isopropossifenilmetilene)rutenio (HG2), le cui formule di struttura sono le seguenti: In the process of the invention it is generally possible to use first and second generation Grubbs catalysts, as well as first and second generation Hoveyda-Grubbs catalysts. Specific examples of such catalysts are benzylidenebis (tricyclohexylphosphine) dichlororuthenium (G1); 1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidene) (dichlorophenylmethylene) (tricyclohexylphosphine) ruthenium (G2); dichloro (o-isoproxyphenylmethylene) (tricyclohexylphosphine) ruthenium (HG1); (1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidene) dichloro (o-isopropoxyphenylmethylene) ruthenium (HG2), whose structural formulas are as follows:

Altri esempi di catalizzatori di Hoveyda Grubbs di seconda generazione hanno la formula di struttura seguente: Other examples of second generation Hoveyda Grubbs catalysts have the following structural formula:

in cui Ar= arile avente almeno un sostituente alogeno o alchilico e “R= alchile con da 1 a 20 atomi di carbonio. wherein Ar = aryl having at least one halogen or alkyl substituent and â € œR = alkyl with from 1 to 20 carbon atoms.

Preferibilmente, gli Ar sono mesitile e/o “R à ̈ isopropile. Si possono citare specificamente l’1,3-dimesitil-imidazolin-2-ilidene-orto-metossifenilmetilene-rutenio-dicloruro e l’1,3-di(orto-isopropilfenil)imidazolin-2-ilidene-orto-metossifenilmetilene-rutenio-dicloruro. Preferably, the Ars are mesityl and / or â € œR is isopropyl. 1.3-dimesithyl-imidazolin-2-ylidene-ortho-methoxyphenylmethylene-ruthenium-dichloride and 1,3-di (ortho-isopropylphenyl) imidazolin-2-ylidene-orthoxyphenylmethylene- ruthenium dichloride.

Il catalizzatore può essere scelto sulla base di diverse considerazioni, ad esempio: The catalyst can be chosen on the basis of several considerations, for example:

I) il valore di temperatura più basso a cui si deve attivare la funzionalità di autoriparazione, II) il valore di temperatura più elevato a cui deve avere luogo l’indurimento del precursore. I) the lowest temperature value at which the self-repair function must be activated, II) the highest temperature value at which the precursor hardening must take place.

Nel caso I), se nel materiale composito i meccanismi di autoriparazione si devono attivare a temperature uguali o inferiori a -40 °C, conviene utilizzare i catalizzatori di Hoveyda-Grubbs, mentre come monomero reattivo può essere vantaggiosamente utilizzato il 5-etilidene-2-norbornene (ENB), e - ancor più vantaggiosamente - una miscela di ENB con diciclopentadiene (DCPD), per es. miscele ENB/DCPD con concentrazioni di DCPD comprese tra 1 e 15 %, e in particolare tra 4 e 7%, in peso. In case I), if the self-repair mechanisms in the composite material must be activated at temperatures equal to or lower than -40 ° C, it is advisable to use Hoveyda-Grubbs catalysts, while 5-ethylidene-2 can be advantageously used as a reactive monomer -norbornene (ENB), and - even more advantageously - a mixture of ENB with dicyclopentadiene (DCPD), e.g. ENB / DCPD blends with DCPD concentrations between 1 and 15%, and in particular between 4 and 7%, by weight.

L’uso di una miscela di ENB con piccole concentrazioni di DCPD consente di aumentare notevolmente il grado di reticolazione del prodotto di metatesi soprattutto a temperature estremamente basse. Per esempio, facendo avvenire la reazione di metatesi ad apertura di anello di una miscela ENB/DCPD (al 5 % di DCPD) in rapporto molare 1:1000 (catalizzatore Hoveyda-Grubbs 1/monomero) alla temperatura di -53 °C, il grado di reticolazione risulta essere del 57 % (con un grado di conversione dell’84 %) dopo un tempo di reazione di 7 ore. In condizioni analoghe, il grado di reticolazione di ENB da solo à ̈ del 10 % con un grado di conversione del 100 %. The use of a mixture of ENB with small concentrations of DCPD allows to considerably increase the degree of cross-linking of the metathesis product especially at extremely low temperatures. For example, by carrying out the ring-opening metathesis reaction of an ENB / DCPD mixture (at 5% DCPD) in a molar ratio of 1: 1000 (Hoveyda-Grubbs 1 / monomer catalyst) at a temperature of -53 ° C, the degree of crosslinking is 57% (with a conversion degree of 84%) after a reaction time of 7 hours. Under similar conditions, the degree of crosslinking of ENB alone is 10% with a degree of conversion of 100%.

Il grado di reticolazione del prodotto di metatesi ottenuto dalla miscela di monomeri ENB/DCPD (in particolare al 5% di DCPD) aumenta rapidamente quando il prodotto di metatesi ottenuto a -53 °C à ̈ portato a temperatura ambiente. In particolare, esso raggiunge un valore dell’ 81% dopo un tempo di permanenza di 24 ore a temperatura ambiente (che à ̈ quasi uguale al valore del grado di reticolazione dell’87%, che à ̈ ottenuto facendo avvenire la reazione di metatesi direttamente a temperatura ambiente). E’ da notare che una tale miscela consente di raggiungere un ottimo compromesso tra velocità di reazione, resa e grado di reticolazione del prodotto di metatesi che si forma alla temperatura di -53 °C. The crosslinking degree of the metathesis product obtained from the mixture of ENB / DCPD monomers (in particular at 5% DCPD) increases rapidly when the metathesis product obtained at -53 ° C is brought to room temperature. In particular, it reaches a value of 81% after a residence time of 24 hours at room temperature (which is almost equal to the value of the 87% crosslinking degree, which is obtained by making the reaction of metathesis directly at room temperature). It should be noted that such a mixture allows to reach an excellent compromise between reaction speed, yield and degree of cross-linking of the metathesis product which is formed at a temperature of -53 ° C.

Nel caso II), per temperature di indurimento elevate, come ad esempio 170 °C, Ã ̈ vantaggiosamente utilizzato un catalizzatore di Hoveyda-Grubbs di prima generazione (HG1). In case II), for high hardening temperatures, such as 170 ° C, a first generation Hoveyda-Grubbs catalyst (HG1) is advantageously used.

Nel procedimento dell’invenzione, la fase preliminare di dispersione del catalizzatore a livello molecolare à ̈ realizzata preferenzialmente tramite un trattamento di miscelazione meccanica a temperature comprese tra 50 e 100°C, in particolare a 90°C. In the process of the invention, the preliminary phase of dispersion of the catalyst at the molecular level is preferably carried out by means of a mechanical mixing treatment at temperatures between 50 and 100 ° C, in particular at 90 ° C.

Durante tale fase preliminare, à ̈ conveniente controllare con continuità che l’attività del catalizzatore resti inalterata. Un metodo efficace ed accurato per effettuare tale controllo à ̈ descritto in dettaglio nell’esempio 1 che segue. During this preliminary phase, it is advisable to continuously check that the activity of the catalyst remains unchanged. An effective and accurate method for carrying out this check is described in detail in example 1 below.

L’effettuazione del processo di indurimento in più stadi a temperatura crescente permette di evitare la disattivazione del catalizzatore. Infatti, la scelta di una temperatura relativamente bassa nel primo stadio fa sì che sia solo l’agente di indurimento, e non il catalizzatore, a reagire con gli anelli ossiranici del precursore epossidico. Pertanto, il catalizzatore rimane integro nella matrice epossidica formatasi ed à ̈ così in grado di svolgere successivamente la sua azione catalitica della polimerizzazione del monomero reattivo, quando quest'ultimo fuoriesce dal vessel e interagisce con la matrice epossidica contenente il catalizzatore. Performing the hardening process in several stages at an increasing temperature avoids the deactivation of the catalyst. In fact, the choice of a relatively low temperature in the first stage means that only the curing agent, and not the catalyst, reacts with the oxirane rings of the epoxy precursor. Therefore, the catalyst remains intact in the formed epoxy matrix and is thus able to subsequently carry out its catalytic action of the polymerization of the reactive monomer, when the latter escapes from the vessel and interacts with the epoxy matrix containing the catalyst.

In una forma di attuazione preferita del procedimento dell’invenzione, si utilizza un catalizzatore di Hoveyda-Grubbs di prima generazione in percentuali variabili dal 2 al 20 %, e preferibilmente dal 2 al 5 %, in peso rispetto alla matrice polimerica. Sempre preferibilmente, la fase di indurimento prevede un primo stadio condotto alla temperatura di 80 °C per un tempo da 2 a 4 ore ed un secondo stadio condotto alla temperatura di 170°C per un tempo da 1 a 2 ore, fra il primo ed il secondo stadio essendo previsto almeno uno stadio intermedio che prevede rispettivi stazionamenti a 90 °C, 100 °C e 110 °C per una durata di almeno 15 minuti a ciascuna delle suddette temperature. In a preferred embodiment of the process of the invention, a first generation Hoveyda-Grubbs catalyst is used in percentages ranging from 2 to 20%, and preferably from 2 to 5%, by weight with respect to the polymeric matrix. Always preferably, the hardening phase provides a first stage conducted at the temperature of 80 ° C for a time from 2 to 4 hours and a second stage carried out at a temperature of 170 ° C for a time from 1 to 2 hours, between the first and the second stage being provided at least one intermediate stage which provides for respective stationing at 90 ° C, 100 ° C and 110 ° C for a duration of at least 15 minutes at each of the aforesaid temperatures.

Vengono ora forniti, a titolo meramente illustrativo e non limitativo, esempi di procedimenti di preparazione di materiali compositi secondo l’invenzione. Examples of procedures for the preparation of composite materials according to the invention are now provided, purely for illustrative and non-limiting purposes.

ESEMPIO 1 EXAMPLE 1

In tale esempio viene preparata una miscela dei componenti sotto riportati nelle quantità indicate: In this example, a mixture of the components listed below is prepared in the quantities indicated:

- DGEBA (precursore della resina epossidica, - DGEBA (precursor of epoxy resin,

nome commerciale EPON 828) 70 grammi - 1,4-Butandiolodiglicidiletere (diluente reattivo) 17 grammi - Dicloro(o-isopropossifenilmetilene)(tricicloesilfosfina)rutenio(II) 4 grammi (catalizzatore HG1); trade name EPON 828) 70 grams - 1,4-Butanediolodiglycidyl ether (reactive diluent) 17 grams - Dichloro (o-isopropoxyphenylmethylene) (tricyclohexylphosphine) ruthenium (II) 4 grams (catalyst HG1);

- 2,4,6-tris(dimetilamminometil)fenolo (agente di indurimento, nome commerciale Ancami- 9 grammi ne K54) - 2,4,6-tris (dimethylaminomethyl) phenol (hardening agent, trade name Ancami- 9 grams ne K54)

100 grammiTotale100 grams Total

La procedura adottata per la preparazione della suddetta miscela à ̈ la seguente. Il precursore epossidico (EPON 828) à ̈ stato mescolato meccanicamente con il diluente reattivo ad una temperatura di 90 °C, mantenuta mediante un bagno d’olio, e quindi à ̈ stato aggiunto il catalizzatore HG1 sotto forma di polveri cristalline, così come fornito dalla società Aldrich. Il catalizzatore à ̈ stato disperso a livello molecolare agitando meccanicamente la miscela mantenuta a 90 °C per 90 minuti. The procedure adopted for the preparation of the aforementioned mixture is as follows. The epoxy precursor (EPON 828) was mechanically mixed with the reactive diluent at a temperature of 90 ° C, maintained by means of an oil bath, and then the HG1 catalyst was added in the form of crystalline powders, so as supplied by the Aldrich company. The catalyst was dispersed at the molecular level by mechanically stirring the mixture kept at 90 ° C for 90 minutes.

Per verificare la completa dispersione e solubilizzazione del catalizzatore, nonché il mantenimento inalterato della sua attività catalitica à ̈ stata condotta un’indagine spettroscopica. A spectroscopic investigation was carried out to verify the complete dispersion and solubilization of the catalyst, as well as the unaltered maintenance of its catalytic activity.

A questo scopo, quattro gocce della miscela sono state depositate su un vetrino per microscopia ottica. La completa trasparenza, che si realizza quando il catalizzatore à ̈ completamente solubilizzato, può essere verificata tramite microscopia ottica con osservazione in trasmissione. A tali gocce di miscela sono state aggiunte 2 gocce di ENB. Si à ̈ formato immediatamente un film sottile solido di prodotto di metatesi, il cui spettro FT/IR à ̈ riportato nella figura 1. For this purpose, four drops of the mixture were deposited on an optical microscope slide. The complete transparency, which occurs when the catalyst is completely solubilized, can be verified by optical microscopy with transmission observation. Two drops of ENB were added to these drops of the mixture. A solid thin film of metathesis product was immediately formed, the FT / IR spectrum of which is shown in Figure 1.

In tale spettro si nota un picco a 966 cm<-1>che à ̈ indice della formazione del prodotto di metatesi e quindi del fatto che l’attività del catalizzatore non à ̈ stata compromessa dalla natura chimica degli oligomeri, dalla temperatura e dai trattamenti di miscelazione meccanica. In this spectrum we note a peak at 966 cm <-1> which is an indication of the formation of the product of metathesis and therefore of the fact that the activity of the catalyst has not been compromised by the chemical nature of the oligomers, by the temperature and by the mechanical mixing treatments.

La miscela trasparente contenente il catalizzatore completamente solubilizzato à ̈ stata quindi estratta dal bagno d’olio olio e lasciata raffreddare fino alla temperatura di 50 °C, per poi aggiungervi l’agente di indurimento. The transparent mixture containing the completely solubilized catalyst was then extracted from the oil bath and allowed to cool down to a temperature of 50 ° C, and then the hardening agent was added to it.

La miscela così ottenuta à ̈ stata indurita con un processo a due stadi. Il primo stadio à ̈ stato condotto alla temperatura di 80 °C per 3 ore, mentre il secondo stadio à ̈ stato condotto secondo tre varianti, ovvero alle tre diverse temperature di 125, 150 e 170 °C. The resulting mixture was hardened with a two-stage process. The first stage was carried out at a temperature of 80 ° C for 3 hours, while the second stage was carried out according to three variants, namely at the three different temperatures of 125, 150 and 170 ° C.

In tutti e tre i casi, fra il primo ed il secondo stadio sono sempre state previste tre fasi intermedie, ciascuna della quali prevedeva una permanenza di 15 minuti a ciascuna delle temperature di 90 °C, 100 °C e 110 °C. In all three cases, three intermediate phases have always been provided between the first and second stages, each of which provided for a stay of 15 minutes at each of the temperatures of 90 ° C, 100 ° C and 110 ° C.

Le figure 2-5 rappresentano spettri FT/IR del materiale indurito rispettivamente dopo gli stadi intermedi, e il secondo stadio condotto con le tre diverse modalità sopra indicate, a cui à ̈ stato poi aggiunto ENB analogamente a come era stato fatto dopo la fase preliminare di solubilizzazione del catalizzatore. Figures 2-5 represent FT / IR spectra of the hardened material respectively after the intermediate stages, and the second stage conducted with the three different methods indicated above, to which ENB was then added similarly to how it was done after the preliminary phase of solubilization of the catalyst.

La presenza in tutti i casi del picco a 966 cm<-1>, che à ̈ indice della formazione del prodotto di metatesi, prova che l’attività catalitica del catalizzatore HG1 all’interno della matrice epossidica à ̈ restata inalterata dopo i trattamenti descritti. Dagli spettri FT/IR si evince in particolare che, dopo il trattamento a 110 °C, la miscela può essere indurita (cfr. fig. 5) fino a 170 °C per 2 ore senza compromettere l’attività catalitica del catalizzatore. The presence in all cases of the peak at 966 cm <-1>, which is an indication of the formation of the metathesis product, proves that the catalytic activity of the HG1 catalyst inside the epoxy matrix remained unchanged after the treatments described. The FT / IR spectra shows in particular that, after the treatment at 110 ° C, the mixture can be hardened (see fig. 5) up to 170 ° C for 2 hours without compromising the catalytic activity of the catalyst.

Naturalmente, nel caso in cui si fosse stato necessario preparare un materiale autoriparantesi per uso pratico a temperature almeno fino a -55 °C, insieme all’agente di indurimento sarebbero stati addizionati con modalità convenzionali i vessel contenenti il monomero reattivo. Naturally, if it had been necessary to prepare a self-healing material for practical use at temperatures down to at least -55 ° C, the vessels containing the reactive monomer would have been added with conventional methods.

ESEMPIO 2 EXAMPLE 2

L’esempio 2 à ̈ stato condotto con modalità analoghe al precedente, ad eccezione del fatto che à ̈ stata utilizzata una quantità inferiore di catalizzatore, pari al 3 % del peso totale della miscela. Nei relativi spettri FT/IR (cfr. figure 6 e 7) non si osserva alcuna diminuzione del picco a 966 cm<-1>, cosicché anche in questo caso l’attività catalitica del catalizzatore HG1 à ̈ restata inalterata. Example 2 was carried out in the same way as the previous one, with the exception of the fact that a lower quantity of catalyst was used, equal to 3% of the total weight of the mixture. In the relative FT / IR spectra (see figures 6 and 7) no decrease in the peak at 966 cm <-1> is observed, so that also in this case the catalytic activity of the HG1 catalyst remained unchanged.

Naturalmente, fermo restando il principio dell'invenzione, i particolari di realizzazione e le forme di attuazione potranno ampiamente variare rispetto a quanto descritto a puro titolo esemplificativo, senza per questo uscire dall’ambito rivendicato. Naturally, the principle of the invention remaining the same, the details of construction and the embodiments may vary widely with respect to those described purely by way of example, without thereby departing from the claimed scope.

Claims (12)

RIVENDICAZIONI 1. Procedimento per la preparazione di un materiale composito autoriparantesi comprendente una matrice di polimero epossidico nella quale sono dispersi un catalizzatore di reazione di metatesi ad apertura di anello e vessel contenenti almeno un monomero atto a polimerizzare a seguito di una reazione di metatesi ad apertura di anello, detto procedimento comprendendo la fase preliminare di disperdere a livello molecolare detto catalizzatore in una miscela contenente almeno un precursore di detto polimero epossidico, e quindi le fasi di: - dispersione nella miscela di detti vessel e di un agente di indurimento di detto precursore, il quale agente à ̈ scelto dal gruppo consistente di ammine terziarie, e - indurimento della miscela mediante almeno un primo stadio di riscaldamento condotto ad una temperatura compresa fra 70 e 90°C per un durata compresa fra 1 e 5 ore, ed un secondo stadio di riscaldamento condotto ad una temperatura compresa fra 90 e 170°C per un durata compresa fra 2 e 3 ore. CLAIMS 1. Process for the preparation of a self-healing composite material comprising an epoxy polymer matrix in which a ring-opening metathesis reaction catalyst and vessel containing at least one monomer capable of polymerizing following a metathesis-opening reaction are dispersed. ring, said process comprising the preliminary step of dispersing said catalyst at the molecular level in a mixture containing at least one precursor of said epoxy polymer, and then the steps of: - dispersion in the mixture of said vessels and of a hardening agent of said precursor, which agent is selected from the group consisting of tertiary amines, and - hardening of the mixture by means of at least a first stage of heating carried out at a temperature between 70 and 90 ° C for a duration of between 1 and 5 hours, and a second stage of heating carried out at a temperature of between 90 and 170 ° C for a duration between 2 and 3 hours. 2. Procedimento secondo la rivendicazione 1, in cui detta fase di dispersione preliminare à ̈ condotta mediante miscelazione meccanica a temperature comprese tra 50 e 100 °C. 2. Process according to claim 1, wherein said preliminary dispersion step is carried out by mechanical mixing at temperatures between 50 and 100 ° C. 3. Procedimento secondo la rivendicazione 1 o 2, in cui durante detta fase di dispersione preliminare à ̈ controllata l’attività catalitica del catalizzatore. 3. Process according to claim 1 or 2, wherein the catalytic activity of the catalyst is controlled during said preliminary dispersion step. 4. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui, quali monomeri reattivi, si utilizzano una o più ciclo-olefine, in particolare 5-etilidene-2-norbornene (ENB) da solo o in miscela con altre ciclo-olefine scelte dal gruppo consistente di diciclopentadiene (DCPD), norbornene e cicloottadiene eventualmente sostituiti. 4. Process according to any one of the preceding claims, in which, as reactive monomers, one or more cyclo-olefins are used, in particular 5-ethylidene-2-norbornene (ENB) alone or in mixture with other cyclo-olefins selected from group consisting of dicyclopentadiene (DCPD), norbornene and optionally substituted cyclooctadiene. 5. Procedimento secondo la rivendicazione 4, in cui, quali monomeri reattivi, si utilizza una miscela di ENB e DCPD, contenente da 1 a 15%, e preferibilmente da 4 a 7%, in peso di DCPD. 5. Process according to claim 4, in which, as reactive monomers, a mixture of ENB and DCPD is used, containing from 1 to 15%, and preferably from 4 to 7%, by weight of DCPD. 6. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui si utilizza un catalizzatore di Hoveyda-Grubbs di prima generazione in percentuali comprese fra 2 e 20 %, e preferibilmente fra 2 e 5 %, in peso rispetto alla matrice polimerica. 6. Process according to any one of the preceding claims, in which a first generation Hoveyda-Grubbs catalyst is used in percentages comprised between 2 and 20%, and preferably between 2 and 5%, by weight with respect to the polymeric matrix. 7. Procedimento secondo la rivendicazione 6, in cui la fase di indurimento prevede un primo stadio condotto alla temperatura di 80 °C per un tempo compreso fra 2 e 4 ore ed un secondo stadio condotto alla temperatura di 170 °C per un tempo compreso fra 1 a 2 ore, fra il primo ed il secondo stadio essendo previsto almeno uno stadio intermedio che prevede rispettivi stazionamenti a 90 °C, 100 °C e 110 °C per una durata di almeno 15 minuti a ciascuna delle suddette temperature. 7. Process according to claim 6, wherein the hardening step provides a first stage carried out at a temperature of 80 ° C for a time ranging from 2 to 4 hours and a second stage carried out at a temperature of 170 ° C for a time ranging from 1 to 2 hours, between the first and the second stage at least one intermediate stage being provided which provides for respective stationing at 90 ° C, 100 ° C and 110 ° C for a duration of at least 15 minutes at each of the aforementioned temperatures. 8. Procedimento secondo una qualunque delle precedenti rivendicazioni da 1 a 5, in cui il catalizzatore à ̈ scelto dal gruppo consistente di benzilidenebis(tricicloesilfosfina)diclororutenio (G1); 1,3-bis-(2,4,6-trimetilfenil)-2-imidazolidinilidene)(diclorofenilmetilene)(tricicloesilfosfina)rutenio (G2); dicloro(o-isoprossifenilmetilene)(tricicloesilfosfina)rutenio (HG1); (1,3-bis-(2,4,6-trimetilfenil)-2-imidazolidinilidene)dicloro(o-isopropossifenilmetilene)rutenio (HG2). Process according to any one of the preceding claims 1 to 5, wherein the catalyst is selected from the group consisting of benzylidenebis (tricyclohexylphosphine) dichlororuthenium (G1); 1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidene) (dichlorophenylmethylene) (tricyclohexylphosphine) ruthenium (G2); dichloro (o-isoproxyphenylmethylene) (tricyclohexylphosphine) ruthenium (HG1); (1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidene) dichloro (o-isopropoxyphenylmethylene) ruthenium (HG2). 9. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui detto precursore à ̈ scelto dal gruppo consistente di diglicidiletere di bisfenolo A (DGEBA), diglicidiletere di bisfenolo F (DGEBF), poliglicidiletere di novolacca fenolo-formaldeide, poliglicidiletere di novolacca ocresolo-formaldeide, N,N,N’,N’,-tetraglicidilmetilendianilina, novolacca bisfenolo A, triglicidiletere di trisfenol-metano, triglicidil p-amminofenolo, 3,4-epossicicloesilmetil-3,4-epossicicloesano carbossilato e loro miscele. 9. Process according to any one of the preceding claims, in which said precursor is selected from the group consisting of bisphenol A diglycidyl ether (DGEBA), bisphenol F diglycidyl ether (DGEBF), polyglycidyl ether of phenol-formaldehyde novolac, ocresol-formaldehyde novolac polyglycidyl ether , N, N, Nâ € ™, Nâ € ™, -tetraglycidylmethylenedianiline, bisphenol A novolac, triglycidyl ether of trisphenol-methane, triglycidyl p-aminophenol, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and mixtures thereof. 10. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui a detto precursore sono addizionati uno o più diluenti reattivi e/o flessibilizzanti in quantità compresa fra 5 e 40 parti in peso per 100 parti in peso di precursore, detti diluenti reattivi e flessibilizzanti essendo preferibilmente esteri o eteri includenti una catena alifatica comprendente almeno 7 atomi di carbonio ed almeno un anello ossiranico. 10. Process according to any one of the preceding claims, in which one or more reactive and / or flexibilizing diluents are added to said precursor in a quantity comprised between 5 and 40 parts by weight per 100 parts by weight of precursor, said reactive and flexibilizing diluents being preferably esters or ethers including an aliphatic chain comprising at least 7 carbon atoms and at least one oxirane ring. 11. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui a detto precursore à ̈ addizionato un additivo tenacizzante. 11. Process according to any one of the preceding claims, in which a toughening additive is added to said precursor. 12. Procedimento secondo una qualunque delle precedenti rivendicazioni, in cui la matrice polimerica comprende fibre di carbonio e/o nanotubi di carbonio in una quantità compresa fra 0,1 e 3,0 parti in peso per 100 parti di matrice polimerica.Process according to any one of the preceding claims, wherein the polymeric matrix comprises carbon fibers and / or carbon nanotubes in an amount comprised between 0.1 and 3.0 parts by weight per 100 parts of polymeric matrix.
ITTO2009A000870A 2009-11-13 2009-11-13 PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS IT1396311B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ITTO2009A000870A IT1396311B1 (en) 2009-11-13 2009-11-13 PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS
EP10190778.0A EP2325254B1 (en) 2009-11-13 2010-11-11 Process for preparing self-healing composite materials of high efficiency for structural applications
ES10190778.0T ES2588919T3 (en) 2009-11-13 2010-11-11 Process to prepare high-efficiency self-regenerating composite materials for structural applications
US12/944,608 US8481615B2 (en) 2009-11-13 2010-11-11 Process for preparing self-healing composite materials of high efficiency for structural applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITTO2009A000870A IT1396311B1 (en) 2009-11-13 2009-11-13 PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS

Publications (2)

Publication Number Publication Date
ITTO20090870A1 true ITTO20090870A1 (en) 2011-05-14
IT1396311B1 IT1396311B1 (en) 2012-11-16

Family

ID=42222126

Family Applications (1)

Application Number Title Priority Date Filing Date
ITTO2009A000870A IT1396311B1 (en) 2009-11-13 2009-11-13 PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS

Country Status (4)

Country Link
US (1) US8481615B2 (en)
EP (1) EP2325254B1 (en)
ES (1) ES2588919T3 (en)
IT (1) IT1396311B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551093B1 (en) 2011-07-28 2014-01-01 EADS Deutschland GmbH Healable composite materials based on reversible binder systems
ES2395645B1 (en) * 2011-07-29 2013-12-16 Airbus Operations, S.L. PROTECTIVE SHIELD AGAINST ICE IMPACTS IN AIRCRAFT.
US8705019B2 (en) 2012-07-23 2014-04-22 King Fahd University Of Petroleum And Minerals Structural material with embedded sensors
US9816189B2 (en) 2013-03-15 2017-11-14 Honda Motor Co., Ltd. Corrosion inhibiting compositions and coatings including the same
US9605162B2 (en) 2013-03-15 2017-03-28 Honda Motor Co., Ltd. Corrosion inhibiting compositions and methods of making and using
DE102019123355A1 (en) 2019-08-30 2021-03-04 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Self-repairing fiber composite material and its use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064653A2 (en) * 2001-02-13 2002-08-22 Board Of Trustees Of University Of Illinois Multifunctional autonomically healing composite material
WO2009113025A1 (en) * 2008-03-13 2009-09-17 Alenia Aeronautica S.P.A. A composite material which is self-repairing even at low temperature
EP2172518A1 (en) * 2008-10-02 2010-04-07 Alenia Aeronautica S.P.A. Process for preparing a self-healing composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005657A1 (en) 2005-06-30 2007-01-04 Bohannon Philip L Methods and apparatus for processing XML updates as queries
EP1907202B1 (en) 2005-07-01 2016-01-20 Carolyn M. Dry Multiple function, self-repairing composites with special adhesives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064653A2 (en) * 2001-02-13 2002-08-22 Board Of Trustees Of University Of Illinois Multifunctional autonomically healing composite material
US6518330B2 (en) * 2001-02-13 2003-02-11 Board Of Trustees Of University Of Illinois Multifunctional autonomically healing composite material
WO2009113025A1 (en) * 2008-03-13 2009-09-17 Alenia Aeronautica S.P.A. A composite material which is self-repairing even at low temperature
EP2172518A1 (en) * 2008-10-02 2010-04-07 Alenia Aeronautica S.P.A. Process for preparing a self-healing composite material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROWN E N ET AL: "In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene", JOURNAL OF MICROENCAPSULATION, TAYLOR AND FRANCIS, BASINGSTOKE, GB LNKD- DOI:10.1080/0265204031000154160, vol. 20, no. 6, 1 November 2003 (2003-11-01), pages 719 - 730, XP009110889, ISSN: 0265-2048 *
KESSLER M R ET AL: "Self-healing structural composite materials", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL LNKD- DOI:10.1016/S1359-835X(03)00138-6, vol. 34, no. 8, 1 August 2003 (2003-08-01), pages 743 - 753, XP004443354, ISSN: 1359-835X *

Also Published As

Publication number Publication date
EP2325254A1 (en) 2011-05-25
ES2588919T3 (en) 2016-11-07
IT1396311B1 (en) 2012-11-16
EP2325254B1 (en) 2016-06-01
US20110118385A1 (en) 2011-05-19
US8481615B2 (en) 2013-07-09

Similar Documents

Publication Publication Date Title
Ahangaran et al. Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly (methyl methacrylate) shell
ITTO20090870A1 (en) PREPARATION PROCEDURE FOR SELF-REPAIRING HIGH EFFICIENCY COMPOSITES FOR STRUCTURAL APPLICATIONS
Li et al. Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy
CN100368475C (en) Curable flame retardant epoxy resin compositions
Wang et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond
Yin et al. Self-healing epoxy composites–preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent
Yuan et al. Preparation and characterization of microencapsulated polythiol
KR101542338B1 (en) Epoxy resin composition and fiber-reinforced composite material
ITTO20080723A1 (en) PROCEDURE FOR THE PREPARATION OF A SELF-REPAIRING COMPOSITE MATERIAL.
CN103665863B (en) Containing the compositions of thermosetting resin of double-tower type epoxy silsesquioxane
CN106633645B (en) A kind of fibre reinforced high-strength lightweight composite material and preparation method thereof
Sobhani et al. Effect of molecular weight and content of PDMS on morphology and properties of silicone‐modified epoxy resin
KR20150121065A (en) Epoxy resin composition and cured product thereof, prepreg, and fiber-reinforced composite material
CN101463179A (en) Aqueous self-emulsifying epoxy resin emulsion and preparation thereof
Pingkarawat et al. Poly (ethylene-co-methacrylic acid)(EMAA) as an efficient healing agent for high performance epoxy networks using diglycidyl ether of bisphenol A (DGEBA)
CN107995916A (en) Curable benzoxazine compositions
Sadeghi et al. Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application
CN103304999A (en) Cyanate ester/metal aluminum or titanium-containing silsesquioxane composition
Lin et al. High performance cyanate ester resins/reactive porous polymeric microsphere systems with low-temperature processability
Zhang et al. Toughening benzoxazine/epoxy thermosets through control of interfacial interactions and morphologies by hyperbranched polymeric ionic liquids
CN102504200A (en) High-performance high-heat-resistance modified epoxy resin and preparation method and use thereof
CN111560119A (en) Preparation method of dimethyl diphenyl polysiloxane
CN109694551A (en) A kind of preparation method of the high-performance epoxy composite material with particular nanostructure
Park et al. Fabrication of three-dimensional SiC ceramic microstructures with near-zero shrinkage via dual crosslinking induced stereolithography
Raimondo et al. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization