ITRM20090072A1 - LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY - Google Patents

LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY

Info

Publication number
ITRM20090072A1
ITRM20090072A1 IT000072A ITRM20090072A ITRM20090072A1 IT RM20090072 A1 ITRM20090072 A1 IT RM20090072A1 IT 000072 A IT000072 A IT 000072A IT RM20090072 A ITRM20090072 A IT RM20090072A IT RM20090072 A1 ITRM20090072 A1 IT RM20090072A1
Authority
IT
Italy
Prior art keywords
lithium
group
battery
butyl
cathode
Prior art date
Application number
IT000072A
Other languages
Italian (it)
Inventor
Alessandra Fernicola
Pierre Kubiak
Priscilla Reale
Bruno Scrosati
Werner Tillmetz
Margret Wohlfahrt-Mehrens
Original Assignee
Uni Degli Studi Di Roma La S Apienza
Zentrum Fur Sonnenenergie Und Wasse Rstoff Forschu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Degli Studi Di Roma La S Apienza, Zentrum Fur Sonnenenergie Und Wasse Rstoff Forschu filed Critical Uni Degli Studi Di Roma La S Apienza
Priority to ITRM2009A000072A priority Critical patent/IT1393271B1/en
Priority to EP10708596A priority patent/EP2399263A1/en
Priority to PCT/IB2010/050655 priority patent/WO2010095082A1/en
Publication of ITRM20090072A1 publication Critical patent/ITRM20090072A1/en
Application granted granted Critical
Publication of IT1393271B1 publication Critical patent/IT1393271B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

BATTERIA LITIO-IONE CON ELEVATO GRADO DI SICUREZZA LITHIUM-ION BATTERY WITH A HIGH DEGREE OF SAFETY

DESCRIZIONE DESCRIPTION

La presente invenzione si riferisce al settore tecnico delle batterie litio-ione e in particolare agli aspetti della sicurezza di questo tipo di batterie e alle migliorate prestazioni. The present invention relates to the technical sector of lithium-ion batteries and in particular to the safety aspects of this type of batteries and to the improved performance.

Per il loro alto contenuto energetico, le batterie litio-ione dominano oggi il mondo dell’elettronica di consumo, favorendo così la diffusione nell’uso quotidiano di dispositivi quali telefoni cellulari, computer portatili, lettori mp3 e così via. Tuttavia, applicazioni in mercati in espansione, come l’accumulo in centrali alimentate da fonti discontinue o l’alimentazione di auto ibride o elettriche, richiedono un ulteriore miglioramento delle prestazioni delle attuali batterie litio-ione. Due to their high energy content, lithium-ion batteries now dominate the world of consumer electronics, thus favoring the diffusion in everyday use of devices such as mobile phones, laptops, mp3 players and so on. However, applications in expanding markets, such as storage in power plants powered by discontinuous sources or the powering of hybrid or electric cars, require a further improvement in the performance of current lithium-ion batteries.

Tra i problemi ancora non risolti di queste batterie, figura quello associato alla sicurezza a sua volta legato alla instabilità dei loro componenti. In particolare, l’uso come elettrolita di soluzioni di sali di litio in solventi organici volatili comporta una serie di rischi. La vaporizzazione dei solventi, innescata da surriscaldamenti locali, e/o la loro decomposizione elettrochimica possono generare prodotti gassosi con conseguente aumento della pressione interna. Ciò può portare non solo alla rottura della cella ma anche a reazioni collaterali violente o perfino a incendi ed esplosioni. I rischi possono essere connessi con un abuso della batteria, ad esempio elevate temperature di lavoro o shock meccanico. Si veda i brevetti US 5.340.670 e US 5.612.155 per i problemi connessi con l’utilizzo di elettroliti non acquosi, anche dal punto di vista della sicurezza e dell’efficienza della batteria, soprattutto in connessione con l’utilizzo di anodi in materiale carbonioso. Questi documenti propongono di migliorare le caratteristiche delle batterie con materiali carboniosi innovativi. Among the still unsolved problems of these batteries, there is the one associated with safety in turn linked to the instability of their components. In particular, the use of lithium salt solutions in volatile organic solvents as an electrolyte involves a series of risks. The vaporization of solvents, triggered by local overheating, and / or their electrochemical decomposition can generate gaseous products with a consequent increase in internal pressure. This can lead not only to cell rupture but also to violent side reactions or even fires and explosions. Risks can be associated with battery abuse, such as high working temperatures or mechanical shock. See patents US 5,340,670 and US 5,612,155 for the problems associated with the use of non-aqueous electrolytes, also from the point of view of battery safety and efficiency, especially in connection with use of anodes in carbonaceous material. These documents propose to improve the characteristics of the batteries with innovative carbonaceous materials.

Il brevetto US 6.413.678 propone di ovviare ai problemi della sicurezza di questo tipo di batterie con un sistema che evolve dei gas. Nella batteria, un composto carbonilico, quando sottoposto a un aumento di temperatura, si decompone e sviluppa prodotti gassosi insolubili o poco solubili nell’elettrolita. Una opportuna valvola a rottura aumenta la pressione interna della batteria in modo sicuro e stabile. US patent 6,413,678 proposes to obviate the safety problems of this type of batteries with a system that evolves gases. In the battery, a carbonyl compound, when subjected to an increase in temperature, decomposes and develops gaseous products that are insoluble or poorly soluble in the electrolyte. A suitable rupture valve increases the internal pressure of the battery in a safe and stable way.

Ne segue che uno degli obiettivi prioritari nel settore à ̈ quello di definire e sviluppare configurazioni di batteria che possano assicurare prestazioni superiori a quelle fornite dai sistemi attuali, principalmente in termini di sicurezza, ma anche di energia, potenza e costo. It follows that one of the priority objectives in the sector is to define and develop battery configurations that can ensure performance superior to that provided by current systems, mainly in terms of safety, but also in terms of energy, power and cost.

Un modo per superare i problemi di sicurezza presenti nelle batterie ione-litio che utilizzano solventi organici come elettroliti non acquosi à ̈ dato dall’uso di liquidi ionici, ossia sali liquidi a temperatura ambiente, o sub ambiente o per lo meno di esercizio della batteria. One way to overcome the safety problems present in lithium-ion batteries that use organic solvents such as non-aqueous electrolytes is given by the use of ionic liquids, i.e. liquid salts at room temperature, or sub-environment or at least for the operation of the battery.

La scelta à ̈ motivata dalle caratteristiche di questi materiali che includono un’elevata conducibilità ionica (che comporta una bassa resistenza interna della batteria), una bassa volatilità (che previene variazioni di pressione all’interno della batteria) e un’alta stabilità termica (che garantisce operazioni affidabili in un vasto campo di temperatura) e la non infiammabilità (che garantisce sicurezza operativa). The choice is motivated by the characteristics of these materials which include a high ionic conductivity (which involves a low internal resistance of the battery), a low volatility (which prevents pressure variations inside the battery) and a high thermal stability (which guarantees reliable operations in a wide temperature range) and non-flammability (which guarantees operational safety).

I liquidi ionici sono formati da varie combinazioni di diversi anioni e cationi. Ionic liquids are formed from various combinations of different anions and cations.

La domanda di brevetto US 2007/026318 descrive alcuni tipi di questi liquidi ionici e i problemi che questi comportano in relazione con la reattività di alcuni di essi con gli elettrodi (si veda ad esempio le domande di brevetto JP 4-349365, JP 11-86905). In questo documento si propone come soluzione tecnica l’inserimento di un fosfato di allile nel liquido ionico. Tra i vari composti che forniscono il catione di ammonio quaternario si citano alcuni derivati del pirrolidinio, tutti caratterizzati dalla presenza di un metile sul gruppo di azoto quaternario, che si rivelano utili per sopprimere le reazioni collaterali agli elettrodi. Tuttavia, l’indicazione preferita à ̈ per i derivati dell’imidazolio, poiché abbassano la viscosità del liquido ionico, migliorando le prestazioni della batteria, come anche suggerito nella domanda di brevetto US 2008/0076030. Il fosfato di allile à ̈ comunque il componente essenziale per conferire caratteristiche di sicurezza, in particolare contro le esplosioni, dato che agisce come ritardante di fiamma. Patent application US 2007/026318 describes some types of these ionic liquids and the problems they entail in relation to the reactivity of some of them with the electrodes (see for example patent applications JP 4-349365, JP 11-86905 ). In this document, the insertion of an allyl phosphate into the ionic liquid is proposed as a technical solution. Among the various compounds that provide the quaternary ammonium cation, some derivatives of pyrrolidinium are mentioned, all characterized by the presence of a methyl on the quaternary nitrogen group, which are useful for suppressing collateral reactions at the electrodes. However, the preferred indication is for imidazolium derivatives, as they lower the viscosity of the ionic liquid, improving battery performance, as also suggested in US patent application 2008/0076030. Allyl phosphate is however the essential component to confer safety characteristics, in particular against explosions, since it acts as a flame retardant.

Altri esempi di batterie litio-ione in cui si utilizzano elettroliti non acquosi, anche come liquidi ionici, si trovano in EP 1906 841, US 2007/023801, WO 2005/104288. Other examples of lithium-ion batteries in which non-aqueous electrolytes are used, also as ionic liquids, are found in EP 1906 841, US 2007/023801, WO 2005/104288.

Sebbene il liquido ionico garantisca la sicurezza della batteria, à ̈ noto nel settore che la prestazione à ̈ assicurata dalla presenza del solvente, che riesce a mantenere la viscosità del sistema a livelli accettabili in termini di prestazioni della batteria. Although the ionic liquid ensures battery safety, it is known in the industry that performance is ensured by the presence of the solvent, which manages to keep the system viscosity at acceptable levels in terms of battery performance.

Inoltre, la stabilità degli elettrodi rispetto all’elettrolita non può essere data per scontata e richiede accurate verifiche del sistema. Furthermore, the stability of the electrodes with respect to the electrolyte cannot be taken for granted and requires careful system checks.

Lo stato dell’arte non ha ancora risolto in modo soddisfacente il problema della sicurezza delle batterie litio ione, anche per quelle che non utilizzano solventi organici, soprattutto in relazione alla stabilità del liquido ionico e le prestazioni delle batterie oggi richieste dalle apparecchiature che le utilizzano e in prospettiva del loro impiego in applicazioni più impegnative, quali l’accumulo in centrali alimentate da fonti discontinue o l’alimentazione di auto ibride o elettriche. The state of the art has not yet satisfactorily solved the safety problem of lithium ion batteries, even for those that do not use organic solvents, especially in relation to the stability of the ionic liquid and the performance of the batteries now required by the equipment that they use and with a view to their use in more demanding applications, such as storage in power plants powered by discontinuous sources or the power supply of hybrid or electric cars.

Il composto N-n-butil-N-etilpirrolidinio N,N-bis(trifluorometansolfonil)immide à ̈ stato descritto in A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno; Journal of Power Sources 174 (2007) 342-348, sia nella sua preparazione, sia in uno studio come suo possibile utilizzo come liquido ionico, e qui indicato brevemente come Py24TFSI. The compound N-n-butyl-N-ethylpyrrolidinium N, N-bis (trifluoromethanesulfonyl) imide has been described in A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno; Journal of Power Sources 174 (2007) 342-348, both in its preparation and in a study as its possible use as an ionic liquid, and herein briefly referred to as Py24TFSI.

In questo lavoro, il liquido ionico à ̈ stato descritto per scopi diversi da quelli oggetto di questo brevetto, e precisamente in una batteria litio metallo. Nel caso della batteria litio metallo, l’elettrolita organico diventa instabile con le ciclazioni e reagisce, dando luogo a un prodotto solido, che fino a una certa misura protegge l’elettrodo (passivazione), poi, continuando il deposito del solido, si forma uno strato disuniforme fino a formare strutture impilate (dendriti) che alla fine possono provocare cortocircuiti. Nelle batterie litio-ione, invece, il problema della sicurezza à ̈ principalmente legato al riscaldamento accidentale della batteria oltre una temperatura di soglia. Se il dispositivo non può dissipare il calore in eccesso in maniera efficiente, il riscaldamento provoca delle reazioni collaterali a carico del solvente organico presente nell’elettrolita, con il conseguente sviluppo di gas infiammabili che aumentano la pressione interna del dispositivo innescando il rischio di potenziali incendi ed esplosioni. La soluzione proposta nella presente invenzione consiste nella scelta di liquidi ionici come componenti elettrolitici non volatili e non infiammabili, che siano stabili rispetto ai materiali elettrodici proposti nelle combinazioni di celle descritte di seguito. In this work, the ionic liquid has been described for purposes other than those covered by this patent, namely in a lithium metal battery. In the case of the lithium metal battery, the organic electrolyte becomes unstable with the cyclations and reacts, giving rise to a solid product, which up to a certain extent protects the electrode (passivation), then, continuing the deposit of the solid, an uneven layer forms to form stacked structures (dendrites) which can eventually cause short circuits. In lithium-ion batteries, on the other hand, the safety problem is mainly linked to the accidental heating of the battery beyond a threshold temperature. If the device cannot dissipate excess heat efficiently, heating causes side reactions in the organic solvent present in the electrolyte, with the consequent development of flammable gases which increase the internal pressure of the device, triggering the risk of potential fires and explosions. The solution proposed in the present invention consists in the choice of ionic liquids as non-volatile and non-flammable electrolytic components, which are stable with respect to the electrode materials proposed in the cell combinations described below.

Sommario dell’invenzione Summary of the invention

È stato ora trovato che l’utilizzo di un particolare sale come liquido ionico risolve i problemi suddetti. In particolare una batteria litio-ione con una particolare configurazione di elettrodi e il liquido ionico dell’invenzione presenta caratteristiche particolarmente vantaggiose. It has now been found that the use of a particular salt as an ionic liquid solves the above problems. In particular, a lithium-ion battery with a particular configuration of electrodes and the ionic liquid of the invention has particularly advantageous characteristics.

Pertanto, Ã ̈ un oggetto della presente invenzione una batteria litio-ione caratterizzata dal fatto che il liquido ionico comprende Therefore, it is an object of the present invention a lithium-ion battery characterized in that the ionic liquid comprises

a. un liquido ionico che consiste di una porzione cationica di ammonio quaternario di formula to. an ionic liquid consisting of a cationic portion of quaternary ammonium of the formula

dove: where is it:

R1Ã ̈ un gruppo alchile lineare o ramificato avente da 2 a 5 atomi di carbonio, eventualmente sostituito con un gruppo alcossietilico avente da 1 a 3 atomi di carbonio; R1 is a linear or branched alkyl group having from 2 to 5 carbon atoms, optionally substituted with an alkoxyethyl group having from 1 to 3 carbon atoms;

R2, R3e R4, uguali o diversi tra di loro, sono un gruppo alchile lineare o ramificato avente da 2 a 5 atomi di carbonio, oppure, R3e R4, assieme all’atomo di azoto cui sono legati, formano un gruppo pirrolidinio o piperidinio; R2, R3 and R4, the same or different from each other, are a linear or branched alkyl group having from 2 to 5 carbon atoms, or, R3 and R4, together with the nitrogen atom to which they are bonded, form a pyrrolidinium or piperidinium group ;

b. una parte anionica, il cui anione à ̈ scelto nel gruppo che consiste di: b. an anionic part, whose anion is chosen from the group consisting of:

bis(trifluorometansolfonil)immide, tetrafluoroborato e esafluorofosfato; c. un sale di litio, scelto nel gruppo che consiste di litio N,N-bis(trifluorometansolfonil)immide, litio tetrafluoroborato, litio esafluorofosfato e litio bisossalatoborato. bis (trifluoromethanesulfonyl) imide, tetrafluoroborate and hexafluorophosphate; c. a lithium salt, selected from the group consisting of lithium N, N-bis (trifluoromethanesulfonyl) imide, lithium tetrafluoroborate, lithium hexafluorophosphate and lithium bisoxalateborate.

La batteria ione-litio secondo la presente invenzione presenta il vantaggio di mantenere prestazioni accettabili, nonostante l’assenza di solvente e l’aumento di viscosità dato dal liquido ionico e, soprattutto di assicurare la compatibilità con gli elettrodi. The lithium-ion battery according to the present invention has the advantage of maintaining acceptable performance, despite the absence of solvent and the increase in viscosity given by the ionic liquid and, above all, of ensuring compatibility with the electrodes.

Grazie alla elevata stabilità termica del liquido ionico utilizzato nella presente invenzione, la batteria à ̈ sicura. Inoltre, rispetto alle batterie che utilizzano elettroliti a base di liquidi ionici descritte nello stato dell’arte, la combinazione di detto liquido ionico e degli elettrodi qui proposti garantisce la stabilità dei componenti, senza l’utilizzo di additivi, quali i ritardanti di fiamma, o altri. Due to the high thermal stability of the ionic liquid used in the present invention, the battery is safe. Furthermore, compared to batteries that use electrolytes based on ionic liquids described in the state of the art, the combination of said ionic liquid and the electrodes proposed here guarantees the stability of the components, without the use of additives, such as flame, or others.

L’invenzione sarà ora descritta in dettaglio anche per mezzo di figure ed esempi. The invention will now be described in detail also by means of figures and examples.

Figura 1 mostra le curve dell’analisi termo gravimetrica (TGA) del liquido ionico Py24-TFSI puro e delle sue soluzioni con LiTFSI. Figure 1 shows the curves of the thermo gravimetric analysis (TGA) of the pure ionic liquid Py24-TFSI and its solutions with LiTFSI.

Figura 2 riporta la conducibilità del liquido ionico Py24-TFSI puro e delle sue soluzioni con LiTFSI. Figure 2 shows the conductivity of the pure Py24-TFSI ionic liquid and its solutions with LiTFSI.

Figura 3 mostra un ciclo di carica e scarica della batteria litio ione nella realizzazione Li4Ti5O12/ Py24TFSI – LiTFSI /LiFePO Figure 3 shows a charge and discharge cycle of the lithium ion battery in the Li4Ti5O12 / Py24TFSI - LiTFSI / LiFePO implementation

In Figura 4 sono riportati i cicli di carica e scarica della batteria SnC / Py24TFSI–LiTFSI / LiFePO4. Figure 4 shows the charge and discharge cycles of the SnC / Py24TFSIâ € “LiTFSI / LiFePO4 battery.

Figura 5 riporta alcuni cicli di carica e scarica della batteria litio ione TiO2/ Py24TFSI– LiTFSI / LiFePO4. Figure 5 shows some charging and discharging cycles of the TiO2 / Py24TFSIâ € “LiTFSI / LiFePO4 lithium ion battery.

Figura 6 mostra la conducibilità a temperatura ambiente della membrana ibrida tipo gel formata dall’inglobamento della soluzione Py24TFSI–LiTFSI nella matrice PVdF-HFP, a confronto con analoga membrana, ma contenente LiPF6-PC-EC. Figure 6 shows the conductivity at room temperature of the hybrid gel-like membrane formed by the incorporation of the Py24TFSIâ € “LiTFSI solution in the PVdF-HFP matrix, compared with a similar membrane, but containing LiPF6-PC-EC.

Descrizione dettagliata dell’invenzione Detailed description of the invention

Secondo la presente invenzione, il liquido ionico à ̈ costituito da una porzione cationica, descritta dalla formula (I) di cui sopra. According to the present invention, the ionic liquid consists of a cationic portion, described by the above formula (I).

Un primo gruppo preferito di composti di formula (I) Ã ̈ costituito da: N-n-butil-N-etilpirrolidinio, N-etil-N-propilpirrolidinio, N-etil-N-pentilpirrolidinio, N-etil-N-propossietilpirrolidinio, N-etil-N-propilpiperidinio, N-etil-N-isopropilpiperidinio, N-butil-N-etilpiperidinio, N-isobutil-N-etilpiperidinio, N-sec-butil-N-etilpiperidinio, N-metossietil-N-etilpiperidinio, N-etil-N-etossietilpiperidinio, N-butil-N,N,N-trietilammonio, N,N,N-trietil-N-propilammonio, N-butil-N,N-dietil-N-metilammonio e N-butil-N,N-dietil-N-propilammonio. A first preferred group of compounds of formula (I) consists of: N-n-butyl-N-ethylpyrrolidinium, N-ethyl-N-propylpyrrolidinium, N-ethyl-N-pentylpyrrolidinium, N-ethyl-N-propoxyethylpyrrolidinium, N- ethyl-N-propylpiperidinium, N-ethyl-N-isopropylpiperidinium, N-butyl-N-ethylpiperidinium, N-isobutyl-N-ethylpiperidinium, N-sec-butyl-N-ethylpiperidinium, N-methoxyethyl-N-ethylpiperidinium, N- ethyl-N-ethoxyethylpiperidinium, N-butyl-N, N, N-triethylammonium, N, N, N-triethyl-N-propylammonium, N-butyl-N, N-diethyl-N-methylammonium and N-butyl-N, N-diethyl-N-propylammonium.

In una seconda realizzazione preferita, il composto di formula (I) Ã ̈ N-n-butil-N-etilpirrolidinio. In a second preferred embodiment, the compound of formula (I) is N-n-butyl-N-ethylpyrrolidinium.

In una terza realizzazione preferita, la porzione anionica del liquido ionico à ̈ N,N-bis(trifluorometansolfonil)immide. In a third preferred embodiment, the anionic portion of the ionic liquid is N, N-bis (trifluoromethanesulfonyl) imide.

In una forma maggiormente preferita, il liquido ionico à ̈ N-n-butil-N-etilpirrolidinio N,N-bis(trifluorometansolfonil)immide. In a more preferred form, the ionic liquid is N-n-butyl-N-ethylpyrrolidinium N, N-bis (trifluoromethanesulfonyl) imide.

Il composto N-n-butil-N-etilpirrolidinio N,N-bis(trifluorometansolfonil)immide, che costituisce il liquido ionico per la batteria litio-ione nella sua migliore realizzazione, Ã ̈ stato descritto nel summenzionato A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno; Journal of Power Sources 174 (2007) 342-348, sia nella sua preparazione, sia in uno studio come suo possibile utilizzo come liquido ionico, e qui indicato brevemente come Py24TFSI. The compound N-n-butyl-N-ethylpyrrolidinium N, N-bis (trifluoromethanesulfonyl) imide, which constitutes the ionic liquid for the lithium-ion battery in its best embodiment, has been described in the aforementioned A. Fernicola, F. Croce, B Scrosati, T. Watanabe, H. Ohno; Journal of Power Sources 174 (2007) 342-348, both in its preparation and in a study as its possible use as an ionic liquid, and herein briefly referred to as Py24TFSI.

Il liquido ionico dell’invenzione à ̈ preparato come descritto in questo lavoro di Fernicola e colleghi, e può essere schematizzato come segue: The ionic liquid of the invention is prepared as described in this work by Fernicola and colleagues, and can be schematized as follows:

Questo metodo di preparazione à ̈ applicabile a tutti i composti della formula (I) riportata sopra in cui i gruppi R3e R4formano assieme all’atomo di azoto cui sono legati un anello pirrolidinico o piperidinico. Il derivato eterociclico recante la catena alchilica sull’atomo di azoto à ̈ disponibile in commercio, oppure può essere preparato con metodi noti. L’alogenuro alchilico, della lunghezza opportuna, secondo quanto previsto dalla definizione di R2data sopra, à ̈ anch’esso disponibile in commercio, oppure à ̈ preparato con metodi convenzionali. La reazione tra l’eterociclo azotato e l’alogenuro alchilico à ̈ del tutto nota al chimico organico esperto del settore e avviene in un opportuno solvente organico a condizioni di tempo e temperatura che possono essere facilmente determinati, anche ricorrendo a reazioni analoghe note in letteratura. Parimenti, l’isolamento del prodotto à ̈ fatto con mezzi convenzionali, ad esempio cristallizzazione da solvente o cromatografia, o altri sistemi equivalenti. Successivamente, il prodotto intermedio à ̈ fatto reagire con un sale dell’anione che va a costituire il liquido ionico finale. Riferimenti utili, in cui à ̈ trattata la sintesi di liquidi ionici analoghi a quelli qui proposti possono essere: D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth J. Phys. Chem. B 103 (1999) 4164-4170; e G.B. Appetecchi, S. Scaccia, C. Tizzani, F. Alessandrini, S. Passerini, J. Electrochem. Soc.153 (2006) A1685-A1691. This preparation method is applicable to all compounds of formula (I) reported above in which the R3 and R4 groups form together with the nitrogen atom to which a pyrrolidine or piperidine ring is bonded. The heterocyclic derivative bearing the alkyl chain on the nitrogen atom is commercially available, or it can be prepared by known methods. The alkyl halide, of the appropriate length, according to the definition of R2data above, is also commercially available, or is prepared with conventional methods. The reaction between the nitrogenous heterocycle and the alkyl halide is fully known to the organic chemist expert in the field and takes place in a suitable organic solvent at time and temperature conditions that can be easily determined, even by resorting to similar known reactions. in literature. Likewise, the isolation of the product is done by conventional means, such as solvent crystallization or chromatography, or other equivalent systems. Subsequently, the intermediate product is made to react with a salt of the anion which constitutes the final ionic liquid. Useful references, in which the synthesis of ionic liquids similar to those proposed here is treated, can be: D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth J. Phys. Chem. B 103 (1999) 4164-4170; and G.B. Appetecchi, S. Scaccia, C. Tizzani, F. Alessandrini, S. Passerini, J. Electrochem. Soc. 153 (2006) A1685-A1691.

Il liquido ionico Py24TFSI à ̈ stato addizionato di un sale di litio, LiTFSI, per assicurare il necessario trasporto dello ione litio all’interno della batteria. L’anione del sale à ̈ lo stesso utilizzato nel liquido ionico, il che garantisce la compatibilità dei componenti, come verificato sperimentalmente. The ionic liquid Py24TFSI has been added with a lithium salt, LiTFSI, to ensure the necessary transport of the lithium ion inside the battery. The anion of the salt is the same used in the ionic liquid, which guarantees the compatibility of the components, as verified experimentally.

In un’altra realizzazione preferita, detto liquido ionico à ̈ inglobato in una membrana, come sarà descritto in maggior dettaglio di seguito. In another preferred embodiment, said ionic liquid is incorporated in a membrane, as will be described in greater detail below.

La batteria secondo la presente invenzione ovviamente comprende un sistema di catodo e anodo. Possono essere utilizzati sistemi noti nel settore. The battery according to the present invention obviously comprises a cathode and anode system. Systems known in the art can be used.

In una realizzazione preferita il catodo à ̈ scelto nel gruppo che consiste di: fosfati di litio e metalli, ossidi metallici a intercalazione di ioni di litio, ossidi di litio e manganese. In a preferred embodiment, the cathode is selected from the group consisting of: lithium and metal phosphates, metal oxides intercalated with lithium ions, lithium and manganese oxides.

In un’altra realizzazione preferita, detto catodo à ̈ scelto nel gruppo che consiste di: LiFePO4, LiCoPO4, LiMnPO4, LiCO-MnPO4; LiCoO2, LiNiO2, LiCo-NiO2; LiMn2O4, LiNi0,5Mn1,5O4, LiCo1/3Mn1/3Ni1/3O2. In another preferred embodiment, said cathode is selected from the group consisting of: LiFePO4, LiCoPO4, LiMnPO4, LiCO-MnPO4; LiCoO2, LiNiO2, LiCo-NiO2; LiMn2O4, LiNi0,5Mn1,5O4, LiCo1 / 3Mn1 / 3Ni1 / 3O2.

In un’altra realizzazione preferita, l’anodo à ̈ scelto nel gruppo che consiste di: grafite, ossidi di titanio, ossidi di titanio contenenti litio e leghe del tipo MC, dove M à ̈ scelto nel gruppo che consiste di silicio, antimonio, alluminio o una combinazione di essi. In another preferred embodiment, the anode is chosen from the group consisting of: graphite, titanium oxides, lithium-containing titanium oxides and alloys of the MC type, where M is chosen from the group consisting of silicon, antimony, aluminum or a combination thereof.

In particolare, l’anodo à ̈ scelto nel gruppo che consiste di: Li4Ti5O12, SnC, TiO2. In particular, the anode is chosen from the group consisting of: Li4Ti5O12, SnC, TiO2.

Il materiale anodico SnC à ̈ sintetizzato a partire da un precursore organometallico a base di stagno, che viene incorporato in un gel costituito da resorcinolo-formaldeide. Il prodotto viene calcinato in flusso di argon per ridurre lo stagno contenuto nel precursore a stagno metallico e carbonizzare il gel. Questa procedura permette di ottenere il materiale finale di composizione nominale Sn / C 1:1. La sintesi à ̈ stata descritta in G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater.19 (2007) 2336. The SnC anodic material is synthesized starting from a tin-based organometallic precursor, which is incorporated in a gel consisting of resorcinol-formaldehyde. The product is calcined in argon flow to reduce the tin contained in the precursor to metallic tin and carbonize the gel. This procedure allows to obtain the final material of nominal composition Sn / C 1: 1. The synthesis has been described in G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19 (2007) 2336.

La TiO2Ã ̈ un materiale elettrodico descritto in P. Kubiak, J. Gesereick, N. HÃ1⁄4sing, M. Wohlfahrt-Mehrens Electrochemical performance of mesoporous TiO2 anatase Journal of Power Sources, 175 (1) pp. 510-516 (2008). Il Li4Ti5O12Ã ̈ un materiale noto nel settore delle batterie litio-ione. TiO2 is an electrode material described in P. Kubiak, J. Gesereick, N. HÃ1⁄4sing, M. Wohlfahrt-Mehrens Electrochemical performance of mesoporous TiO2 anatase Journal of Power Sources, 175 (1) pp. 510-516 (2008). Li4Ti5O12 is a well-known material in the lithium-ion battery industry.

Tuttavia, la specifica combinazione del Li4Ti5O12con il catodo e con l’elettrolita a base di un liquido ionico, della cella descritta nell’esempio 1 presenta l’inatteso vantaggio che non necessita l’aggiunta di agenti stabilizzanti, proprio perché la suddetta combinazione à ̈ sufficientemente stabile. However, the specific combination of Li4Ti5O12 with the cathode and with the electrolyte based on an ionic liquid, of the cell described in example 1 has the unexpected advantage that it does not require the addition of stabilizing agents, precisely because the above combination is sufficiently stable.

Forme particolarmente preferite di realizzazione della batteria secondo la presente invenzione sono: Particularly preferred embodiments of the battery according to the present invention are:

8 Studio Associato Leone & Spadaro a) anodo (elettrodo negativo): Li4Ti5O12, catodo (elettrodo positivo): LiFePO4, elettrolita: Py24TFSI–LiTFSI; 8 Studio Associato Leone & Spadaro a) anode (negative electrode): Li4Ti5O12, cathode (positive electrode): LiFePO4, electrolyte: Py24TFSIâ € “LiTFSI;

b) anodo (elettrodo negativo): SnC, catodo (elettrodo positivo) : LiFePO4, elettrolita: b) anode (negative electrode): SnC, cathode (positive electrode): LiFePO4, electrolyte:

Py24TFSI–LiTFSI; Py24TFSIâ € “LiTFSI;

c) anodo (elettrodo negativo): TiO2, catodo (elettrodo positivo) : LiFePO4, elettrolita: c) anode (negative electrode): TiO2, cathode (positive electrode): LiFePO4, electrolyte:

Py24TFSI–LiTFSI. Py24TFSIâ € “LiTFSI.

La stabilità termica del liquido ionico e delle sue soluzioni con il sale LiTFSI à ̈ dimostrata dalla risposta all’analisi termogravimetrica, i cui risultati sono mostrati nella Figura 1. Si evidenzia l’elevata stabilità termica che si estende fino a circa 368 °C per il liquido ionico puro e a valori molto simili anche per le sue soluzioni con il sale di litio. Questa proprietà à ̈ all’origine del maggior grado di sicurezza delle batterie che lo utilizzano. The thermal stability of the ionic liquid and its solutions with the LiTFSI salt is demonstrated by the response to the thermogravimetric analysis, the results of which are shown in Figure 1. It highlights the high thermal stability which extends up to about 368 ° C for the pure ionic liquid and at very similar values also for its solutions with the lithium salt. This property is at the origin of the greater degree of safety of the batteries that use it.

La Figura 2 riporta la conducibilità dei sistemi esaminati. Anche se la conducibilità delle soluzioni diminuisce all’aumentare della concentrazione del sale (per il corrispondente aumento di viscosità) i suoi valori rimangono nell’ordine dei mS/cm, vale dire sufficientemente elevati per permetterne l’uso in batterie al litio-ione e in batterie al litio. Infatti, questi valori sono confrontabili con quelli offerti dalle soluzioni elettrolitiche attualmente usate in questi dispositivi. Figure 2 reports the conductivity of the systems examined. Even if the conductivity of the solutions decreases as the salt concentration increases (due to the corresponding increase in viscosity), its values remain in the order of mS / cm, that is, sufficiently high to allow their use in lithium batteries -ion and in lithium batteries. In fact, these values are comparable with those offered by the electrolytic solutions currently used in these devices.

Le proprietà sopra riportate dimostrano che il sistema secondo la presente invenzione Py24TFSI–LiTFSI ha ottime caratteristiche per il suo utilizzo come elettrolita in batterie litio-ione con associati vantaggi di stabilità termica, bassa volatilità e, particolarmente, sicurezza. The properties reported above show that the system according to the present invention Py24TFSIâ € “LiTFSI has excellent characteristics for its use as an electrolyte in lithium-ion batteries with associated advantages of thermal stability, low volatility and, particularly, safety.

Per il progresso della tecnologia delle batterie litio-ione à ̈ importante utilizzare configurazioni polimeriche che garantiscono affidabilità operativa (assenza di liquidi) e flessibilità di disegno (modularità di geometria costruttiva). Il concetto richiede l’uso di membrane flessibili ed auto sostenenti con trasporto per ioni litio, da usare come separatori elettrolitici in batterie polimeriche. Lungo questa linea, in questo lavoro sono state sviluppate membrane formate dall’inglobamento della soluzione Py24TFSI–LiTFSI su descritta in una matrice di co-polimero fluoruro di polivinilidene-esafluoropropilene, PVdF-HFP, indicata brevemente come Py24TFSI–LiTFSI, PVdF-HFP. For the progress of lithium-ion battery technology it is important to use polymer configurations that guarantee operational reliability (absence of liquids) and design flexibility (modular construction geometry). The concept requires the use of flexible, self-supporting membranes with lithium ion transport, to be used as electrolytic separators in polymer batteries. Along this line, membranes formed by the incorporation of the Py24TFSIâ € "LiTFSI solution described above in a matrix of polyvinylidene-hexafluoropropylene fluoride co-polymer, PVdF-HFP, briefly referred to as Py24TFSI, PVdF were developed -HFP.

Queste membrane sono stabili fino a 325 °C , mantenendo così le caratteristiche di alta stabilità termica della soluzione costituente del liquido ionico. La conducibilità ionica à ̈ pari a 6,4 x 10<-4>Scm<-1>, un valore comparabile a quello delle soluzioni elettrolitiche usate nelle batterie litio-ione attualmente in commercio. Le membrane Py24TFSI–LiTFSI, PVdF-HFP offrono quindi prospettive di applicazione in batterie al litio ione di nuova configurazione e con caratteristiche di elevata stabilità termica, sicurezza, affidabilità e modularità di geometria costruttiva. In analogia con la soluzione Py24TFSI–LiTFSI di cui sono costituite, queste membrane possono trovare impiego come separatori elettrolitici in batterie che usano i materiali elettrodici indicati nella presente invenzione. These membranes are stable up to 325 ° C, thus maintaining the characteristics of high thermal stability of the constituent solution of the ionic liquid. The ionic conductivity is equal to 6.4 x 10 <-4> Scm <-1>, a value comparable to that of the electrolytic solutions used in lithium-ion batteries currently on the market. Py24TFSIâ € “LiTFSI, PVdF-HFP membranes therefore offer prospects for application in lithium ion batteries of new configuration and with characteristics of high thermal stability, safety, reliability and modular construction geometry. In analogy with the Py24TFSIâ € “LiTFSI solution of which they are made, these membranes can be used as electrolytic separators in batteries that use the electrode materials indicated in the present invention.

Nella realizzazione del liquido ionico incluso in una membrana, si possono utilizzare matrici polimeriche a base di vari polimeri che includono polivinilidene fluoruro (PVdF), co-polimero polivinilidene fluoruro esafluoropropilene (PVdF-HFP), poliacrilonitrile (PAN), polimetilmetacrilato (PMMA), polivinil alcool (PVA) e combinazioni tra loro. In the realization of the ionic liquid included in a membrane, polymeric matrices based on various polymers can be used which include polyvinylidene fluoride (PVdF), co-polymer polyvinylidene fluoride hexafluoropropylene (PVdF-HFP), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinyl alcohol (PVA) and combinations between them.

Oltre le matrici polimeriche dei vari tipi sopra indicati, si intende che queste membrane possono contenere varie soluzioni liquide comprendenti un sale di litio può essere selezionato nelle famiglie del litio tetrafluoroborato, litio esafluorofosfato, e litio bis(trifluorometansolfonil)immide disciolto in miscele di solventi organici aprotici che possono essere selezionati nella famiglie dei carbonati, quali etilene carbonato, EC, propilene carbonato, PC, dimetilcarbonato, DMC e dietilcarbonato, DEC. In addition to the polymeric matrices of the various types indicated above, it is understood that these membranes may contain various liquid solutions including a lithium salt that can be selected in the families of lithium tetrafluoroborate, lithium hexafluorophosphate, and lithium bis (trifluoromethanesulfonyl) imide dissolved in mixtures of organic solvents aprotics that can be selected in the family of carbonates, such as ethylene carbonate, EC, propylene carbonate, PC, dimethylcarbonate, DMC and diethylcarbonate, DEC.

La batteria secondo la presente invenzione può essere costruita ricorrendo alle conoscenze generali del settore e non necessita in questa sede di alcuna descrizione particolare. The battery according to the present invention can be built using general knowledge of the sector and does not need any particular description here.

A titolo di esempio, si veda Gold Peak Industries Ltd. Lithium Ion Technical Handbook e la letteratura citata in questa descrizione. As an example, see Gold Peak Industries Ltd. Lithium Ion Technical Handbook and the literature cited in this description.

La batteria secondo l’invenzione può assumere diverse configurazioni costruttive, come ad esempio descritto in US 2008/0076030, US 2007/0026318, US 2003/0054254. The battery according to the invention can assume different constructive configurations, as for example described in US 2008/0076030, US 2007/0026318, US 2003/0054254.

I seguenti esempi illustrano ulteriormente l’invenzione. The following examples further illustrate the invention.

Esempio 1 Example 1

È stata preparata una batteria con la seguente configurazione: A battery with the following configuration has been prepared:

anodo (elettrodo negativo): Li4Ti5O12anode (negative electrode): Li4Ti5O12

catodo (elettrodo positivo) : LiFePO4cathode (positive electrode): LiFePO4

elettrolita: Py24TFSI–LiTFSI electrolyte: Py24TFSIâ € “LiTFSI

Il processo operativo à ̈ lo scambio di ioni litio da un elettrodo all’altro, dove l’elettrolita funziona come elemento di trasporto degli ioni litio. La Figura 3 mostra un ciclo di carica : The operating process is the exchange of lithium ions from one electrode to another, where the electrolyte functions as a transport element for the lithium ions. Figure 3 shows a charge cycle:

Li4Ti5O12+ LiFePO4→ Li(1-x)FePO4+ Li(4+x)Ti5O12Li4Ti5O12 + LiFePO4â † ’Li (1-x) FePO4 + Li (4 + x) Ti5O12

e di scarica: and discharge:

Li(1-x)FePO4+ Li(4+x)Ti5O12→ Li4Ti5O12+ LiFePO4Li (1-x) FePO4 + Li (4 + x) Ti5O12â † ’Li4Ti5O12 + LiFePO4

di questa batteria. of this battery.

In Figura 3 Ã ̈ mostrato un tipico ciclo di carica e scarica della batteria qui descritta. Figure 3 shows a typical charge and discharge cycle of the battery described here.

Esempio 2 Example 2

È stata preparata una batteria con la seguente configurazione: A battery with the following configuration has been prepared:

anodo (elettrodo negativo): SnC anode (negative electrode): SnC

catodo (elettrodo positivo) : LiFePO4cathode (positive electrode): LiFePO4

elettrolita: Py24TFSI–LiTFSI electrolyte: Py24TFSIâ € “LiTFSI

Anche in questo caso il processo operativo à ̈ lo scambio reversibile di ioni litio dal catodo all’anodo. Also in this case the operative process is the reversible exchange of lithium ions from the cathode to the anode.

In Figura 4 sono riportati i cicli di carica e scarica della batteria SnC / Py24TFSI–LiTFSI / LiFePO4.Figure 4 shows the charge and discharge cycles of the SnC / Py24TFSIâ € “LiTFSI / LiFePO4 battery.

Esempio 3 Example 3

È stata preparata una batteria con la seguente configurazione: A battery with the following configuration has been prepared:

anodo (elettrodo negativo): TiO2anode (negative electrode): TiO2

catodo (elettrodo positivo) : LiFePO4cathode (positive electrode): LiFePO4

elettrolita: Py24TFSI–LiTFSI electrolyte: Py24TFSIâ € “LiTFSI

La reazione di cella à ̈ la seguente: The cell reaction is as follows:

LiFePO4+ TiO2↔ Li1-xFePO4+ LixTiO2. LiFePO4 + TiO2â † ”Li1-xFePO4 + LixTiO2.

Nella Figura 5 sono riportati alcuni cicli di carica e scarica di questo tipo di cella. Figure 5 shows some charge and discharge cycles of this type of cell.

Esempio 4 Example 4

Batterie litio-ione con membrane ibride tipo gel Lithium-ion batteries with hybrid gel-like membranes

Queste membrane sono state preparate inglobando con processi di “casting†le soluzioni liquide comunemente utilizzate nelle batterie litio ione (come esempio di confronto à ̈ stata usata una soluzione di litio esafluorofosfato, LiPF6) in una miscela di solventi organici aprotici (ad esempio una miscela di carbonato di etilene e carbonato di propilene, EC-PC) in una matrice polimerica (ad esempio la stessa matrice PVdF-HFP sopra citata). Per la preparazione delle membrane ibride tipo gel si veda ad esempio Handbook of Batteries -Second Edition, D. Linden, McGraw-Hill Inc. New York (2005). These membranes were prepared by incorporating liquid solutions commonly used in lithium ion batteries with â € œcastingâ € processes (as a comparison example a solution of lithium hexafluorophosphate, LiPF6 was used) in a mixture of aprotic organic solvents (for example a mixture of ethylene carbonate and propylene carbonate, EC-PC) in a polymeric matrix (for example the same PVdF-HFP matrix mentioned above). For the preparation of the gel-like hybrid membranes see for example Handbook of Batteries -Second Edition, D. Linden, McGraw-Hill Inc. New York (2005).

Analogamente, à ̈ stata preparata una membrana in cui à ̈ stato inglobato il liquido ionico dell’invenzione, Py24TFSI–LiTFSI. Similarly, a membrane was prepared in which the ionic liquid of the invention, Py24TFSIâ € “LiTFSI, was incorporated.

I dati relativi alle due tipologie di membrana a confronto sono mostrati per 20 giorni di misure. La conducibilità della membrana contenente il liquido ionico à ̈ leggermente più bassa rispetto a quella della membrana contenente l’elettrolita convenzionale a causa della maggiore viscosità del liquido ionico rispetto all’elettrolita convenzionale liquido. La conducibilità del nostro sistema à ̈ comunque buona ai fini dell’applicazione in batteria. Inoltre, alcuni nostri studi mostrano che la conducibilità à ̈ strettamente dipendente dalla quantità di soluzione ionica contenuta nella membrana. E’ pertanto possibile modulare le proprietà conduttrici della membrana variando opportunamente la composizione della stessa (rapporto LiTFSI-Py24TFSI / PVdF-HFP). The data relating to the two types of membrane in comparison are shown for 20 days of measurements. The conductivity of the membrane containing the ionic liquid is slightly lower than that of the membrane containing the conventional electrolyte due to the higher viscosity of the ionic liquid compared to the conventional liquid electrolyte. However, the conductivity of our system is good for battery application purposes. Furthermore, some of our studies show that conductivity is strictly dependent on the amount of ionic solution contained in the membrane. It is therefore possible to modulate the conductive properties of the membrane by suitably varying its composition (ratio LiTFSI-Py24TFSI / PVdF-HFP).

La figura 6 mostra la conducibilità a temperatura ambiente delle membrane tipo gel formate dall’inglobamento delle soluzioni LiPF6-PC-EC (• - riga superiore) e LiTFSI-Py24TFSI (• - riga inferiore) nella matrice PVdF-HFP. La Figura 6 mostra che la conducibilità della membrana ibrida tipo gel formata dallo inglobamento della soluzione LiPF6-PC-EC nella matrice PVdF-HFP ha un valore a temperatura ambiente pari a 3,7 x 10<-3>Scm<-1>, un valore comparabile a quello della soluzione liquida da cui à ̈ costituita. Inoltre la conducibilità della membrana rimane a valori di interesse per uso in batteria in un vasto campo di temperatura, vale a dire dell’ordine di 10<-4>Scm<-1>a 0 °C fino a circa 10<-3>Scm<-1>a 60 °C. Figure 6 shows the conductivity at room temperature of the gel-like membranes formed by the incorporation of the solutions LiPF6-PC-EC (â € ¢ - upper row) and LiTFSI-Py24TFSI (â € ¢ - lower row) in the PVdF-HFP matrix . Figure 6 shows that the conductivity of the gel-like hybrid membrane formed by the incorporation of the LiPF6-PC-EC solution in the PVdF-HFP matrix has a value at room temperature equal to 3.7 x 10 <-3> Scm <-1>, a value comparable to that of the liquid solution from which it is made. Furthermore, the conductivity of the membrane remains at values of interest for battery use in a wide temperature range, that is to say in the order of 10 <-4> Scm <-1> at 0 ° C up to about 10 <-3 > Scm <-1> at 60 ° C.

Il vantaggio di queste membrane à ̈ quello di mantenere le stesse caratteristiche operative della soluzione liquida pur in una configurazione polimerica. Le membrane ibride offrono prospettive di applicazione in batterie litio ione di nuova configurazione polimerica e con caratteristiche di elevata sicurezza, affidabilità e modularità di geometria costruttiva. In analogia con le configurazioni già descritte, queste membrane possono trovare impiego come separatori elettrolitici in batterie che usano i materiali elettrodici descritti nella presente invenzione. The advantage of these membranes is to maintain the same operational characteristics of the liquid solution even in a polymeric configuration. The hybrid membranes offer prospects for application in lithium ion batteries with a new polymeric configuration and with characteristics of high safety, reliability and modular construction geometry. In analogy with the configurations already described, these membranes can find use as electrolytic separators in batteries which use the electrode materials described in the present invention.

L’applicabilità industriale della presente invenzione à ̈ evidente. A titolo di esempio si indicano l’elettronica mobile, ad esempio telefoni cellulari di ultima generazione, il trasporto sostenibile e il rinnovamento energetico. The industrial applicability of the present invention is evident. By way of example, mobile electronics, such as latest generation mobile phones, sustainable transport and energy renewal are indicated.

Claims (10)

RIVENDICAZIONI 1. Batteria litio ione caratterizzata dal fatto che l’elettrolita comprende: a. un liquido ionico che consiste di una porzione cationica di ammonio quaternario di formula R1N<+>R2R3R4 dove: R1à ̈ un gruppo alchile lineare o ramificato avente da 2 a 5 atomi di carbonio, eventualmente sostituito con un gruppo alcossietilico lineare o ramificato avente da 1 a 3 atomi di carbonio; R2, R3e R4, uguali o diversi tra di loro, sono un gruppo alchile lineare o ramificato avente da 2 a 5 atomi di carbonio, oppure, R3e R4, assieme all’atomo di azoto cui sono legati, formano un gruppo pirrolidinio o piperidinio; b. una parte anionica, il cui anione à ̈ scelto nel gruppo che consiste di: bis(trifluorometansolfonil)immide, tetrafluoroborato e esafluorofosfato; c. un sale di litio, scelto nel gruppo che consiste di litio N,N-bis(trifluorometansolfonil) immide, litio tetrafluoroborato, litio esafluorofosfato e litio bisossalatoborato. CLAIMS 1. Lithium ion battery characterized by the fact that the electrolyte includes: to. an ionic liquid consisting of a cationic portion of quaternary ammonium of the formula R1N <+> R2R3R4 where is it: R1 is a linear or branched alkyl group having from 2 to 5 carbon atoms, optionally substituted with a linear or branched alkoxyethyl group having from 1 to 3 carbon atoms; R2, R3 and R4, the same or different from each other, are a linear or branched alkyl group having from 2 to 5 carbon atoms, or, R3 and R4, together with the nitrogen atom to which they are bonded, form a pyrrolidinium or piperidinium group ; b. an anionic part, whose anion is chosen from the group consisting of: bis (trifluoromethanesulfonyl) imide, tetrafluoroborate and hexafluorophosphate; c. a lithium salt, selected from the group consisting of lithium N, N-bis (trifluoromethanesulfonyl) imide, lithium tetrafluoroborate, lithium hexafluorophosphate and lithium bisoxalateborate. 2. Batteria secondo la rivendicazione 1, in cui detta porzione catodica à ̈ scelta nel gruppo che consiste di: N-n-butil-N-etilpirrolidinio, N-etil-N-propilpirrolidinio, N-etil-N-pentilpirrolidinio, N-etil-N-propossietilpirrolidinio, N-etil-N-propilpiperidinio, N-etil-N-isopropilpiperidinio, N-butil-N-etilpiperidinio, N-isobutil-N-etilpiperidinio, N-sec-butil-N-etilpiperidinio, N-metossietil-N-etilpiperidinio, N-etil-N-etossietilpiperidinio, N-butil-N,N,N-trietilammonio, N,N,N-trietil-N-propilammonio, N-butil-N,N-dietil-N-metilammonio e N-butil-N,N-dietil-N-propilammonio. 2. Battery according to claim 1, wherein said cathode portion is selected from the group consisting of: N-n-butyl-N-ethylpyrrolidinium, N-ethyl-N-propylpyrrolidinium, N-ethyl-N-pentylpyrrolidinium, N-ethyl- N-propoxyethylpyrrolidinium, N-ethyl-N-propylpiperidinium, N-ethyl-N-isopropylpiperidinium, N-butyl-N-ethylpiperidinium, N-isobutyl-N-ethylpiperidinium, N-sec-butyl-N-ethylpiperidinium, N-methoxyethyl- N-ethylpiperidinium, N-ethyl-N-ethoxyethylpiperidinium, N-butyl-N, N, N-triethylammonium, N, N, N-triethyl-N-propylammonium, N-butyl-N, N-diethyl-N-methylammonium and N-butyl-N, N-diethyl-N-propylammonium. 3. Batteria secondo una delle rivendicazioni 1-2, in cui detto liquido ionico à ̈ inglobato in una membrana. Battery according to one of claims 1-2, wherein said ionic liquid is incorporated in a membrane. 4. Batteria secondo una qualsiasi delle rivendicazioni 1-3, in cui il catodo à ̈ scelto nel gruppo che consiste di: fosfati di litio e metalli, ossidi metallici a intercalazione di ioni di litio, ossidi di litio e manganese. Battery according to any one of claims 1-3, wherein the cathode is selected from the group consisting of: lithium and metal phosphates, lithium ion intercalation metal oxides, lithium and manganese oxides. 5. Batteria secondo la rivendicazione 4, in cui detto catodo à ̈ scelto nel gruppo che consiste di: LiFePO4, LiCoPO4, LiMnPO4, LiCO-MnPO4; LiCoO2, LiNiO2,LiCo-NiO2;LiMn2O4, LiNi0.5Mn1.5O4, LiCo1/3Mn1/3Ni1/3O2. 5. Battery according to claim 4, wherein said cathode is selected from the group consisting of: LiFePO4, LiCoPO4, LiMnPO4, LiCO-MnPO4; LiCoO2, LiNiO2, LiCo-NiO2; LiMn2O4, LiNi0.5Mn1.5O4, LiCo1 / 3Mn1 / 3Ni1 / 3O2. 6. Batteria secondo una qualsiasi delle rivendicazioni 1-5, in cui l’anodo à ̈ scelto nel gruppo che consiste di: grafite, ossidi di titanio, ossidi di titanio contenenti litio e leghe del tipo MC, dove M à ̈ scelto nel gruppo che consiste di silicio, antimonio, alluminio o una combinazione di essi. 6. Battery according to any one of claims 1-5, wherein the anode is selected from the group consisting of: graphite, titanium oxides, lithium-containing titanium oxides and alloys of the MC type, where M is selected in the group consisting of silicon, antimony, aluminum or a combination thereof. 7. Batteria secondo la rivendicazione 6, in cui detto anodo à ̈ scelto nel gruppo che consiste di: Li4Ti5O12, SnC, TiO2. 7. Battery according to claim 6, wherein said anode is selected from the group consisting of: Li4Ti5O12, SnC, TiO2. 8. Batteria avente la seguente configurazione: anodo Li4Ti5O12, catodo LiFePO4, elettrolita Py24TFSI–LiTFSI. 8. Battery having the following configuration: Li4Ti5O12 anode, LiFePO4 cathode, Py24TFSIâ € “LiTFSI electrolyte. 9. Batteria avente la seguente configurazione: anodo SnC, catodo LiFePO4, elettrolita Py24TFSI–LiTFSI. 9. Battery with the following configuration: SnC anode, LiFePO4 cathode, Py24TFSIâ € “LiTFSI electrolyte. 10. Batteria avente la seguente configurazione: anodo TiO2, catodo LiFePO4, elettrolita Py24TFSI–LiTFSI.10. Battery with the following configuration: TiO2 anode, LiFePO4 cathode, Py24TFSIâ € “LiTFSI electrolyte.
ITRM2009A000072A 2009-02-18 2009-02-18 LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY IT1393271B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ITRM2009A000072A IT1393271B1 (en) 2009-02-18 2009-02-18 LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY
EP10708596A EP2399263A1 (en) 2009-02-18 2010-02-12 High safety lithium-ion battery
PCT/IB2010/050655 WO2010095082A1 (en) 2009-02-18 2010-02-12 High safety lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITRM2009A000072A IT1393271B1 (en) 2009-02-18 2009-02-18 LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY

Publications (2)

Publication Number Publication Date
ITRM20090072A1 true ITRM20090072A1 (en) 2010-08-19
IT1393271B1 IT1393271B1 (en) 2012-04-12

Family

ID=41112701

Family Applications (1)

Application Number Title Priority Date Filing Date
ITRM2009A000072A IT1393271B1 (en) 2009-02-18 2009-02-18 LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY

Country Status (3)

Country Link
EP (1) EP2399263A1 (en)
IT (1) IT1393271B1 (en)
WO (1) WO2010095082A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778625B2 (en) 2011-06-03 2015-09-16 株式会社半導体エネルギー研究所 Ionic liquid and power storage device including ionic liquid
JP6558933B2 (en) * 2015-04-15 2019-08-14 キヤノン株式会社 Communication support system, information processing apparatus and control method thereof
KR102501474B1 (en) 2015-09-25 2023-02-22 삼성전자주식회사 Electrolyte for lithium air battery and lithium air battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026318A1 (en) * 2005-07-26 2007-02-01 Takashi Kishi Nonaqueous electrolyte secondary battery and battery pack

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075766B2 (en) 1991-05-27 2000-08-14 株式会社東芝 Lithium battery
EP0573266B1 (en) 1992-06-01 1999-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JP3556270B2 (en) 1994-06-15 2004-08-18 株式会社東芝 Lithium secondary battery
JP4053630B2 (en) 1997-09-12 2008-02-27 株式会社東芝 Nonaqueous electrolyte secondary battery
US6413678B1 (en) 1999-03-03 2002-07-02 Ube Industries, Inc. Non-aqueous electrolyte and lithium secondary battery using the same
EP2295399A3 (en) * 2001-03-26 2018-04-04 Nisshinbo Industries, Inc. Liquid electrolytes for electrical storage devices
US7153609B2 (en) 2001-09-05 2006-12-26 Kabushiki Kaisha Toshiba Rechargeable battery with nonaqueous electrolyte
DE102004018929A1 (en) 2004-04-20 2005-11-17 Degussa Ag Electrolyte composition and its use as electrolyte material for electrochemical energy storage systems
US9241710B2 (en) 2005-07-06 2016-01-26 I.B.I Israel Biomedical Innovations Ltd. Surgical fasteners and fastening devices
KR100760142B1 (en) 2005-07-27 2007-09-18 매그나칩 반도체 유한회사 Stacked pixel for high resolution cmos image sensors
JP4284348B2 (en) 2006-09-27 2009-06-24 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026318A1 (en) * 2005-07-26 2007-02-01 Takashi Kishi Nonaqueous electrolyte secondary battery and battery pack

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FERNICOLA A ET AL: "Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices", IONICS ; INTERNATIONAL JOURNAL OF IONICS THE SCIENCE AND TECHNOLOGY OF IONIC MOTION, SPRINGER, BERLIN, DE, vol. 12, no. 2, 27 June 2006 (2006-06-27), pages 95 - 102, XP019416445, ISSN: 1862-0760 *
FERNICOLA ET AL: "LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 174, no. 1, 7 November 2007 (2007-11-07), pages 342 - 348, XP022335901, ISSN: 0378-7753 *
FERNICOLA ET AL: "Proton-conducting membranes based on protic ionic liquids", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 178, no. 2, 3 March 2008 (2008-03-03), pages 591 - 595, XP022509797, ISSN: 0378-7753 *
GRAHAM ARMSTRONG ET AL: "TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte", ADVANCED MATERIALS, vol. 18, no. 19, October 2006 (2006-10-01), pages 2597 - 2600, XP007902883, ISSN: 0935-9648 *
HASSOUN J. ET AL: "a Nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance", ADVANCED MATERIALS, vol. 20, no. 16, August 2008 (2008-08-01), pages 3169 - 3175, XP002548518 *
SIRISOPANAPORN C ET AL: "New, ionic liquid-based membranes for lithium battery application", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 186, no. 2, 15 January 2009 (2009-01-15), pages 490 - 495, XP025839956, ISSN: 0378-7753, [retrieved on 20081021] *

Also Published As

Publication number Publication date
WO2010095082A1 (en) 2010-08-26
IT1393271B1 (en) 2012-04-12
EP2399263A1 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Li et al. Low‐temperature electrolyte design for lithium‐ion batteries: prospect and challenges
US11901504B2 (en) Rechargeable battery cell having an SO2-based electrolyte
Lewandowski et al. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies
EP3187487B1 (en) Ionic liquid and plastic crystal
EP3614480A1 (en) Polymer electrolyte composition, and polymer secondary battery
Tian et al. Concentrated electrolytes for rechargeable lithium metal batteries
Sayah et al. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?
KR20230137982A (en) SO2 based electrolyte for rechargeable battery cells and rechargeable battery cells
US11296356B2 (en) Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
Larhrib et al. Safe and efficient phosphonium ionic liquid based electrolyte for high-potential LiMn2O4 and LiNi0. 8Co0. 15Al0. 05O2 cathodes for Li-ion batteries
Kainat et al. Electrolytes in Lithium-Ion Batteries: Advancements in the Era of Twenties (2020's)
JP5062505B2 (en) Non-aqueous electrolyte battery
ITRM20090072A1 (en) LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY
WO2018230238A1 (en) Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery
WO2018191959A1 (en) Polymer electrolyte composition and polymer secondary battery
US10096835B2 (en) Lithium-ion accumulator
KR101225893B1 (en) Electrochemical device with high safety
TWI763490B (en) An ionic liquid additive for lithium-ion battery
Ali et al. Recent Developments in Electrolyte Materials for Rechargeable Batteries
KR20230137979A (en) rechargeable battery cells
KR20230137980A (en) rechargeable battery cells
Herradón et al. Electrolytes from Alkoxyalkyl-Substituted Imidazolium Ionic Liquids. Synthesis, Characterization, Properties and Cell Performance in Lifepo4 Half-Cells