ITMI20122006A1 - USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS - Google Patents

USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS Download PDF

Info

Publication number
ITMI20122006A1
ITMI20122006A1 IT002006A ITMI20122006A ITMI20122006A1 IT MI20122006 A1 ITMI20122006 A1 IT MI20122006A1 IT 002006 A IT002006 A IT 002006A IT MI20122006 A ITMI20122006 A IT MI20122006A IT MI20122006 A1 ITMI20122006 A1 IT MI20122006A1
Authority
IT
Italy
Prior art keywords
alkyl
formula
glycerin
chosen
compounds
Prior art date
Application number
IT002006A
Other languages
Italian (it)
Inventor
Giulio Assanelli
Giuseppe Bellussi
Angelis Alberto Renato De
Paolo Fiaschi
Paolo Pollesel
Original Assignee
Eni Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni Spa filed Critical Eni Spa
Priority to IT002006A priority Critical patent/ITMI20122006A1/en
Priority to PCT/IB2013/060410 priority patent/WO2014080379A2/en
Publication of ITMI20122006A1 publication Critical patent/ITMI20122006A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/12Use of additives to fuels or fires for particular purposes for improving the cetane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

COMPOSIZIONI UTILI COME CARBURANTI COMPRENDENTI COMPOSTI OSSIGENATI IDROFOBICI USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS

La presente invenzione riguarda una composizione comprendente una miscela idrocarburica e uno o più composti ossigenati idrofobici, preferibilmente derivati idrofobici della glicerina. La suddetta composizione può essere vantaggiosamente utilizzata come carburante per motori diesel e a benzina. La presente invenzione riguarda altresì l’uso di detti composti ossigenati idrofobici, in particolare derivati idrofobici della glicerina, come componente per carburanti. The present invention relates to a composition comprising a hydrocarbon mixture and one or more hydrophobic oxygenated compounds, preferably hydrophobic derivatives of glycerin. The above composition can be advantageously used as a fuel for diesel and petrol engines. The present invention also relates to the use of said hydrophobic oxygenated compounds, in particular hydrophobic derivatives of glycerin, as a component for fuels.

E’ noto che le emissioni prodotte dalla combustione di carburanti di origine fossile contenenti anidride carbonica (CO2), monossido di carbonio (CO), ossidi di azoto (NOx), ossidi di zolfo (SOx), idrocarburi incombusti (HC), composti organici volatili e particolato (PM), sono causa di problemi ambientali quali, ad esempio, la produzione di ozono, l’effetto serra nel caso degli ossidi di azoto e di carbonio, le piogge acide nel caso degli ossidi di zolfo e di azoto. It is known that the emissions produced by the combustion of fossil fuels containing carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), unburnt hydrocarbons (HC), volatile organic matter and particulate matter (PM), are the cause of environmental problems such as, for example, the production of ozone, the greenhouse effect in the case of nitrogen and carbon oxides, acid rain in the case of sulfur and nitrogen oxides .

Negli ultimi anni, l’aumento del costo del petrolio greggio ed una maturata coscienza verso i problemi ambientali sopra esposti, hanno rafforzato l’esigenza di individuare fonti energetiche alternative, biodegradabili e rinnovabili. In recent years, the increase in the cost of crude oil and a matured awareness of the environmental problems described above have strengthened the need to identify alternative, biodegradable and renewable energy sources.

Di conseguenza, la progressiva sostituzione di carburanti derivanti da fonti energetiche fossili quali, ad esempio, carbone, petrolio, gas naturale, con carburanti derivanti da fonti energetiche alternative, quali, ad esempio, oli vegetali, grassi animali, biomasse, alghe, sta diventando, a livello mondiale, di interesse sempre maggiore e sforzi sono quindi stati fatti nell’arte allo scopo di ottenere nuovi carburanti da fonti energetiche rinnovabili. Consequently, the progressive replacement of fuels deriving from fossil energy sources such as, for example, coal, oil, natural gas, with fuels deriving from alternative energy sources, such as, for example, vegetable oils, animal fats, biomass, algae, is becoming , worldwide, of increasing interest and efforts have therefore been made in the art in order to obtain new fuels from renewable energy sources.

Un composto ossigenato, ottenibile anche da fonti rinnovabili, comunemente addizionato ai carburanti à ̈ l’etanolo, che però presenta il difetto di essere miscibile con l’acqua, igroscopico, e immiscibile con il gasolio in un ampio intervallo di temperatura: si può avere quindi separazione di fase e le miscele ottenute sono instabili come descritto, ad esempio, da Lapuerta e altri nell’articolo “Stability of dieselbioethanol blends for use in diesel engines†, pubblicato in “Fuel†(2007), Vol. 86, pg. An oxygenated compound, also obtainable from renewable sources, commonly added to fuels is ethanol, which however has the defect of being miscible with water, hygroscopic, and immiscible with diesel over a wide temperature range: yes it can therefore have phase separation and the mixtures obtained are unstable as described, for example, by Lapuerta and others in the article â € œStability of dieselbioethanol blends for use in diesel enginesâ €, published in â € œFuelâ € (2007), Vol 86, pg.

1351-1357. Un altro alcol, ottenibile anche da fonti rinnovabili, utilizzabile come componente da addizionare ai carburanti à ̈ il butanolo, che presenta una miscibilità con il gasolio migliore rispetto a quella dell’etanolo: tuttavia, essa non risulta ancora soddisfacente. Infatti, a bassa temperatura, le miscele butanolo-gasolio risultano non omogenee. Un ulteriore problema legato all’utilizzo di detti alcoli à ̈ il basso numero di cetano della miscela alcool-gasolio che causa un elevato ritardo di accensione nei motori diesel a compressione interna. 1351-1357. Another alcohol, also obtainable from renewable sources, that can be used as a component to be added to fuels is butanol, which has a better miscibility with diesel than that of ethanol: however, it is still not satisfactory. In fact, at low temperatures, the butanol-diesel mixtures are not homogeneous. A further problem linked to the use of these alcohols is the low cetane number of the alcohol-diesel mixture which causes a high ignition delay in internal compression diesel engines.

E’ anche noto l’utilizzo di biodiesel e di oli vegetali idrotrattati [“hydrotreated vegetable oils†(HVO)] tal quali, o in miscela con gasolio. Il biodiesel generalmente comprende una miscela di esteri alchilici di acidi grassi, in particolare una miscela di esteri metilici di acidi grassi [“fatty acid methyl esters†(FAME)] e può essere prodotto a partire da materie prime di origine naturale contenenti trigliceridi (generalmente triesteri della glicerina con acidi grassi a catena alchilica lunga). Dette materie prime tal quali, oppure i trigliceridi ottenuti dopo aver sottoposto dette materie prime a separazione, vengono sottoposte/i ad un processo di transesterificazione in presenza di un alcool, in particolare di metanolo, e di un catalizzatore, così da ottenere detti esteri alchilici di acidi grassi, in particolare detti esteri metilici di acidi grassi [“fatty acid methyl esters†(FAME)]. It is also known the use of biodiesel and hydrotreated vegetable oils [â € œhydrotreated vegetable oilsâ € (HVO)] as they are, or mixed with diesel. Biodiesel generally comprises a mixture of alkyl esters of fatty acids, in particular a mixture of fatty acid methyl esters [â € œfatty acid methyl estersâ € (FAME)] and can be produced from raw materials of natural origin containing triglycerides ( generally triesters of glycerin with long alkyl chain fatty acids). Said raw materials as such, or the triglycerides obtained after having subjected said raw materials to separation, are subjected to a transesterification process in the presence of an alcohol, in particular methanol, and a catalyst, so as to obtain said esters alkyls of fatty acids, in particular called fatty acid methyl esters [â € œfatty acid methyl estersâ € (FAME)].

Tuttavia, l’utilizzo di detti esteri metilici degli acidi grassi (FAME) tal quali, o in miscela con gasolio, presenta alcuni problemi relativamente alla stabilità all’ossidazione ed inoltre durante la sintesi del FAME si ha la formazione, come sottoprodotto, della glicerina (circa il 10% in peso) il cui utilizzo à ̈ un aspetto importante per la valorizzazione del processo di produzione del biodiesel. However, the use of said methyl esters of fatty acids (FAME) as they are, or in a mixture with gas oil, presents some problems with regard to the stability of oxidation and furthermore during the synthesis of FAME there is the formation, as a by-product, glycerin (about 10% by weight) whose use is an important aspect for the enhancement of the biodiesel production process.

E’ anche noto l’utilizzo di “hydrotreated vegetable oils†(HVO), chiamati anche “green diesel†, che vengono prodotti per idrogenazione/deossigenazione di un materiale derivante da fonti rinnovabili quali, ad esempio, olio di soia, olio di colza, olio di mais, olio di girasole, comprendente trigliceridi ed acidi grassi liberi, in presenza di idrogeno e di un catalizzatore come descritto, ad esempio, da Holmgren J. e altri nell’articolo “New developments in renewable fuels offer more choices†, pubblicato in “Hydrocarbon Processing†, Settembre 2007, pg. 67-71. In detto articolo vengono evidenziate le migliori caratteristiche di detti “hydrotreated vegetable oils†(HVO), rispetto agli esteri metilici degli acidi grassi (FAME), in particolare, in termini di migliore stabilità all’ossidazione e di migliori proprietà a freddo. Inoltre, detti “hydrotreated vegetable oils†(HVO) non presentano il problema delle maggiori emissioni di ossidi di azoto (NOx). Tuttavia, a causa della mancanza di atomi di ossigeno in detti “hydrotreated vegetable oils†(HVO), il loro utilizzo in motori diesel in miscela con gasolio in quantità inferiore al 5% in volume rispetto al volume totale di detta miscela, non apporta sensibili benefici per quanto riguarda le emissioni di particolato (PM). It is also known the use of â € œhydrotreated vegetable oilsâ € (HVO), also called â € œgreen dieselâ €, which are produced by hydrogenation / deoxygenation of a material deriving from renewable sources such as, for example, soybean oil , rapeseed oil, corn oil, sunflower oil, including triglycerides and free fatty acids, in the presence of hydrogen and a catalyst as described, for example, by Holmgren J. and others in the article â € œNew developments in renewable fuels offer more choicesâ €, published in â € œHydrocarbon Processingâ €, September 2007, pg. 67-71. This article highlights the best characteristics of these â € œhydrotreated vegetable oilsâ € (HVO), compared to the methyl esters of fatty acids (FAME), in particular, in terms of better oxidation stability and better cold properties. Furthermore, these â € œhydrotreated vegetable oilsâ € (HVO) do not present the problem of higher emissions of nitrogen oxides (NOx). However, due to the lack of oxygen atoms in these â € œhydrotreated vegetable oilsâ € (HVO), their use in diesel engines mixed with diesel in quantities of less than 5% by volume with respect to the total volume of said mixture, does not bring significant benefits regarding particulate emissions (PM).

E’ quindi sentita la necessità di trovare nuove composizioni utili come carburanti in cui vi sia una componente derivante da fonti energetiche rinnovabili. Ed à ̈ altresì sentita la necessità di sfruttare la glicerina, il cui mercato à ̈ attualmente saturo, come materiale di partenza per ottenere composti di origine biologica che possano fornire elevate prestazioni come componenti di carburanti. The need is therefore felt to find new compositions useful as fuels in which there is a component deriving from renewable energy sources. The need is also felt to exploit glycerin, whose market is currently saturated, as a starting material to obtain compounds of biological origin that can provide high performance as fuel components.

Attualmente uno dei possibili impieghi della glicerina à ̈ quello di farla reagire mediante una reazione di eterificazione con olefine a dare i corrispondenti eteri, utili come componenti ossigenati per benzina e diesel. L’olefina utilizzata principalmente ed oggetto di numerosi brevetti à ̈ l’isobutene. La reazione con l’isobutene porta alla formazione di eteri terbutilici della glicerina, di cui il più interessante à ̈ il di-ter-butil etere. In detti eteri però la componente biologica à ̈ nettamente minoritaria essendo costituiti da due, o meglio tre, molecola di isobutene per molecola di glicerina: conseguentemente il loro contributo al raggiungimento della quota di origine biologica non à ̈ sufficientemente elevato. Currently one of the possible uses of glycerin is to make it react by means of an etherification reaction with olefins to give the corresponding ethers, useful as oxygenated components for petrol and diesel. The olefin used mainly and the subject of numerous patents is isobutene. The reaction with isobutene leads to the formation of terbutyl ethers of glycerin, of which the most interesting is di-tert-butyl ether. In these ethers, however, the biological component is clearly minority since they consist of two, or rather three, molecule of isobutene per molecule of glycerin: consequently their contribution to the achievement of the share of biological origin is not sufficiently high.

In US2007/0283619 viene descritto un processo per la produzione di biocarburanti mediante la trasformazione di trigliceridi in almeno due famiglie di biocarburanti contenenti monoesteri di acidi grassi ed eteri o acetali, solubili, della glicerina. Detti eteri e acetali dell’arte nota presentano però elevata affinità all’acqua e bassa miscibilità con la fase idrocarburica: questa à ̈ una grave limitazione per l’utilizzo come componente di carburanti in quanto quantità non trascurabili di acqua si possono sciogliere nella miscela di carburanti che contiene detti acetali, con gravi danni al motore dell’autoveicolo a causa di fenomeni di corrosione. Inoltre la presenza nelle benzine di sostanze miscibili con acqua porta alla formazione di formaldeide, sostanza cancerogena, nelle emissioni ( B. Strus et al., Fuel 87 (2008), 957-963, ELSEVIER) . US2007 / 0283619 describes a process for the production of biofuels by transforming triglycerides into at least two families of biofuels containing monoesters of fatty acids and soluble ethers or acetals of glycerin. However, said ethers and acetals of the known art have a high affinity to water and low miscibility with the hydrocarbon phase: this is a serious limitation for their use as a component of fuels as not negligible quantities of water can be dissolved in the mixture of fuels that contains said acetals, with serious damage to the motor vehicle engine due to corrosion phenomena. Furthermore, the presence in gasoline of substances miscible with water leads to the formation of formaldehyde, a carcinogenic substance, in the emissions (B. Strus et al., Fuel 87 (2008), 957-963, ELSEVIER).

La Richiedente ha ora trovato che l’aggiunta di particolari composti ossigenati idrofobici, preferibilmente derivati idrofobici della glicerina, ad opportune miscele idrocarburiche permette di ottenere una composizione che può essere vantaggiosamente utilizzata come carburante, in particolare come carburante per motori sia diesel che benzina. The Applicant has now found that the addition of particular hydrophobic oxygenated compounds, preferably hydrophobic derivatives of glycerin, to suitable hydrocarbon mixtures allows to obtain a composition which can be advantageously used as a fuel, in particular as a fuel for both diesel and petrol engines.

Sono quindi un oggetto della presente invenzione composizioni utili come carburanti, o come componenti di carburanti, contenenti : Therefore, an object of the present invention are compositions useful as fuels, or as components of fuels, containing:

- almeno una miscela idrocarburica - at least one hydrocarbon mixture

- almeno un composto di formula (I) - at least one compound of formula (I)

X-CH2-A-(B)y-OR (I) X-CH2-A- (B) y-OR (I)

dove where is it

X Ã ̈ scelto tra H e OR X is chosen between H and OR

R Ã ̈ un alchile C1-C8R is a C1-C8 alkyl

A e B sono tra loro diversi e sono scelti tra CH2e CO A and B are different from each other and are chosen between CH2 and CO

y à ̈ scelto tra 0 e 1. y is chosen between 0 and 1.

Quando y à ̈ uguale a 1 il composto (I) ha formula : When y is equal to 1, compound (I) has the formula:

X-CH2-A-B-OR (I-1) X-CH2-A-B-OR (I-1)

dove where is it

X Ã ̈ scelto tra H e OR X is chosen between H and OR

R Ã ̈ un alchile C1-C8R is a C1-C8 alkyl

A e B sono tra loro diversi e sono scelti tra CH2e CO A and B are different from each other and are chosen between CH2 and CO

Quando y à ̈ 0 il composto (I) ha formula: When y is 0, compound (I) has the formula:

X-CH2-A-OR (I-2) X-CH2-A-OR (I-2)

dove where is it

X Ã ̈ scelto tra H e OR X is chosen between H and OR

R Ã ̈ un alchile C1-C8R is a C1-C8 alkyl

A Ã ̈ scelto tra CH2e CO. A is chosen between CH2and CO.

Nella formula (I-2) à ̈ un aspetto preferito che R sia propile, ancor più preferibilmente n-propile. In formula (I-2) it is a preferred aspect that R is propyl, even more preferably n-propyl.

La composizione della presente invenzione può quindi contenere uno o più dei seguenti derivati della glicerina, dove R ha i significati sopra descritti : The composition of the present invention can therefore contain one or more of the following glycerin derivatives, where R has the meanings described above:

CH3-CH2-COOR (Ia) CH3-CH2-COOR (Ia)

CH3-CO-CH2-OR (Ib) CH3-CO-CH2-OR (Ib)

RO-CH2-CH2-COOR (Ic) RO-CH2-CH2-COOR (Ic)

RO-CH2- CO-CH2-OR (Id) RO-CH2- CO-CH2-OR (Id)

CH3-CO-OCH2CH2CH3(Ie) CH3-CO-OCH2CH2CH3 (Ie)

Nei composti di formula (I) preferibilmente R à ̈ scelto tra CH3, C2H5, C3H7, C4H9, C5H11. Più preferibilmente R può essere scelto tra etile, n-propile, iso-propile, nbutile, isobutile, sec-butile, ter-butile, 3-metil-1-butile e 2-metil-1-butile. E’ un aspetto particolarmente preferito che R sia etile, n-propile, iso-propile o n-butile. In the compounds of formula (I) preferably R is selected from CH3, C2H5, C3H7, C4H9, C5H11. More preferably R can be selected from ethyl, n-propyl, iso-propyl, nbutyl, isobutyl, sec-butyl, tert-butyl, 3-methyl-1-butyl and 2-methyl-1-butyl. It is a particularly preferred aspect that R is ethyl, n-propyl, iso-propyl or n-butyl.

I composti di formula (I) forniscono elevate prestazioni come componenti di carburanti superando anche i problemi degli eteri della glicerina noti riguardanti la loro elevata affinità con l’acqua e bassa affinità con la restante componente idrocarburica del carburante. I composti di formula (I) possiedono elevate caratteristiche come numero di ottano (o di cetano), elevato potere calorifico, completa miscibilità con la fase idrocarburica e bassissima affinità con la fase acquosa, non sono quindi igroscopici e riducono pertanto i problemi legati alla miscibilità e alla corrosione delle parti del motore dovuta alla presenza di tracce di acqua. I composti di formula (I) , singolarmente o in miscela tra loro, possono quindi essere vantaggiosamente impiegati come componenti per carburante, in particolare gasolio, specialmente ad uso autotrazione, e come additivi per benzina, e la loro aggiunta a gasolio o benzina permette, tra l’altro, di diminuire in maniera significativa le emissioni di particolato. La composizione che li contiene risulta meno sensibile alla presenza di acqua e conseguentemente diminuiscono fortemente i fenomeni di corrosione nei motori. L’aggiunta dei composti di formula (I) non ha inoltre alcuna influenza negativa sulle caratteristiche del gasolio di partenza quali, ad esempio, le proprietà a freddo, il punto di intorbidimento [“cloud point†(CP)] e il punto di intasamento del filtro [“cold filter plugging point†(CFPP)], né influisce negativamente sulle caratteristiche di demulsività e sulle proprietà lubrificanti (“lubricity†) della composizione, né influisce in modo negativo sulla stabilità all’ossidazione del gasolio di partenza. The compounds of formula (I) provide high performance as fuel components, overcoming also the problems of the known glycerine ethers concerning their high affinity with water and low affinity with the remaining hydrocarbon component of the fuel. The compounds of formula (I) have high characteristics such as octane number (or cetane), high calorific value, complete miscibility with the hydrocarbon phase and very low affinity with the aqueous phase, they are therefore not hygroscopic and therefore reduce the problems related to miscibility. and corrosion of engine parts due to the presence of traces of water. The compounds of formula (I), individually or in mixture with each other, can therefore be advantageously used as components for fuel, in particular diesel, especially for automotive use, and as additives for petrol, and their addition to diesel or petrol allows, among other things, to significantly reduce particulate emissions. The composition that contains them is less sensitive to the presence of water and consequently the corrosion phenomena in engines strongly decrease. Furthermore, the addition of the compounds of formula (I) has no negative influence on the characteristics of the starting gas oil such as, for example, the cold properties, the cloud point [â € œcloud pointâ € (CP)] and the point clogging of the filter [â € œcold filter plugging pointâ € (CFPP)], nor does it negatively affect the demulsibility characteristics and lubricating properties (â € œlubricityâ €) of the composition, nor does it negatively affect the stability to oxidation of the starting diesel.

In accordo con una forma di realizzazione preferita della presente invenzione, detti composti di formula (I) possono essere presenti in detta composizione in quantità compresa tra lo 0.5 % in volume ed il 15 % in volume, preferibilmente compresa tra il 1% in volume ed il 10 % in volume, rispetto al volume totale di detta composizione, dove dette quantità, quando sono presenti almeno due composti di formula (I), sono riferite alla somma dei loro volumi. In accordance with a preferred embodiment of the present invention, said compounds of formula (I) can be present in said composition in quantities ranging from 0.5% by volume to 15% by volume, preferably between 1% by volume and 10% by volume, with respect to the total volume of said composition, where said quantities, when at least two compounds of formula (I) are present, refer to the sum of their volumes.

Allo scopo della presente invenzione può essere utilizzata qualsiasi miscela idrocarburica utilizzabile come carburante. In particolare la miscela idrocarburica può essere scelta tra gasolio, benzina, biodiesel, green diesel, e loro miscele. For the purpose of the present invention, any hydrocarbon mixture that can be used as a fuel can be used. In particular, the hydrocarbon blend can be chosen from diesel, petrol, biodiesel, green diesel, and their blends.

In particolare, detto gasolio può essere scelto sia tra i gasoli che rientrano nelle specifiche del gasolio per autotrazione secondo la norma EN 590:2009, sia tra i gasoli che non rientrano in dette specifiche. Generalmente, il gasolio à ̈ una miscela contenente idrocarburi quali, ad esempio, paraffine, idrocarburi aromatici e nafteni, aventi, tipicamente, da 9 a 30 atomi di carbonio. Generalmente, la temperatura di distillazione del gasolio à ̈ compresa tra 160°C e 450°C. In accordo con una forma di realizzazione preferita della presente invenzione, detto gasolio può avere una densità, a 15°C, determinata secondo la norma EN ISO 12185:1996/C1:2001, compresa tra 780 kg/m<3>e 845 kg/m<3>, preferibilmente compresa tra 800 kg/m<3>e 840 kg/m<3>. In accordo con una ulteriore forma di realizzazione preferita della presente invenzione, detto gasolio può avere un punto di infiammabilità, determinato secondo la norma EN ISO 2719:2002, maggiore o uguale a 55°C, preferibilmente maggiore o uguale a 65°C. Secondo una forma di realizzazione preferita della presente invenzione, detto gasolio può avere un numero di cetano, determinato secondo la norma EN ISO 5165:1998, o la norma ASTM D6890:2008, maggiore o uguale a 47, preferibilmente maggiore o uguale a 51. In particular, said diesel oil can be chosen both among the diesel oils that fall within the specifications of the diesel fuel for motor vehicles according to the EN 590: 2009 standard, and among the diesel oils that do not fall within these specifications. Generally, diesel is a mixture containing hydrocarbons such as, for example, paraffins, aromatic hydrocarbons and naphthenes, typically having from 9 to 30 carbon atoms. Generally, the distillation temperature of gas oil is between 160 ° C and 450 ° C. In accordance with a preferred embodiment of the present invention, said gas oil can have a density, at 15 ° C, determined according to EN ISO 12185: 1996 / C1: 2001, between 780 kg / m <3> and 845 kg / m <3>, preferably between 800 kg / m <3> and 840 kg / m <3>. In accordance with a further preferred embodiment of the present invention, said gas oil can have a flash point, determined according to the EN ISO 2719: 2002 standard, greater than or equal to 55 ° C, preferably greater than or equal to 65 ° C. According to a preferred embodiment of the present invention, said gas oil can have a cetane number, determined according to the EN ISO 5165: 1998 standard, or the ASTM D6890: 2008 standard, greater than or equal to 47, preferably greater than or equal to 51.

Gasoli ben utilizzabili nelle composizioni della presente invenzione possono quindi essere tutti quelli noti e possono anche derivare dalla miscelazione di tagli diesel di diversa origine e composizione. Preferibilmente il contenuto di zolfo di questi tagli diesel à ̈ compreso tra 2000 e 50 mg/kg, e ancor più preferibilmente tra 50 e 3 mg/kg. Diesel oils that can be used well in the compositions of the present invention can therefore be all those known and can also derive from the mixing of diesel cuts of different origin and composition. Preferably the sulfur content of these diesel cuts is between 2000 and 50 mg / kg, and even more preferably between 50 and 3 mg / kg.

Tipici tagli diesel possono essere i distillati medi, preferibilmente aventi un punto di ebollizione compreso tra 180 e 380 °C. Esempi di questi tagli possono essere gasoli da distillazione primaria, gasoli da distillazione sotto vuoto, e da cracking termico o catalitico, come ad esempio il taglio gasolio desolforato proveniente da cracking catalitico a letto fluido ( light cycle oil (LCO)), i carburanti da un processo Fischer-Topsch o di origine sintetica. Sono ben utilizzabili anche tagli ottenuti da questi dopo trattamento di idrogenazione. Typical diesel cuts can be middle distillates, preferably having a boiling point between 180 and 380 ° C. Examples of these cuts can be gas oils from primary distillation, gas oils from vacuum distillation, and from thermal or catalytic cracking, such as the desulfurized gas oil from catalytic fluid bed cracking (light cycle oil (LCO)), fuels from a Fischer-Topsch or synthetic origin process. Cuts obtained from these after hydrogenation treatment are also usable.

Nel caso in cui la miscela idrocarburica sia una benzina risultano ben utilizzabili le benzine caratterizzate da una T95 (ASTM D86) non superiore a 250 °C, preferibilmente non superiore a 240 °C, dove con T95 si intende la temperatura a cui distilla il 95 % in volume di benzina. Preferibilmente vengono utilizzate benzine con T95 inferiore a 250 °C, in particolare inferiore a 240 °C , aventi una densità compresa tra 855 e 910 kg/m<3>. Benzine ben utilizzabili sono quelle derivanti da processi catalitici, preferibilmente derivanti da processi di cracking catalitico a letto fluido (FCC), da processi di reforming, e loro miscele. In particolare sono quindi utilizzate benzine HCN, ossia benzine pesanti ( punto di ebollizione iniziale 150 °C) da FCC tal quali o desolforate, e benzine denominate Heavy reformate, ossia benzine pesanti ( punto di ebollizione iniziale 150 °C) da reforming, o loro miscele. In the case in which the hydrocarbon mixture is a gasoline, the gasolines characterized by a T95 (ASTM D86) not higher than 250 ° C, preferably not higher than 240 ° C, where T95 means the temperature at which 95 distils % by volume of gasoline. Preferably, gasolines with T95 lower than 250 ° C, in particular lower than 240 ° C, having a density between 855 and 910 kg / m <3> are used. Well usable gasolines are those deriving from catalytic processes, preferably deriving from fluidized bed catalytic cracking (FCC) processes, from reforming processes, and their mixtures. In particular, therefore, HCN gasolines are used, i.e. heavy gasolines (initial boiling point 150 ° C) from FCC as such or desulphurized, and gasolines called Heavy reformate, i.e. heavy gasolines (initial boiling point 150 ° C) from reforming, or their blends.

Preferibilmente il contenuto di zolfo di questi tagli benzina à ̈ compreso tra 2000 e 50 mg/kg, e ancor più preferibilmente tra 50 e 1 mg/kg. Preferably the sulfur content of these petrol cuts is between 2000 and 50 mg / kg, and even more preferably between 50 and 1 mg / kg.

Nel caso in cui la composizione contenga un biodiesel detto biodiesel, come precedentemente detto, comprenderà una miscela di esteri alchilici di acidi grassi, in particolare una miscela di esteri metilici di acidi grassi [“fatty acid methyl esters†(FAME)] e può essere prodotto a partire da materie prime di origine naturale contenenti trigliceridi (generalmente triesteri della glicerina con acidi grassi a catena alchilica lunga) quali, ad esempio, oli vegetali grezzi ottenuti mediante spremitura dei semi di piante oleaginose quali, ad esempio, colza, palma, soia, girasole, senape, nonché da altre fonti di trigliceridi quali, ad esempio, alghe, grassi animali, o oli vegetali usati o di scarto. Dette materie prime tal quali, oppure i trigliceridi ottenuti dopo aver sottoposto dette materie prime a separazione, vengono sottoposte/i ad un processo di transesterificazione in presenza di un alcool, in particolare di metanolo, e di un catalizzatore, così da ottenere detti esteri alchilici di acidi grassi, in particolare detti esteri metilici di acidi grassi [“fatty acid methyl esters†(FAME)]. Maggiori dettagli relativamente alla produzione di biodiesel sono ad esempio descritti in Hanna et al., nella review “ Biodiesel production : a review†, pubblicata in “Bioresource Technology†(1999), vol. 70, pg.1-15. Preferibilmente detto biodiesel può essere scelto tra quelli che rientrano nelle specifiche del biodiesel per autotrazione secondo le norme EN 14214:2008. In the event that the composition contains a biodiesel called biodiesel, as previously mentioned, it will include a mixture of alkyl esters of fatty acids, in particular a mixture of fatty acid methyl esters [â € œfatty acid methyl estersâ € (FAME)] and can be produced starting from raw materials of natural origin containing triglycerides (generally triesters of glycerin with long alkyl chain fatty acids) such as, for example, crude vegetable oils obtained by pressing the seeds of oil plants such as, for example, rapeseed, palm, soy, sunflower, mustard, as well as from other sources of triglycerides such as, for example, algae, animal fats, or used or waste vegetable oils. Said raw materials as such, or the triglycerides obtained after having subjected said raw materials to separation, are subjected to a transesterification process in the presence of an alcohol, in particular methanol, and a catalyst, so as to obtain said esters alkyls of fatty acids, in particular called fatty acid methyl esters [â € œfatty acid methyl estersâ € (FAME)]. More details regarding biodiesel production are for example described in Hanna et al., In the review â € œ Biodiesel production: a reviewâ €, published in â € œBioresource Technologyâ € (1999), vol. 70, pp. 1-15. Preferably said biodiesel can be chosen among those that fall within the specifications of biodiesel for automotive according to the EN 14214: 2008 standards.

La composizione può contenere “hydrotreated vegetable oils†, chiamati “green diesel†, : essi vengono prodotti per idrogenazione/deossigenazione di un materiale derivante da fonti rinnovabili quali, ad esempio, olio di soia, olio di colza, olio di mais, olio di girasole, comprendente trigliceridi ed acidi grassi liberi, in presenza di idrogeno e di un catalizzatore come descritto, ad esempio, da Holmgren J. e altri nell’articolo “New developments in renewable fuels offer more choices†, pubblicato in “Hydrocarbon Processing†, Settembre 2007, pg. 67-71. The composition may contain â € œhydrotreated vegetable oilsâ €, called â € œgreen dieselâ €,: they are produced by hydrogenation / deoxygenation of a material deriving from renewable sources such as, for example, soybean oil, rapeseed oil, corn oil, sunflower oil, including triglycerides and free fatty acids, in the presence of hydrogen and a catalyst as described, for example, by Holmgren J. and others in the article â € œNew developments in renewable fuels offer more choicesâ €, published in â € œHydrocarbon Processingâ €, September 2007, pg. 67-71.

Le composizioni della presente invenzione vengono preparate mediante mescolamento dei singoli componenti. Eventuali altri additivi presenti nella composizione finale possono essere introdotti sia nella composizione finale stessa che nella miscela idrocarburica prima del loro mescolamento. The compositions of the present invention are prepared by mixing the individual components. Any other additives present in the final composition can be introduced both in the final composition itself and in the hydrocarbon mixture before their mixing.

Preferibilmente i composti di formula (I) vengono preparati a partire dalla glicerina o comunque utilizzando glicerina: in particolare il composto CH3-CH2-COOR (Ia), corrispondente ai composti di formula (I) in cui X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CH2, B à ̈ CO e y à ̈ 1, può essere preparato riducendo cataliticamente la glicerina a 1,2-propan-diolo CH3-CHOH-CH2OH (a1) che viene quindi disidratato a dare aldeide propionica CH3-CH2-CHO (a2). La propionaldeide viene quindi ossidata ad acido propionico CH3-CH2-COOH (a3) che viene esterificato con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare il composto (Ia). Preferably the compounds of formula (I) are prepared starting from glycerin or in any case using glycerin: in particular the compound CH3-CH2-COOR (Ia), corresponding to the compounds of formula (I) in which X à ̈ H, R à ̈ a C1-C8 alkyl, A à ̈ CH2, B à ̈ CO and y à ̈ 1, can be prepared by catalytically reducing the glycerin to 1,2-propan-diol CH3-CHOH-CH2OH (a1) which is then dehydrated to give aldehyde propionic CH3-CH2-CHO (a2). The propionaldehyde is then oxidized to propionic acid CH3-CH2-COOH (a3) which is esterified with an alcohol ROH, where R is a C1-C8 alkyl, to give the compound (Ia).

La riduzione catalitica della glicerina viene realizzata secondo uno qualsiasi dei metodi noti per la riduzione di gruppi ossidrilici. Ad esempio à ̈ possibile porre a reagire la glicerina con idrogeno in presenza di un catalizzatore di riduzione. Catalizzatori di riduzione utilizzabili possono essere tutti quelli noti, ad esempio cromito di rame, ossidi misti di cromo-zinco-rame, metalli nobili su carbone, metalli nobili su ossido di ferro; preferibilmente si utilizzano platino su carbone o cromito di rame, quest’ultimo catalizzatore essendo particolarmente preferito. Come solventi possono essere utilizzati alcoli alifatici lineari o il diolo stesso che si desidera ottenere come prodotto. La reazione di riduzione può essere realizzata ad una temperatura compresa tra 100 e 250 °C, sotto pressione di idrogeno compresa tra 1 e 100 atmosfere. Il 1,2-propandiolo (a1) viene quindi isolato , ad esempio per distillazione. Maggiori dettagli relativi a procedimenti di riduzione sono descritti ad esempio in “Selective hydrogenolysis of glycerol promoted by palladium†, Green Chemestry 2009, 111, 1511-13. The catalytic reduction of glycerin is carried out according to any of the known methods for the reduction of hydroxyl groups. For example, it is possible to make glycerin react with hydrogen in the presence of a reduction catalyst. Usable reduction catalysts can be all known ones, for example copper chromite, mixed chromium-zinc-copper oxides, noble metals on carbon, noble metals on iron oxide; platinum on carbon or copper chromite are preferably used, the latter catalyst being particularly preferred. Linear aliphatic alcohols or the diol itself which is to be obtained as a product can be used as solvents. The reduction reaction can be carried out at a temperature between 100 and 250 ° C, under hydrogen pressure between 1 and 100 atmospheres. The 1,2-propanediol (a1) is then isolated, for example by distillation. More details relating to reduction procedures are described for example in â € œSelective hydrogenolysis of glycerol promoted by palladiumâ €, Green Chemestry 2009, 111, 1511-13.

La disidratazione del composto (a1) a propionaldeide (a2) può essere realizzata alimentando il 1,2- propandiolo su un catalizzatore acido solido, preferibilmente in fase vapore. La reazione viene condotta alimentando il propandiolo a temperature comprese tra 250 e 350°C, tal quale o in corrente di azoto, in questo secondo caso operando ad un rapporto molare propandiolo/azoto compreso tra 0.1 e 10. Come catalizzatori di disidratazione si possono usare tutti gli acidi solidi inorganici, quali allumine, silico-allumine, zeoliti e ossidi dotati di proprietà disidratanti, come l’ossido di cerio (IV), l’ossido di torio, la zirconia. Tra i catalizzatori di disidratazione sono particolarmente preferite le allumine, la zeolite Beta e la zeolite Y. Maggiori dettagli relativi a procedimenti di riduzione sono descritti ad esempio in “Catalytic dehydration of 1,2 propandiol into propanal†, Applied catalysis A, 366, 2009, 304-8, e in “Dehydration of 1,2 propandiol to propionaldehyde over zeolite catalysts†, Applied catalysis A, 400, 2011, 148-155. The dehydration of the compound (a1) to propionaldehyde (a2) can be achieved by feeding the 1,2-propanediol on a solid acid catalyst, preferably in the vapor phase. The reaction is carried out by feeding the propanediol at temperatures between 250 and 350 ° C, as it is or in a nitrogen stream, in this second case operating at a propanediol / nitrogen molar ratio between 0.1 and 10. As dehydration catalysts, it is possible to use all solid inorganic acids, such as aluminas, silico-aluminas, zeolites and oxides with dehydrating properties, such as cerium (IV) oxide, thorium oxide, zirconia. Among the dehydration catalysts, aluminas, Beta zeolite and Y zeolite are particularly preferred. More details relating to reduction processes are described for example in â € œCatalytic dehydration of 1,2 propandiol into propanalâ €, Applied catalysis A, 366, 2009, 304-8, and in â € œDehydration of 1,2 propandiol to propionaldehyde over zeolite catalystsâ €, Applied catalysis A, 400, 2011, 148-155.

L’ossidazione della propionaldeide (a2) a dare acido propionico (a3) può essere realizzata con qualsiasi catalizzatore di ossidazione, preferibilmente con un catalizzatore contenente metalli del gruppo VI B del sistema periodico, ad esempio Cr, Mo, W, in miscela con metalli del gruppo VB, ad esempio V. Sono ben utilizzabili anche catalizzatori contenenti metalli dello VIII gruppo del sistema periodico come ferro, cobalto o nichel. Possono essere utilizzati anche ossidanti non metallici come ad esempio SeO2. Particolarmente preferiti sono i metalli Mo-V sia come ossidi misti che come eteropoliacidi. La reazione viene condotta a temperature comprese tra 20 e 100°C, in presenza di aria, aria arricchita, ossigeno o acqua ossigenata, in rapporto molare aldeide/ossidante compreso tra 1/1 e 1/10. Maggiori dettagli relativi a procedimenti di ossidazione sono descritti ad esempio in “Montmorillonite claycatalyzed oxidation of aliphatic aldehydes†, Tetrahedron Letters, 51, 2010, 826-7 e in “Selenium oxide catalysed oxidation of aldehydes to carboxilic acids with hydrogen peroxide†, Synthetic Communications, vol.30, 24, 2010, pag 4425-34. The oxidation of propionaldehyde (a2) to give propionic acid (a3) can be carried out with any oxidation catalyst, preferably with a catalyst containing metals of the VI B group of the periodic system, for example Cr, Mo, W, mixed with metals of group VB, for example V. Also catalysts containing metals of the VIII group of the periodic system such as iron, cobalt or nickel are well usable. Non-metallic oxidants such as SeO2 can also be used. Particularly preferred are the Mo-V metals both as mixed oxides and as heteropolyacids. The reaction is carried out at temperatures between 20 and 100 ° C, in the presence of air, enriched air, oxygen or hydrogen peroxide, in an aldehyde / oxidant molar ratio between 1/1 and 1/10. More details relating to oxidation processes are described for example in â € œMontmorillonite claycatalyzed oxidation of aliphatic aldehydesâ €, Tetrahedron Letters, 51, 2010, 826-7 and in â € œSelenium oxide catalysed oxidation of aldehydes to carboxilic acids with hydrogen peroxideâ €, Synthetic Communications, vol. 30, 24, 2010, pages 4425-34.

L’esterificazione dell’acido propionico (a3) con l’alcol ROH a dare il composto desiderato (Ia) viene realizzata secondo uno qualsiasi dei metodi noti, ad esempio facendo reagire l’acido propionico e l’alcol in rapporto molare 1/1, ad una temperatura compresa tra 25 e 100°C, a pressione ambiente, in presenza di un acido minerale forte come ad esempio acido solforico e solfato ferrico, secondo quanto descritto in “Fe(SO4)3· 4H2O – H2SO4: an efficient catalyst for etherification†, Journal of Chemical research, 2004(3), 2004, 226-27 . In alternativa può essere utilizzato un acido solido scelto tra zeoliti, eteropoliacidi e resine scambiatrici acide. The esterification of propionic acid (a3) with the alcohol ROH to give the desired compound (Ia) is carried out according to any of the known methods, for example by reacting propionic acid and alcohol in molar ratio 1/1, at a temperature between 25 and 100 ° C, at ambient pressure, in the presence of a strong mineral acid such as sulfuric acid and ferric sulphate, as described in â € œFe (SO4) 3 4H2O â € “H2SO4: an efficient catalyst for etherificationâ €, Journal of Chemical research, 2004 (3), 2004, 226-27. Alternatively, a solid acid selected from zeolites, heteropolyacids and acid exchange resins can be used.

Secondo una procedura alternativa i composti di formula (Ia), possono essere preparati per riduzione spinta della glicerina a 1-propanolo CH3CH2CH2OH (a), sua ossidazione ad acido propionico (a3) ed esterificazione dell’acido propionico con un alcol ROH, dove R à ̈ un alchile C1-C8, e più preferibilmente C2o C4. La riduzione della glicerina a propanolo può essere realizzata mediante idrogeno in presenza di un catalizzatore di riduzione. Catalizzatori di riduzione utilizzabili possono essere tutti quelli noti, ad esempio cromito di rame, ossidi misti di cromo-zinco-rame, metalli nobili su carbone, metalli nobili su ossido di ferro; preferibilmente si utilizzano platino su carbone o palladio su ossido di ferro, quest’ultimo catalizzatore essendo particolarmente preferito. Come solventi possono essere utilizzati idrocarburi saturi, come gas di trasporto può essere utilizzato azoto o miscele idrogeno/azoto. La reazione di riduzione può essere realizzata ad una temperatura compresa tra 100 e 300 °C, sotto pressione di idrogeno compresa tra 5 e 100 atmosfere, allo scopo di ottenere la riduzione di due dei tre gruppi ossidrilici presenti nella molecola della glicerina. Il 1-propanolo (a) viene quindi isolato, ad esempio per distillazione. According to an alternative procedure, the compounds of formula (Ia) can be prepared by the extreme reduction of glycerin to 1-propanol CH3CH2CH2OH (a), its oxidation to propionic acid (a3) and esterification of propionic acid with a ROH alcohol, where R is a C1-C8 alkyl, and more preferably C2o C4. The reduction of glycerin to propanol can be accomplished by hydrogen in the presence of a reduction catalyst. Usable reduction catalysts can be all known ones, for example copper chromite, mixed chromium-zinc-copper oxides, noble metals on carbon, noble metals on iron oxide; platinum on carbon or palladium on iron oxide are preferably used, the latter catalyst being particularly preferred. Saturated hydrocarbons can be used as solvents, nitrogen or hydrogen / nitrogen mixtures can be used as carrier gas. The reduction reaction can be carried out at a temperature between 100 and 300 ° C, under hydrogen pressure between 5 and 100 atmospheres, in order to obtain the reduction of two of the three hydroxyl groups present in the glycerine molecule. The 1-propanol (a) is then isolated, for example by distillation.

Il 1-propanolo CH3CH2CH2OH (a) viene ossidato ad acido propionico (a3) ad esempio mediante reazione a 50°C con aria in presenza di propionato di cobalto come catalizzatore secondo quanto descritto in Propionic acid and derivatives, Ullmann’s Encyclopedia of Industrial Chemistry, vol A22, VCH-1993. 1-propanol CH3CH2CH2OH (a) is oxidized to propionic acid (a3) for example by reaction at 50 ° C with air in the presence of cobalt propionate as catalyst as described in Propionic acid and derivatives, Ullmannâ € ™ s Encyclopedia of Industrial Chemistry, vol A22, VCH-1993.

L’acido propionico viene quindi esterificato con alcol ROH nelle condizioni sopra riportate. The propionic acid is then esterified with ROH alcohol under the above conditions.

Il composto CH3-CO-CH2-OR (Ib), corrispondente ai composti di formula (I) in cui X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CO, B à ̈ CH2e y à ̈ 1, può essere preparato mediante reazione di glicerina con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare il corrispondente 3-alcossi-1,2-propan-diolo CH2OR-CHOH-CH2OH (b1) che viene quindi disidratato al corrispondente alcossi-acetone (Ib). La reazione di glicerina con alcol ROH viene realizzata secondo uno qualsiasi dei metodi noti per preparare eteri. Ad esempio à ̈ possibile porre a reagire la glicerina in presenza di alcol e di un catalizzatore acido. Catalizzatori acidi ben utilizzabili sono ad esempio resine scambiatrici acide, zeoliti acide, silico allumine, acido fosforico supportato. Solventi ben utilizzabili sono preferibilmente gli alcoli stessi con cui si vuole formare il corrispondente etere. The compound CH3-CO-CH2-OR (Ib), corresponding to the compounds of formula (I) in which X is H, R is a C1-C8 alkyl, A à ̈ CO, B à ̈ CH2e y à ̈ 1 , can be prepared by reaction of glycerin with an alcohol ROH, where R is a C1-C8 alkyl, to give the corresponding 3-alkoxy-1,2-propan-diol CH2OR-CHOH-CH2OH (b1) which is then dehydrated to the corresponding alkoxy-acetone (Ib). The reaction of glycerin with ROH alcohol is carried out according to any of the known methods for preparing ethers. For example, glycerin can be reacted in the presence of alcohol and an acid catalyst. Well usable acid catalysts are, for example, acid exchange resins, acid zeolites, silico aluminas, supported phosphoric acid. Well usable solvents are preferably the same alcohols with which the corresponding ether is to be formed.

Preferibilmente la reazione viene condotta ad una temperatura compresa tra 50 e 200°C e ad una pressione compresa tra 1 e 20 atmosfere. La velocità spaziale à ̈ preferibilmente compresa tra 0.1 e 20 ore<-1>. Il rapporto molare alcol/glicerina à ̈ preferibilmente compreso tra 1/1 e 10/1. Maggiori dettagli sono descritti ad esempio in “Etherification of glycerol with ethanol over solid acid catalysts†, Green Chemistry, 2008, 11, 1256-61 e in “Etherification of biodiesel based glycerol with bioethanol over tungstophosphoric acid to synthesize glycerol ethers†, Energy fuels, 2011, 25, 3186-91. La reazione del 3-alcossi-1,2-propan-diolo (b1) a dare il corrispondente CH3-CO-CH2-OR (Ib) può essere realizzata mediante disidratazione, ad esempio con cromito di rame. La disidratazione viene preferibilmente realizzata utilizzando come solvente lo stesso etere della glicerina o etanolo. Preferibilmente la reazione viene condotta ad una temperatura compresa tra 100 e 300°C, e ad una pressione compresa tra 1 e 0.1 atmosfere. La velocità spaziale à ̈ preferibilmente compresa tra 0.1 e 100 ore<-1>. Il rapporto molare tra composto (b1) e catalizzatore varia preferibilmente tra 100/1 e 1/100. Maggiori dettagli relativi a procedimenti di disidratazione sono descritti ad esempio in “Dehydration of glycerol to acetol via catalytic reactive distillation†, AIChE Journal, 52 (10), 2006, 354348. Preferably the reaction is carried out at a temperature comprised between 50 and 200 ° C and at a pressure comprised between 1 and 20 atmospheres. The space velocity is preferably between 0.1 and 20 hours <-1>. The molar alcohol / glycerin ratio is preferably between 1/1 and 10/1. More details are described for example in â € œEtherification of glycerol with ethanol over solid acid catalystsâ €, Green Chemistry, 2008, 11, 1256-61 and in â € œEtherification of biodiesel based glycerol with bioethanol over tungstophosphoric acid to synthesize glycerol ethersâ €, Energy fuels, 2011, 25, 3186-91. The reaction of 3-alkoxy-1,2-propan-diol (b1) to give the corresponding CH3-CO-CH2-OR (Ib) can be carried out by dehydration, for example with copper chromite. Dehydration is preferably carried out using the same ether as glycerin or ethanol as the solvent. Preferably the reaction is carried out at a temperature comprised between 100 and 300 ° C, and at a pressure comprised between 1 and 0.1 atmospheres. The space velocity is preferably between 0.1 and 100 hours <-1>. The molar ratio between compound (b1) and catalyst preferably varies between 100/1 and 1/100. More details relating to dehydration processes are described for example in â € œDehydration of glycerol to acetol via catalytic reactive distillationâ €, AIChE Journal, 52 (10), 2006, 354348.

In alternativa à ̈ possibile preparare il composto CH3-CO-CH2-OR (Ib) invertendo gli stadi di reazione precedentemente descritti: viene quindi dapprima realizzata la disidratazione della glicerina, ad esempio con cromito di rame, a dare idrossiacetone CH3-CO-CH2-OH ( b2) che viene poi fatto reagire con l’alcol ROH a dare il composto (Ib). Le condizioni a cui vengono realizzati i due stadi sono analoghe, rispettivamente, a quelle sopra descritte relativamente alla precedente preparazione di (Ib) . Alternatively, it is possible to prepare the compound CH3-CO-CH2-OR (Ib) by inverting the reaction stages described above: the glycerin is then dehydrated first, for example with copper chromite, to give hydroxyacetone CH3-CO-CH2 -OH (b2) which is then reacted with the ROH alcohol to give the compound (Ib). The conditions under which the two stages are carried out are respectively similar to those described above in relation to the previous preparation of (Ib).

Il composto RO-CH2-CH2-COOR (Ic) , corrispondente ai composti di formula (I) in cui X à ̈ OR, R à ̈ un alchile C1-C8, A à ̈ CH2, B à ̈ CO e y à ̈ 1, viene preparato a partire dallo 1,3 propandiolo, ottenibile per idrogenazione della glicerina, che viene fatto reagire in presenza di tetracloruro di carbonio usando come ossidante il bis acetilacetonato di vanadio, ad esempio a 100°C per 1 ora, ottenendo in tal modo il βpropiolattone, secondo quanto descritto in “Generation of alkyl hypochlorites in oxidation of alcohols with carbon tetrachloride catalysed by vanadium compounds†, Russian Chemical Bullettin, 51(11), 2002, 2074-79. The compound RO-CH2-CH2-COOR (Ic), corresponding to the compounds of formula (I) in which X is OR, R is a C1-C8 alkyl, A is CH2, B is CO and y is 1 , is prepared starting from 1,3 propanediol, obtainable by hydrogenation of glycerin, which is reacted in the presence of carbon tetrachloride using vanadium bis acetylacetonate as oxidant, for example at 100 ° C for 1 hour, thus obtaining βpropiolactone, as described in â € œGeneration of alkyl hypochlorites in oxidation of alcohols with carbon tetrachloride catalysed by vanadium compoundsâ €, Russian Chemical Bullettin, 51 (11), 2002, 2074-79.

Il β-propiolattone preparato secondo la reazione precedente viene quindi fatto reagire con un alcol ROH, dove R à ̈ un alchile C1-C8, in presenza di catalisi acida per ottenere il composto desiderato: la reazione avviene secondo quanto descritto in “Reactions of β-propiolattone with alcohols†, Journal of the American Chemical Society, 70(3), 1948, 1004-1006. The β-propiolactone prepared according to the previous reaction is then reacted with an alcohol ROH, where R is a C1-C8 alkyl, in the presence of acid catalysis to obtain the desired compound: the reaction takes place as described in â € œReactions of β-propiolactone with alcoholsâ €, Journal of the American Chemical Society, 70 (3), 1948, 1004-1006.

Il 1,3-propandiolo viene ottenuto per riduzione della glicerina, in particolare la riduzione dell’ossidrile in posizione 2 può essere ottenuta in presenza di un catalizzatore di Ir-ReOx secondo quanto descritto in “Solid acid co-catalyst for the hydrogenolysis of glicerol to 1,3-propanediol over Ir-ReOx/SiO2<†>, Applied Catalysis, 433-434, 2012, pag 128-134. 1,3-propandiol is obtained by reduction of glycerin, in particular the reduction of hydroxyl in position 2 can be obtained in the presence of an Ir-ReOx catalyst as described in â € œSolid acid co-catalyst for the hydrogenolysis of glicerol to 1,3-propanediol over Ir-ReOx / SiO2 <â €>, Applied Catalysis, 433-434, 2012, pag 128-134.

Il composto RO-CH2-CO-CH2-OR (Id), corrispondente ai composti di formula (I) in cui X à ̈ OR, R à ̈ un alchile C1-C8, A à ̈ CO, B à ̈ CH2e y à ̈ 1, viene preparato mediante reazione della glicerina con l’alcol ROH, dove R à ̈ un alchile C1-C8, a dare 1,3-dialcossi-2-propanolo CH2OR-CHOH-CH2OR (d1), che viene quindi ossidato a dare il composto desiderato (Id). The compound RO-CH2-CO-CH2-OR (Id), corresponding to the compounds of formula (I) in which X is OR, R is a C1-C8 alkyl, A à ̈ CO, B à ̈ CH2e y à ̈ 1, is prepared by reacting glycerin with ROH alcohol, where R is a C1-C8 alkyl, to give 1,3-dialkoxy-2-propanol CH2OR-CHOH-CH2OR (d1), which is then oxidized to give the desired compound (Id).

La reazione di glicerina con alcol viene condotta analogamente a quanto descritto per la preparazione del composto (Ib), utilizzando un rapporto molare tra ROH e glicerina tra 2 e 10. L’ossidazione di (d1) viene realizzata utilizzando un catalizzatore contenente uno o più metalli scelti tra Cr, V, Mn, Co, W, Mo. Ad esempio il 1,3dialcossi propanolo può essere ossidato in diclorometano a temperatura ambiente mediante clorocromato di piridinio, come descritto in “Scope and Limitations of the double [4+3] cycloadditions of 2-oxyallyl cations to 2,2’ methylenedifuran and derivatives†, Journal of Organic Chemistry, 2003, 68, 2964-67. The reaction of glycerin with alcohol is carried out similarly to that described for the preparation of compound (Ib), using a molar ratio between ROH and glycerin between 2 and 10. The oxidation of (d1) is carried out using a catalyst containing one or more metals chosen from Cr, V, Mn, Co, W, Mo. For example, 1,3dialkoxy propanol can be oxidized into dichloromethane at room temperature by pyridinium chlorchromate, as described in â € œScope and Limitations of the double [4 + 3] cycloadditions of 2-oxyallyl cations to 2,2â € ™ methylenedifuran and derivativesâ €, Journal of Organic Chemistry, 2003, 68, 2964-67.

Il composto CH3-CO-OCH2CH2CH3(Ie), corrispondente ai composti di formula (I) in cui X à ̈ H, R à ̈ n-propile, A à ̈ CO, y à ̈ 0, viene preparato mediante riduzione della glicerina con idrogeno, dove detta riduzione viene spinta fino all’ottenimento di 1-propanolo (a), che viene quindi trasformato in acetato di propile per reazione con acido acetico, ottenuto dall’ossidazione di bioetanolo. La riduzione della glicerina a 1-propanolo può essere realizzata mediante idrogeno in presenza di un catalizzatore di riduzione, come precedentemente riportato relativamente alla preparazione del composto (Ia). La riduzione della glicerina a 1-propanolo può essere anche vantaggiosamente condotta in due stadi, riducendo dapprima la glicerina a 1,2 propandiolo su cromito di rame, con idrogeno, come descritto per la preparazione del composto (Ia) , e riducendo il 1,2 propandiolo così formatosi a 1-propanolo con idrogeno in presenza di Pt su ZrO2-WO3, in accordo con quanto noto all’esperto del ramo, e descritto ad esempio in “Aqueous phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2catalysts in fixed bed reactor, Green Chemistry†, 2010, 12, pag 1466-72. The compound CH3-CO-OCH2CH2CH3 (Ie), corresponding to the compounds of formula (I) in which X à ̈ H, R à ̈ n-propyl, A à ̈ CO, y à ̈ 0, is prepared by reducing glycerin with hydrogen, where said reduction is pushed until 1-propanol (a) is obtained, which is then transformed into propyl acetate by reaction with acetic acid, obtained from the oxidation of bioethanol. The reduction of glycerin to 1-propanol can be carried out by means of hydrogen in the presence of a reduction catalyst, as previously reported in relation to the preparation of the compound (Ia). The reduction of glycerin to 1-propanol can also be advantageously carried out in two stages, first reducing the glycerin to 1,2 propanediol on copper chromite, with hydrogen, as described for the preparation of the compound (Ia), and reducing the 1, 2 propandiol thus formed to 1-propanol with hydrogen in the presence of Pt on ZrO2-WO3, in accordance with what is known to the expert in the art, and described for example in â € œAqueous phase deoxygenation of glycerol to 1,3-propanediol over Pt / WO3 / ZrO2catalysts in fixed bed reactor, Green Chemistryâ €, 2010, 12, pages 1466-72.

Il 1-propanolo (a) ottenuto à ̈ posto quindi a reagire con acido acetico per ottenere il composto di formula (Ie). L’acido acetico utilizzato nello stadio di esterificazione può a sua volta essere di origine biologica, ossia può derivare per ossidazione con ossigeno da etanolo a sua volta ottenuto per via biologica come successivamente descritto. La reazione di esterificazione viene realizzata secondo uno qualsiasi dei metodi noti, ad esempio facendo reagire il propanolo e l’acido acetico in presenza di un catalizzatore acido solido scelto ad esempio tra zeoliti, resine scambiatrici acide, eteropoliacidi. Possono essere utilizzati anche acidi minerali forti come acido solforico o acido cloridrico. La reazione viene condotta utilizzando un rapporto molare acido/propanolo compreso tra 1/10 e 10/1, la temperatura di reazione à ̈ preferibilmente compresa tra 25 e 150°C. Esempi della reazione di esterificazione sono riportati ad esempio in “Kinetics of catalytic esterification of propionic acid and n-butanol over Amberlyst 35†, Industrial Engineering Chemistry Research, 2002, 41, 2882-87 e in “Kinetics of catalystic esterification of propionic acid with methanol over Amberlyst 36†, Industrial Engineering Chemistry Research, 2011, 50, 1171-76. The 1-propanol (a) obtained is then placed to react with acetic acid to obtain the compound of formula (Ie). The acetic acid used in the esterification stage can in turn be of biological origin, ie it can derive by oxidation with oxygen from ethanol in turn obtained biologically as described below. The esterification reaction is carried out according to any of the known methods, for example by reacting propanol and acetic acid in the presence of a solid acid catalyst selected for example from zeolites, acid exchange resins, heteropolyacids. Strong mineral acids such as sulfuric acid or hydrochloric acid can also be used. The reaction is carried out using an acid / propanol molar ratio between 1/10 and 10/1, the reaction temperature is preferably between 25 and 150 ° C. Examples of the esterification reaction are reported for example in â € œKinetics of catalytic esterification of propionic acid and n-butanol over Amberlyst 35â €, Industrial Engineering Chemistry Research, 2002, 41, 2882-87 and in â € œKinetics of catalystic esterification of propionic acid with methanol over Amberlyst 36â €, Industrial Engineering Chemistry Research, 2011, 50, 1171-76.

Nelle sintesi sopra riportate per preparare i composti di formula (Ia), (Ib), (Ic) e (Id) gli alcoli ROH utilizzati sono alcoli in cui R à ̈ un alchile lineare o ramificato contenente da 1 a 8 atomi di carbonio, preferibilmente da 2 a 5 atomi di carbonio. Alcoli ben utilizzabili sono quindi R à ̈ scelto tra CH3, C2H5, C3H7, C4H9, C5H11. Più preferibilmente R può essere scelto tra etile, n-propile, iso-propile, n-butile, isobutile, sec-butile, ter-butile, 3-metil-1-butile e 2-metil-1-butile. In the syntheses reported above to prepare the compounds of formula (Ia), (Ib), (Ic) and (Id) the ROH alcohols used are alcohols in which R is a linear or branched alkyl containing from 1 to 8 carbon atoms, preferably from 2 to 5 carbon atoms. Well usable alcohols are therefore R is chosen from CH3, C2H5, C3H7, C4H9, C5H11. More preferably R can be selected from ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 3-methyl-1-butyl and 2-methyl-1-butyl.

In particolare quindi ROH sarà scelto tra etanolo, isopropanolo, n-propanolo, nbutanolo, iso-butanolo, sec-butanolo, ter-butanolo, 3-metil-1-butanolo, 2-metil-1-butanolo. Etanolo o n-butanolo sono preferiti. In particular, therefore, ROH will be chosen from ethanol, isopropanol, n-propanol, nbutanol, iso-butanol, sec-butanol, tert-butanol, 3-methyl-1-butanol, 2-methyl-1-butanol. Ethanol or n-butanol are preferred.

Preferibilmente verranno utilizzati gli alcoli che siano ottenibili anche per via biologica, ossia, ad esempio, ottenibili per fermentazione di biomasse o di derivati di biomasse, ovvero per fermentazione di biomasse derivanti da coltivazioni agricole ricche di carboidrati e di zuccheri, oppure per fermentazione di biomasse lignocellulosiche, oppure per fermentazione di biomasse algali. La biomassa ligninocellulosica può derivare da coltivazioni agricole ricche di carboidrati e zuccheri quali, ad esempio, mais, sorgo, orzo, bietola, canna da zucchero, o loro miscele. Ad esempio la biomassa lignocellulosica può essere scelta tra: Preferably, alcohols will be used that are also obtainable biologically, i.e., for example, obtainable by fermentation of biomass or biomass derivatives, or by fermentation of biomass deriving from agricultural crops rich in carbohydrates and sugars, or by fermentation of biomass lignocellulosic, or by fermentation of algal biomass. Ligninocellulosic biomass can derive from agricultural crops rich in carbohydrates and sugars such as, for example, corn, sorghum, barley, beet, sugar cane, or their mixtures. For example, the lignocellulosic biomass can be chosen from:

i prodotti di colture espressamente coltivate per uso energetico (quali, ad esempio, miscanto, panico, verga, canna comune), compresi scarti, residui e rifiuti di dette colture o della loro lavorazione; products of crops specifically grown for energy use (such as, for example, miscanthus, panic, rod, common reed), including waste, residues and waste from these crops or their processing;

i prodotti delle coltivazioni agricole, della forestazione e della silvicoltura, compresi legno, piante, residui e scarti delle lavorazioni agricole, della forestazione e della silvicoltura; products of agricultural crops, forestry and forestry, including wood, plants, residues and waste from agricultural processing, forestry and forestry;

gli scarti dei prodotti agro-alimentari destinati all’alimentazione umana o alla zootecnia; waste from agro-food products intended for human consumption or zootechnics;

i residui, non trattati chimicamente, dell’industria della carta; the residues, not chemically treated, from the paper industry;

i rifiuti provenienti dalla raccolta differenziata dei rifiuti solidi urbani (quali, ad esempio, rifiuti urbani di origine vegetale, carta, ecc.); waste from the separate collection of municipal solid waste (such as, for example, urban waste of vegetable origin, paper, etc.);

o loro miscele. or their mixtures.

L’alcol utilizzato può ad esempio derivare anche dalla fermentazione di almeno una biomassa algale coltivata per scopi energetici, o per fermentazione di residui o derivati dalla coltura di detta biomassa. The alcohol used can, for example, also derive from the fermentation of at least one algal biomass grown for energy purposes, or by fermentation of residues or derived from the cultivation of said biomass.

La fermentazione può essere condotta in accordo con metodi noti nell’arte. Ad esempio, detta fermentazione, può essere condotta in presenza di microorganismi naturali, oppure di microorganismi geneticamente modificati allo scopo di migliorare detta fermentazione. Qualsiasi dei metodi noti per ottenere etanolo da biomasse à ̈ adatto a fornire etanolo utilizzabile nella presente invenzione. Processi di produzione di etanolo da biomasse sono ad esempio descritti in US 5562777; US 2008/0044877; “ Ethanol from ligninocellulosic biomass: technology, economics and process for the production of ethanol†F. Magalhaes, R.M. Vila Cha-Baptista, 4<th>International Conference on Hands-on Science Development, Diversity and Inclusion in Science Education 2007; “ Ethanol fermentation from biomass resources: current state and prospects†Y. Lin, S.Tanaka, Appl. Microbiol. Biotechnol. (2006) 69:627-642; “Hydrolysis of ligninocellulosic materials for ethanol production:a review†Y. Sun, J. Cheng, Bioresource Tecnology, volume 83, Issue 1, May 2002, pages 1-11. Fermentation can be carried out in accordance with methods known in the art. For example, said fermentation can be carried out in the presence of natural microorganisms, or genetically modified microorganisms in order to improve said fermentation. Any of the known methods of obtaining ethanol from biomass is suitable for providing ethanol usable in the present invention. Production processes of ethanol from biomass are for example described in US 5562777; US 2008/0044877; â € œ Ethanol from ligninocellulosic biomass: technology, economics and process for the production of ethanolâ € F. Magalhaes, R.M. Vila Cha-Baptista, 4 <th> International Conference on Hands-on Science Development, Diversity and Inclusion in Science Education 2007; â € œ Ethanol fermentation from biomass resources: current state and prospectsâ € Y. Lin, S.Tanaka, Appl. Microbiol. Biotechnol. (2006) 69: 627-642; â € œHydrolysis of ligninocellulosic materials for ethanol production: a reviewâ € Y. Sun, J. Cheng, Bioresource Tecnology, volume 83, Issue 1, May 2002, pages 1-11.

E’ un altro aspetto della presente invenzione utilizzare, come agente alchilante, propanolo, preferibilmente iso-propanolo o n-propanolo. Secondo un aspetto preferito, in accordo con quanto sopra riportato in generale per i bioalcoli, si utilizza propanolo di origine biologica, preferibilmente ottenuto per fermentazione di biomasse, come descritto ad esempio in US2009/0246842. It is another aspect of the present invention to use propanol, preferably iso-propanol or n-propanol, as the alkylating agent. According to a preferred aspect, in accordance with what is reported above in general for bio-alcohols, propanol of biological origin is used, preferably obtained by fermentation of biomass, as described for example in US2009 / 0246842.

E’ un altro aspetto della presente invenzione utilizzare, come agente alchilante, in accordo con quanto sopra riportato in generale per i bioalcoli, butanolo, preferibilmente n-butanolo. Secondo un aspetto preferito si utilizza biobutanolo, ossia butanolo di origine bio, preparato preferibilmente per fermentazione delle biomasse, secondo il processo A.B.E. ( acetone/butanolo/etanolo ). Il processo A.B.E. usa il batterio Clostridium acetobutylicum ed à ̈ stato descritto la prima volta in US 1315585. Da questo processo si ottengono acetone, butanolo ed etanolo che possono essere poi separati mediante distillazioni successive. Variazioni e miglioramenti del processo A.B.E. sono descritti ad esempio in US 5753474, US 5192673, e in Chang-Ho Park , Biothecnol.Bioprocess Eng. 1996, 1, 1-8. It is another aspect of the present invention to use butanol, preferably n-butanol, as the alkylating agent, in accordance with what is reported above in general for bio-alcohols. According to a preferred aspect, biobutanol is used, i.e. butanol of bio origin, preferably prepared by fermentation of biomass, according to the A.B.E. (acetone / butanol / ethanol). The A.B.E. uses the bacterium Clostridium acetobutylicum and was first described in US 1315585. From this process acetone, butanol and ethanol are obtained which can then be separated by subsequent distillations. Changes and improvements of the A.B.E. process they are described for example in US 5753474, US 5192673, and in Chang-Ho Park, Biothecnol.Bioprocess Eng. 1996, 1, 1-8.

La composizione di carburante oggetto della presente invenzione può eventualmente comprendere additivi convenzionali noti nell’arte quali, ad esempio, “flow improvers†, “lubricity improvers†, “cetane improvers†, antischiuma, detergenti, antiossidanti, anticorrosivi, additivi antistatici, coloranti, o loro miscele. Generalmente, se presenti, detti additivi sono presenti, ognuno, in quantità non superiore allo 0,3% in volume rispetto al volume totale di detta composizione preso uguale a 100. The fuel composition object of the present invention may possibly include conventional additives known in the art such as, for example, â € œflow improversâ €, â € œlubricity improversâ €, â € œcetane improversâ €, antifoam, detergents, antioxidants, anticorrosives, additives antistatic agents, dyes, or mixtures thereof. Generally, if present, said additives are each present in quantities not exceeding 0.3% by volume with respect to the total volume of said composition taken equal to 100.

Allo scopo di meglio comprendere la presente invenzione e per mettere in pratica la stessa, di seguito si riportano alcuni esempi illustrativi e non limitativi della stessa. Esempio 1 – sintesi etossiacetone CH3-CO-CH2-OCH2CH3(IbEt) In order to better understand the present invention and to put it into practice, some illustrative and non-limiting examples thereof are reported below. Example 1 - synthesis of ethoxyacetone CH3-CO-CH2-OCH2CH3 (IbEt)

Si prepara idrossiacetone CH3-CO-CH2OH (b2) a partire da glicerina secondo il metodo descritto in Aiche Journal October 2006, 52 (10), 3543-47: in un reattore in vetro, agitato, con condensatore vengono scaldati, ad una temperatura di 240 °C e ad una pressione ridotta di 98 kPa, 50 gr di cromito di rame, quindi, mantenendo la stessa temperatura si aggiungono gr 20 di glicerina. L’idrossiacetone si allontana dall’ambiente di reazione a causa della sua volatilità e si raccoglie nel distillatore come prodotto ad elevata purezza (>95%). L’idrossiacetone (b2) così ottenuto viene utilizzato per preparare una miscela di reazione costituita da etanolo e idrossiacetone in rapporto molare 10/1. La miscela viene quindi alimenta ad un reattore a letto fisso, precedente riempito con resina scambiatrice acida Amberlyst 36, scaldato ad una temperatura di 140°C imponendo una contropressione di 7 bar. La miscela di reazione viene alimentata ad una velocità spaziale di 2 ore<-1>. Si ottiene una conversione della miscela di reazione pari al 70% con una selettività completa al prodotto desiderato etossiacetone (IbEt) , che viene separato con purezza superiore al 99 % dalla miscela di reazione tramite distillazione. Hydroxyacetone CH3-CO-CH2OH (b2) is prepared starting from glycerin according to the method described in Aiche Journal October 2006, 52 (10), 3543-47: in a glass reactor, stirred, with condenser, they are heated to a temperature of 240 ° C and at a reduced pressure of 98 kPa, 50 g of copper chromite, then, maintaining the same temperature, add 20 g of glycerin. The hydroxyacetone moves away from the reaction environment due to its volatility and collects in the still as a high purity product (> 95%). The hydroxyacetone (b2) thus obtained is used to prepare a reaction mixture consisting of ethanol and hydroxyacetone in a molar ratio of 10/1. The mixture is then fed to a fixed bed reactor, previously filled with Amberlyst 36 acid exchange resin, heated to a temperature of 140 ° C by imposing a back pressure of 7 bar. The reaction mixture is fed at a spatial rate of 2 hours <-1>. A conversion of the reaction mixture equal to 70% is obtained with complete selectivity to the desired ethoxyacetone product (IbEt), which is separated with purity higher than 99% from the reaction mixture by distillation.

Esempio 2 – test Example 2 - test

Il composto organico etossiacetone (IbEt) , ottenuto come descritto nell’esempio 1, viene mescolato con un ugual volume di acqua distillata e si agita per 6 ore per raggiungere l’equilibrio. Il composto dell’esempio 1 risulta essere immiscibile in acqua da cui si separa facilmente tramite imbuto separatore. Si determina il contenuto di acqua nella fase organica, costituita dall’etossiacetone, mediante titolazione secondo Karl-Fisher: il contenuto di acqua risulta essere pari a 1,3%. Quindi l’etossiacetone (IbEt) può essere ben utilizzato come componente di carburanti di origine biologica in quanto mostra una trascurabile affinità nei confronti dell’acqua. The organic compound ethoxyacetone (IbEt), obtained as described in example 1, is mixed with an equal volume of distilled water and stirred for 6 hours to reach equilibrium. The compound of example 1 is immiscible in water from which it is easily separated by means of a separating funnel. The water content in the organic phase, consisting of ethoxyacetone, is determined by titration according to Karl-Fisher: the water content is equal to 1.3%. Therefore ethoxyacetone (IbEt) can be well used as a component of fuels of biological origin as it shows a negligible affinity towards water.

Esempio 3 – test comparativo Example 3 - comparative test

Si mescola l’idrossiacetone (b2), preparato nell’esempio 1, con un ugual volume di acqua distillata e si agita per 6 ore per raggiungere l’equilibrio. Si ottiene la completa miscibilità dell’idrossiacetone in acqua. L’idrossiacetone (b2) non può quindi essere utilizzato come componente di carburanti in quanto mostra un’elevatissima affinità nel confronto dell’acqua. The hydroxyacetone (b2), prepared in example 1, is mixed with an equal volume of distilled water and stirred for 6 hours to reach equilibrium. The complete miscibility of hydroxyacetone in water is obtained. Therefore, hydroxyacetone (b2) cannot be used as a component of fuels as it shows a very high affinity in comparison with water.

Esempio 4 - sintesi di butossiacetone CH3-CO-CH2-O(CH2)3CH3(IbBut) L’idrossiacetone (b2) , ottenuto come descritto nell’esempio 1, viene utilizzato per preparare una miscela di reazione costituita da butanolo e idrossiacetone in rapporto molare 10/1. La miscela viene quindi alimentata ad un reattore a letto fisso, precedente riempito con resina scambiatrice acida Amberlyst 36, scaldato ad una temperatura di 140°C imponendo una contropressione di 7 bar. La miscela di reazione viene alimentata ad una velocità spaziale di 2 ore<-1>. Si ottiene una conversione della miscela di reazione pari all’85% con una selettività completa al prodotto desiderato butossiacetone (Ib). Il prodotto che viene separato con purezza superiore al 99 % dalla miscela di reazione tramite distillazione. Example 4 - synthesis of butoxyacetone CH3-CO-CH2-O (CH2) 3CH3 (IbBut) The hydroxyacetone (b2), obtained as described in example 1, is used to prepare a reaction mixture consisting of butanol and hydroxyacetone in molar ratio 10/1. The mixture is then fed to a fixed bed reactor, previously filled with Amberlyst 36 acid exchange resin, heated to a temperature of 140 ° C by imposing a back pressure of 7 bar. The reaction mixture is fed at a spatial rate of 2 hours <-1>. A conversion of the reaction mixture equal to 85% is obtained with complete selectivity to the desired product butoxyacetone (Ib). The product which is separated with purity greater than 99% from the reaction mixture by distillation.

Esempio 5 – test Example 5 - test

Si mescola il butossiacetone (IbBut) ottenuto dall’esempio 4 con un ugual volume di acqua distillata e si agita per 6 ore per raggiungere l’equilibrio. Il composto organico così ottenuto risulta essere immiscibile in acqua da cui si separa facilmente tramite imbuto separatore. Si determina il contenuto di acqua nella fase organica, costituita dal butossiacetone, che risulta essere pari allo 0,2%, mediante titolazione secondo Karl-Fisher. Quindi il butossiacetone (IbBut) può essere ben utilizzato come componente di carburanti di origine biologica in quanto mostra una trascurabile affinità nei confronti dell’acqua. The butoxyacetone (IbBut) obtained from example 4 is mixed with an equal volume of distilled water and stirred for 6 hours to reach equilibrium. The organic compound thus obtained is immiscible in water from which it is easily separated by means of a separating funnel. The water content in the organic phase, consisting of butoxyacetone, which is equal to 0.2%, is determined by titration according to Karl-Fisher. Therefore butoxyacetone (IbBut) can be well used as a component of fuels of biological origin as it shows a negligible affinity towards water.

Esempio 6 – sintesi acetato di propile CH3COOCH2CH2CH3(Ie) Example 6 - synthesis of propyl acetate CH3COOCH2CH2CH3 (Ie)

In un reattore a letto fisso si caricano 10 g di cromito di rame, si scalda il reattore alla temperatura di 250°C, e si alimenta glicerina alla velocità spaziale di 1 ore<-1>e idrogeno alla pressione di 20 atmosfere. Il rapporto molare glicerina/idrogeno à ̈ pari a 1,7. Si ottiene una conversione della glicerina pari al 100% con una selettività all’1,2 propandiolo pari al 95 %. Il catalizzatore risulta essere stabile nelle condizioni di reazione per un tempo superiore alle 200 ore. Il propandiolo ottenuto dalla reazione precedente viene alimentato su un reattore a letto riempito da un catalizzatore costituito da Pt su ZrO2-WO3,preparato secondo quanto descritto in Green Chemistry 2010, 12, pg 1466-72, alla temperatura di 200°C con una pressione di idrogeno pari a 20 atmosfere e un rapporto molare propandiolo/idrogeno pari a 1/ 2 e a una velocità spaziale di 1 ore<-1>ottenendo una resa a 1- propanolo pari al 90%. Il propanolo così ottenuto si fa reagire con acido acetico, in rapporto molare 1/1, usando come catalizzatore la resina Amberlyst 36 in rapporto ponderale pari al 5% dei reagenti e alla temperatura di 100°C. L’acido acetico utilizzato à ̈ stato ottenuto dall’ossidazione di bioetanolo, ossia etanolo di derivazione biologica. L’acqua prodotta durante la reazione di esterificazione viene separata tramite apparecchio di Dean-Starck ottenendo acetato di propile di origine biologica con una purezza almeno pari al 99%. Le proprietà dell’acetato di propile determinate sperimentalmente sono riportate nella tabella seguente. Risultano essere particolarmente interessanti il fatto che sia scarsamente miscibile con l’acqua e che possieda un elevato numero di ottano: pertanto l’acetato di propile risulta essere un valido componente per le benzine. In a fixed bed reactor 10 g of copper chromite are loaded, the reactor is heated to a temperature of 250 ° C, and glycerin is fed at the space speed of 1 hour <-1> and hydrogen at a pressure of 20 atmospheres. The molar ratio of glycerin / hydrogen is equal to 1.7. A conversion of glycerin equal to 100% is obtained with a selectivity to 1,2 propandiol equal to 95%. The catalyst is stable under the reaction conditions for a time exceeding 200 hours. The propanediol obtained from the previous reaction is fed onto a bed reactor filled with a catalyst consisting of Pt on ZrO2-WO3, prepared as described in Green Chemistry 2010, 12, pg 1466-72, at a temperature of 200 ° C with a pressure of hydrogen equal to 20 atmospheres and a propanediol / hydrogen molar ratio equal to 1/2 and at a space speed of 1 hour <-1> obtaining a yield of 1- propanol equal to 90%. The propanol thus obtained is reacted with acetic acid, in a molar ratio 1/1, using the Amberlyst 36 resin as catalyst in a weight ratio equal to 5% of the reactants and at a temperature of 100 ° C. The acetic acid used was obtained from the oxidation of bioethanol, ie ethanol of biological origin. The water produced during the esterification reaction is separated by means of a Dean-Starck apparatus, obtaining propyl acetate of biological origin with a purity of at least 99%. The experimentally determined properties of propyl acetate are shown in the following table. The fact that it is poorly miscible with water and that it has a high octane number is particularly interesting: therefore propyl acetate is a valid component for gasoline.

Composto Acetato di propile Compound Propyl acetate

Formula C5H10O2Formula C5H10O2

Solubilità in acqua (p:%) 1.53 Solubility in water (p:%) 1.53

Solubilità dell’acqua nel 1.53 Water solubility in 1.53

composto (p.%) compound (p.%)

Punto di ebollizione (°C) 102 Boiling point (° C) 102

Potere calorifico inferiore 26.7 Lower calorific value 26.7

(MJ/Kg) (MJ / Kg)

RON blending 114.3 RON blending 114.3

Contenuto bio 100 Bio content 100

Esempio 7 - sintesi propionato di etile CH3CH2COOCH2CH3(IaEt) In un reattore a letto fisso si caricano 10 g di cromito di rame, si scalda il reattore alla temperatura di 250°C, e si alimenta glicerina alla velocità spaziale di 1 ore<-1>e idrogeno alla pressione di 20 atmosfere. Il rapporto molare glicerina/idrogeno à ̈ pari a 1,7. Si ottiene una conversione della glicerina pari al 100% con una selettività all’1,2 propandiolo pari al 95 %. Il catalizzatore risulta essere stabile nelle condizioni di reazione per un tempo superiore alle 200 ore. Il propandiolo ottenuto dalla precedente reazione viene alimentato su di un reattore a letto fisso riempito di zeolite Beta e scaldato a 300°C alla velocità spaziale di 0.5 ore<-1>ottenendo una resa del 90% ad aldeide propionica. L’aldeide propionica ottenuta dalla precedente reazione viene ossidata trattandola con aria a 50°C in presenza di propionato di cobalto come catalizzatore (3% in peso) ottenendo acido propionico con una resa del 99%. L’acido propionico ottenuto dalla reazione precedente viene alimentato su di un reattore a letto fisso in miscela con bioetanolo, ossia etanolo ottenuto per via biologica, in rapporto molare etanolo/acido propionico 2/1. Il reattore viene riempito con la resina scambiatrice Amberlyst 36 e scaldato a 80°C. Si ottiene la conversione quantitativa dell’acido propionico a propionato di etile, che viene separato dall’etanolo non reagito tramite distillazione. Example 7 - synthesis of ethyl propionate CH3CH2COOCH2CH3 (IaEt) In a fixed bed reactor 10 g of copper chromite are loaded, the reactor is heated to a temperature of 250 ° C, and glycerin is fed at the space speed of 1 hour <-1 > and hydrogen at a pressure of 20 atmospheres. The molar ratio of glycerin / hydrogen is equal to 1.7. A conversion of glycerin equal to 100% is obtained with a selectivity to 1,2 propandiol equal to 95%. The catalyst is stable under the reaction conditions for a time exceeding 200 hours. The propanediol obtained from the previous reaction is fed onto a fixed bed reactor filled with Beta zeolite and heated to 300 ° C at the space speed of 0.5 hours <-1> obtaining a yield of 90% of propionic aldehyde. The propionic aldehyde obtained from the previous reaction is oxidized by treating it with air at 50 ° C in the presence of cobalt propionate as catalyst (3% by weight) obtaining propionic acid with a yield of 99%. The propionic acid obtained from the previous reaction is fed into a fixed bed reactor mixed with bioethanol, ie ethanol obtained organically, in a molar ratio of ethanol / propionic acid 2/1. The reactor is filled with the Amberlyst 36 exchange resin and heated to 80 ° C. The quantitative conversion of propionic acid to ethyl propionate is obtained, which is separated from the unreacted ethanol by distillation.

Nella tabella seguente si riportano le proprietà del propionato di etile determinate sperimentalmente. Risultano essere particolarmente interessanti il fatto che sia scarsamente miscibile con l’acqua e che possiede un elevato numero di ottano e pertanto risulta essere un valido componente per le benzine. The experimentally determined properties of ethyl propionate are reported in the following table. It is particularly interesting that it is poorly miscible with water and that it has a high octane number and therefore it is a valid component for gasoline.

Composto Propionato di etile Compound Ethyl propionate

Formula C5H10O2Formula C5H10O2

Solubilità in acqua (p%) 1.51 Solubility in water (p%) 1.51

Solubilità dell’acqua nel composto 1.25 Solubility of water in the compound 1.25

(p%) (p%)

Punto di ebollizione (°C) 99 Boiling point (° C) 99

Potere calorifico inferiore (MJ/Kg) 26.7 Net calorific value (MJ / Kg) 26.7

RON blending 129.4 RON blending 129.4

Contenuto bio 100 Bio content 100

Esempio 8 - sintesi propionato di propile CH3CH2COOCH2CH2CH3(IaPr) L’acido propionico ottenuto secondo quanto descritto nel precedente esempio 7 viene posto a reagire alimentandolo in un reattore a letto fisso, riempito di resina scambiatrice Amberlyst 36, con n-propanolo, preparato secondo quanto descritto nell’esempio 6, in rapporto molare acido propionico/n-propanolo = 1⁄2 e scaldato a 120°C. L’alimentazione della miscela acido propionico/1-propanolo avviene a velocità spaziale di 0.5 ore<-1>e si ottiene la conversione completa dell’acido propionico con la successiva separazione del propionato di propile dal propanolo non reagito tramite distillazione. Si ottiene secondo questa modalità propionato di propile di origine biologica, ossia completamente derivante da glicerina, a sua volta ottenibile dai trigliceridi degli acidi grassi. Nella tabella seguente si riportano le proprietà del propionato di propile determinate sperimentalmente. Risultano essere particolarmente interessanti il fatto che sia scarsamente miscibile con l’acqua e che possiede un elevato numero di ottano e pertanto risulta essere un valido componente per le benzine. Example 8 - synthesis propyl propionate CH3CH2COOCH2CH2CH3 (IaPr) The propionic acid obtained as described in the previous example 7 is reacted by feeding it into a fixed bed reactor, filled with Amberlyst 36 exchange resin, with n-propanol, prepared according to as described in example 6, in a molar ratio of propionic acid / n-propanol = 1⁄2 and heated to 120 ° C. The feeding of the propionic acid / 1-propanol mixture occurs at a space speed of 0.5 hours <-1> and the complete conversion of the propionic acid is obtained with the subsequent separation of the propyl propionate from the unreacted propanol by distillation. According to this method, propyl propionate of biological origin is obtained, ie completely deriving from glycerin, in turn obtainable from the triglycerides of fatty acids. The experimentally determined properties of propyl propionate are shown in the following table. It is particularly interesting that it is poorly miscible with water and that it has a high octane number and therefore it is a valid component for gasoline.

Composto Propionato di propile Compound Propyl propionate

Formula C6H12O2Formula C6H12O2

Solubilità in acqua (wt:%) 0.73 Solubility in water (wt:%) 0.73

Solubilità dell’acqua nel 0.83 Solubility of water in 0.83

composto (wt.%) compound (wt.%)

Punto di ebollizione (°C) 122 Boiling point (° C) 122

Potere calorifico inferiore 29.0 Lower calorific value 29.0

(MJ/Kg) (MJ / Kg)

RON blending 116.6 RON blending 116.6

Contenuto bio 100 Bio content 100

Claims (10)

RIVENDICAZIONI 1) Composizione contenente : - almeno una miscela idrocarburica - almeno un composto di formula (I) X- CH2-A-(B)y-OR (I) dove X à ̈ scelto tra H e OR R à ̈ un alchile C1-C8 A e B sono tra loro diversi e sono scelti tra CH2e CO y à ̈ scelto tra 0 e 1. CLAIMS 1) Composition containing: - at least one hydrocarbon mixture - at least one compound of formula (I) X- CH2-A- (B) y-OR (I) where is it X is chosen between H and OR R is a C1-C8 alkyl A and B are different from each other and are chosen between CH2 and CO y is chosen between 0 and 1. 2) Composizione in accordo con la rivendicazione 1 in cui R à ̈ scelto tra etile, npropile, iso-propile, n-butile, isobutile, sec-butile, ter-butile, 3-metil-1-butile e 2-metil-1-butile. 2) Composition according to claim 1 wherein R is selected from ethyl, npropyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 3-methyl-1-butyl and 2-methyl- 1-butyl. 3) Composizione in accordo con la rivendicazione 2 in cui R à ̈ etile, n-propile, isopropile o n-butile. 3) Composition according to claim 2 wherein R is ethyl, n-propyl, isopropyl or n-butyl. 4) Composizione in accordo con la rivendicazione 1 in cui y à ̈ uguale a 1 e il composto (I) ha la seguente formula: X-CH2-A-B-OR (I-1) dove X à ̈ scelto tra H e OR R à ̈ un alchile C1-C8 A e B sono tra loro diversi e sono scelti tra CH2e CO. 4) Composition according to claim 1 in which y is equal to 1 and the compound (I) has the following formula: X-CH2-A-B-OR (I-1) where is it X is chosen between H and OR R is a C1-C8 alkyl A and B are different from each other and are chosen between CH2 and CO. 5) Composizione in accordo con la rivendicazione 1 in cui y à ̈ 0 e il composto (I) ha formula: X-CH2-A-OR (I-2) dove X à ̈ scelto tra H e OR R à ̈ un alchile C1-C8 A à ̈ scelto tra CH2e CO. 5) Composition according to claim 1 in which y is 0 and compound (I) has formula: X-CH2-A-OR (I-2) where is it X is chosen between H and OR R is a C1-C8 alkyl A is chosen between CH2and CO. 6) Composizione in accordo con la rivendicazione 5 in cui R à ̈ n-propile. 6) Composition according to claim 5 wherein R is n-propyl. 7) Composizione in accordo con la rivendicazione 1 in cui il composto di formula (I) o i composti di formula (I) sono presenti in quantità compresa tra lo 0.5 % in volume ed il 15 % in volume, rispetto al volume totale della composizione. 7) Composition according to claim 1 wherein the compound of formula (I) or the compounds of formula (I) are present in an amount comprised between 0.5% by volume and 15% by volume, with respect to the total volume of the composition. 8) Composizione in accordo con la rivendicazione 7 in cui il composto di formula (I) o i composti di formula (I) sono presenti in quantità compresa tra il 1% in volume ed il 10 % in volume, rispetto al volume totale di detta composizione. 8) Composition according to claim 7 wherein the compound of formula (I) or the compounds of formula (I) are present in quantities ranging from 1% by volume to 10% by volume, with respect to the total volume of said composition . 9) Composizione in accordo con la rivendicazione 1 in cui la miscela idrocarburica à ̈ scelta tra gasolio, benzina, biodiesel, green diesel e loro miscele. 9) Composition according to claim 1 in which the hydrocarbon blend is chosen from diesel, petrol, biodiesel, green diesel and their blends. 10) Composizione in accordo con una o più delle precedenti rivendicazioni in cui la composizione contiene uno o più composti di formula (I) scelti tra i seguenti, dove R à ̈ un alchile C1-C8, : CH3-CH2-COOR (Ia) CH3-CO-CH2-OR (Ib) RO-CH2-CH2-COOR (Ic) RO-CH2- CO-CH2-OR (Id) CH3-CO-OCH2CH2CH3(Ie) 11) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I), dove X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CH2, B à ̈ CO e y à ̈ 1, che comprende: - riduzione catalitica della glicerina a 1,2-propan-diolo (a1) - disidratazione di (a1) ad aldeide propionica (a2) - ossidazione di (a2) ad acido propionico (a3) - esterificazione di (a3) con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare CH3-CH2-COOR (Ia). 12) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I), dove X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CH2, B à ̈ CO e y à ̈ 1, che comprende: - riduzione catalitica della glicerina a 1-propanolo (a) - ossidazione dell’1-propanolo ad acido propionico (a3) - esterificazione di (a3) con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare CH3-CH2-COOR (Ia) . 13) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I), dove X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CO , B à ̈ CH2e y à ̈ 1, che comprende la reazione di glicerina con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare il corrispondente 3-alcossi-1,2-propan-diolo (b) che viene disidratato al corrispondente alcossi-acetone CH3-CO-CH2-OR (Ib). 14) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I), dove X à ̈ H, R à ̈ un alchile C1-C8, A à ̈ CO, B à ̈ CH2e y à ̈ 1, che comprende la disidratazione della glicerina a dare idrossiacetone (b2) , che viene fatto reagire con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare il corrispondente alcossi-acetone CH3-CO-CH2-OR (Ib). 15) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I) , dove X à ̈ OR, R à ̈ un alchile C1-C8, A à ̈ CH2, B à ̈ CO e y à ̈ 1, che comprende: - riduzione catalitica della glicerina a 1,3-propan-diolo, - ossidazione del 1,3-propandiolo a β-propiolattone, - esterificazione del β-propiolattone con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare RO-CH2-CH2-COOR (Ic). 16) Processo per preparare i composti di formula X-CH2-A-(B)y-OR (I), dove X à ̈ OR, R à ̈ un alchile C1-C8, A à ̈ CO , B à ̈ CH2e y à ̈ 1, che comprende la reazione della glicerina con un alcol ROH, dove R à ̈ un alchile C1-C8, a dare 1,3-dialcossi-2-propanolo (d1), che viene ossidato a dare RO-CH2-CO-CH2-OR (Id). 17) Processo per preparare il composto di formula X-CH2-A-(B)y-OR (I), dove X à ̈ H, R à ̈ n-propile, A à ̈ CO e y à ̈ 0, che comprende la riduzione della glicerina a dare 1-propanolo (a) e la reazione di (a) con acido acetico a dare CH3-CO-OCH2CH2CH3(Ie). 18) Uso della composizione in accordo con la rivendicazione 1 come carburante o componente di carburante 19) Uso, come componenti di carburanti, di uno o più composti di formula (I) : X- CH2–A-(B)y-OR (I) dove X à ̈ scelto tra H e OR R à ̈ un alchile C1-C8 A e B sono tra loro diversi e sono scelti tra CH2e CO y à ̈ scelto tra 0 e 1.10) Composition according to one or more of the preceding claims in which the composition contains one or more compounds of formula (I) selected from the following, where R is a C1-C8 alkyl,: CH3-CH2-COOR (Ia) CH3-CO-CH2-OR (Ib) RO-CH2-CH2-COOR (Ic) RO-CH2- CO-CH2-OR (Id) CH3-CO-OCH2CH2CH3 (Ie) 11) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X à ̈ H, R is a C1-C8 alkyl, A à ̈ CH2, B à ̈ CO and y It is 1, which includes: - catalytic reduction of glycerin to 1,2-propan-diol (a1) - dehydration of (a1) to propionic aldehyde (a2) - oxidation of (a2) to propionic acid (a3) - esterification of (a3) with a ROH alcohol, where R is a C1-C8 alkyl, to give CH3-CH2-COOR (Ia). 12) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X à ̈ H, R is a C1-C8 alkyl, A à ̈ CH2, B à ̈ CO and y It is 1, which includes: - catalytic reduction of glycerin to 1-propanol (a) - oxidation of 1-propanol to propionic acid (a3) - esterification of (a3) with a ROH alcohol, where R is a C1-C8 alkyl, to give CH3-CH2-COOR (Ia). 13) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X is H, R is a C1-C8 alkyl, A is CO, B is CH2e y à 1, which includes the reaction of glycerin with an ROH alcohol, where R is a C1-C8 alkyl, to give the corresponding 3-alkoxy-1,2-propan-diol (b) which is dehydrated to the corresponding alkoxy- acetone CH3-CO-CH2-OR (Ib). 14) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X à ̈ H, R is a C1-C8 alkyl, A à ̈ CO, B à ̈ CH2e y à ̈ 1, which includes the dehydration of glycerin to give hydroxyacetone (b2), which is reacted with an alcohol ROH, where R is a C1-C8 alkyl, to give the corresponding alkoxy-acetone CH3-CO-CH2-OR (Ib). 15) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X is OR, R is a C1-C8 alkyl, A is CH2, B is CO and y It is 1, which includes: - catalytic reduction of glycerin to 1,3-propan-diol, - oxidation of 1,3-propandiol to β-propiolactone, - esterification of β-propiolactone with a ROH alcohol, where R is a C1-C8 alkyl, to give RO-CH2-CH2-COOR (Ic). 16) Process to prepare the compounds of formula X-CH2-A- (B) y-OR (I), where X is OR, R is a C1-C8 alkyl, A is CO, B is CH2e y à 1, which includes the reaction of glycerin with an alcohol ROH, where R is a C1-C8 alkyl, to give 1,3-dialkoxy-2-propanol (d1), which is oxidized to give RO-CH2-CO -CH2-OR (Id). 17) Process to prepare the compound of formula X-CH2-A- (B) y-OR (I), where X à ̈ H, R à ̈ n-propyl, A à ̈ CO and y à ̈ 0, which includes the reduction of glycerin to give 1-propanol (a) and the reaction of (a) with acetic acid to give CH3-CO-OCH2CH2CH3 (Ie). 18) Use of the composition according to claim 1 as fuel or fuel component 19) Use, as fuel components, of one or more compounds of formula (I): X- CH2â € "A- (B) y-OR (I) where is it X is chosen between H and OR R is a C1-C8 alkyl A and B are different from each other and are chosen between CH2 and CO y is chosen between 0 and 1.
IT002006A 2012-11-26 2012-11-26 USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS ITMI20122006A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT002006A ITMI20122006A1 (en) 2012-11-26 2012-11-26 USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS
PCT/IB2013/060410 WO2014080379A2 (en) 2012-11-26 2013-11-26 Compositions useful as fuels comprising hydrophobic oxygenated compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT002006A ITMI20122006A1 (en) 2012-11-26 2012-11-26 USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS

Publications (1)

Publication Number Publication Date
ITMI20122006A1 true ITMI20122006A1 (en) 2014-05-27

Family

ID=47633147

Family Applications (1)

Application Number Title Priority Date Filing Date
IT002006A ITMI20122006A1 (en) 2012-11-26 2012-11-26 USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS

Country Status (2)

Country Link
IT (1) ITMI20122006A1 (en)
WO (1) WO2014080379A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700044195A1 (en) * 2017-04-21 2018-10-21 Eni Spa Fuel compositions comprising C3 alcohols

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228662A (en) * 1939-05-31 1941-01-14 Standard Oil Co Motor fuel
WO2001053437A1 (en) * 2000-01-24 2001-07-26 Golubkov Angelica Method of reducing the vapour pressure of ethanol-containing motor fuels for spark ignition combustion engines
US20080244963A1 (en) * 2005-12-16 2008-10-09 Total France Lead-Free Aviation Fuel
EP2305778A2 (en) * 2009-09-30 2011-04-06 MOL Magyar Olaj- és Gázipari Nyrt. Fuel and fuel additives capable for use for internal combustion engines and process for the production thereof
WO2011041732A2 (en) * 2009-10-01 2011-04-07 Mississippi State University Method to upgrade bio-oils to fuel and bio-crude

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1315585A (en) 1919-09-09 Charles weizmann
US5192673A (en) 1990-04-30 1993-03-09 Michigan Biotechnology Institute Mutant strain of C. acetobutylicum and process for making butanol
US5562777A (en) 1993-03-26 1996-10-08 Arkenol, Inc. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US5753474A (en) 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
WO2005093015A1 (en) 2004-02-24 2005-10-06 Institut Francais Du Petrole Method for producing biofuels, transforming triglycerides into at least two biofuel families: fatty acid monoesters and ethers and/or soluble glycerol acetals
FI118012B (en) 2004-06-04 2007-05-31 Valtion Teknillinen Process for producing ethanol
US20090246842A1 (en) 2008-02-15 2009-10-01 Gevo, Inc. Engineered microorganisms for producing propanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228662A (en) * 1939-05-31 1941-01-14 Standard Oil Co Motor fuel
WO2001053437A1 (en) * 2000-01-24 2001-07-26 Golubkov Angelica Method of reducing the vapour pressure of ethanol-containing motor fuels for spark ignition combustion engines
US20080244963A1 (en) * 2005-12-16 2008-10-09 Total France Lead-Free Aviation Fuel
EP2305778A2 (en) * 2009-09-30 2011-04-06 MOL Magyar Olaj- és Gázipari Nyrt. Fuel and fuel additives capable for use for internal combustion engines and process for the production thereof
WO2011041732A2 (en) * 2009-10-01 2011-04-07 Mississippi State University Method to upgrade bio-oils to fuel and bio-crude

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN A. POSADA ET AL: "Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem", BIORESOURCE TECHNOLOGY, vol. 111, 1 May 2012 (2012-05-01), pages 282 - 293, XP055069807, ISSN: 0960-8524, DOI: 10.1016/j.biortech.2012.01.151 *
TAREK DISHISHA ET AL: "Batch- and continuous propionic acid production from glycerol using free and immobilized cells of", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 118, 17 May 2012 (2012-05-17), pages 553 - 562, XP028504863, ISSN: 0960-8524, [retrieved on 20120524], DOI: 10.1016/J.BIORTECH.2012.05.079 *

Also Published As

Publication number Publication date
WO2014080379A2 (en) 2014-05-30
WO2014080379A3 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5757603B2 (en) Production method of biojet fuel stable at low temperature
KR101290049B1 (en) Liquid bio-fuel mixture and method and device for producing said mixture
WO2013150457A1 (en) Fuel compositions comprising hydrophobic derivatives of glycerine
Olson et al. A concise review of glycerol derivatives for use as fuel additives
ES2871853T3 (en) Integrated process for the production of fuel components from glycerin
ITMI20130209A1 (en) INTEGRATED PROCESS FOR THE PREPARATION OF USEFUL COMPOUNDS AS FUEL COMPONENTS
ES2688151T3 (en) Process for the preparation of cyclic acetals that can be used as fuel components
ITMI20091753A1 (en) COMPOSITION OF GASOLINE INCLUDING DIETHYL CARBONATE FROM BIOETHANOL
ITMI20092202A1 (en) COMPOSITION OF GAS OIL INCLUDING DIETYL CARBONATE FROM BIOETHANOL AND VEGETABLE OIL
ITMI20122006A1 (en) USEFUL COMPOSITIONS AS FUELS INCLUDING HYDROPHOBIC OXYGENATED COMPOUNDS
ITMI20121343A1 (en) USEFUL COMPOSITIONS AS FUELS INCLUDING GLYCERINE DERIVATIVES
ITMI20120716A1 (en) FUEL COMPOSITIONS INCLUDING HYDROPHOBIC DERIVATIVES OF GLYCERINE
EP3558959A1 (en) Process for the preparation of cyclic acetals that can be used as components for diesel fuels
ITMI20102000A1 (en) COMPOSITION OF DIESEL INCLUDING GLYCERINE ETHERS CONTAINING LINEAR ALCYLIC CHAINS OR THEIR MIXES
ITMI20092235A1 (en) COMPOSITION OF DIESEL INCLUDING BIODIESEL AND DIETYL CARBONATE FROM BIOETHANOL
WO2015198267A1 (en) Process for obtaining compounds useful for the production of biofuels starting from cellulose